One of the main limitation to the extensive use of breast-cancer screening as a prevention method is the relatively high X-ray dose released to the patient. A new approach is under study in which two quasi-monochromatic beams with mean energies of 18.0 and 36.0 keV - are produced simultaneously, starting from an X-ray tube, by means of a monochromator based on a pyrolytic graphite crystal. The two beams are superimposed in space. The removal of the energy components with low content of diagnostic information from the spectrum, leads to a reduction of the dose released to patients maintaining (or improving) the image quality. The two quasi-monochromatic beams impinge on the patient and then are detected with a solid-state array detector; the image results as the difference between the transmitted intensities of the two detected beams. In this work, the performances of two different electronic readouts and three pixel widths of a silicon position sensitive array detector are simulated and described in order to minimize cross-talk effects between adjacent pixels. The use of a detector with spectrometric capabilities is necessary to separate, by means of thresholds, the high energy photons from the low energy ones.

Dual energy imaging in mammography: Cross-talk study in a Si array detector

GAMBACCINI, Mauro;TUFFANELLI, Alessandra
2004

Abstract

One of the main limitation to the extensive use of breast-cancer screening as a prevention method is the relatively high X-ray dose released to the patient. A new approach is under study in which two quasi-monochromatic beams with mean energies of 18.0 and 36.0 keV - are produced simultaneously, starting from an X-ray tube, by means of a monochromator based on a pyrolytic graphite crystal. The two beams are superimposed in space. The removal of the energy components with low content of diagnostic information from the spectrum, leads to a reduction of the dose released to patients maintaining (or improving) the image quality. The two quasi-monochromatic beams impinge on the patient and then are detected with a solid-state array detector; the image results as the difference between the transmitted intensities of the two detected beams. In this work, the performances of two different electronic readouts and three pixel widths of a silicon position sensitive array detector are simulated and described in order to minimize cross-talk effects between adjacent pixels. The use of a detector with spectrometric capabilities is necessary to separate, by means of thresholds, the high energy photons from the low energy ones.
2004
G., Baldazzi; D., Bollini; Gambaccini, Mauro; M., Gombia; L., RAMELLO D; Tuffanelli, Alessandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1203307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact