The effect of an acute administration of the vigilance-promoting drug modafinil ((±)(diphenyl-methyl)-sulfinyl-2 acetamide; Modiodal) on the nigrostriatal dopamine system was studied after damage induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) by means of immunohistochemistry for tyrosine hydroxylase (TH) and a stereological method. MPTP (40 mg/kg) reduced from 24 380±902 to 13 501±522 and from 37 868±3300 to 20 568±1270, respectively, the number of TH immunoreactive (IR) and non-TH IR nigral neurons. Co-administration of Modafinil restored to normal the number of these neuronal populations. MPTP treatment induced also a reduction in the volume of TH IR neurons, which was counteracted by Modafinil administration. The data provide morphological evidence, based on unbiased stereological analysis, for a potential neuroprotective role of Modafinil, not only in dopaminergic neurons, but also with a similar magnitude in the non-DA nerve cell population of the substantia nigra after MPTP lesion. These results suggest that Modafinil has a neuroprotective role in the substantia nigra via a still undefined mechanism in which a crucial role of DA uptake blockade should be excluded. Modafinil may therefore have a therapeutic potential in neurodegenerative processes such as those occurring in Parkinson's disease.
A stereological study on the neuroprotective actions of acute modafinil treatment on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigral lesions of the male black mouse
ANTONELLI, Tiziana;FERRARO, Luca Nicola;
1999
Abstract
The effect of an acute administration of the vigilance-promoting drug modafinil ((±)(diphenyl-methyl)-sulfinyl-2 acetamide; Modiodal) on the nigrostriatal dopamine system was studied after damage induced by MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) by means of immunohistochemistry for tyrosine hydroxylase (TH) and a stereological method. MPTP (40 mg/kg) reduced from 24 380±902 to 13 501±522 and from 37 868±3300 to 20 568±1270, respectively, the number of TH immunoreactive (IR) and non-TH IR nigral neurons. Co-administration of Modafinil restored to normal the number of these neuronal populations. MPTP treatment induced also a reduction in the volume of TH IR neurons, which was counteracted by Modafinil administration. The data provide morphological evidence, based on unbiased stereological analysis, for a potential neuroprotective role of Modafinil, not only in dopaminergic neurons, but also with a similar magnitude in the non-DA nerve cell population of the substantia nigra after MPTP lesion. These results suggest that Modafinil has a neuroprotective role in the substantia nigra via a still undefined mechanism in which a crucial role of DA uptake blockade should be excluded. Modafinil may therefore have a therapeutic potential in neurodegenerative processes such as those occurring in Parkinson's disease.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.