Several 2-(4-chlorophenoxy)-3-oxoesters were prepared in fair to good yields and then reduced in the presence of baker's yeast to the corresponding alcohols having de's up to 92% and ee's > 99%. The absolute configuration of nearly enantiomerically pure ethyl 2-(4-chlorophenoxy)-3-hydroxybutanoate was assigned by both comparison of the sign of the specific rotation and HPLC retention times of authentic samples prepared from threonines. Reduction of ethyl 2-(4-chlorophenoxy)-3-oxo-4-phenylbutanoate afforded only enantiomerically pure ethyl (2R,3S)-2-(4-chlorophenoxy)-3-hydroxy-4-phenylbutanoate (out of the four possible stereoisomers), whose absolute configuration was established by single crystal X-ray analysis. Furthermore, reduction of ethyl 2-methyl-2-(4-chlorophenoxy)-3-hydroxybutanoate with a quaternary stereogenic carbon (C-2) gave both of the two expected diastereoisomers with ee = 95% and 96%. Insight into the mechanism of baker's yeast-mediated reduction of prochiral ketoesters is also reported.

Baker's yeast-mediated reduction of ethyl 2-(4-chlorophenoxy)-3-oxoalkanoates intermediates for potential PPAR alpha ligands

BERTOLASI, Valerio
2004

Abstract

Several 2-(4-chlorophenoxy)-3-oxoesters were prepared in fair to good yields and then reduced in the presence of baker's yeast to the corresponding alcohols having de's up to 92% and ee's > 99%. The absolute configuration of nearly enantiomerically pure ethyl 2-(4-chlorophenoxy)-3-hydroxybutanoate was assigned by both comparison of the sign of the specific rotation and HPLC retention times of authentic samples prepared from threonines. Reduction of ethyl 2-(4-chlorophenoxy)-3-oxo-4-phenylbutanoate afforded only enantiomerically pure ethyl (2R,3S)-2-(4-chlorophenoxy)-3-hydroxy-4-phenylbutanoate (out of the four possible stereoisomers), whose absolute configuration was established by single crystal X-ray analysis. Furthermore, reduction of ethyl 2-methyl-2-(4-chlorophenoxy)-3-hydroxybutanoate with a quaternary stereogenic carbon (C-2) gave both of the two expected diastereoisomers with ee = 95% and 96%. Insight into the mechanism of baker's yeast-mediated reduction of prochiral ketoesters is also reported.
2004
Perrone, Mg; Santandrea, E; Scilimati, A; Tortorella, V; Capitelli, F; Bertolasi, Valerio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1198111
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 18
social impact