A new formulation of the plane-wave method to study the characteristics (dispersion curves and field patterns) of photonic crystal structures is proposed. The expression of the dielectric constant is written using the superposition of two regular lattices, the former for the perfect structure and the latter for the defects. This turns out to be simpler to implement than the classical one, based on the supercell concept. Results on mode coupling effects in two-dimensional photonic crystal waveguides are studied and successfully compared with those provided by a Finite Difference Time Domain method. In particular the approach is shown able to determine the existence of "mini-stop bands" and the field patterns of the various interfering modes. © 2003 Optical Society of America.
Reformulation of the plane wave method to model photonic crystals
BELLANCA, Gaetano;
2003
Abstract
A new formulation of the plane-wave method to study the characteristics (dispersion curves and field patterns) of photonic crystal structures is proposed. The expression of the dielectric constant is written using the superposition of two regular lattices, the former for the perfect structure and the latter for the defects. This turns out to be simpler to implement than the classical one, based on the supercell concept. Results on mode coupling effects in two-dimensional photonic crystal waveguides are studied and successfully compared with those provided by a Finite Difference Time Domain method. In particular the approach is shown able to determine the existence of "mini-stop bands" and the field patterns of the various interfering modes. © 2003 Optical Society of America.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.