We consider an nxn system of hyperbolic conservation laws and focus on the case of strongly underdetermined sonic phase boundaries. We propose a Riemann solver that singles out solutions uniquely. This Riemann solver has two features: it selects phase boundaries by means of an exterior function and it allows compound waves. Then we prove the global existence of weak solutions to the Cauchy problem. Applications to Chapman-Jouguet deflagrations are given.

Sonic and kinetic phase transitions with applications to Chapman-Jouguet deflagrations

CORLI, Andrea
2004

Abstract

We consider an nxn system of hyperbolic conservation laws and focus on the case of strongly underdetermined sonic phase boundaries. We propose a Riemann solver that singles out solutions uniquely. This Riemann solver has two features: it selects phase boundaries by means of an exterior function and it allows compound waves. Then we prove the global existence of weak solutions to the Cauchy problem. Applications to Chapman-Jouguet deflagrations are given.
2004
Colombo, R. M.; Corli, Andrea
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199921
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact