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SPECTRAL PROPERTIES OF BARZILAI–BORWEIN RULES IN
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Abstract. In 1988, Barzilai and Borwein published a pioneering paper which opened the way to
inexpensively accelerate first-order. In more detail, in the framework of unconstrained optimization,
Barzilai and Borwein developed two strategies to select the step length in gradient descent methods
with the aim of encoding some second-order information of the problem without computing and/or
employing the Hessian matrix of the objective function. Starting from these ideas, several efficient
step length techniques have been suggested in the last decades in order to make gradient descent
methods more and also more appealing for problems which handle large-scale data and require real-
time solutions. Typically, these new step length selection rules have been tuned in the quadratic
unconstrained framework for sweeping the spectrum of the Hessian matrix, and then applied also
to nonquadratic constrained problems, without any substantial modification, by showing them to be
very effective anyway. In this paper, we deeply analyze how, in quadratic and nonquadratic mini-
mization problems, the presence of a feasible region, expressed by a single linear equality constraint
together with lower and upper bounds, influences the spectral properties of the original Barzilai–
Borwein (BB) rules, generalizing recent results provided for box-constrained quadratic problems.
This analysis gives rise to modified BB approaches able not only to capture second-order informa-
tion but also to exploit the nature of the feasible region. We show the benefits gained by the new
step length rules on a set of test problems arising also from machine learning and image processing
applications.
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1. Introduction. In this paper, we are interested in solving the following singly
linearly equality constrained optimization problem subject to lower and upper bounds:

min
x∈Rn

f(x)(1.1)

subject to ` ≤ x ≤ u vTx = e ,

where `, u, and v are vectors of Rn and e is a scalar. We assume that the feasible
region Ω = {x ∈ Rn : ` ≤ x ≤ u vTx = e} is not empty and the function f
is continuously differentiable. We refer to (1.1) as the general singly linearly box-
constrained (SLB) problem. The study of this minimization model is quite relevant
since it allows us to formalize real-life applications in different areas, such as imaging,
signal processing, machine learning, and portfolio optimization (see, for example,
[4, 5, 34, 45, 41]). Since a common feature of these applications lies in their large
scale, among all the iterative schemes which can be selected to solve the corresponding
optimization problem, the class of gradient projection methods is very attractive
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SPECTRAL PROPERTIES OF BARZILAI–BORWEIN RULES 1301

thanks to a simple implementation and a low computational cost per iteration. In
this work, we consider the so-called gradient projection (GP) method along the feasible
direction [6, Chapter 2], whose standard iteration can be written as

(1.2)
d(k) = ΠΩ

(
x(k) − αk∇f(x(k))

)
− x(k),

x(k+1) = x(k) + νkd
(k),

where ΠΩ(·) denotes the Euclidean projection onto the constraints of (1.1), αk is a
positive parameter controlling the step along the negative gradient, and νk ∈ (0, 1]
is a line search parameter ensuring a sufficient decrease of the objective function
along the direction d(k), e.g., by means of an Armijo rule [6] or its nonmonotone
version [30]. Despite the merits previously recalled, the GP method (1.2) can show
a poor convergence rate especially when highly accurate solutions are required. A
possibility to overcome this difficulty consists in properly selecting the step length
αk, which simply needs to belong to a compact set [αmin, αmax], 0 < αmin ≤ αmax,
in order to guarantee the convergence of the iterative scheme [7]. The literature of
the last decades provides many attempts to exploit this freedom of choice for αk
with the aim of accelerating the convergence of the gradient methods. The paper
[2] that first suggested the key idea to fully take advantage of the presence of the
step length αk had been published in 1988 by Barzilai and Borwein (BB), in the
framework of unconstrained optimization. In that paper, the authors force quasi-
Newton properties on the diagonal matrix (αkIn)−1, where In is the identity matrix
of order n, for approximating the Hessian matrix ∇2f(x(k)). In more detail, the step
length updating rules developed by BB have to satisfy the following secant conditions:

(1.3) αBB1
k = arg min

α∈R
‖α−1s(k−1)−y(k−1)‖, αBB2

k = arg min
α∈R

‖s(k−1)−αy(k−1)‖,

where s(k−1) = x(k) − x(k−1) and y(k−1) = ∇f(x(k)) − ∇f(x(k−1)). The resulting
values become

(1.4) αBB1
k =

s(k−1)T s(k−1)

s(k−1)T y(k−1)
, αBB2

k =
s(k−1)T y(k−1)

y(k−1)T y(k−1)
.

We observe that the BB rules (1.4) are well defined provided that the curvature con-

dition s(k−1)T y(k−1) > 0 is satisfied. For this reason, the assumptions of the lemmas
and theorems we prove in the following are imposed to ensure the validity of the cur-
vature condition and, hence, the well definiteness of the BB strategies. In particular,
when the objective function is strongly convex, the curvature inequality is satisfied for
any given points x(k−1) and x(k) [40]. However, the BB schemes are often employed
in practice even when weaker assumptions hold. In these cases, negative values of
αBB1
k and αBB2

k are properly substituted for an emergency step length belonging to
the interval [αmin, αmax].

We recall that, in the case of quadratic objective function with symmetric and
positive definite Hessian matrix A, the BB rules (1.4) provide values belonging to the
spectrum of the inverse of A, since they obey the following property:

(1.5)
1

λmax(A)
≤ αBB2

k ≤ αBB1
k ≤ 1

λmin(A)
,

where λmin(A) and λmax(A) denote the minimum and the maximum eigenvalues of A,
respectively. We briefly remark that the second inequality in (1.5) follows from the
definition of αBB1

k and αBB2
k and the Cauchy–Schwarz inequality [43, Lemma 2.1].
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1302 S. CRISCI, F. PORTA, V. RUGGIERO, AND L. ZANNI

Starting from the inspiring work of BB, many step length updating strategies
have been devised to realize more and more effective gradient methods for uncon-
strained minimization problems (see, for example, [17, 19, 20, 28, 29, 31, 47]). One
of the most competitive ideas among the previously recalled strategies is represented
by the approach developed in [47], where the authors suggested gradient methods
which adaptively alternate small and large step lengths during the iterations. This
alternation idea has been successfully exploited in both [28] and [10]. We report here
the step length selection procedure suggested in [10], which alternates the BB rules
as follows:

(1.6) αVABBmin

k =

{
min{αBB2

j : j = max{1, k −ma}, . . . , k} if
αBB2
k

αBB1
k

< τk,

αBB1
k otherwise,

where ma is a nonnegative integer and τk is updated as

τk+1 =

{
τk/ζ if

αBB2
k

αBB1
k

< τk,

τk · ζ otherwise

with ζ > 1. By selecting τk = τ > 0 at every iteration in (1.6), the alternating
strategy proposed in [28] can be recovered and the corresponding step length will be

hereafter denoted by αABBmin

k .
In the unconstrained quadratic case, the efficiency of a step length rule within a

gradient method is essentially related to its ability to sweep, in a suitable way, the
spectrum of the inverse of the underlying Hessian. This understanding, first high-
lighted in [25], has given rise to interesting spectral analysis of the BB-type methods
[26, 22], for both quadratic and nonquadratic optimization problems, and has been
crucial for devising effective step length strategies [47, 28, 21], such as the above
adaptive rules.

The good results gained in solving unconstrained minimization problems by com-
bining the gradient methods with the BB-like rules encouraged the researchers to also
exploit these techniques in GP schemes for constrained problems, by obtaining great
success in different fields [7, 3, 37, 43, 48]. Nevertheless, in these GP approaches, the
original BB strategies, and the ones built from them, have been employed without
any modification to also take into account the feasible set. Only very recently [16],
a spectral analysis of the BB step length rules in GP methods for box-constrained
strictly convex quadratic problems has been developed. By still denoting with ` and
u the vectors defining the box constraints, the authors introduced the following set of
indices:

(1.7)
Ik−1 = N − Jk−1, N = {1, . . . , n},

Jk−1 = {i ∈ N : (x
(k−1)
i = `i ∧ x(k)

i = `i) ∨ (x
(k−1)
i = ui ∧ x(k)

i = ui)} ,

and observed that

(1.8) αBB1
k =

‖s(k−1)‖2

s(k−1)T y(k−1)
=

‖s(k−1)
Ik−1

‖2

s
(k−1)
Ik−1

T
y

(k−1)
Ik−1

,

where s
(k−1)
Ik−1

and y
(k−1)
Ik−1

represent, respectively, the subvectors of s(k−1) and y(k−1)

whose components are indexed in Ik−1. Moreover, in view of this consideration and
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since αBB2
k does not share a similar property, they modified the second BB strategy

in the following way:

(1.9) αBOX-BB2
k =

s
(k−1)
Ik−1

T
y

(k−1)
Ik−1

‖y(k−1)
Ik−1

‖2
,

and refined conditions (1.5) as

(1.10)
1

λmax(AIk−1,Ik−1
)
≤ αBOX-BB2

k ≤ αBB1
k ≤ 1

λmin(AIk−1,Ik−1
)
,

by denoting with AIk−1,Ik−1
the submatrix of the Hessian of the objective function

given by the intersection of the rows and the columns with indices in Ik−1. In other
words, 1/αBB1

k and 1/αBOX-BB2
k provide some information about the spectrum of the

Hessian submatrix whose rows and columns are indexed in Ik−1.
The goal of this paper is to continue the analysis carried out in [16] and to un-

derstand how the presence of a single linear equality constraint together with lower
and upper bounds can modify the spectral properties of the BB step length selection
rules. Particularly, in the case of quadratic objective function, we investigate how to
generalize inequalities (1.5) and (1.10) in order to delineate conditions more faithful
to the special feasible region of problem (1.1). As a consequence, we suggested a new
version of the BB2 scheme which generalizes (1.9). Furthermore, in the general non-
quadratic case, we study the spectral properties of the considered BB rules providing
their interpretation in terms of the Hessian matrices evaluated at the iterates of the
GP scheme.

The paper is organized as follows. In section 2, we develop the spectral analysis
of the BB approaches in the presence of a strictly convex quadratic SLB problem.
The corresponding investigation in the more general nonquadratic framework can be
appreciated in section 3. In section 4, a generalization of the considered step length
rules to the case of variable metric GP methods is proposed. Section 5 is devoted to
the results of the numerical experiments performed on several datasets, dealing with
both quadratic and nonquadratic problems. The conclusions are drawn in section 6.

Notation. In the following, we denote by Or,s the r × s null matrix (r, s positive
integer scalars), by Ir the identity matrix of order r, and by IC the identity matrix
of order ]C. Moreover, xC ∈ R]C stands for the subvector of x with entries indexed in C.

2. The quadratic case. We start our analysis from the easier case of a quadratic
objective function: the optimization problem we consider in this section has the form

min
x∈Rn

f(x) ≡ 1

2
xTAx− bTx+ c(2.1)

subject to ` ≤ x ≤ u vTx = e,

where A is a symmetric positive definite matrix of order n, b ∈ Rn, and c ∈ R. Let us
denote g(x) = ∇f(x) = Ax − b and by x∗ the minimizer of the constrained problem
(2.1). Let J ∗ be the set of indices in N = {1, . . . , n} of the active box constraints at
x∗, that is, x∗i = `i or x∗i = ui for all i ∈ J ∗, and I∗ = N\J ∗ be the complement of
J ∗ in N with cardinality m = ]I∗, 0 ≤ m ≤ n. By neglecting the special cases m = 0
and m = n, we assume that J ∗ 6= ∅, J ∗ 6= N , and that v and the columns of the
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identity matrix of order n with indices in J ∗ are linearly independent. Consequently
the entries of v corresponding to I∗ are not all equal to zero. For the sake of simplicity,
we assume that the rows/columns of A and the entries of any vector are reordered so
that I∗ is related to the first m indices and J ∗ contains the last n−m indices.

Moreover, we recall that, in view of the necessary and sufficient Karush-Kuhn-
Tucker (KKT) conditions, a feasible x∗ is a minimizer if and only if there exist ψ∗ ∈ R
and µ∗, ν∗ ∈ Rn such that

(2.2)


g(x∗)− ψ∗v − µ∗ + ν∗ = 0,

vTx∗ = e,

µ∗ · (x∗ − `) = 0, x∗ − ` ≥ 0, µ∗ ≥ 0,

ν∗ · (u− x∗) = 0, u− x∗ ≥ 0, ν∗ ≥ 0,

where the products between vectors are componentwise.
In the following we will show the relation between the BB step length values and

the spectrum of special matrices obtained as a restriction of the matrix A to subspaces
depending on the constraints which become active during the iterative process. To
this end, we first introduce the restriction of A to the tangent space of the active
constraints at the solution and then we study the properties of the approximations of
this matrix available in the iterations of the GP schemes.

2.1. The Hessian matrix restricted to the tangent space of the active
constraints at the solution. The tangent space of the active constraints at x∗ is
defined as

Ω∗ =

{
x ∈ Rn :

[
On−m,m IJ ∗

vT

]
x = On−m+1,1

}
= range

([
II∗

On−m,m

])
∩ null(vT ).

Taking into account that the dimension of Ω∗ is (m − 1), we introduce the matrix
A∗ ∈ R(m−1)×(m−1) defined as

(2.3) A∗ = Ũ∗
T
AŨ∗,

where Ũ∗ denotes an n × (m − 1) matrix whose columns are an orthonormal basis
of Ω∗. We call A∗ the Hessian matrix restricted to the tangent space of the active
constraints at the solution, hereafter named restricted Hessian matrix. In order to
characterize the symmetric positive definite matrix A∗, we collect some useful results
on projection matrices in Lemma 2.1 (see [33]).

Lemma 2.1. Let u be a nonzero vector in Rm and define the matrices V = uuT

uTu
and P = Im − V . It holds that

(a) the matrix V is the orthogonal projection onto the subspace V = range(u);
the matrix P is the orthogonal projection onto V⊥ = range(u)⊥ = null(uT );

(b) V = V T = V 2 and P = PT = P 2;
(c) range(V ) = null(P ) = V and null(V ) = range(P ) = V⊥;

(d) the spectral decomposition of V is V = W [
Om−1,m−1 Om−1,1

O1,m−1 1 ]WT , where W =

[W̃ w] is an orthogonal matrix of order m, with W̃ ∈ Rm×(m−1), w ∈
Rm; the eigenvalues of V are either 1 or 0; range(V ) = range(w) is the
one-dimensional eigenspace associated with the eigenvalue 1 and null(V ) =
range(W̃ ) is the eigenspace of dimension m−1 associated with the eigenvalue
0;
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(e) P = W [
Im−1 Om−1,1

O1,m−1 0 ]WT is the spectral decomposition of P ; the eigenvalues

of P are either 1 or 0; range(P ) = range(W̃ ) is the eigenspace of dimension
m − 1 associated with the eigenvalue 1 and null(P ) = range(w) is the one-
dimensional eigenspace associated with the eigenvalue 0;

(f) P = W̃W̃T and V = wwT with W̃T W̃ = Im−1 and wTw = 1, w = u
‖u‖ ;

furthermore W̃ is an orthonormal basis of range(P ) = V⊥ = null(uT ).

By using the notation vT = [vTI∗ vTJ ∗ ] and by applying Lemma 2.1 with u =

vI∗ it is possible to construct the matrix Ũ∗ used in the definition of A∗. Indeed,
if we denote by P ∗ the orthogonal projection onto null(vTI∗), thanks to part (f) of
Lemma 2.1, there exists a matrix W̃ ∗ ∈ Rm×(m−1) whose columns are an orthonormal

basis for null(vTI∗). Consequently, the matrix

Ũ∗ =
[

W̃∗

On−m,m−1

]
provides an orthonormal basis for Ω∗, since any n-vector x ∈ Ω∗ can be expressed as
xT =

[
xTI∗ xTJ ∗

]
with xI∗ ∈ null(vTI∗) and xJ ∗ = On−m,1.

In the next subsection we will show that, when a GP method is applied for solving
problem (2.1), the spectrum of A∗ plays a crucial role in the analysis of the step length
rules.

2.2. The spectral properties of the BB rules in terms of the approxi-
mated restricted Hessian matrices. Of course, at the beginning of the iterative
process generated by a GP method, the solution x∗ of (2.1) is not known and, for our
study, we need to focus on a sequence of matrices which approximate A∗ during the
iterations. First of all, we provide a way to realize such a sequence of approximation
matrices and we underline the relationship between their spectra and the BB step
length selection rules. To achieve this goal, we consider the set of indices introduced
in (1.7). Also in this case, for the sake of simplicity, we assume that the rows/columns
of A and the entries of any vector are reordered so that Ik−1 is related to the first
mk = ]Ik−1 indices and Jk−1 contains the last n−mk indices.

If we consider the orthogonal projection Pk−1 onto null(vTIk−1
),

(2.4) Pk−1 = IIk−1
− 1

vTIk−1
vIk−1

vIk−1
vTIk−1

from part (f) of Lemma 2.1, we have that there exists an mk× (mk− 1) matrix W̃k−1

with orthonormal columns such that

(2.5) Pk−1 = W̃k−1W̃
T
k−1,

and the n× (mk − 1) matrix

(2.6) Ũk−1 =

[
W̃k−1

On−mk,mk−1

]
is an orthonormal basis for the subspace

(2.7) Ωk−1 =

{
x ∈ Rn :

[
On−mk,mk IJk−1

vT

]
x = On−mk+1,1

}
.

Therefore, the symmetric positive definite matrix ŨTk−1AŨk−1 represents an approxi-
mation of the matrix (2.3) at the iteration k.
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Now, by using the notation g(k) = g(x(k)), we consider y(k−1) = g(k)− g(k−1) and
we introduce the following vector:

(2.8) t(k−1) = g(k) − ψkv − (g(k−1) − ψk−1v) = y(k−1) − (ψk − ψk−1)v,

where ψk−1 and ψk are approximations of the equality constraint multiplier ψ∗ com-
puted at the iterations k − 1 and k, respectively, (see the conditions (2.2)):

(2.9) ψk−1 =
vTIk−1

g
(k−1)
Ik−1

vTIk−1
vIk−1

, ψk =
vTIk−1

g
(k)
Ik−1

vTIk−1
vIk−1

.

Note that quantities similar to t(k−1) were also considered in the framework of interior
point methods [32].

The vector (2.8) can be written as

t(k−1) =

[
t
(k−1)
Ik−1

t
(k−1)
Jk−1

]

and the following equalities hold:

(2.10) t
(k−1)
Ik−1

= Pk−1y
(k−1)
Ik−1

= W̃k−1W̃
T
k−1y

(k−1)
Ik−1

.

The next lemma is useful to understand the role of t
(k−1)
Ik−1

in the definitions of the BB
step length rules.

Lemma 2.2. Given s(k−1) = x(k) − x(k−1) and t(k−1) as in (2.8), it holds that

(a) s(k−1)T v = 0;

(b) s
(k−1)
Ik−1

T
vIk−1

= 0;

(c) s(k−1)T y(k−1) = s(k−1)T t(k−1) = s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

.

Proof. (a) s(k−1)T v = 0 since both x(k−1) and x(k) satisfy the equality constraint
vTx = e.

(b) We show that s
(k−1)
Ik−1

T
vIk−1

= 0. Indeed,

0 = s(k−1)T v =
∑

i∈Ik−1

s
(k−1)
i

T
vi +

∑
i∈Jk−1

s
(k−1)
i

T
vi =

∑
i∈Ik−1

s
(k−1)
i

T
vi,

where the last equality holds since s
(k−1)
Jk−1

= On−mk,1 from the definition of Jk−1.

(c) From part (a), we have that

(2.11) s(k−1)T t(k−1) = s(k−1)T
(
y(k−1) − (ψk − ψk−1)v

)
= s(k−1)T y(k−1),

and, since s
(k−1)
Jk−1

= On−mk,1, the last equality follows easily.

Lemma 2.2 allows us to state that the classical formulation (1.4) of the first BB
rule provides a step length depending only on the indices belonging to the set Ik−1:

(2.12) αBB1
k =

s(k−1)T s(k−1)

s(k−1)T y(k−1)
=
s

(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

.
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In some sense, the rule αBB1
k computes the step length by capturing information from

the current inactive constraints, discarding the effect of the constraints that remain
active in the last two iterations. The original BB2 rule does not fulfill a similar
property, due to the special form of its denominator. This remark suggests studying
the properties of the following modified BB2 rule:

αEQ-BB2
k =

s(k−1)T y(k−1)

t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

.(2.13)

Theorem 2.1 shows that the reciprocals of αBB1
k and αEQ-BB2

k give spectral information

about the matrix ŨTk−1AŨk−1.

Theorem 2.1. Under the assumption that the matrix A is symmetric and positive
definite, we have

λmin(ŨTk−1AŨk−1) ≤ 1/αBB1
k ≤ λmax(ŨTk−1AŨk−1),(2.14)

λmin(ŨTk−1AŨk−1) ≤ 1/αEQ-BB2
k ≤ λmax(ŨTk−1AŨk−1).(2.15)

Proof. In the following, we drop for simplicity the iteration counter k − 1 from
Ik−1 and Jk−1. In view of the GP iteration (1.2), we have that the entries of the
iterate x(k) are

(2.16) x
(k)
i =

{
x

(k−1)
i + νk−1(r

(k−1)
i − x(k−1)

i ) for i ∈ I,
x

(k−1)
i for i ∈ J ,

where r
(k−1)
i = (ΠΩ(x(k−1) − αk−1g

(k−1)))i, i ∈ I. The vector s(k−1) can be parti-
tioned into two subvectors as follows:

(2.17) s(k−1) =

(
s

(k−1)
I

s
(k−1)
J

)
=

(
νk−1(r(k−1) − x(k−1)

I )

OJ ,1

)
.

Any entry g
(k)
i , i = 1, . . . , n, of the gradient g(k) has the following expression:

g
(k)
i =

n∑
j=1

aijx
(k)
j − bi

=
∑
j∈I

aij(x
(k−1)
j + νk−1(r

(k−1)
j − x(k−1)

j )) +
∑
j∈J

aijx
(k−1)
j − bi

= g
(k−1)
i + νk−1

∑
j∈I

aij(r
(k−1)
j − x(k−1)

j ).

Consequently, from (2.17), we can write

(2.18) y(k−1) =

(
y

(k−1)
I

y
(k−1)
J

)
=

(
AI,Is

(k−1)
I

AJ ,Is
(k−1)
I

)
.

Furthermore, from part (b) of Lemma 2.2, it follows that

(2.19) Pk−1s
(k−1)
I =

(
II −

1

vTI vI
vIv

T
I

)
s

(k−1)
I = s

(k−1)
I .
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Hence, from (2.19) and (2.5) we observe that

(2.20) s(k−1)T s(k−1) = s
(k−1)
I

T
s

(k−1)
I = s

(k−1)
I

T
Pk−1s

(k−1)
I = ‖W̃T

k−1s
(k−1)
I ‖2.

Moreover, from part (c) of Lemma 2.2, (2.10), (2.18), (2.19), (2.5), and (2.6), we
obtain

s(k−1)T y(k−1) = s
(k−1)
I

T
t
(k−1)
I = s

(k−1)
I

T
Pk−1y

(k−1)
I

= s
(k−1)
I

T
Pk−1AI,Is

(k−1)
I = s

(k−1)
I

T
Pk−1AI,IPk−1s

(k−1)
I

= s
(k−1)
I

T
W̃k−1W̃

T
k−1AI,IW̃k−1W̃

T
k−1s

(k−1)
I

= s
(k−1)
I

T
W̃k−1Ũ

T
k−1AŨk−1W̃

T
k−1s

(k−1)
I .

(2.21)

From (2.21) and (2.20), we conclude that 1/αBB1
k is the Rayleigh quotient of the

matrix ŨTk−1AŨk−1 at the vector W̃T
k−1s

(k−1)
I and the inequality (2.14) holds.

Furthermore, by proceeding as for the equalities (2.21), it is immediate to write

(2.22) t
(k−1)
I = W̃k−1Ũ

T
k−1AŨk−1W̃

T
k−1s

(k−1)
I .

As a consequence, since W̃T
k−1W̃k−1 = Im−1, we obtain

(2.23) t
(k−1)
I

T
t
(k−1)
I = s

(k−1)
I

T
W̃k−1(ŨTk−1AŨk−1)2W̃T

k−1s
(k−1)
I .

Since ŨTk−1AŨk−1 is a symmetric positive definite matrix, we can introduce the vector

(2.24) z(k−1) = (ŨTk−1AŨk−1)1/2W̃T
k−1s

(k−1)
I ,

so that the scalar product in (2.23) can be written as

(2.25) t
(k−1)
I

T
t
(k−1)
I = z(k−1)T ŨTk−1AŨk−1z

(k−1),

and s(k−1)T y(k−1) = z(k−1)T z(k−1); thus, 1/αEQ-BB2
k is the Rayleigh quotient of the

matrix ŨTk−1AŨk−1 at the vector z(k−1) and the inequality (2.15) holds.

The modified BB2 rule (2.13) not only exhibits the same spectral properties as
the BB1 step length but it also allows us to recover a relationship between the two
rules analogous to (1.5) and (1.10), as the next theorem shows.

Theorem 2.2. The step lengths αBB1
k and αEQ-BB2

k satisfy αEQ-BB2
k ≤ αBB1

k .

Proof. From the Cauchy–Schwarz inequality, it follows that

1

αBB1
k

=
s(k−1)T y(k−1)

s(k−1)T s(k−1)
=
s

(k−1)
Ik−1

T
t
(k−1)
Ik−1

s
(k−1)
Ik−1

T
s

(k−1)
Ik−1

≤
‖s(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖

‖s(k−1)
Ik−1

‖2

=
‖t(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖

‖s(k−1)
Ik−1

‖‖t(k−1)
Ik−1

‖
≤
t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

=
t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

s(k−1)T y(k−1)
=

1

αEQ-BB2
k

.

The spectral properties described in Theorem 2.1 are useful for relating the step

length to the ability of the GP scheme to annihilate the quantity g
(k−1)
Ik−1

−ψk−1vIk−1
;

D
ow

nl
oa

de
d 

05
/0

3/
20

 to
 1

29
.1

75
.9

7.
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL PROPERTIES OF BARZILAI–BORWEIN RULES 1309

that is a remarkable skill since at the solution x∗ we have gI∗(x
∗) − ψ∗vI∗ = 0, as

ensured by the KKT conditions (2.2). In order to explain this fact, by supposing
Ik−1 = Ik, we observe that

g
(k)
Ik − ψkvIk = g

(k)
Ik −

vTIkg
(k)
Ik

vTIkvIk
vIk = Pkg

(k)
Ik ,

g
(k−1)
Ik−1

− ψk−1vIk−1
= g

(k−1)
Ik−1

−
vTIk−1

g
(k−1)
Ik−1

vTIk−1
vIk−1

vIk−1
= Pk−1g

(k−1)
Ik−1

,

(2.26)

and we show in Theorem 2.3 how a GP step affects the vector Pkg
(k)
Ik .

Theorem 2.3. Assume that Ik−1 = Ik and `i < (ΠΩ(x(k−1)−αk−1g
(k−1)))i < ui,

i ∈ Ik−1. The following equalities hold:

Pkg
(k)
Ik =

(
Imk − αk−1νk−1Pk−1AIk−1,Ik−1

Pk−1

)
Pk−1g

(k−1)
Ik−1

,(2.27)

W̃kW̃
T
k g

(k)
Ik = W̃k−1

(
Imk−1 − αk−1νk−1Ũ

T
k−1AŨk−1

)
W̃T
k−1g

(k−1)
Ik−1

,(2.28)

where W̃k−1 ∈ Rmk×(mk−1) and W̃k ∈ Rmk+1×(mk+1−1) are matrices with orthonormal
columns such that Pk−1 = W̃k−1W̃

T
k−1 and Pk = W̃kW̃

T
k , respectively.

Proof. By using (2.17) and (2.19) and the hypothesis Ik−1 = Ik, we can write

Pkg
(k)
Ik = Pk−1

(
g

(k−1)
Ik−1

+AIk−1,Ik−1
s

(k−1)
Ik−1

)
= Pk−1g

(k−1)
Ik−1

+νk−1Pk−1AIk−1,Ik−1
Pk−1

(
r(k−1) − x(k−1)

Ik−1

)
,

(2.29)

where, as before, r(k−1) = (ΠΩ(x(k−1)−αk−1g
(k−1)))Ik−1

. Since x
(k)
Jk−1

= x
(k−1)
Jk−1

(from

the definition of Jk−1) and `Ik−1
< r(k−1) < uIk−1

, the vector ΠΩ(x(k−1)−αk−1g
(k−1))

can be written as

ΠΩ(x(k−1) − αk−1g
(k−1)) =

(
r(k−1)

x
(k−1)
Jk−1

)
,

where, by using by notation ẽ = e− vTJk−1
x

(k−1)
Jk−1

, r(k−1) solves the following problem:

(2.30) r(k−1) = arg min{
r : vTIk−1

r=ẽ
} 1

2
‖r − (x(k−1) − αk−1g

(k−1))Ik−1
‖2.

From the KKT conditions related to the problem (2.30), the vector r(k−1) has the
following expression:

r(k−1) = x
(k−1)
Ik−1

− αk−1g
(k−1)
Ik−1

−
vTIk−1

(x
(k−1)
Ik−1

− αk−1g
(k−1)
Ik−1

)

vTIk−1
vIk−1

vIk−1
+

ẽvIk−1

vTIk−1
vIk−1

= x
(k−1)
Ik−1

− αk−1g
(k−1)
Ik−1

−
vTIk−1

x
(k−1)
Ik−1

vIk−1

vTIk−1
vIk−1

+
αk−1v

T
Ik−1

g
(k−1)
Ik−1

vIk−1

vTIk−1
vIk−1

+
ẽvIk−1

vTIk−1
vIk−1

= x
(k−1)
Ik−1

− αk−1Pk−1g
(k−1)
Ik−1

.

From (2.29) and the previous one, the first equality of the thesis is proved. The second
one follows easily from the definitions of W̃k−1 and W̃k.
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Thanks to the assumption Ik = Ik−1, we have that W̃k−1 = W̃k and, due to the
linear independence of their columns, from (2.28) it follows that

(2.31) W̃T
k g

(k)
Ik =

(
Imk−1 − αk−1νk−1Ũ

T
k−1AŨk−1

)
W̃T
k−1g

(k−1)
Ik−1

.

If we denote by λ1, . . . , λmk−1 and ξ1, . . . , ξmk−1 the eigenvalues and the associated

orthonormal eigenvectors of ŨTk−1AŨk−1, we may write W̃T
k g

(k)
Ik =

∑mk−1
i=1 γ

(k)
i ξi and

W̃T
k−1g

(k−1)
Ik−1

=
∑mk−1
i=1 γ

(k−1)
i ξi. For the eigencomponents γ

(k)
i the following recur-

rence formula can be easily derived from (2.31):

(2.32) γ
(k)
i = (1− αk−1νk−1λi) γ

(k−1)
i , i = 1, . . . ,mk − 1.

Formula (2.32) highlights that if αk−1 is an accurate approximation of the inverse of

an eigenvalue of ŨTk−1AŨk−1, since νk ∈ (0, 1], a reduction of |γ(k)
i | with respect to

|γ(k−1)
i | is obtained. By remembering that W̃ ∗T gI∗(x

∗) = 0, we conclude that the use
of a step length rule providing good approximations of the inverse of the eigenvalues
of ŨTk−1AŨk−1 can be a fruitful strategy for accelerating GP methods for problem
(2.1).

In analogy with the box-constrained case [16], the previous theorems suggest that
the modified BB2 rule (2.13) can be exploited within the adaptive strategy (1.6) in
order to design a step length selection that better sweeps the spectrum of the inverse
of ŨTk−1AŨk−1 with respect to the original rule (1.6). The resulting scheme can be
written as
(2.33)

α
EQ-VABBmin

k =

{
min{αEQ-BB2

j : j = max{1, k −ma}, . . . , k} if
αEQ-BB2
k

αBB1
k

< τk,

αBB1
k otherwise,

where ma and τk are defined as in (1.6). We can guarantee that 1/α
EQ-VABBmin

k

belongs to the spectrum of ŨTk−1AŨk−1 at any iteration only if ma = 0. Indeed,

if ma > 0, inequalities (2.15) do not hold, in general, for αEQ-BB2
j with j =

max{1, k − ma}, . . . , k − 1. However, small values for ma are acceptable since the
final active set stabilizes at some point of the iterative process. In the following we

will denote by α
EQ-ABBmin

k the version of (2.33) with τk = τ,∀k, that is the step length
strategy suggested in [28] properly modified to account for the single linear equality
constraint and the lower and upper bounds.

Remark 2.1. Before concluding this section, we mention how to deal with a slight
modification of the feasible set in (2.1): a single linear inequality constraint instead of
a single linear equality one. In the case of an inequality constraint, if in two successive
iterations the linear constraint is active then the BB2 strategy has to be defined
according to (2.13), otherwise it must be fixed according to (1.9) which only takes
into account the presence of the lower and the upper bounds.

3. The nonquadratic case. In this section we come back to the original non-
quadratic problem (1.1) and we define the spectral properties of αBB1

k and αEQ-BB2
k

with respect to the Hessian matrix of the objective function at x(k). The multidimen-
sional variant of Taylor’s theorem [40, Theorem 11.1] allows us to write the following
equation:

(3.1) y(k−1) = ∇f(x(k))−∇f(x(k−1)) =

∫ 1

0

∇2f(x(k−1) + %s(k−1))s(k−1)d%.
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From (2.10) and (3.1) and by recalling that s
(k−1)
Jk−1

= 0, it holds that

t
(k−1)
Ik−1

= [Pk−1 Omk,n−mk ] y(k−1)

=

∫ 1

0

Pk−1∇2f(x(k−1) + %s(k−1))Ik−1,Ik−1
s

(k−1)
Ik−1

d%,

and, from part (c) of Lemma 2.2 and the equality s
(k−1)
Ik−1

= Pk−1s
(k−1)
Ik−1

, we have

s(k−1)T y(k−1)

= s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

= s
(k−1)
Ik−1

T
∫ 1

0

W̃k−1W̃
T
k−1∇2f(x(k−1) + %s(k−1))Ik−1,Ik−1

W̃k−1W̃
T
k−1s

(k−1)
Ik−1

d%

= s
(k−1)
Ik−1

T
W̃k−1

∫ 1

0

(
ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1

)
W̃T
k−1s

(k−1)
Ik−1

d%.

Since s
(k−1)
Ik−1

T
W̃k−1W̃

T
k−1s

(k−1)
Ik−1

= s(k−1)T s(k−1), from the last equality we can con-

clude that 1/αEQ-BB1
k can be interpreted as a Rayleigh quotient relative to the average

matrix ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1.

In order to give a similar interpretation for αEQ-BB2
k , we take into account the

linear function φ : Rm−1 → Rm−1 defined as

φ(xW̃ ) = zW̃ = W̃T
k−1Pk−1∇f(xIk−1

, xJk−1
)Ik−1

,

where xW̃ ∈ Rm−1, xIk−1
= W̃k−1xW̃ and xJk−1

is fixed at the iteration k − 1 and

k. We have W̃k−1φ(xW̃ ) = W̃k−1zW̃ = Pk−1∇f(W̃k−1xW̃ , xJk−1
)Ik−1

. We assume
that ∇f is a continuously differentiable function, locally invertible in the intersection
of Ωk−1 with a neighborhood of x(k−1) including x(k); we define the inverse function
φ−1 as φ−1(zW̃ ) = xW̃ ⇔ φ(xW̃ ) = zW̃ or, equivalently,

φ−1(zW̃ ) = xW̃ ⇔ W̃T
k−1Pk−1∇f(W̃k−1xW̃ , xJk−1

)Ik−1

= W̃T
k−1∇f(W̃k−1xW̃ , xJk−1

)Ik−1
= zW̃ .

The Jacobian matrix of φ−1 at zW̃ is (W̃T
k−1∇2f(W̃k−1xW̃ , xJk−1

)Ik−1,Ik−1
W̃k−1)−1,

equal to the inverse of ŨTk−1∇2f(xIk−1
, xJk−1

)Ũk−1.

Setting φ−1(z
(k−1)

W̃
) = x

(k−1)

W̃
with x

(k−1)
Ik−1

= W̃k−1x
(k−1)

W̃
and φ−1(z

(k)

W̃
) = x

(k)

W̃

with x
(k)
Ik−1

= W̃k−1x
(k)

W̃
, we can write

x
(k)

W̃
− x(k−1)

W̃
=

∫ 1

0

(ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1)−1(z
(k)

W̃
− z(k−1)

W̃
)d%.

By multiplying both the members of the previous equality for y
(k−1)
Ik−1

T
W̃k−1, we have

y
(k−1)
Ik−1

T
s

(k−1)
Ik−1

= y
(k−1)
Ik−1

T
W̃k−1

(
x

(k)

W̃
− x(k−1)

W̃

)
= y

(k−1)
Ik−1

T
W̃k−1

∫ 1

0

(ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1)−1W̃T
k−1y

(k−1)
Ik−1

d%.
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1312 S. CRISCI, F. PORTA, V. RUGGIERO, AND L. ZANNI

Since t
(k−1)
Ik−1

T
t
(k−1)
Ik−1

= y
(k−1)
Ik−1

T
W̃k−1W̃

T
k−1y

(k−1)
Ik−1

, we can conclude that αEQ-BB2
k can

be interpreted as a Rayleigh quotient relative to the average inverse of the matrix
ŨTk−1∇2f(x(k−1) + %s(k−1))Ũk−1.

Remark 3.1. Inspired by the idea at the basis of the classical BB rules, we observe
that the step length selections (2.12) and (2.13) can be interpreted also as solutions
of the following modified secant conditions:

(3.2) αBB1
k = arg min

α∈R
‖α−1s

(k−1)
Ik−1

− t(k−1)
Ik−1

‖, αEQ-BB2
k = arg min

α∈R
‖s(k−1)
Ik−1

−αt(k−1)
Ik−1

‖.

4. Variable metric GP method. In order to improve the convergence rate
of algorithm (1.2), a very popular technique [10, 12, 14, 36] consists in exploiting
a variable metric instead of the standard fixed Euclidean one, by introducing the
variable metric GP method

(4.1) d(k) = ΠDk
Ω

(
x(k) − αkD−1

k ∇f(x(k))
)
− x(k), x(k+1) = x(k) + νkd

(k),

where {Dk}k∈N is a sequence of symmetric and positive definite matrices with the
eigenvalues belonging to [ 1

µ , µ], µ ≥ 1, and ΠDk
Ω represents the projection operator

onto Ω with respect to the norm induced by Dk:

ΠDk
Ω (z) = arg min

x∈Ω

1

2
‖x− z‖2Dk ≡

1

2
(x− z)T Dk (x− z) .

The selection of the sequence {Dk}k∈N usually must aim at two main goals: improving
the convergence rate and adding some local information about the problem without
introducing significant computational costs. Typically, the definition of proper scaling
matrices is strictly related to the problem being handled and, for this reason, their
setting criteria will be discussed case by case in the section devoted to the numerical
experiments. However, we point out that, to keep the computational cost unchanged,
the scaling matrices must have a simple structure and, therefore, hereafter, we will
consider diagonal matrices. From a theoretical point of view, the convergence of the
variable metric GP method (4.1) is still ensured for any value of the step length αk
belonging to a compact subset of R+ [9, Theorem 2.1]. This allows us to properly
modify the step length selection rule in order to consider the presence of the variable
metric, without being subject to restrictive conditions. A natural way to achieve this
goal consists in asking αk to satisfy generalized secant conditions written in terms of
the norm induced by the matrix (Dk)Ik−1,Ik−1

,

(4.2)

αP-BB1
k = arg min

α∈R
‖α−1s

(k−1)
Ik−1

− (D−1
k )Ik−1,Ik−1

t
(k−1)
Ik−1

‖(Dk)Ik−1,Ik−1
,

αP-EQ-BB2
k = arg min

α∈R
‖s(k−1)
Ik−1

− α(D−1
k )Ik−1,Ik−1

t
(k−1)
Ik−1

‖(Dk)Ik−1,Ik−1
,

that provides the following updating rules:

αP-BB1
k =

s
(k−1)
Ik−1

T
(Dk)Ik−1,Ik−1

s
(k−1)
Ik−1

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

=
s(k−1)TDks

(k−1)

s(k−1)T y(k−1)
,(4.3)

αP-EQ-BB2
k =

s
(k−1)
Ik−1

T
t
(k−1)
Ik−1

t
(k−1)
Ik−1

T
(D−1

k )Ik−1,Ik−1
t
(k−1)
Ik−1

.(4.4)
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The rule (4.4) is the modified version of the following strategy:

(4.5) αP-BB2
k =

s(k−1)T y(k−1)

y(k−1)TD−1
k y(k−1)

,

which takes into account the presence of the scaling matrix but does not consider the
inactive constraints of the feasible region at each iteration. It is interesting to observe

that, when s(k−1)T y(k−1) > 0, from the inequality(
s

(k−1)
Ik−1

T
t
(k−1)
Ik−1

)2

≤
(
s

(k−1)
Ik−1

T
(Dk)Ik−1,Ik−1

s
(k−1)
Ik−1

)(
t
(k−1)
Ik−1

T
(D−1

k )Ik−1,Ik−1
t
(k−1)
Ik−1

)
,

we easily obtain that αP-EQ-BB2
k ≤ αP-BB1

k . suggests that the rules (4.3) and (4.4) are
suitable to be tested within a strategy generalizing (2.33) to the variable metric case:
(4.6)

α
P-EQ-VABBmin

k =

{
min{αP-EQ-BB2

j : j=max{1, k −ma}, . . . , k} if
αP-EQ-BB2
k

αP-BB1
k

< τk,

αP-BB1
k otherwise,

where ma and τk are defined as in (1.6).

Remark 4.1. In the special case of quadratic objective functions and fixed scaling
matrices, the steps of the scheme (4.1) are clearly related to the steps of a standard gra-
dient method applied to a preconditioned quadratic problem. Then it would be inter-
esting to investigate possible interpretations of the above variable metric GP method
as a preconditioned scheme and to evaluate its behavior in comparison with other
preconditioned approaches available in the literature (e.g., [29, section 4] and [39]).
However, these topics deserve a deep analysis and are beyond the aims of this work.

5. Numerical experiments. This section is devoted to evaluating the effects
of the BB-like rules previously described for the GP method (1.2). The variable
metric variant of GP, equipped with the step length rules proposed in section 4, is
denoted by SGP. We consider several optimization problems, with both quadratic
and nonquadratic objective functions.

Before presenting the results, we recall some common features shared by all the
numerical experiments performed: for the GP and the SGP methods, we made the
following choices.

• The projection onto the set Ω is formulated as a root-finding problem and
effectively computed by the secant-like algorithm developed in [18].

• In order to guarantee the boundedness of the step lengths, we have always
requested that αk belongs to the interval [αmin, αmax] = [10−10, 106].

• The parameter νk has been selected by means of the nonmonotone version of
the Armijo line search proposed in [30]: for given scalars 0 < β, δ < 1, the pa-
rameter νk is set equal to βik and ik is the first nonnegative integer i for which

(5.1) fmax − f(x(k) + βid(k)) ≥ −δβi∇f(x(k))T d(k) ,

where fmax is the maximum value of the objective function in the last M
iterations. For all the experiments we set β = 0.4, δ = 10−4, and M = 10.
We recall that every accumulation point of the sequence {x(k)}k∈N generated
by either algorithm (1.2) or its variable metric variant (4.1), equipped with
the nonmonotone line search (5.1), is a stationary point of (1.1), as proved
in [10, Theorem 2.1].

All the numerical experiments are performed in the MATLAB environment.
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Table 1
Features of the randomly generated quadratic SLB problems.

n λmin(A) λmax(A) Distribution of the eigenvalues of A λmin(A∗) λmax(A∗)
QP1 1000 19 9923 Marchenko–Pastur [38, 46] 41.09 9862.17
QP2 1000 1 1000 Log-spaced 5.29 679.87
QP3 500 0.05 1455.57 Log-spaced 10.03 99.86

5.1. Random SLB problems. In this section, we consider randomly generated
test problems. For the quadratic case, we analyze the behavior of the BB strategies
and their modified versions on some toy problems, in order to show graphically the
validity of inequalities (2.14) and (2.15). Furthermore, for the nonquadratic case, we
perform a study on a set of 162 well-known test problems of both small and large
dimensions.

