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Dissipative hydrodynamics of relativistic shock waves in a quark gluon plasma:
Comparing and benchmarking alternate numerical methods
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This paper presents numerical cross comparisons and benchmark results for two different kinetic numerical
methods, capable of describing relativistic dissipative fluid dynamics in a wide range of kinematic regimes,
typical of relevant physics applications, such as transport phenomena in quark-gluon plasmas. We refer to
relativistic lattice Boltzmann versus Monte Carlo test-particle methods. Lacking any realistic option for accurate
validation vis-á-vis experimental data, we check the consistency of our results against established simulation
packages available in the literature. We successfully compare the results of the two aforementioned numerical
approaches for momentum integrated quantities like the hydrostatic and dynamical pressure profiles, the
collective flow, and the heat flux. These results corroborate the confidence of the robustness and correctness
of these computational methods and on the accurate calibration of their numerical parameters with respect to the
physical transport coefficients. Our numerical results are made available as Supplemental Material, with the aim
of establishing a reference benchmark for other numerical approaches.
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I. INTRODUCTION

In its broadest and most general sense, hydrodynamics
is the science of collective behavior, i.e., the description of
the dynamics emerging on top of the rules which govern the
microscopic world. As a result, hydrodynamic behavior is
expected to settle in the presence of a clear-cut separation be-
tween the collective degrees of freedom and the microscopic
ones from which they emerge. A safe margin in this respect
is about two orders of magnitude, but the specific threshold at
which such emergence takes place may vary from system to
system and in some cases much less stringent thresholds may
be present. Although usually associated with macroscopic
motion, distinct hydrodynamic signatures can be found way
deep in the microscopic world, down to the nanometric scale.
In the past two decades, relativistic hydrodynamics has also
captured major interest from the apparently widely separate
discipline of high-energy physics, the main driver being pro-
vided by the famous anti-de Sitter/conformal field theory
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correspondence (AdS/CFT) theory, which sets an equivalence
between d-dimensional field theory and (d + 1) dimensional
gravity [1]. This fascinating connection has opened an active
field of modern research on so-called holographic fluids, i.e.,
strongly interacting quantum-relativistic fluids supporting the
AdS/CFT duality. Among others, spectacular realizations of
hydrodynamic holography have been reported for electron
flows in graphene and quark-gluon plasmas [2–4]. Perhaps,
most spectacular of all, recent experiments of the PHENIX
Collaboration [5] have reported evidence of the “smallest
droplet ever,” namely a droplet of quark-gluon plasma of the
size of a few femtometers.

These manifestations of hydrodynamic behavior at truly
short scales have spurred major activity on the experimental,
theoretical, and, to a lesser extent, computational sides. With
specific reference to quark-gluon droplets, a major question
pertains to the departures from strict hydrodynamic regimes
which take place in small systems due to partial lack of
“thermalization” of the initial strongly nonequilibrium con-
figuration.

The quantitative description of such departures is beyond
analytics and raises major computational challenges, since
a kinetic-theory treatment is not only computationally very
demanding but also theoretically questionable since strong
interactions imply super-short-lived quasiparticles, thus un-
dermining the very premise of kinetic theory.
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On the other hand, a macroscopic description of dissipative
hydrodynamics poses further conceptual problems, since it
has long been recognized that a naive relativistic extension
of the Navier-Stokes equations is inconsistent with relativis-
tic invariance, implying superluminal propagation and hence
noncausal and unstable behavior. This can be corrected by
resorting to fully hyperbolic formulations of relativistic hy-
drodynamics. However, while various frameworks have been
proposed, the definition of second-order relativistic viscous
hydrodynamic equations is still debated, with a lot of ongoing
research [6–18].

In this context, approaches based on a mesoscopic descrip-
tion help overcome some of these problems. This approach
is useful as, eventually, one may want to study “beyond-
hydrodynamics” phenomenology; on the other hand, a con-
sistent description of the hydrodynamic regime requires es-
tablishing a link between the mesoscale and the macroscopic
parameters [10,12,14,19–31]. In general, there is a strong need
for reliable numerical tools, as well as numerical benchmarks
to compare accuracy, stability, and performance of these
solvers.

Typical benchmarks used in the validation of relativistic
hydrodynamics codes are the Bjorken flow [32], Gubser flow
[33], and the Riemann problem [34,35]. The latter is par-
ticularly useful to investigate the robustness of a numerical
method due to the presence of strong discontinuities that give
origin to the formation of shock waves. While the benchmark
has an analytic solution only for two limiting cases, namely
for the inviscid and the ballistic regimes, in the recent past
several studies have analyzed the formation of relativistic
shock waves in viscous QGP matter [36–39].

To the best of our knowledge, all previous works have been
restricted solely to the study of the ultrarelativistic regime,
for which the appropriate equation of state (EOS) is written
as ε = 3P. In this work, we consider instead a more general
EOS, accounting for massive particles:

ε = P

(
3 + ζ

K1(ζ )

K2(ζ )

)
,

(1)
P = nkBT,

where the relativistic parameter ζ = mc2/kBT , defined as
the ratio between the rest mass energy mc2 and the thermal
energy kBT , physically characterizes the kinematic regime
of the macroscopic fluid, with ζ → 0 in the ultrarelativistic
regime and ζ → ∞ in the nonrelativistic one. This approach
allows to test EOS quite similar to the one coming from
lattice QCD calculations, even if a very precise description
of the most recent EoS requires us to consider a temperature-
dependent mass as shown in Ref. [40]. Such an approach has
been already implemented within the relativistic Boltzmann
approach in Ref. [41] and discussed also to derive relativistic
viscous hydrodynamics [42].

We apply this benchmark with constant mass, compare
two different computational methods, and present numerical
results exploring a wide range of parameters. We start by
replicating results available in the literature in the ultrarela-
tivistic limit and then move on to the study of fluids of massive
particles, relevant to the QGP framework. The methods we

consider both share a kinetic approach at the mesoscale level,
but differ significantly in their numerical formulation, namely
(i) a relativistic lattice Boltzmann (RLBM) approach, based
on the relaxation time approximation, and (ii) a Monte Carlo–
enabled solution of the full kernel of the Boltzmann equation
based on the test-particle method (RBM-TP). They are cross
validated for small values of the ratio between shear viscosity
and the entropy density (η/s < 0.2), corresponding to a hy-
drodynamic regime where the Knudsen number is Kn � 1.
We show that the two solvers provide results in very good
agreement, by analyzing the profile of momentum-integrated
macroscopic quantities, as well as the nonequilibrium contri-
butions to the moments of the particle distribution function
[43,44].

We also show that, as expected, the RLBM approach
fails when η/s is significantly large (ballistic limit) while
successfully captures the physics features of flows at very
low shear viscosity. The Monte Carlo approach, RBM-TP, is
able to get solutions in agreement with RLBM even at very
low viscosity, η/s � 0.05, being able to naturally describe the
evolution also for systems at large viscosity up to the ballistic
limit η/s → ∞.

The numerical results presented in this work are made
available as Supplementary Material with the aim of promot-
ing further future comparisons [45].

In what follows, we adopt natural units, for which h̄ = c =
kB = 1, and a flat space-time described by the metric tensor
η = (1,−1,−1,−1).

II. MODEL EQUATIONS

The kinetic description of a relativistic gas is based on
the particle distribution function f ((xα ), (pα )), depending on
space-time coordinates (xα ) = (t, x) and momenta (pα ) =
(p0, p) = (

√
p2 + m2, p), with α = 0, 1, 2, 3. The space-time

evolution of f ((xα ), (pα )) is governed by the relativistic
Boltzmann equation which, in the absence of external forces,
is written as

pα ∂ f

∂xα
= C[ f ], (2)

with C[ f ] being the collisional operator.
Macroscopic quantities are defined from the moments of

the distribution functions. The first moment is the particle
four-current:

Nα =
∫

f pα d3 p

p0
, (3)

while the second moment defines the energy-momentum
tensor:

T αβ =
∫

f pα pβ d3 p

p0
. (4)

The balance equations of the particle four-current and of the
energy-momentum tensor deliver the following conservation
equations:

∂αNα = 0,

∂αT αβ = 0. (5)
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These equations are purely formal until a specific form for
Nα and T αβ is specified. Following Landau and Lifshitz [46],
one has

Nα = nU α − n

P + ε
qα, (6)

T αβ = εU αU β − (P + � )	αβ + π 〈αβ〉, (7)

with ε being the energy density, P being the hydrostatic
pressure, qα being the heat flux, π 〈αβ〉 being the pressure
deviator, � being the dynamic pressure, and 	αβ = ηαβ −
U αU β being the (Minkowski-)orthogonal projector to the
fluid velocity U α; the latter, in the Landau frame, is defined
as T αβUβ = εU α .

III. NUMERICAL METHODS

In this section, we provide a brief account of the two
numerical methods used in this work, the relativistic lattice
Boltzmann method and the Monte Carlo test-particle method.

A. Relativistic lattice Boltzmann method

The first computational method used in this comparison is a
relativistic lattice Boltzmann method. This method [47–49] is
a computationally efficient approach to dissipative relativistic
hydrodynamics. One key advantage over other relativistic
hydrodynamic solvers is that, being based on a mesoscale
approach, the emergence of viscous effects does not break
relativistic invariance and causality, since space and time are
treated on the same footing, i.e., both via first-order deriva-
tives (hyperbolic formulation).

This numerical method solves a minimal version of Eq. (2),
where the microscopic momentum vector is discretized on a
Cartesian grid, and with the collisional operator replaced by
the Anderson-Witting single relaxation time approximation
[50,51]:

C[ f ] = −U α pα

τ
( f − f eq ). (8)

In the above, τ is the relaxation proper time and f eq is the
equilibrium distribution for which we consider the Maxwell-
Jüttner statistics:

f eq = n

4πT 3ζ 2K2(ζ )
exp

(
−U α pα

T

)
; (9)

here and in the following Ki(ζ ) is the modified Bessel function
of the second kind of order i. The connection between the
microscopic parameter τ and the macroscopic equations is
given by the transport coefficients, for which we take into
account the analytic expressions resulting from the first-order
Chapman-Enskog expansion [52]. Relevant for the present
study is the shear viscosity η:

η = Pτ
ζ

15

[
3

K3(ζ )

K2(ζ )
− ζ + ζ 2 K1(ζ )

K2(ζ )
− ζ 2 Ki1

K2

]
, (10)

with Ki1 being the Bickley-Naylor function

Kiα =
∫ ∞

0
e−ζ cosh(t )(cosh(t ))−αdt .

B. The test-particle method

The second computational approach considered in this
paper also belongs to the realm of kinetic transport theory. We
use a relativistic transport code developed to perform studies
of the dynamics of heavy-ion collisions at both Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)
energies [21,53–60].

Recently, the code has been extended to the solution of
Eq. (2) for massive particles, which allows us to simulate
a fluid with an EOS that can be close to the recent lQCD
calculations [60]. In this work, Eq. (1) has been used.

In this work, we consider only 2 ↔ 2 collision processes,
which give rise to a collisional operator C[ f ] of the form

C[ f ] =
∫

d3 p2

E2
d�

1

2

√
s(s − 4m2)

dσ (s,�)

d�
( f ′

1 f ′
2 − f f2);

fi = f (pi ) [ f ′
i = f (p′

i )] are the distribution functions of the
outgoing (ingoing) particles, s = (p1 + p2)2 and σ (s,�) is
the differential cross section which is related to the total
cross section by σtot = ∫

d� dσ (s,�)
d�

. The numerical solution
of the transport equation is obtained by using the test-particle
method, a popular option in many transport calculations
[61–63]. In this method, the phase-space distribution function
is sampled by mean of a large number of so-called test parti-
cles. In fact, it can be shown that the phase space distribution
given by a collection of pointlike test particles is a solution of
the Boltzmann equation, provided the positions and momenta
of the test particles obey the relativistic Hamilton equations
[64,65].

The numerical implementation of the collision integral is
based on the so-called stochastic method [66] that has proven
capable of describing efficiently also the ultrarelativistic limit,
avoiding the issue of causality induced by a geometrical
interpretation of the collision integral.

The transport code permits us to study the dependence
of physical observables on microscopical processes fixed by
matrix elements or cross section. One approach is based on
the idea of gauging the collision kernel C[ f ] to a desired η/s
ratio by an effective cross section σtot [21,55,67]. Such an
approach was inspired by the success of the hydrodynamical
approach to describe experimental data [68–70] and permits
us to employ a Boltzmann transport equation in regimes where
η/s (or equivalently the scattering relaxation time τ ∼ 1/σρ)
is very low [57,71,72].

The expression given by the first-order Chapman-Enskog
expansion [Eq. (10)] is used for the shear viscosity, with the
relaxation time defined as τ = R−1 = 1

n〈σtrvrel〉 , where σtr is
the transport cross section and vrel is the relative velocity of
the two incoming particles. In Ref. [21], it has been checked
through the Green-Kubo correlator that employing Eq. (10)
generates a fluid with the desired value of η/s.

For the massive case, R is given by the following expres-
sion:

R = n〈σtrvrel〉 = n
β

4

∫ ∞√
s0

d
√

s λ(s) σtr (s) K1(β
√

s)

[m2K2(βm)]2
, (11)

where
√

s0 = 2m and λ(s) = s[s − (2m)2]. Note that for
massless particles and constant isotropic cross -section the
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above formula reduces to R → n 2
3σtot. Finally, Eqs. (10) and

(11) provide the formula for the normalization of the cross
section in each cell in order to keep fixed η/s.

IV. NUMERICAL RESULTS

For our numerical analysis, we begin by considering the
relativistic Riemann problem. This problem describes a tube
filled with a gas which initially is in two different states on
the two sides of a membrane placed at x = 0. As a result,
the macroscopic quantities describing the fluid present a dis-
continuity at the membrane. Once the membrane is removed,
the discontinuities decay, producing shock and/or rarefaction
waves, depending on the initial configuration chosen for the
two different chambers. For simplicity, we assume the flow to
be homogeneous in the transverse directions.

Analytical solutions for this problem are available only for
the massless case and for extreme values of the ratio η/s, i.e.,
in the inviscid limit (η/s → 0) [34] and in the free-streaming
limit (η/s → ∞) [73].

We use the same initial conditions as in Ref. [37], with a
pressure jump defined as P0 = 5.43 GeV fm−3 for x < 0 and
P1 = 0.33 GeV fm−3 for x > 0. Initial values for the temper-
ature are respectively T0 = 400 MeV and T1 = 200 MeV.

We perform simulations at constant values of η/s. The
calculation of η follows from the discussion in the previous
section, while the entropy density is approximated using [52]

s = n

(
ζ

K3(ζ )

K2(ζ )
− ln

( n

neq

))
; (12)

we use the following expression for the equilibrium density,

neq = dG
T 3

2π2
ζ 2K2(ζ ), (13)

with dG = 16 being the degeneracy factor of gluons.
Combining Eqs. (10), (12), and (13), it is then possible

to define the relaxation time required to keep the ratio η/s
constant to a desired value k. As an example, the expression
in the ultrarelativistic limit reads as

τ = k
5

4T

[
4 − log

(
π2n

dGT 3

)]
. (14)

In RLBM simulations, the above equation is used to locally
adjust the relaxation time, while in RBM-TP simulations it
is used in combination with Eq. (11) to calculate the corre-
sponding value of the transport cross section. Table I lists
the values of the relaxation time at the initial step of the
simulation corresponding to η/s = 0.1, for all values of the
particle rest-mass m considered in this work.

As a warm-up exercise, we start by reproducing the results
of previous studies in the ultrarelativistic regime. In partic-
ular, we compare against the Parton cascade the Boltzmann
approach to multiparton scatterings (BAMPS) [74], which
numerically solves the Boltzmann equation using a Monte
Carlo approach. In Fig. 1, we show that both the methods
correctly reproduce the results provided by BAMPS at η/s =
0.1. RLBM also gives a good approximation of the analytical
solution in the inviscid limit; in this case, the test-particle
methods cannot be applied since for η/s → 0 the cross section

TABLE I. Values of the relaxation times corresponding to η/s =
0.1. For all values of the particle rest mass m, we list the relaxation
times corresponding to the initial conditions on the left (τ0) and right
sides (τ1) of the discontinuity.

η/s = 0.1

m [GeV] τ0 [fm/c] τ1 [fm/c]

0 0.246 0.496
0.8 0.258 0.551
2 0.281 0.621
4 0.309 0.692

becomes unphysically large, leading to numerical instabilities.
On the other hand, for large values of η/s, the hydrodynamic
approach becomes questionable, as we transit toward a bal-
listic regime. Although at η/s = 0.5 RLBM still manages to
capture the qualitative behavior of the flow, in this regime
the results provided by the RBM-TP are more reliable and
in better agreement with BAMPS. It is, however, important to
note that even at the very low η/s = 0.05, the RBM-TP is able
to describe the dynamical evolution in excellent agreement
with RLBM. Finally, in the free-streaming limit, the test-
particle method reproduces correctly the analytic solution,
while an unphysical “staircase” effect is observed in the pro-
files produced by RLBM; it has been shown that higher order
schemes can cure this issue [75]. We remark that the RLBM
simulations carry a systematic error due to the truncation of
the higher order moments of the particle distribution (see
Ref. [49] for details), whereas a statistical error is inherently
associated with RBM-TP. However, in this and in all other
figures in this paper, error bars are not shown, since we
average over a sufficiently large number of events in order
to keep statistical errors well below 1% for the macroscopic
observables.

In the following, we take into consideration fluids
consisting of massive particles and restrict our analysis
to values of η/s < 0.2, corresponding to a hydrodynamic
regime for which we have observed a good agreement
between the two methods. We recall that such a regime is also
the one of interest for the study of the quark-gluon plasma
(QGP) in ultrarelativistic collisions [76,77].

In Fig. 2, we show the time evolution of the pressure and
velocity profiles for a specific case with m = 0.8 GeV and
η/s = 0.1. We observe an excellent agreement in the dynam-
ics predicted by the two solvers; in particular, we remark that
the two cases compare well not only at times t much longer
than the relaxation time τ but also in the short-term regime,
t ∼ τ .

In Fig. 3, we also show the space distribution of the
relaxation time τ (x) in the two approaches for the case of
η/s = 0.1. It is seen that, even if the initial values, dashed
lines, are the same according to Eq. (10), the local evolution
in the region of the shock wave exhibits different values for
RLBM (solid lines) and RBM-TP (dots) for the massless
case, a discrepancy that nearly disappears for the massive
case m = 2 GeV. This can be attributed to the different col-
lision kernels: the Anderson-Witting in RLBM and the full
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x [fm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β

analytic, η/s = 0
RLBM, η/s = 0.002

BAMPS, η/s = 0.1
RLBM, η/s = 0.1
RBM-TP, η/s = 0.1

BAMPS, η/s = 0.5
RLBM, η/s = 0.5
RBM-TP, η/s = 0.5

analytic, η/s = ∞
RLBM, η/s = ∞
RBM-TP, η/s = ∞

FIG. 1. Riemann problem for a gas of massless particles for various viscous regimes. The left panel shows the pressure profile and the right
one shows β = |U i|/U 0, at t = 3.2 fm/c. Solid lines are analytic solutions, dotted lines are numerical results obtained by BAMPS, dashed
lines refer to RLBM, and dots indicate RBM-TP. Different colors (see the online version) represent different viscous regimes, with blue for the
inviscid limit, orange for η/s = 0.1, green for η/s = 0.5, and red for free streaming.

Boltzmann in RBM-TP; however, as shown in all other results,
such difference does not lead to any appreciable difference
of macroscopic quantities, like the hydrostatic pressure or
the collective flow. Some difference is observed instead in
Fig. 6, which reports nonequilibrium quantities, such as the
dynamical pressure or heat flux. Such differences also tend to
vanish for the very massive case, as we are going to discuss at
the end of this section.

In Fig. 4, we show the results obtained considering again
a rest mass m = 0.8 GeV but for different viscous regimes.
The two methods are in good agreement, with only slight
differences observed in the proximity of the shock-wave front.
The curves for RBM-TP at η/s = 0.01 are not shown since, at
such low viscosity, the methods becomes numerically unstable
as the cross section and hence the computational time diverges
as η/s → 0. However, it has been shown in Ref. [57] that a
linear extrapolation in 1/σ for σ → ∞ provides the correct
pattern even for ideal hydrodynamics.

In Fig. 5, we fix η/s = 0.1 and compare the results ob-
tained for fluids of particles with rest mass of 0, 0.8, 2, and
4 GeV. Once again, both computational methods yield the
same numerical results, which is remarkable given that no
parameter fitting is performed in this analysis (apart from the
requirement to keep η/s constant).

Furthermore, it is interesting to analyze the nonequilibrium
contributions to the four-flow tensor Nα and to the energy-
momentum tensor T αβ .

In the top panel in Fig. 6, we report the time and the spatial
component of the heat flux, calculated via

qα = P + ε

n
(nU α − Nα ). (15)

The time component of qα is expected to vanish for non-
relativistic flows. We can observe that as the rest mass is
increased, the fluid moves at slower speeds and the correspon-
dent peak in q0 reduces accordingly. We observe significant
discrepancies at the peak values of both the time and spatial
components of the heat flux in the massless case. RBM-TP
closely follows the results of BAMPS, while RLBM seems to
be in better agreement with other hydrodynamic codes, like
vSHASTA [38] or other lattice Boltzmann approaches (see,
e.g., Fig. 6 in Ref. [75]). On the other hand, when considering
massive particles, the results seem to be in good agreement.
We remark that although calibrated to reproduce the same
first-order coefficient for the shear viscosity, the two methods
approximate higher orders in a different way. It has been
shown [38] that higher order terms in Knudsen number play a
relevant role in the heat flow.

Next, we take into consideration the nonequilibrium part of
energy-momentum tensor, in particular the pressure deviator,
defined as

π 〈αβ〉 = η
(
	α

γ 	
β

δ + 	α
δ 	β

γ − 1
3	αβ	γδ

)∇γU δ (16)
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FIG. 2. Riemann problem for a gas of particles with rest mass
m = 0.8 GeV, at η/s = 0.1. The top panel shows the pressure profile
and the bottom one shows β = |U i|/U 0, at t = 0.8, 1.6, 2.4, and
3.2 fm/c. The initial conditions are represented by black dotted
lines. Continuous lines are results obtained by RLBM, while dots
are results by RBM-TP.
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τ
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FIG. 3. Local viscous relaxation time τ for the case of η/s = 0.1
at time t = 0 (dashed lines) and t = 3.2 fm/c for m = 0 and m =
2 GeV. The solid lines are the values for the RLBM and the dots are
the values of the RBM-TP.
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FIG. 4. Riemann problem for a gas of particles with rest mass
m = 0.8 GeV, for various viscous regimes. The top panel shows
the pressure profile and the bottom one shows β = |U i|/U 0, at
t = 3.2 fm/c. Lines are results obtained by RLBM, while dots are
results provided by the RBM-TP.

with the shorthand notation

∇α = 	αβ∂β,

	α
β = 	αγ 	γβ. (17)

In the bottom left panel of Fig. 6, we show π 〈xx〉, the spatial
component of the pressure deviator. The two methods provide
results in good agreement, both reproducing the results of
BAMPS in the ultrarelativistic case, with slight differences in
the massive case at the discontinuity point.

Particularly relevant to the study of QGP is the analysis
of effects related to the bulk viscosity, with potential implica-
tions for dark matter [78–81].

The bulk viscosity enters the nonequilibrium contribution
to the energy-momentum tensor, and in particular is propor-
tional to the dynamic pressure:

� = −μ∇αU α. (18)

We calculate the dynamic pressure from simulations by ap-
plying the projector 	αβ to Eq. (4), which yields

� = 1
3

(
ε − T α

α

) − P. (19)
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FIG. 5. Riemann problem for a gas of particles with rest mass
respectively 0, 0.8, 2, and 4 GeV. All simulations are at η/s = 0.1.
The top panel shows the pressure profile and the bottom one shows
β = |U i|/U 0, at t = 3.2 fm/c. Lines are results obtained by RLBM,
and dots are results provided by RBM-TP.

Measurements of � are shown in the bottom right panel
of Fig. 6. This quantity is exactly zero for the massless
case, consistent with the fact that an ultrarelativistic gas has
no bulk viscosity. Bulk effects are more prominent for the
case m = 2 GeV, which corresponds to ζ ≈ 5, consistently
with analytical calculations [52]. Differences in the dynamical
pressure can have some relevance for the phenomenology of
the QGP physics because they moderately affect the aver-
age momentum of the spectra and the buildup of azimuthal
anisotropic collective flows [81,82].

In general, we can see that for the heat flux qα and for the
dynamical pressure � larger differences remain between the
two methods, mainly in the region of the peak. This is not
surprising, because such quantities focus on the details of the
nonequilibrium dynamics and the simplified collisional kernel
in RLBM may induce a slightly different nonequilibrium
dynamics with respect to RBM-TP. However, this does not
lead to any significant difference in the dynamic evolution of
global quantities, like the pressure and the collective flow, as
shown in all the previous section. It is also worth noting that
the differences decrease with increasing mass, corresponding
to a less rapid dynamics, and that the differences are larger in
the same region where the τ (x), shown in Fig. 3, exhibits the

largest departure between the two approaches. In any case,
it should be observed that the differences between the two
methods in � are any way smaller than 0.5%, with respect
to the hydrostatic pressure.

We end this section by stressing again that our results,
while conceptually based on a Boltzmann mesoscopic de-
scription, result from two fully different computational ap-
proaches; each computational method has its own parame-
ters describing the mesoscale dynamics, but in both cases,
these values can be derived from transport coefficients at
the macroscopic scale. The two algorithms provide correct
results in different ranges of the transport coefficients: RLBM
works correctly in the range η/s → 0 to η/s � 0.5, while
RBM-TP works correctly for η/s � 0.05 up to the ballistic
limit of η/s → ∞. This suggests that the two methods could
be used together to cover virtually the full range of the η/s
parameter. However, for the phenomenological study of the
QGP dynamics in ultrarelativistic collisions, both methods
cover the relevant range usually explored, 0.08 � η/s � 0.2.
The RBM-TP would be also the most suitable approach to
study systems where the physical conditions are such that one
evolves from the low viscosity to the ballistic regime, as can
occur in electron fluids in graphene constrictions [83].

We finally mention that the RBM-TP provides a solu-
tion of the Boltzmann equation for the one-body distribution
function f ((xα ), (pα )), allowing us to evaluate not only the
T μν components but also several physical quantities, like the
transverse momentum spectrum, the azimuthal anisotropies
vn as a function of the momentum, opening to a comparison
with the wealth of experimental data. However, this requires
us to employ the output of the RBM-TP with a Cooper-Frye
hypersurface and a statistical hadronization as a source for
the multicomponent hadronic transport like Simulating Many
Accelerated Strongly-interacting Hadrons (SMASH) [84] or
Ultra relativistic Quantum Molecular Dynamics (uRQMD), as
done already within the hydrodynamical approach [85,86].

Furthermore, in Ref. [57] it has been shown that it is
possible to evaluate the viscous correction to the distribution
function δ f (p), an essential quantity for the solution of the
Israel-Stewart viscous hydrodynamics. Of course, the access
to such a wider class of observables comes at a price in
computational time, that is currently more than two orders of
magnitudes larger for RBM-TP with regard to RLBM.

V. CONCLUSIONS

In summary, in this paper we have compared two different
microscopic approaches, namely the RLBM, based on the
simplified Anderson-Witting relaxation time approximation,
and RBM-TP, that by test-particle method solves the full
Boltzmann collision kernel. While these two models build
on different methodologies, it is quite remarkable that they
yield to comparable results in the framework of relativistic hy-
drodynamics. In particular, a comparison of the two methods
on a benchmark problem (the relativistic Riemann problem)
shows matching results. The simulations have been performed
at different values of the relativistic parameter ζ , and under
different viscous regimes (i.e., with different values of the
parameter η/s).
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FIG. 6. Analysis of quantities related to the four-flow and the energy-momentum tensors for the same simulation setup of Fig. 5. Top left:
time component of the heat flux. Top right: spatial component of the heat flux. Bottom left: spatial component of the pressure deviator. Bottom
right: dynamic pressure. Lines are results obtained by RLBM, while dashed points are the results provided by RBM-TP. Black dashed lines
are results provided by BAMPS in the ultrarelativistic limit.

In the ultrarelativistic case, we have correctly compared
our results against the analytical solutions that are available
in the inviscid and free-streaming regimes, as well as against
data from a third numerical method, BAMPS, for all values
of η/s between these two limits. It is worth noting that the
test-particle method is not suitable to simulate fluid flows in
the limit η/s → 0, since in this region, numerical instabilities
arise, due to unphysical values of the particle cross sections.
However, the comparison with RLBM shows that it is already
very reliable even at very low viscosity such as η/s � 0.05,
smaller than the conjectured AdS/CFT lower bound. On the
other hand, RLBM begins to struggle at values η/s > 0.5,
where the hydrodynamic description starts to become ques-
tionable, although still capable of reproducing the general
behavior of the dynamics.

This suggests that the two methods could be applied in
different zones of the parameter space, still featuring a win-
dow of cross compatibility which permits their handshaking
in prospective multiscale simulations of quark-gluon plasmas.
The specific case of the phenomenology of QGP in ultrarela-
tivistic collisions where η/s(T ) is in the range 0.08 < η/s <

0.2 is indeed within the range of cross compatibility of the
two methods.

After having established a firm connection to external
results in the ultrarelativistic limit, we have tested the two
numerical schemes on simulations at values of η/s, typical
of quark gluon plasmas produced in colliders like RHIC and
LHC and for several different values of the rest mass of
the particles. The two methods are in excellent agreement
when comparing the profiles of macroscopic quantities of
interest, such as the hydrostatic pressure and the macroscopic
velocity. Some limited difference emerges when comparing
the nonequilibrium components of the particle four-current
and the energy-momentum tensor associated to heat flux or
dynamical pressure. For the future, would be interesting to
explore whether the excellent agreement reported in this paper
still holds for initial profiles closer to the initial stage of ultra-
relativistic collisions, such as the Gubser [33] and the Bjorken
profiles [32]. The results presented in this paper allow us to
benchmark the results of newly developed numerical tools
against two different numerical schemes; this process of cross
validation would permit testing the accuracy of such schemes,
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thus paving the way to reliable and accurate simulations of
real physical systems, such as quark-gluon plasmas dynamics
in current and future high-energy experiments.
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