In this work, we develop a global calculus for a class of Fourier integral ope-\\rators with symbols $a(x,\xi)$ having exponential growth in $\R^{2n}_{x,\xi}.$ The functional frame is given by the spaces of type S of Gelfand and Shilov. As an application, we construct a parametrix and prove the existence of a solution for the Cauchy problem associated to SG-hyperbolic operators with one characteristic of constant multiplicity.

Fourier integral operators of infinite order and applications to SG-hyperbolic equations

CAPPIELLO, Marco
2004

Abstract

In this work, we develop a global calculus for a class of Fourier integral ope-\\rators with symbols $a(x,\xi)$ having exponential growth in $\R^{2n}_{x,\xi}.$ The functional frame is given by the spaces of type S of Gelfand and Shilov. As an application, we construct a parametrix and prove the existence of a solution for the Cauchy problem associated to SG-hyperbolic operators with one characteristic of constant multiplicity.
2004
Cappiello, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199474
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact