By means of duality, the Fourier-Laplace transform and the Ehrenpreis fundamental principle, we study well-posedness and evolution of the Cauchy problem for ovedetermined systems of linear partial differential operators with constant coefficients, in some classes of Whitney functions satysfying growth conditions at infinity. We show applications to the heat equation.

The overdetermined Cauchy problem with growth conditions at infinity

BOITI, Chiara;
2000

Abstract

By means of duality, the Fourier-Laplace transform and the Ehrenpreis fundamental principle, we study well-posedness and evolution of the Cauchy problem for ovedetermined systems of linear partial differential operators with constant coefficients, in some classes of Whitney functions satysfying growth conditions at infinity. We show applications to the heat equation.
2000
Boiti, Chiara; M., Nacinovich
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1198351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact