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Abstract
We introduce and discuss a system of one-dimensional kinetic equations describing
the influence of higher education in the social stratification of a multi-agent society.
The system is obtained by coupling a model for knowledge formation with a kinetic
description of the social climbing in which the parameters characterizing the elemen-
tary interactions leading to the formation of a social elite are assumed to depend on
the degree of knowledge/education of the agents. In addition, we discuss the case
in which the education level of an individual is function of the position occupied
in the social ranking. With this last assumption, we obtain a fully coupled model in
which knowledge and social status influence each other. In the last part, we provide
several numerical experiments highlighting the role of education in reducing social
inequalities and in promoting social mobility.
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1 Introduction

Educational expansion is usually regarded as a socially progressive development, able
to reduce socioeconomic inequalities by providing a ladder of opportunities to a grow-
ing number of individuals. However, despite the evident increases in higher education
enrolment rates, socioeconomic differences have so far shown no sign of equalizing
(Boliver 2017; Breen et al. 2009). Indeed, while it is believed that higher education
can serve as a vehicle for social mobility, the persistence of social inequalities in
accessing higher education generally, and more prestigious forms of higher education
in particular, seem to seriously compromise its potential effects. In reason of that it
has been recently outlined that higher education reproduces rather than reduce social
inequality (Marginson 2016) even if the debate is open (Brown and David 2020).

On the other hand, while the existence of a social hierarchy is a diffuse concept
which defies precise definitions, undoubtedly increasing advantages are associated
with high socioeconomic status (DiMaggio 1982; Koski et al. 2015). People in the
highest part of the ladder, generally referred to as the upper class attend more presti-
gious schools, they aremore influential in politics than people in themiddle or working
classes. High social status permits additionally to join elite social networks conferring
benefits ranging from education to employment. It is also worth to mention that the
social class is recognized as a strong social determinant of health (Sapolsky 2005).

To support the sociological analysis, and to quantify in a systematicway the possible
relationships between education and social stratification, a substantial contribution
can be furnished by mathematical modeling, resorting in particular to the methods and
techniques of statisticalmechanics. These are ideally suited to study social phenomena,
which naturally include specific behavioral aspects of agents/individuals (Albi et al.
2017; Lux and Marchesi 2000, 1999; Maldarella and Pareschi 2012; Pareschi and
Toscani 2014; Pareschi et al. 2017; Toscani et al. 2018, 2020). In economics, this
approach attempted, among others, to justify the genesis of the formation of Pareto
curves in wealth distribution of western countries (Chakraborti and Chakrabarti 2000;
Chatterjee et al. 2004, 2005; Cordier et al. 2005; Düring et al. 2008; Drǎgulescu and
Yakovenko 2000; Garibaldi et al. 2007; Scalas et al. 2006), and to shed a light on
the reasons behind opinion formation dynamics (Ben-Naim et al. 2003, ?; Ben-Naim
2005; Bertotti and Delitala 2008; Boudin and Salvarani 2009a, b; Boudin et al. 2012;
Comincioli et al. 2009; Düring et al. 2009; Düring andWright 2022; Galam et al. 1982;
Galam andMoscovici 1991; Galam 1997; Galam and Zucker 2000; Sznajd-Weron and
Sznajd 2000; Toscani 2006).

Mathematical models dealing with the problem of social stratification have been
introduced only recently, mainly by resorting to the dynamics of social networks in
which individuals quest for high status in the social hierarchy (Bardoscia et al. 2013;
Chang 2013; König and Tessone 2011; König et al. 2009; Zhang et al. 2020). An
approach based on statistical mechanics has been introduced in Dimarco and Toscani
(2020). In this work, throughout the well-established mathematical tools of kinetic
theory of multi-agent systems (Pareschi and Toscani 2014), a microscopic mechanism
leading to the formation of social stratificationwas introduced and discussed. In partic-
ular, it was possible to show that the consequent (explicit) macroscopic steady profile
of the social hierarchy is characterized by a polynomial tail, heavily dependent on the
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parameters characterizing the microscopic interaction. Thus, the results in Dimarco
and Toscani (2020) well-agree with the analysis of the economist Pareto Pareto (1991,
1916), who, more than one century ago, observed that human societies tend to orga-
nize in a hierarchical manner, with the emergence of social elites. Furthermore, Pareto
noticed that social mobility in this hierarchical state appears to be higher in the middle
classes than in the upper and lower part of the hierarchy, thus establishing a connection
between the position occupied in the society with the role of higher education.

Here, we start our investigation through the model of social stratification recently
studied in Dimarco and Toscani (2020) where the evolution in time of the density
f (w, t) of a system of agents characterized by a positive ranking value w was first
introduced. The variation in time of the statistical distribution of the social rank
has been obtained through the analysis of the elementary variations of the value w,
classically defined as interactions in this context (Cercignani 1988; Kahneman and
Tversky 2000; Pareschi and Toscani 2014). Dimarco and Toscani (2020) the elemen-
tary upgrade of the ranking value has been modeled in the form

w∗ = w − Ψδ

(
w

w̄L

)
w + ηw. (1.1)

The idea on which the model has been conceived is that the value w of the social rank
in (1.1) can only be modified for two precise reasons, expressed by two different quan-
tities. The first one is a quantity proportional to w in which the coefficient Ψδ(w/w̄L)

is an increasing value function, in the spirit of the prospect theory originally proposed
by Kahneman and Tversky (1979), such thatΨδ(1) = 0. This quantity, which assumes
both positive (w > w̄L ) and negative (w < w̄L ) values, characterizes the asymmetric
predictable behavior of agents acting in a society questing for a position in the social
hierarchy. Within this modeling assumption, each individual aims toward a universal
desired target value w̄L , the desired social status as detailed later one. The positive
parameter δ with 0 < δ ≤ 1, on which the function Ψδ depends, further characterizes
the curve slope. In particular, it quantifies the (increasing in δ) difficulties of agents
to climb the ladder starting from low values of the ranking w. Its precise role in the
formula defining the value function will be also clarified later on. The second quan-
tity, still proportional to w, takes into account a certain amount of unpredictability
always present in human activities and that, for its nature, cannot be controlled. The
random variable η describes these random variations, which in the mean are assumed
negligible, and are characterized by a constant variance σ . Hence, the social status of
individuals can be both increasing and decreasing by interactions with the background
society, and the mean intensity of this variation is fully determined by the function
Ψδ .

Given the elementary interaction (1.1), the time variation of the density f (w, t)
obeys to a so-called linearBoltzmann-like equation (Pareschi andToscani 2014;Villani
1998), fruitfully written in weak form

d

dt

∫
R+

ϕ(w) f (w, t) dx = 1

τ
Eη

[ ∫
R+

(w

u

)δ (
ϕ(w∗) − ϕ(w)

)
f (w, t) dw

]
. (1.2)
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This weak form in fact corresponds to study the effect of the elementary interactions
on observable smooth functions ϕ(w) (the quantities of interest). A typical example
is represented by ϕ(w) = w which corresponds to study the effect of the interactions
on the average social status level of a population.

In (1.2), τ > 0 measures the time scale of interactions such that if τ → 0+, we
have 1/τ → +∞ and the system reaches its equilibrium. Moreover, Eη[·] denotes the
expectation with respect to the random variable η. The constant quantity u is the unit
measure of social status, while the positive function (w/u)δ is the frequency of the
interactions of agents with social rank w. This choice for the frequency assigns a low
pace to interactions to individualswith low rank, and assigns a high pace to interactions
when the social status is greater. This assumption translates in a simple mathematical
form that the motivations and the possibilities to climb the social ladder are stronger
in individuals belonging to the middle and upper classes, while individuals belonging
to the lower class, having few possibility to succeed, are less tempted trying.

Aiming to obtain the analytical expression of the possible steady states of the
above introduced model describing the formation of a social hierarchy, the analysis
in Dimarco and Toscani (2020) has been limited to fix in (1.1) constant values for the
parameters δ and σ . This choice corresponds to assign to all individuals in the system
the same possibilities to climb the social ladder. While this simplified assumption
allows to characterize analytically the profile of the equilibrium state, a more realistic
description of the social stratification was missing, since it would have required to
take into account the natural inhomogeneity of the population, at least with respect to
the education/knowledge level.

In this paper, we move in this direction and we obtain a marked improvement in
our modeling by resorting to a recent approach where the formation of collective
knowledge was introduced (Pareschi and Toscani 2014) via a linear kinetic model of
type (1.2). This approach allows to obtain the statistical distribution in time of the
density g(x, t) of individuals which at time t ≥ 0 possess a given level of knowledge
x > 0. Identifying education with knowledge, one can use this model of knowledge
formation and coupling it with the elementary interaction (1.1), in which the relevant
parameters characterizing the social status δ and σ are now assumed to depend on
the variable x , with the scope of constructing a new a more reliable model of social
stratification. This is the aim of the present work.

More in details, in view of the meaning of the parameter δ, to model the fact that
individuals with higher knowledge, as expected (Boliver 2017; Breen et al. 2009),
encounter less difficulties in increasing the social rank with respect to individuals
with low knowledge, it is natural to consider a value function Ψδ(x) characterized
by a function δ(x) decreasing with respect to the knowledge variable x . Also, by
considering a variable variance σ = σ(x) decreasing with respect to the knowledge
variable x , one introduces into this newmodel the property that individuals with higher
knowledge suffer less risks in climbing and then reachinghigh social statuswith respect
to individuals with low knowledge becomes easier. An alternative approach which will
be also discussed next would be to assign low variance also to individuals with very a
low educational level, meaning that a low knowledge implies lower mobility chances.
Additionally, we will discuss the situations in which individuals belonging to the
upper class have easier access to high-quality institutions and consequently easily
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reach higher knowledge levels. This last aspect will be introduced by considering that
the amount of knowledge x obtained by the background education system is a function
of the social status w of each agent.

However, we remark that the above introduced choices of variable (with respect to
the knowledge x or with respect the social status w) parameters introduce a nonlinear
coupling between the two unknowns, knowledge and social status, which does not
allow to recover the distributions of social stratification and education in explicit
form. Consequently, in a second part of this study, we rely on numerical experiments
to put into light the properties of such model and draw some conclusions.

The above-mentioned coupling between social status and knowledgewill be studied
in details in the rest of the paper.Wewill describe the social climbingmodel introduced
inDimarco andToscani (2020) in Sect. 2. Then, the formation of collective knowledge,
as considered in Pareschi and Toscani (2014), will be dealt in Sect. 3. The new model
coming from the joint action of knowledge and social stratification will be introduced
in Sect. 4. Last, numerical experiments in which, in particular, the relation between
inequalities and education will be put into light will be presented in Sect. 5.

2 A kinetic model for social stratification

Among other approaches, the description of social phenomena in amulti-agent system
can be successfully obtained by resorting to statistical physics tools (Pareschi and
Toscani 2014), and, in particular, through the methods borrowed from the kinetic
theory of rarefied gases (Villani 1998). The main goal on which this approach is based
is to construct master equations of Boltzmann type, usually referred to as kinetic
equations, describing the time evolution of some characteristic of the agents, like
wealth, opinion, knowledge, or, as in the case treated in this paper, of agent’s ranking
in the social ladder (Cáceres and Toscani 2007; Chakrabarti et al. 2013; Dimarco and
Toscani 2019; Naldi et al. 2010; Pareschi and Toscani 2014; Sen and Chakrabarti
2014).

The building block of the method is represented by the details of microscopic
interactions, which, similarly to binary interactions between particles velocities in the
classical kinetic theory, aim to describe the variation law of the selected agent’s trait.
Then, the microscopic law of variation of the number density consequent to the (fixed-
in-time) way of interaction is able to capture both the time evolution and the steady
profile of the problem under consideration.

In the case under study, the statistical distribution of the agents system is fully
characterized by the unknown density f = f (w, t) of the social rank w, w ∈ R+,
occupied in the society by the agents at time t ≥ 0. We assume that this value can
be measured in terms of some reasonable unit u which permits to translate in a math-
ematical form the concept of social hierarchy. Having in mind that there is a strong
relationship between social rank and personal wealth, one possibility is to measure the
value w with the unit of the wealth of agents. Other choices can be equally possible.
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The precise meaning of the density f is the following. Given the system of indi-
viduals, and given an interval or a more complex sub-domain D ⊆ R+, the integral

∫
D

f (w, t) dw

represents the number of agents which are characterized by a rankw ∈ D in the social
ladder at time t ≥ 0. It is assumed that the density function is normalized to one, that
is, for all t ≥ 0

∫
R+

f (w, t) dw = 1. (2.1)

This density f (w, t) continuously changes in time as a consequence of elementary
interactions with a background state: the society in which the individuals live and
act. Similarly to the problems treated in Dimarco and Toscani (2019), Gualandi and
Toscani (2018) and Gualandi and Toscani (2019), the mechanism of social climbing
in modern societies has been postulated in Dimarco and Toscani (2020) to depend on
some universal features that can be summarized by saying that agents likely tend to
increase their status w by interactions while manifest a certain resistance to decrease
it, as theorized by Kahneman and Tversky in their seminal paper on decision under
risk (Kahneman and Tversky 1979).

An acceptable (from the sociological point of view) expression of the elementary
variation of the social ranking of agents has been detailed in Dimarco and Toscani
(2020), first identifying the mean values which characterize, at least in a very stylized
way, this multi-agent society. A first value, denoted by w̄, identifies the upper limit
of the low social ranking. Below this value agents do not expect to be able to climb
the social ladder. A second value, denoted by w̄L , with w̄L > w̄, identifies the mean
value that it is considered as the level of a satisfactory well-being by a large part of
the population. Note that both these values are in general differently perceived by
individuals, and that the simplified choice in Dimarco and Toscani (2020) could be
easily generalized by assuming that these values are randomvariableswith a prescribed
distribution. The elementary interaction was consequently modeled in Dimarco and
Toscani (2020) to describe the behavior of agents in terms of these mean values in
such a way to express the natural tendency of individuals to reach (at least) the value
w̄L . However, in the agent behaviors, there is a strong asymmetry in the realization of
this goal. This asymmetry expresses the objective difficulties to increase the value w,
the social status, to reach the desired value w̄L when very far from below.

Taking into account the previous discussion and as briefly explained in the intro-
duction, the elementary interaction has been modeled in the form

w∗ = w − Ψ ε
δ

(
w

w̄L

)
w + √

ε ηw (2.2)

where rescaled with respect to (1.1) by introducing a small parameter ε 
 1 which
role will be specified later and where
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Fig. 1 Value function for the social stratification model as a function of w/w̄L for different values of μ and
δ

Ψ ε
δ (s) = −μ

eε(s−δ−1)/δ − 1

(1 − μ)eε(s−δ−1)/δ + 1 + μ
, s = w/w̄L ≥ 0. (2.3)

with 0 < μ < 1. The detailed description of how the value function (2.3) is constructed
and the rationale behind it can be found in Appendix A. In Fig. 1, we report the value
function for some fixed range of parameters. The asymmetry below and above the
desired social status w̄L is clearly visible as well as the change of concavity at the
inflection point w̄ which indicates the different propensity of reaching w̄L from below
and above of the individuals during their positioning in the social ladder. This shape is
in agreement with the prospect theory originally proposed by Kahneman and Tversky
(1979).

One of themain outcomes of the kinetic modeling of social stratification considered
in Dimarco and Toscani (2020) was related to the possibility to obtain an explicit
expression of the steady distribution of the social rank. Following a well-established
strategy of classical kinetic theory (Villani 1998), subsequently generalized to cover
kinetic equations for social and economic phenomena (Cordier et al. 2005; Toscani
2006; Gualandi and Toscani 2018; Pareschi and Toscani 2014), it is indeed possible to
show that for values of ε 
 1 in (1.1) (the so-called limit of grazing interactions, i.e.,
the limit in which each interaction characterizing the social dynamics is very small),
the solution of the kinetic equation (1.2), with interaction (1.1) and relaxation time
τ = ε, is close to the solution of the Fokker–Planck-type equation

∂

∂t
f (w, t) = ∂

∂w

[
μ

2δ

(
1 −

(
w̄L

w

)δ
)

w1+δ f (w, t) + σ

2

∂

∂w

(
w2+δ f (w, t)

)]

for which the stationary solution is explicitly computable. This stationary solution is,
in the case of social stratification, the function

123



500 G. Dimarco et al.

f∞(w) = f∞(w̄L)

(
w̄L

w

)2+δ+γ

exp

{
−γ

δ

((
w̄L

w

)δ

− 1

)}
, (2.4)

where we denoted γ = μ/(σδ). If one fixes the mass of the steady state (2.4) equal to
one, the consequent probability density is a particular case of the generalized Gamma
distribution studied by Stacy (1962). This distribution is usually named Amoroso
distribution (Amoroso 1925), and it is characterized by the polynomial tails identifying
a class of people belonging to the upper class. The steady state depends on the typical
parameters of the elementary interaction (1.1), namely δ and the quotient γ = μ/(σδ).
In particular, for a given value of μ, the values of δ and/or σ are directly related to
the size of the tail of the distribution see (2.4). A small value of at least one of these
parameters implies that the steady-state distribution possesses a higher number of finite
moments, which correspond to a less-marked social inequality. Note moreover that if
the parameters δ and σ are assumed simultaneously small, this effect is amplified by
the presence of the product σδ.

3 A kinetic model for distribution of education

A kinetic description of knowledge formation was introduced in Pareschi and Toscani
(2014) with the aim of a better understanding the possible effects of knowledge in
the distribution of wealth. Indeed, like it is supposed to happen in the case of social
stratification treated here, different degrees of knowledge in a society are usually
considered as one of the main causes of wealth inequalities (Jackson and Holzman
2020).

As for the case of social hierarchy, knowledge is a diffuse concept and in the
following we refer to knowledge to as theoretical or practical understanding of a given
subject acquired through experience or education such as information or skills. We
will also often identify knowledge with education in the rest of the paper, even if we
are aware of the limits of this identification.

Let us now briefly explain the main motivations given in Pareschi and Toscani
(2014) to characterize the structure of the microscopic interactions which determine
the individual knowledge. While knowledge is in part transmitted from the parents
and family, the main factor that can enrich it, is the environment in which the individ-
ual grows and lives (Teevan and Birney 1965). Indeed, the experiences that produce
knowledge cannot be fully inherited from the parents, such as the genome, but they are
rather acquired over a lifetime. The learning process is a very complex phenomenon
and it produces different results for each individual in a population. Even if all indi-
viduals are given the same opportunities, at the end of the cognitive process every
individual appears to have a personal and different level of knowledge. Also, the per-
sonal knowledge is the result of a selection, which leads to retain mostly the notions
that the individuals consider important, and to discard the rest.

Given the above recalled facts and resorting once more to the legacy of kinetic
theory, in Pareschi and Toscani (2014), it was assumed that personal knowledge may
be acquired as the result of a huge number ofmicroscopic variations. Eachmicroscopic
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variation is interpreted as cognitive processwhere a fraction of the knowledge is lost by
virtue of selection, while at the same time, the external background (the surrounding
environment) furnishes a certain amount of its knowledge to the individual. If one
quantifies the nonnegative amount of knowledge of the individual with x ∈ R+, and
with z ∈ R+ the knowledge achieved from the environment in a single process, the
new amount of knowledge is computed using the elementary upgrade

x∗ = x − Φ(x, z) + η̃x . (3.1)

where

Φ(x, z) = λB(x)z − λ(x)x . (3.2)

In (3.2), the functions λ(x) and λB(x) are related, respectively, to the amounts of
selection and external learning, while η̃ is a random parameter of zero mean and
variance σ̃ which takes into account the possible unpredictable modifications of the
knowledge process. Note that the function Φ can take both positive and negative
values, depending on whether the amount of knowledge absorbed by the environment
is greater or less than the selection of arguments made by the agent. As for the case of
the formation of a social structure, the time evolution of the distribution of knowledge
g(x, t) obeys to a Boltzmann-like equation. In this case, the study of the effect of the
elementary interactions on observable smooth functions ϕ(x) gives

d

dt

∫
R+

g(x, t)ϕ(x) dx = 1

τ
Eη̃

[∫
R
2+

(
ϕ(x∗) − ϕ(x)

)
g(x, t)M(z) dx dz

]
,

(3.3)

where the post-interaction variable x∗ is given by (3.1), andM(z) denotes the statistical
distribution of the backgroundknowledge that is assumed to possess a finitemeanvalue
MB . Last, τ > 0 is the relaxation time. Note that we assumed that the knowledge
process is characterized by the same relaxation time of the social stratification process
even if different choices are possible. In (3.3), we denoted by Eη̃[·] the expectation
with respect to the random variable η̃. The main result in Pareschi and Toscani (2014)
was to show that if the relaxation time is τ = ε,

x∗ = x − ε Φ(x, z) + √
ε η̃x, (3.4)

and ε 
 1, i.e., in the so-called grazing interactions regime, similarly to the case of
the social climbing model, the stationary solution of Eq. (3.3) is characterized by a
polynomial decay at infinity. This is a nice way to say that the model is in agreement
with the experimental evidence of the existence in the society of a (very small) class
of people possessing a very high knowledge level or, recast in other words, a class of
people with an extraordinary intellectual or creative power exists in our society that
stand out from the rest. As discussed in Sect. 2, if ε 
 1, one can further show that
whenever the functions λ(x) and λE (x) characterizing the elementary interaction in
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the process of knowledge formation are assumed constant, the stationary solution of
the kinetic equation (3.3) is close to the solution of a Fokker–Planck-type equation
for which the steady state is explicitly computable. This stationary solution is given
by the inverse gamma density function

g∞(x) = θκ

Γ (κ)

1

xκ+1 exp

{
−θ

x

}
, (3.5)

where

θ = λBMB

σ̃
; κ = 1 + λ

σ̃
.

Note that in this dynamics, the mean value of the steady state is finite

∫
R+

xg∞(x) dx = λB

λ
MB, (3.6)

and it is measured by the quotient λB/λ of the constant parameters of external learning
and selection characterizing the elementary interaction (3.1).

It is important to remark that in this model, the size κ of the tail of the steady
solution (3.5) does not depend on the amount of external learning λB , but only on the
quotient between the selection parameter λ, and the variance σ̃ of the random part of
the interaction.

Distribution of scholar education in Italy Gualandi and Toscani (2018), the capa-
bility of the model to reproduce existing distributions originating from different social
phenomena, and in particular, the behavior of the tails of the steady state of equation
(3.3) has been tested by looking at the distribution of scholar education in Italy, using
data collected from the 2011 census (cfr. Fig. 2). This plot is based on the data given in
Table 1, which collects the number of citizens per type of school degree in the second
column, and the (inverse) cumulated number of people for school degree in the fourth
column. The first basic level of school knowledge includes every citizen who holds the
middle school degree as highest degree, which corresponds nowadays to the minimum
Italian compulsory education level. The second and third levels include people who
got a high school degree and an undergraduate degree as the highest degree, respec-
tively. The fourth level includes the 1,124,802 Italians who got a “short” (less than
1 year of studies) post-graduate degree. Finally, the last two levels give the number
of citizens holding either a “specialization” or PhD as highest school degree, which
are respectively 634,503 and 159,455 citizens, a very small percentage of the whole
Italian population.

Figure 2 expressed in log− log scale clearly shows that this empirical (inverse)
distribution exhibits a tail which can be put in relation with the steady states (3.3)
obtained in Pareschi and Toscani (2014). On the right, in the same figure the frequency
histogram is shown.
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Fig. 2 Distribution of school knowledge in Italy by the highest degree, 2011 census, in log − log scale
(left). Frequency histogram (right)

Table 1 Tabular data of the distribution of school knowledge in Italy, 2011 census

Highest degree Citizens (%) Cumulated values (%)

Middle school 32, 906, 278 61.6 53, 422, 830 100.0

High school 13, 906, 688 26.0 20, 516, 552 38.4

Undergraduate 4, 691, 104 8.8 6, 609, 864 12.4

Post-degree 1, 124, 802 2.1 1, 918, 760 3.6

Specialization 634, 503 1.2 793, 958 1.5

PhD 159, 455 0.3 159, 455 0.3

(Totals) 53, 422, 830 100.0

4 A kinetic model joining education and social stratification

In this section, we will merge the model for social climbing (1.2) whose details are
given in Sect. 2, with the model for knowledge formation (3.3) detailed in Sect. 3.
As already outlined, in its original formulation, the social climbing interaction was
described in terms of the two constant parameters δ, σ . Indeed, as shown in Dimarco
and Toscani (2020), and briefly recalled in Sect. 2, the parameters δ and σ fully char-
acterize the steady state of the social stratification. Suppose now that these parameters
depend on the personal knowledge of the agent. One reasonable assumption would be
that an individual uses the personal knowledge to improve the possibilities to climb
the social ladder. This effect can be obtained by assuming that the personal knowledge
modifies the value of the parameter δ. This parameter is directly related to the length
of the interval in which the value function is convex, and consequently, in this interval,
it is difficult to increase the value of the rank w. Thus, one reasonable choice is to fix
the function δ(x) as a decreasing function of x , which reflects the idea that personal
knowledge could be fruitfully employed to reduce the interval of convexity of the
value function. Also, it can be reasonably assumed that the random part of the ele-
mentary interaction (1.1), characterized by the value of the variance σ(x) decreases as
x increases, thus indicating that knowledge helps in reducing the randomness present
in the social climbing process.
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Once the above discussed coupling choices are done, the evolution of the joint
action of knowledge and social rank in the system of agents can be described in terms
of the density h = h(x, w, t) of agents which at time t > 0 are represented by their
knowledge x ∈ R+ and social status w ∈ R+. Following the trail of kinetic theory,
the evolution in time of the density f , for any value of ε < 1, is then described by the
following equation (in weak form)

d

dt

∫
R
2+

ϕ(x, w)h(x, w, t) dx dw

= 1

ε
Eη,η̃

[∫
R
3+

(w

u

)δ (
ϕ(x∗, w∗) − ϕ(x, w)

)
h(x, w, t)M(z) dz dx dw

]
,

(4.1)

being Eη,η̃[·] the expectation with respect to the random variables η and η̃. In (4.1),
the post-interaction pair (x∗, w∗) is given by

x∗ = x − ε Φ(x, z) + √
ε η̃x, (4.2)

and

w∗ = w − Ψ ε
δ(x)

(
w

w̄L

)
w + √

ε η(x)w. (4.3)

Moreover, we fixed from the beginning a relaxation time τ = ε. Note that within this
choice, the elementary interaction characterizing the evolution of the collective knowl-
edge is still assumed independent of the valuew of the social ranking. This assumption
is reasonably acceptable for countries where school education is overwhelmingly pub-
lic and the individual has the possibility of accessing almost any school, regardless of
position on the social ladder. Even if not general, within this choice one can infer the
precise influence of the education on the social stratification. Following this path, if
the test function ϕ is independent ofw, that is, ϕ = ϕ(x), Eq. (4.1) reduces to Eq. (3.3)
for the marginal density of knowledge g(x, t).

Instead, a more general assumption on the pair (4.2), (4.3) implies that the amount
of knowledge furnished by the background, namely a better possibility of education,
could depend on the social status of the individual, in away that a higher social position
would in general correspond to a possibility to have higher and better education as
experimentally observed. A realization of this assumption is obtained by multiplying
in (4.2) the coefficient λB , quantifying the amount of external learning, by a suitable
increasing function E(w) of the social rank w. Consequently, the function Φ in (3.2)
is substituted by

Φ(x, z, w) = E(w)λB(x)z − λ(x)x, (4.4)
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and

x∗ = x − ε Φ(x, z, w) + √
ε η̃x (4.5)

The pair (4.5), (4.3) will now produce a coherent evolution of the joint process for
education and social rank in which each process is intimately dependent from the
other. As far as the new evolution process for the knowledge is concerned, the mean
value of the steady state relative to the elementary interaction (4.5) is now given by
formula (3.6), which reads

∫
R+

xg∞(x) dx = λB

λ
MBE(w). (4.6)

Thus, the effect of the social rank is reflected on the mean value of the education
process by multiplying the mean (3.6) by the function E(w). This induces a situation
in which the average level of knowledge is larger for individuals with larger means.
Finally, it is worth to observe that as remarked at the end of Sect. 3, the dependence
of knowledge from the social rank, resulting in the elementary interaction (4.5), for
a given value of w does not modify the size of the tail of the steady profile of the
knowledge distribution.

5 Numerical experiments

This section contains a numerical description of the kinetic model coupling education
with the social stratification in a populationwhere individuals quest for reaching a high
status in the social hierarchy. The idea of the numerical experiments is to highlight
the role played by education in the formation of Western societies in a hierarchical
manner, with the emergence of social elites. At the same time and in a similar way,
we numerically explore the relation between the possibility of reaching high level
of education jointly with high social status, reflecting the evidence that individuals
with larger means have an easier access to top ranked schools and Universities and
consequently, as it is natural to suppose, to a larger level of knowledge.

The present section is divided into different parts in which we study various aspects
of the model introduced in Sects. 2–3 and in Sect. 4. We will consider decreasing
functions δ(x) and σ(x) of the form

δ(x) = δ0

(1 + x)α
, (5.1)

with α > 0 and 0 < δ0 ≤ 1 a suitable constant, and

σ(x) = σ0

(1 + x)β
, (5.2)
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with β > 0 and σ0 > 0. Further we will consider for the variance the law

σ(x) = mσ + Mσ x−χ

1 + x−χ
(5.3)

with χ > 0 again. This second possibility furnishes a slightly different variance
function which ranges from a minimum mσ to a maximum value Mσ and it is such
that, as before, the random possibility to descend toward lower social positions is
reduced as the knowledge increases. However, this new function (5.3) imposes a limit
to a possibleminimumvalue of the variance even for individualswith a larger education
level. Moreover, independently on the value of χ , individuals with an average level
of knowledge shares the same stochastic behavior in terms of elementary interactions
compared to the case (5.2) in which as β increases the stochasticity in the formation
of the social ladder is lower for individuals with the same knowledge level. A last
remarkable example, we aim to introduce and discuss, consists in fixing the variance
of the random process characterizing the social climbing dynamics in such a way that
individuals having an average education level are the ones who more likely are subject
to unpredictability and may descend or climb as a result of a stochastic event. In other
words, we assume that it is unlikely that people with a very low education level has
large chances to jump to higher social positions and at the same time that individuals
with a high knowledge level cannot easily descend to lower positions in the ladder
as a result of a random event. Let observe that this last choice is in agreement with
the behavior of the value function Ψ ε

δ that social mobility appears to be higher in the
middle classes. For this last example, the function characterizing the variance reads
as

σ(x) = σ0

1 + (x − MB)β
′ . (5.4)

Also, in the case in which knowledge depends additionally on the social status of
individuals, we will consider in (4.4) the function

E(w) = m + Mwξ

1 + wξ
, (5.5)

where ξ,m, M are positive constants. The function in (5.5) ranges from a minimal
level of education m to a maximal one, indicated by M > m.

We start our numerical experiments by showing solutions to the Boltzmann-type
equations inwhich interactions are defined by (4.2) and (4.3), togetherwith the choices
(5.1) and (5.2), and we compare them to the case in which social hierarchy and edu-
cation are independent phenomena.

In a second test, we study the fully coupled case in which knowledge depends
additionally on the social status of individuals, and E(w) is given by (5.5).

For all these cases, initially individuals are uniformly distributed on the square
[0, 2]2, and we explore solutions for two different regimes identified by the scaling
parameter ε. This choice permits in the regime ε 
 1 to obtain a good approximation
of Fokker–Planck-type equations when social hierarchy and education are considered
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independent dynamics and the analytical equilibrium states are given by (2.4) and
(3.5).

Finally, in a last part of the section, we measure and discuss the possible inequal-
ities arising both in the education as well as in the social stratification thanks to a
thorough numerical exploration of different modeling choices for the coupling func-
tions δ(x), σ (x), E(w).

For the numerical approximation of the Boltzmann equation, we apply a Monte
Carlomethod as described for instance inPareschi andToscani (2014). The simulations
are run using N = 106 agents (particles), one single realization is performed.

In what follows, we will use the notations:

– X(t) to denote the random variable representing the amount of knowledge of the
population at time t > 0. Its density is given by the solution of equation (3.3) in
the decoupled case. Hence,

G(x, t) dx = P(X(t) ∈ (x, x + dx)), x ≥ 0.

We will denote as well by G the distribution function relative to X(t)

G(x) = P(X(t) ≤ x) =
∫ x

0
G(y, t) dy. (5.6)

and the complementary cumulative distribution

Ḡ(x) = 1 − G(x) (5.7)

which will be useful to identify the tail behavior of the steady state.
– Y (t) to denote the random variable which represents the social status of the indi-
viduals in the population at time t > 0. Given the solution of equation (4.1), its
density is given by the marginal density

F(w, t) dw = P(Y (t) ∈ (w,w + dw)) = dw

∫
R

h(x, w, t) dx .

We will denote as well by F the distribution function

F(w) = P(W (t) ≤ w) =
∫ w

0
F(v, t) dv. (5.8)

and the complementary cumulative distribution

F̄(w) = 1 − F(w) (5.9)

which will be useful as for the case of knowledge to identify the slope of the tail
of the equilibrium state and consequently the possible formation of social elites.
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5.1 Test 1

In this first test, we consider the case of Eqs. (4.2)–(4.3), i.e., the case in which the
formation of a social hierarchy depends on the level of knowledge of each individual
but not vice versa. The function δ(x) giving the shape of the probability distribution
describing the social structure is fixed in similar way of suggested in (5.1), while
the variance of the random variable ηε = εσ (x) modeling unpredictable deviations
during the process of formation of the social hierarchy is fixed using (5.2). To be more
precise, we use the following relations:

σ(x) = σ0

(1 + x)β
, δ(x) = δ0

(1 + x)α
,

σ0 = 0.5, δ0 = 0.1, α = 2, β = 2.

We also define μ = 0.5 and w̄L = 1 for the social climbing model. We then take
λ = λB = ν = 0.1 and MB = 1 in the knowledge model. We finally consider a
time step of Δt = 0.1, ε = 0.1 and a final computation time of t = 100, where the
steady state is numerically measured to be practically reached, i.e., for larger times
the solution remains unchanged. With this choice of the parameters, we suppose the
model to be in the so-called Boltzmann regime in contrast with the Fokker–Planck
regime for which the parameters in the interactions laws will be conveniently scaled
in order for the model to produce results in the grazing collision regime.

In Fig. 3, we show the results for the kinetic density in the above defined setting.
In the same figure, we also report the distribution of a random subset of particles
composed of N = 1000 individuals at equilibrium showing a possible realization of
the coupled model detailed in Sect. 4. These results are compared with the case in
which the formation of the social structure and the knowledge/education are consid-
ered independent. In Fig. 4, we plot instead the marginal densities together with the
tail distributions as defined in Eq. (5.6)–(5.8) and (5.7)–(5.9). The complementary
cumulative distribution are shown in log–log scale on the right to better visualize the
tails behavior and determine the slopes of the polynomial decay which, as foreseen,
are observed.

The same test is subsequently performed in a Fokker–Planck regime, scaling all
interaction parameters by a factor 10. This corresponds to a scaling factor ε = 0.01.
The final computation time is the same, but the time step is now chosen as Δt = 0.01.
This choice of the scaling parameter is enough to observe the convergence to the
theoretical steady-state distribution recalled in Eqs. (2.4), (3.5) when the two dynamics
are fully uncoupled. The results are shown again in Figs. 4, 5 and 6. They indicate a
good agreement with the Boltzmann description. The major differences between the
two scalings are noted in the peak of the distribution and in the low knowledge and
social status regions. However, the two distributions remain very close to each other
for the two regimes.

From the depicted results, it is clear that the effect of knowledge in minimizing
the interval of convexity of the value function and in diminishing the variance of
the stochastic interactions for highly educated individuals produces a tendency for
people with an average or high level of knowledge to occupy the middle class region.
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Fig. 3 Test 1: random subset of N = 1000 agents of the kinetic model (left) and the kinetic density (right).
Top images show the decoupled case: σ(x) = σ0 and δ(x) = δ0. Bottom images show the case in which
the social structure depends upon knowledge as defined in (5.1) and (5.2)

Fig. 4 Test 1. Left image shows the two marginal densities in the different regimes relative to knowledge
and social status. Right image shows the complementary cumulative marginal distributions for the same
quantities in log–log scale. The slopes p of the tails are estimated from F̄(w) ≈ w−p and Ḡ(x) ≈ x−p

for larger w and x
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Fig. 5 Test 2: particles solution with N = 1000 agents (left) and the kinetic density (right). The social
structure depends upon knowledge as defined in (5.1) and (5.2), while the knowledge depends upon the
position occupied in the social hierarchy through (4.5)

Moreover, one can state from this numerical experiment that it is very difficult to reach
a high level of knowledge for individuals belonging to the working class.

5.2 Test 2

In this second test, we take into account that knowledge may depend upon the position
occupied by individuals in the social ladder. Thus, the microscopic interaction used
to construct the Boltzmann-type dynamics is modified for what concerns only the
knowledge through Eq. (4.5) which replaces Eq. (4.2) where E(w) is defined in (5.5).
The other parameters of the model are kept unchanged. More precisely, we assume

E(w) = m + Mwξ

1 + wξ
= 0.1 + 3w2

1 + w2 , (5.10)

while the same values of the Test 1 for μ, w̄L for the social climbing model and
λ, λB, ν, MB in the knowledge model are used. The results are reported in Fig. 5 for
the full density and in Fig. 6 for the marginal densities and their tail distributions. As
before, two different regimes are considered, namely the Boltzmann with ε = 0.1 and
the Fokker–Planck regime with ε = 0.01, the two giving similar results as shown in
the images. Comparing the results obtained with the ones of the first test, here we can
observe that there is a larger shift of the population toward higher positions in the social
ladder but especially for individuals possessing a larger knowledge. In particular, the
tail of the marginal density for what concerns the knowledge is fatter if compared with
the first test case.

As a secondmeasure of the phenomenon under consideration, we report the profiles
of the local mean value of the social status and of the local mean knowledge. These
are defined as

W (x, t) = 1

G(x, t)

∫
f (x, w, t)wdw,
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Fig. 6 Test 2. Left image shows the two marginal densities relative to knowledge and social status in the
different regimes. Right image shows the complementary cumulative marginal distributions for the same
quantities in log–log scale. The slopes p of the tails are estimated from F̄(w) ≈ w−p and Ḡ(x) ≈ x−p

for larger w and x

Fig. 7 Behavior of the mean knowledge against the social status and of the mean social rank against
knowledge. Test 1 left image, Test 2 right image. The Boltzmann and the Fokker–Planck scaling are shown
for both cases

K (w, t) = 1

F(w, t)

∫
f (x, w, t)xdx . (5.11)

The profiles are shown in Fig. 7 for theBoltzmann and the Fokker–Planck regimewhen
the steady state is reached. They show that for the first test, the mean social status is
essentially independent with respect of the knowledge except for individuals having
a very low level of education. This effect is amplified for the second test case where
the education has a larger impact on the social status. In this second case, the larger
is the education level, the larger is the average social status. However, a saturation of
this index is observed for large values of the knowledge. The second main outcome
is a peak of the average educational level for agents belonging to the middle classes.
This effect is amplified when the knowledge is additionally a function of the social
status (Test 2).
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5.3 Test 3

In order to gain a deeper understanding of the phenomenon and to have amore detailed
view of the emerging steady states, we finally show the Lorenz curve and the Gini
index computation in this last part [cf. Chakrabarti et al. (2013), Düring et al. (2018) for
details about this index]. When the Gini index is used to study the wealth distribution,
its value should be understood as ameasure of a country’s inequality. Here, we perform
a similar analysis but in terms of the education level and of the position occupied in
the social hierarchy by individuals, i.e., the possible emergence of social elites. By
definition, the values taken by theGini index varies in [0, 1]where the value 0 indicates
that the society is equal while the value 1 expresses perfect inequality. In this latter
case, we would observe a fat tail in the distribution of the social status or of the
knowledge distribution indicating the presence of an elite which causes the Gini index
to grow. In the case of the wealth measure in modern economies, one often observes
a value between [0.2, 0.5] for this indicator (Drǎgulescu and Yakovenko 2001). This
index is computed starting from the Lorenz curves defined as

L f (F(w)) =
∫ w

0 F∞(w∗)w∗dw∗∫ ∞
0 F∞(w∗)w∗dw∗

(5.12)

and

Lg(G(x)) =
∫ w

0 G∞(x∗)x∗dx∗∫ ∞
0 G∞(x∗)x∗dx∗

(5.13)

where the marginal distributions F∞(w) and G∞(x) correspond to the steady state
solutions. From the above defined quantities, it is possible to recover the Gini coeffi-
cients as

Γw = 1 − 2
∫ 1

0
L f (F(w))dw, Γx = 1 − 2

∫ 1

0
Lg(G(x))dx . (5.14)

In Fig. 8, we show the Lorenz curves obtained in the same setting as Test 1 and Test
2 and in the Boltzmann regime. In particular, the figure shows the Lorenz curves
corresponding to (5.13) on the top left and to (5.12) on the top right for different
values of the exponents α and β in Eqs. (5.1) and (5.2), respectively. These are used
respectively to decrease the convexity interval in the value function (2.3) and tomodify
the stochasticity in the formation of the social structure, while ξ is fixed to ξ = 2.
We recall in particular that σ(x) has been designed in order to reduce the randomness
present in the social climbing model when the education level becomes particularly
high, while larger values of β enhance this behavior. The results show that when one
considers a model in which the social status is influenced by education and vice versa,
a reduction in the inequality can be reached in terms of social stratification. Indeed, in
the uncoupled case, one can observe that the tails become thinner when the variance
decreases indicating that a larger level of equality may be reached by the system. The
Gini coefficient jumps from a value of 0.52, corresponding to the fully decoupled case,
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Fig. 8 Top: the behavior of the Lorenz curves for the social stratification and the knowledge for different
values of α, β and for fixed ξ in Eqs. (5.1), (5.2), (5.5). For the left image the Gini coefficients span from
Γx = 0.48 for α = β = 0 to Γx = 0.38 for α = β = 4. For the right image the Gini coefficients span from
Γw = 0.54 for α = β = 0 to Γw = 0.16 for α = β = 4. Bottom: the behavior of the Lorenz curves for
the social stratification and the knowledge for different values of ξ and fixed α, β in Eqs. (5.1), (5.2), (5.5).
For the left image, the Gini coefficients span from Γx = 0.26 for ξ = 0 to Γx = 0.32 for ξ = 4. For the
right image the Gini coefficients span from Γw = 0.35 for ξ = 0 to Γw = 0.48 for ξ = 4

to a value 0.16 for the social stratification. On the other hand, this coupling effect has a
smaller impact in modifying the inequalities in the knowledge/education distribution.
In fact, in the case of the Lg(G(x)), the Lorenz curves corresponding to knowledge
are close each other, still it is possible to appreciate a difference in terms of the Gini
coefficient which passes from Γx = 0.47 to Γx = 0.38 for larger values of β and α.

The images on the bottom of Fig. 8 show the Lorenz curves when α = β = 2
and ξ varies in [0, 4]. From these images, one can see that increasing ξ implies larger
values of the Gini index both for knowledge as well as for social status, even if this
effect is less apparent for this latter. Thus, one can infer that as ξ grows and thus the
education level largely depends on the status of individuals then inequalities increases
as opposite to the previous case. This result can be interpreted saying that if education
depends upon social status, people belonging to the social elites has more possibilities
to get better education and thus larger possibilities to climb position in the social ladder
thus increasing inequalities.

Finally, in Fig. 9, we show on the top the Lorenz curves for the case in which α

is fixed and β and ξ vary, the rest of parameters remaining unchanged. In this case,
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we observe as for the case of ξ fixed and α, β ∈ [0, 4] a reduction in the inequalities
for the social stratification, while knowledge sees inequality to grow as the effect of
this coupling grows even if education looks much less influenced in this situation by
the coupling conditions. This setting combines the positive effects of the reduction in
the variance when individuals increase their education level with the negative, even if
realistic, effects of relating the possibilities to be educated with their means.

The last two rows in Fig. 9 explore a different setting. The middle row reports the
case in which (5.3) is used instead of (5.4) for coupling the stochastic behavior in
the formation of the social hierarchy with the knowledge level, the other quantities
remaining unchanged. In detail, the function used is

σ(x) = 0.01 + 0.9x−χ

1 + x−χ
(5.15)

meaning that the variance may assume values between 0.01 and 0.9 and that the effect
of this coupling increases as χ = [0, 4] increases. We notice that for this case the
behaviors of the curves are qualitatively analogous of the ones obtained with σ(x)
fixed by (5.2) and both β and ξ varying in the interval [0, 4] (see bottom of Fig. 8)
even if quantitatively the inequalities are much pronounced in this situation as the
coupling between the two phenomena becomes stronger.

To conclude, we explore the case in which the variance in the social climbingmodel
is defined in such a way that people with an average education level are the ones who
aremore subject to the unpredictability phenomena in the society being for uneducated
and highly educated people the social mobility less probable. In this case, we assume

σ(x) = 0.5

1 + (x − 1)β ′ , (5.16)

andwe show the results for different values of the constantβ ′ at the bottomof Fig. 9, the
other parameter being fixed as before. In this case, one can observe that education has
a negative impact on the formation of the social hierarchy meaning that it contributes
to enhance the difference in the society as for the case in which the variance has been
assumed to vary as detailed in (5.3), the same happens to the distribution of knowledge
and its Lorenz curve.

6 Conclusions

We introduced and discussed a system of one-dimensional kinetic equations able to
describe both the influence of higher education on social stratification of a multi-
agent society, and the reverse influence of social stratification on the education of the
collectivity. The system has been built by coupling a kinetic model for knowledge
formation with a kinetic description of the social climbing. Two different cases have
been analyzed in detail. In the first case the elementary interaction characterizing the
evolution of the individual knowledge has been assumed independent of the individual
social ranking.This assumption reproduceswell the situationof countrieswhere school
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Fig. 9 Behavior of the Lorenz curves for the social stratification and the knowledge. Top: as a function of
β and ξ as defined in (5.2) and (5.5) with fixed α as defined in (5.1). Middle: as a function of χ and ξ as
defined in (5.3) and (5.5) and fixed α as defined in (5.1). Bottom: as a function of β ′ and ξ as defined in
(5.4) and (5.5) and fixed α as defined in (5.1)

education is overwhelmingly public, and the individual has the possibility of accessing
almost any school, regardless of position on the social ladder. Second, we discussed
the case in which the education level of an individual depends on the position occupied
in the social ranking, a situation which more likely refers to countries where tuition
fees are high at every level and become very high for more prestigious forms of
higher education. Within this last assumption we obtained a fully coupled model
in which knowledge and social status influence each other. Numerical experiments
show that educational expansion is a socially progressive development, able to reduce
socioeconomic inequalities. However, the more the education depends on the social
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status, themore the inequalities in the societymanifest themselves. Another interesting
outcome is that however, even if education has a price, if it is admissible or it is accepted
by the society, then knowledge still permits to reduce social inequalities.
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A The value function in the social stratificationmodel

The function Ψ ε
δ which we report here for clarity has the form

Ψ ε
δ (s) = −μ

eε(s−δ−1)/δ − 1

(1 − μ)eε(s−δ−1)/δ + 1 + μ
, s ≥ 0. (6.1)

With s = w/w̄L plays the role of a so-called value function (Kahneman and Tversky
1979). This function is bounded from below and above, and satisfies the bounds

− μ

1 − μ
≤ Ψ ε

δ (s) ≤ μ
1 − e−ε/δ

(1 − μ)e−ε/δ + 1 + μ
. (6.2)

Consequently, the positive constant 0 < μ < 1 characterizes the maximal amount of
variation of the value function from above and below. Moreover, starting from s = 0,
for any fixed value of the positive parameters ε and δ, the function Ψ ε

δ (s) is convex
in a small interval contained in the interval (0, 1), with an inflection point in s̄ < 1,
then concave. A picture of the value function for different values of the parameters is
shown in Fig. 10.

The inflection point s̄ < 1 and the reference point s = 1 are related to the previously
mentioned mean values characterizing the climbing dynamics in the social ladder. The
value w = w̄L , namely the perceived level of a satisfactory well-being, corresponds
to the reference point s = 1. Instead, the upper limit of the low social ranking w̄
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Fig. 10 Representation of the value function as a function of s and δ for different values of μ and ε

characterizes the inflection point s̄ < 1, in view of the relationship

s̄ = w̄

w̄L
< 1. (6.3)

Indeed, the graph of the function Ψ ε
δ (s) (see Figs. 1, 10) can be split in the three

regions (0, s̄), (s̄, 1) and (1,+∞), such that the graph is steeper in the middle region
than in the other two, thus characterizing the middle region (the region of the middle
social ranks) as the region in which it is present a higher value of the mobility, and
consequently, it is easier to improve the rank or to lose some position. On the contrary,
the mobility is lower for values of the rank below w̄ and above w̄L . The same figure
clarifies also the role of the parameters μ and δ. For small values of μ, the mobility
is lower in the second (especially) and third part of the graph making more difficult
for an agent to progress or descend into the social ladder. Concerning δ, one can
notice that the larger is this value, the larger is the region for which for individuals
it is very difficult to climb the ladder. It is also worth to remark that as observed in
Dimarco and Toscani (2020), the behavior of the function Ψ ε

δ is in agreement with
the original believe of Pareto (1916) that social mobility appears to be higher in the
middle classes. It was also shown in Dimarco and Toscani (2020) that the steady state
of the underlying kinetic equation (1.2) characterizing the structure of the social ladder
exhibits a polynomial decay at infinity, thus justifying the formation of a social elite
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as observed in the Western societies (Scott 2002). It is important to notice that the
value of the inflection point w̄ is increasing with δ enlarging the population belonging
to the working class and the effects related to the difficulties to climb the social ladder.
On the contrary, taking the limit δ → 0 in (2.3), the value function converges to

Ψ ε
0 (s) = μ

sε − 1

(1 + ν)sε + 1 − μ
, s ≥ 0, (6.4)

namely to the value function considered inGualandi andToscani (2018, 2019), leading
to a lognormal steady profile. Note however that in this latter case, the limit value
function (6.4), at differencewith the value functions (2.3), is concave, and the inflection
point w̄ is lost as shown in Fig. 10.
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