ATP is released from neurons and other cell types during several physiological and stress conditions under which it exerts various biological effects upon binding to purinoreceptors. A rather peculiar purinoreceptor called P2X7/P2Z is expressed on microglial and other myeloic cells. Although increasing evidence implicates an important role for P2Z in inflammatory processes, little information exists about underlying signaling pathways. Here, we report that in N9 microglial cells, extracellular ATP potently activates nuclear factor of activated T cells (NFAT), a central transcription factor involved in cytokine gene expression. ATP activated NFAT rapidly (within 1 min), whereas activation of nuclear factor kappaB was much delayed, with strikingly distinct kinetics. During ATP stimulation, both NFAT-1 and NFAT-2 were activated by a calcineurin-dependent pathway that required the influx of extracellular calcium ions. Based on the pharmacological profile, NFAT activation was specifically mediated by P2Z and not by other purinoreceptors. N9 cells that lacked P2Z but still expressed P2Y purinoreceptors failed to respond to NFAT activation. We conclude that P2Z-mediated NFAT activation may represent a novel mechanism by which extracellular ATP can modulate early inflammatory gene expression within the nervous and immune system.

P2X7/P2Z purinoreceptor-mediated activation of transcriptional factor NFAT in microglial cells

FERRARI, Davide;
1999

Abstract

ATP is released from neurons and other cell types during several physiological and stress conditions under which it exerts various biological effects upon binding to purinoreceptors. A rather peculiar purinoreceptor called P2X7/P2Z is expressed on microglial and other myeloic cells. Although increasing evidence implicates an important role for P2Z in inflammatory processes, little information exists about underlying signaling pathways. Here, we report that in N9 microglial cells, extracellular ATP potently activates nuclear factor of activated T cells (NFAT), a central transcription factor involved in cytokine gene expression. ATP activated NFAT rapidly (within 1 min), whereas activation of nuclear factor kappaB was much delayed, with strikingly distinct kinetics. During ATP stimulation, both NFAT-1 and NFAT-2 were activated by a calcineurin-dependent pathway that required the influx of extracellular calcium ions. Based on the pharmacological profile, NFAT activation was specifically mediated by P2Z and not by other purinoreceptors. N9 cells that lacked P2Z but still expressed P2Y purinoreceptors failed to respond to NFAT activation. We conclude that P2Z-mediated NFAT activation may represent a novel mechanism by which extracellular ATP can modulate early inflammatory gene expression within the nervous and immune system.
1999
Ferrari, Davide; Stroh, C.; SCHULZE OSTHOFF, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1202411
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? ND
social impact