Several lines of evidence suggest potential benefits by a combination of carotenoids and tocopherols in chronic diseases. Therefore, we have designed FeAOX-6, a novel antioxidant that combines into a single molecule the chroman head of tocopherols and a fragment of lycopene, consisting of a polyisoprenyl sequence of four conjugated double bonds. The ability of FeAOX-6 in inhibiting lipid peroxidation and reactive oxygen species (ROS) production induced by different sources of free radicals (t-BOOH, AAPH, and H2O2) in arachidonic acid solution and in isolated thymocytes was investigated. Its antioxidant efficiency was also compared with that of alpha-tocopherol, lycopene, and a mixture of the two antioxidants. The results strongly suggest that FeAOX-6 can act as a potent antioxidant in our models, by inhibiting malondialdehyde production and ROS generation in a dose- and a time-dependent manner. In the cell model, the compound also provides a higher antioxidant capacity than alpha-tocopherol and lycopene, alone or in combination, suggesting the possibility of an oxidative intramolecular cooperation.

Design, synthesis, and antioxidant activity of FeAOX-6, a novel agent deriving from a molecular combination of the chromanyl and polyisoprenyl moieties

MANFREDINI, Stefano;VERTUANI, Silvia;
2002

Abstract

Several lines of evidence suggest potential benefits by a combination of carotenoids and tocopherols in chronic diseases. Therefore, we have designed FeAOX-6, a novel antioxidant that combines into a single molecule the chroman head of tocopherols and a fragment of lycopene, consisting of a polyisoprenyl sequence of four conjugated double bonds. The ability of FeAOX-6 in inhibiting lipid peroxidation and reactive oxygen species (ROS) production induced by different sources of free radicals (t-BOOH, AAPH, and H2O2) in arachidonic acid solution and in isolated thymocytes was investigated. Its antioxidant efficiency was also compared with that of alpha-tocopherol, lycopene, and a mixture of the two antioxidants. The results strongly suggest that FeAOX-6 can act as a potent antioxidant in our models, by inhibiting malondialdehyde production and ROS generation in a dose- and a time-dependent manner. In the cell model, the compound also provides a higher antioxidant capacity than alpha-tocopherol and lycopene, alone or in combination, suggesting the possibility of an oxidative intramolecular cooperation.
2002
Manfredini, Stefano; Piccioni, E; Avamzi, L; Vertuani, Silvia; Calviello, G; Manfredini, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1205234
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact