The design and performance of a novel crystal deflector for proton beams are reported. A silicon crystal was used to channel and extract 70 GeV protons from the U-70 accelerator in Protvino with an efficiency of (85.3±2.8)%, as measured for a beam of ~10^12 protons directed towards crystals of ~2 mm length in spills of ~2 s duration. Experimental data agree with the theoretically predicted Monte Carlo results for channeling. The technique allows one to manufacture a very short deflector along the beam direction (2 mm). Consequently, multiple encounters of circulating particles with the crystal are possible with little probability of multiple scattering and nuclear interactions per encounter. Thus, drastic increase in efficiency for particle extraction out of the accelerator was attained. We show the characteristics of the crystal- deflector and the technology behind it. Such an achievement is important in devising a more efficient use of the U-70 accelerator and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.
Highly efficient crystal deflector for channeling extraction of a proton beam from accelerators
GUIDI, Vincenzo;MALAGU', Cesare;MARTINELLI, Giuliano;STEFANCICH, Marco;VINCENZI, Donato;
2003
Abstract
The design and performance of a novel crystal deflector for proton beams are reported. A silicon crystal was used to channel and extract 70 GeV protons from the U-70 accelerator in Protvino with an efficiency of (85.3±2.8)%, as measured for a beam of ~10^12 protons directed towards crystals of ~2 mm length in spills of ~2 s duration. Experimental data agree with the theoretically predicted Monte Carlo results for channeling. The technique allows one to manufacture a very short deflector along the beam direction (2 mm). Consequently, multiple encounters of circulating particles with the crystal are possible with little probability of multiple scattering and nuclear interactions per encounter. Thus, drastic increase in efficiency for particle extraction out of the accelerator was attained. We show the characteristics of the crystal- deflector and the technology behind it. Such an achievement is important in devising a more efficient use of the U-70 accelerator and provides crucial support for implementing crystal-assisted slow extraction and collimation in other machines, such as the Tevatron, RHIC, the AGS, the SNS, COSY, and the LHC.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.