Algebraic equations relating fluid volume and the free surface elevation in partially wetted quadrilateral computational cells are derived and incorporated into a Godunov-type, finite-volume, shallow-water model. These equations make it straightforward to reconstruct the free surface elevation based on the volume of fluid in a computational cell, the dependent variable tracked by finite volume models for conservation purposes, regardless of whether the cell is fully or partially wetted. Improvements to the variable reconstruction process streamline the computation of mass and momentum fluxes with approximate Riemann solvers, yielding a model that simulates sub-, super-, and transcritical flows over irregular topography with wetting and drying fronts. Furthermore, the model is free from fluid and scalar mass conservation errors and it eliminates nonphysical distributions of scalars by avoiding artificial concentration and/or dilution at wet/dry interfaces. Use of this wetting and drying methodology adds roughly 10% to the execution time of flow simulations.
Conservative Wetting and Drying Methodology for Quadrilateral Grid Finite Volume Models
BEGNUDELLI, Lorenzo;
2007
Abstract
Algebraic equations relating fluid volume and the free surface elevation in partially wetted quadrilateral computational cells are derived and incorporated into a Godunov-type, finite-volume, shallow-water model. These equations make it straightforward to reconstruct the free surface elevation based on the volume of fluid in a computational cell, the dependent variable tracked by finite volume models for conservation purposes, regardless of whether the cell is fully or partially wetted. Improvements to the variable reconstruction process streamline the computation of mass and momentum fluxes with approximate Riemann solvers, yielding a model that simulates sub-, super-, and transcritical flows over irregular topography with wetting and drying fronts. Furthermore, the model is free from fluid and scalar mass conservation errors and it eliminates nonphysical distributions of scalars by avoiding artificial concentration and/or dilution at wet/dry interfaces. Use of this wetting and drying methodology adds roughly 10% to the execution time of flow simulations.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.