In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.

SG-pseudodifferential operators and Gelfand-Shilov spaces

CAPPIELLO, Marco;
2006

Abstract

In this paper, we study a class of pseudo-differential operators of SG type in the functional setting of the Gelfand-Shilov spaces $S^{\theta}_{\theta}(R^n), \theta >1$. As an application we prove a result of hypoellipticity in the same classes. In the last of the paper, we define a notion of wave front set for tempered ultradistributions which allows to describe both the local regularity and the behaviour at infinity of the elements of the dual space $(S^{\theta}_{\theta})'(R^n)$.
2006
Cappiello, Marco; Rodino, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact