The number of apparent double points of a smooth, irreducible projective variety $X$ of dimension $n$ in $\Proj^{2n+1}$ is the number of secant lines to $X$ passing through the general point of $\Proj^{2n+1}$. This classical notion dates back to Severi. In the present paper we classify smooth varieties of dimension at most three having one apparent double point. The techniques developed for this purpose allow to treat a wider class of projective varieties.

Varieties with one apparent double point

MELLA, Massimiliano;
2004

Abstract

The number of apparent double points of a smooth, irreducible projective variety $X$ of dimension $n$ in $\Proj^{2n+1}$ is the number of secant lines to $X$ passing through the general point of $\Proj^{2n+1}$. This classical notion dates back to Severi. In the present paper we classify smooth varieties of dimension at most three having one apparent double point. The techniques developed for this purpose allow to treat a wider class of projective varieties.
2004
Ciliberto, C; Mella, Massimiliano; Russo, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1205006
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact