In this paper we consider a class of symbols of infinite order and develop a global calculus for the related pseudodifferential operators in the functional frame of the Gelfand-Shilov spaces of type S. As an application, we construct a parametrix for the Cauchy problem associated to an operator with principal part $D_t^m$ and lower order terms given by SG-operators, cf. Introduction. We do not assume here Levi conditions on the lower order terms. Giving initial data in Gelfand-Shilov spaces, we are able to prove the well-posedness for the problem and to give an explicit expression of the solution.

Pseudodifferential parametrices of infinite order and SG-hyperbolic problems

CAPPIELLO, Marco
2003

Abstract

In this paper we consider a class of symbols of infinite order and develop a global calculus for the related pseudodifferential operators in the functional frame of the Gelfand-Shilov spaces of type S. As an application, we construct a parametrix for the Cauchy problem associated to an operator with principal part $D_t^m$ and lower order terms given by SG-operators, cf. Introduction. We do not assume here Levi conditions on the lower order terms. Giving initial data in Gelfand-Shilov spaces, we are able to prove the well-posedness for the problem and to give an explicit expression of the solution.
2003
Cappiello, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199473
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact