Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.
Localization of grasp representations in humans by positron emission tomography .2. Observation compared with imagination
FADIGA, Luciano;
1996
Abstract
Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.