The aim of this work was to study the acid neutralization characteristics of microwave-dried sucralfate gel in relation to the water content and physical structure of the substance. Several dried sucralfate gels were compared with humid sucralfate gel and sucralfate nongel powder in terms of neutralization rate and buffering capacity. Humid sucralfate gel and microwave-dried gel exhibited antacid effectiveness. In particular, the neutralization rate of dried gel powders was inversely related to the water content: as the water content of dried powders decreased, the acid reaction rate linearly increased. The relationship was due to the different morphology of dried sucralfate gels. In fact, the porosity of the dried samples increased with the water reduction. However, the acid neutralization equivalent revealed that the dried sucralfate gel became more resistant to acid attack in the case of water content below 42%. Then, the microwave drying procedure had the opposite effect on the reactivity of the aluminum hydroxide component of dried sucralfate gel powders, since the rate of the reaction increased whereas the buffering capacity decreased as the amount of water was reduced.
The Effect of Residual Water on Antacid Properties of Sucralfate Gel Dried by Microwaves
COLOMBO, Gaia;
2006
Abstract
The aim of this work was to study the acid neutralization characteristics of microwave-dried sucralfate gel in relation to the water content and physical structure of the substance. Several dried sucralfate gels were compared with humid sucralfate gel and sucralfate nongel powder in terms of neutralization rate and buffering capacity. Humid sucralfate gel and microwave-dried gel exhibited antacid effectiveness. In particular, the neutralization rate of dried gel powders was inversely related to the water content: as the water content of dried powders decreased, the acid reaction rate linearly increased. The relationship was due to the different morphology of dried sucralfate gels. In fact, the porosity of the dried samples increased with the water reduction. However, the acid neutralization equivalent revealed that the dried sucralfate gel became more resistant to acid attack in the case of water content below 42%. Then, the microwave drying procedure had the opposite effect on the reactivity of the aluminum hydroxide component of dried sucralfate gel powders, since the rate of the reaction increased whereas the buffering capacity decreased as the amount of water was reduced.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.