In this study we investigated the effects of 4-chloro-3-ethylphenol on Ca2+ homeostasis, and we report that this compound induces Ca2+ release from a ruthenium red-sensitive Ca2+ release channel present in skeletal muscle terminal cisternae. When tested with bovine cerebellar microsomes, the Ca(2+)-releasing activity of 4-chloro-3-ethylphenol was reduced by ruthenium red and unaffected by heparin. In PC-12 cells, HL-60 cells, human fibroblasts, the human hepatoma cell line PLC/PRF/5, and Jurkat cells, 4-chloro-3-ethylphenol released Ca2+ from intracellular thapsigargin-sensitive stores. Although decreased, its effect was retained after treatment of intact/permeabilized cells with inositol-1,4,5-trisphosphate (IP3)-mobilizing agonists/IP3, whereas pretreatment of permeabilized cells with ruthenium red reduced the Ca(2+)-releasing activity of 4-chloro-3-ethylphenol. These results provide functional evidence for the presence of a Ca2+ channel distinct from the IP3 receptor, having pharmacological similarities to the ryanodine receptor, in the intracellular Ca2+ stores of a variety of nonexcitable cells. We also demonstrate that a monoclonal anti-ryanodine receptor antibody recognizes a protein in human fibroblasts with similar apparent molecular mass the ryanodine receptor. Thus, the intracellular Ca2+ stores of mammalian cells appear to be endowed with two distinct intracellular Ca2+ channels.

A ryanodine receptor-like Ca2+ channel is expressed in nonexcitable cells

MENEGAZZI, Paola;BARICORDI, Olavio;ZORZATO, Francesco;TREVES, Susan Nella
1995

Abstract

In this study we investigated the effects of 4-chloro-3-ethylphenol on Ca2+ homeostasis, and we report that this compound induces Ca2+ release from a ruthenium red-sensitive Ca2+ release channel present in skeletal muscle terminal cisternae. When tested with bovine cerebellar microsomes, the Ca(2+)-releasing activity of 4-chloro-3-ethylphenol was reduced by ruthenium red and unaffected by heparin. In PC-12 cells, HL-60 cells, human fibroblasts, the human hepatoma cell line PLC/PRF/5, and Jurkat cells, 4-chloro-3-ethylphenol released Ca2+ from intracellular thapsigargin-sensitive stores. Although decreased, its effect was retained after treatment of intact/permeabilized cells with inositol-1,4,5-trisphosphate (IP3)-mobilizing agonists/IP3, whereas pretreatment of permeabilized cells with ruthenium red reduced the Ca(2+)-releasing activity of 4-chloro-3-ethylphenol. These results provide functional evidence for the presence of a Ca2+ channel distinct from the IP3 receptor, having pharmacological similarities to the ryanodine receptor, in the intracellular Ca2+ stores of a variety of nonexcitable cells. We also demonstrate that a monoclonal anti-ryanodine receptor antibody recognizes a protein in human fibroblasts with similar apparent molecular mass the ryanodine receptor. Thus, the intracellular Ca2+ stores of mammalian cells appear to be endowed with two distinct intracellular Ca2+ channels.
1995
Larini, F.; Menegazzi, Paola; Baricordi, Olavio; Zorzato, Francesco; Treves, Susan Nella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1197307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 31
social impact