Using the model of infraorbital nerve (IoN) injury, we have studied the role IoN signals have on the developing vibrissal motor system. To this end, in ten rats, the IoN was severed on the day of birth: in five rats, the IoN was repaired to promote axon regeneration (Reinnervated group) while axon regeneration was prevented in the remaining five rats (Deafferented group). In another five rats, the isolated IoN was left intact (Sham group) and still another group of five rats was left untouched (Control group). After these rats had reached adulthood, the compound muscle action potential (MAP) was recorded from the vibrissa muscle and intracortical microstimulation (ICMS)-evoked movements were mapped in the frontal cortex contralateral to the operated side. We found: (i) no difference between Control, Sham and Reinnervated groups in the integrated MAPs and in the size and excitability of the M1 vibrissal representation. (ii) the Deafferented group showed a 42.9% decrease in the integrated MAP plus a 47.2% and 36.9% reduction, respectively, in the size and excitability of the M1 vibrissae representation. We conclude that, during perinatal life, IoN signals regulate the development of both the peripheral and central vibrissal motor system and that IoN reinnervation restores sensory signals able to stabilize normal development of the vibrissal motor system.

Postnatal development of vibrissae motor output following neonatal infraorbital nerve manipulation

VERONESI, Carlo;MAGGIOLINI, Emma;FRANCHI, Gianfranco
2006

Abstract

Using the model of infraorbital nerve (IoN) injury, we have studied the role IoN signals have on the developing vibrissal motor system. To this end, in ten rats, the IoN was severed on the day of birth: in five rats, the IoN was repaired to promote axon regeneration (Reinnervated group) while axon regeneration was prevented in the remaining five rats (Deafferented group). In another five rats, the isolated IoN was left intact (Sham group) and still another group of five rats was left untouched (Control group). After these rats had reached adulthood, the compound muscle action potential (MAP) was recorded from the vibrissa muscle and intracortical microstimulation (ICMS)-evoked movements were mapped in the frontal cortex contralateral to the operated side. We found: (i) no difference between Control, Sham and Reinnervated groups in the integrated MAPs and in the size and excitability of the M1 vibrissal representation. (ii) the Deafferented group showed a 42.9% decrease in the integrated MAP plus a 47.2% and 36.9% reduction, respectively, in the size and excitability of the M1 vibrissae representation. We conclude that, during perinatal life, IoN signals regulate the development of both the peripheral and central vibrissal motor system and that IoN reinnervation restores sensory signals able to stabilize normal development of the vibrissal motor system.
2006
Veronesi, Carlo; Maggiolini, Emma; Franchi, Gianfranco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1204884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact