In the variational model for brittle fracture proposed in Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342], the minimum problem is formulated as a free discontinuity problem for the energy functional of a linear elastic body. A family of approximating regularized problems is then defined, each of which can be solved numerically by a finite element procedure. Here we re-formulate the minimum problem within the context of finite elasticity. The main change is the introduction of the dependence of the strain energy density on the determinant of the deformation gradient. This change requires new, more general existence and G-convergence results. The results of some two-dimensional numerical simulations are presented, and compared with corresponding simulations made in Bourdin et al. [2000. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826] for the linear elastic model.

A variational model for fracture mechanics - Numerical experiments

DEL PIERO, Gianpietro;
2007

Abstract

In the variational model for brittle fracture proposed in Francfort and Marigo [1998. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342], the minimum problem is formulated as a free discontinuity problem for the energy functional of a linear elastic body. A family of approximating regularized problems is then defined, each of which can be solved numerically by a finite element procedure. Here we re-formulate the minimum problem within the context of finite elasticity. The main change is the introduction of the dependence of the strain energy density on the determinant of the deformation gradient. This change requires new, more general existence and G-convergence results. The results of some two-dimensional numerical simulations are presented, and compared with corresponding simulations made in Bourdin et al. [2000. Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826] for the linear elastic model.
2007
DEL PIERO, Gianpietro; G., Lancioni; R., March
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1201111
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 85
social impact