In this paper, compendial sodium alginate beads have been manufactured by laminar jet break-up technology. The effect of polymer concentration, viscosity and polymeric solution flow rate on the characteristics of beads was studied. Size distribution of alginate beads in the hydrated state was strongly dependent on the flow rate and viscosity of polymer solutions, since a transition from laminar jet break-up conditions to vibration-assisted dripping was observed. The re-hydration kinetics of dried beads in simulated gastric fluid (SGF) showed that the maximum swelling of beads was reached after 1-2 h, with an increase in volume of two to three times and a time lag dependent on the polymer concentration. The re-hydration swelling profiles in simulated intestinal fluid (SIF) showed no time lag and higher swelling volume; moreover, in this medium after the maximum swelling was reached, the bead structure was quickly disaggregated because of the presence in the medium of phosphate able to capture calcium ions present in the alginate gel structure.

Mechanisms of formation and disintegration of alginate beads obtained by prilling

COLOMBO, Gaia;RUSSO, Paolo;
2005

Abstract

In this paper, compendial sodium alginate beads have been manufactured by laminar jet break-up technology. The effect of polymer concentration, viscosity and polymeric solution flow rate on the characteristics of beads was studied. Size distribution of alginate beads in the hydrated state was strongly dependent on the flow rate and viscosity of polymer solutions, since a transition from laminar jet break-up conditions to vibration-assisted dripping was observed. The re-hydration kinetics of dried beads in simulated gastric fluid (SGF) showed that the maximum swelling of beads was reached after 1-2 h, with an increase in volume of two to three times and a time lag dependent on the polymer concentration. The re-hydration swelling profiles in simulated intestinal fluid (SIF) showed no time lag and higher swelling volume; moreover, in this medium after the maximum swelling was reached, the bead structure was quickly disaggregated because of the presence in the medium of phosphate able to capture calcium ions present in the alginate gel structure.
2005
P., DEL GAUDIO; P., Colombo; Colombo, Gaia; Russo, Paolo; F., Sonvico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199002
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 120
social impact