5.1.1. Quadratic case. The aim of this section is both to verify the efficiency
of the modified BB2 step length rule employed alone or in an alternating scheme and
to analyze the distribution of the step lengths with respect to the eigenvalues of the
sequence of the restricted Hessian matrices obtained during the iterative process. In
order to reach these goals we randomly generated quadratic SLB problems where
the solution, the vector v, the number of active constraints at the solution, and
the distribution of the eigenvalues of the Hessian matrix of the objective function
are prefixed. Table 1 summarizes the main features of the three test problems we
considered for the investigation of this section.

We evaluate the behavior of the GP method (1.2) equipped with different step
length selection rules: BB1, BB2, EQ-BB2, ABBmin, EQ-ABBmin, and EQ-VABBmin.
We recall that ABBmin and EQ-ABBmin stand for the particular cases of (1.6) and
(2.33), where τk = τ ∀k; in our experiments we set τ = 0.7. On the other hand, for
the EQ-VABBmin scheme, we fixed τ1 = 0.7, ma = 2, and ζ = 1.3. The following
stopping criterion was used to stop the GP methods:

(5.2) ‖x(k) − x(k−1)‖∞ ≤ 10−7 .

Figure 1 shows the behavior of the inverses of the step lengths generated by means of
BB1, BB2, and EQ-BB2 with respect to the eigenvalues of the matrices ŨTk−1AŨk−1.
Particularly, in the first three rows of Figure 1, at the kth iteration, we plotted, by
dots, 20 eigenvalues of the restricted Hessian matrix ŨTk−1AŨk−1 with linearly spaced
indices (always including the maximum and minimum eigenvalues) and, by a cross, the
inverse of the step length αk. Moreover, the solid lines correspond to the maximum
and the minimum eigenvalues of the whole Hessian matrix A and the circles denote
the 20 eigenvalues of the restricted Hessian matrix at the prefixed solution x∗ with
the same linearly spaced indices considered for the plot at the single iteration. These
plots confirm that the inverses of the step lengths generated by the BB1 and the
EQ-BB2 rules satisfy inequalities (2.14)–(2.15), while the inverses of the step lengths
obtained by applying the nonmodified BB2 scheme can fall outside the spectrum of
the restricted Hessian matrices. The fourth row of Figure 1 shows the decrease of the
following relative distance,

(5.3)
|f(x(k))− f∗|

|f∗|
,

between the objective function values obtained by considering the different BB-like
rules in the GP method and f∗, namely, the objective function value at the solution.
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Fig. 1. Behavior of GP method equipped with different step length rules on QP1 (left column),
QP2 (middle column), QP3 (right column). Distribution of αk with respect to the iterations for the
BB1 (first row), BB2 (second row), EQ-BB2 (third row) rules; error on f(x(k)) for the different
rules (fourth row).

The decrease of the objective function towards the minimum is considerably acceler-
ated by employing the EQ-BB2 strategy instead of the BB2 one. The alternating step
length selection rules also take advantage of the modified version of the BB2 scheme,
which accounts for the nature of the problem feasible set.

5.1.2. Nonquadratic case. In this section we analyze the practical efficiency
of the considered methods on some nonquadratic SLB test problems.

Based on the technique proposed in [24], the test problems were generated in two
possible ways, as follows. Starting from an unconstrained minimization problem with
a twice continuously differentiable objective function φ(x),

(5.4) min
x∈Rn

φ(x),

for which a local minimum point x∗ is known, we generated a constrained problem
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having one of the following formulations:

min
x∈Rn

f(x) = φ(x) + vT (x− x∗) +
∑
i∈L

hi(xi)−
∑
i∈U

hi(xi)(5.5)

subject to ` ≤ x ≤ u, vTx = e,

or

min
x∈Rn

f(x) = φ(x)vTx+
∑
i∈L

hi(xi)−
∑
i∈U

hi(xi)(5.6)

subject to ` ≤ x ≤ u, vTx = e, e > 0,

where v ∈ Rn, e ∈ R, L = {i |x∗i = `i}, U = {i |x∗i = ui}, and hi : R → R,
i ∈ L ∪ U , are twice continuously differentiable nondecreasing functions. Note that
the constrained problems defined by (5.5) and (5.6) have the same solution x∗ of the
unconstrained problem (5.4); to this end, the scalar e in the second formulation must
be positive. For our tests we selected some well-known nonquadratic functions φ(x),
described below.

(i) Trigonometric function [27]:

φ(x) = ‖b− (Ad̃(x) +Bq̃(x))‖2,

where d̃(x) = (sin(x1), . . . , sin(xn))T , q̃(x) = (cos(x1), . . . , cos(xn))T , and A
and B are square matrices of order n = 500 with entries generated as ran-
dom integers in (−100, 100). Given a vector x∗ ∈ Rn with entries randomly
generated from a uniform distribution in (−π, π), the vector b is defined so
that φ(x∗) = 0.

(ii) Chained Rosenbrock function [44]:

φ(x) =

n∑
i=2

(4ϕi(xi−1 − x2
i )

2 − (1− xi)2),

where n = 500, the values ϕi, i = 1, . . . , 50, are defined as in [44, Table 1],
and ϕi+50j = ϕi, i = 1, . . . , 50, j = 1, . . . , 9. In this case, a solution of the
problem (5.4) is x∗ = (1, 1, . . . , 1)T .

(iii) Laplace2 function [26]:

φ(x) =
1

2
xTAx− bTx+

1

4
h2
∑
i

x4
i ,

where A is a square matrix of order n = N3, N = 100, discretization of a
three-dimensional Laplacian on the unit box by a standard seven-point finite
difference formula, h = 1

N+1 , and b is chosen so that

x∗i ≡ x(kh, rh, sh) = h3krs(kh− 1)(rh− 1)(sh− 1)e−
1
2 ((kh− d1)2

+ (rh− d2)2 + (sh− d3)2),

where the index i is associated with the mesh point (kh, rh, sh), k, r, s =
1, . . . , N in a lexicographic ordering. Two different settings for the parameters
d, d1, d2, and d3 are considered:
(a) d = 20, d1 = d2 = d3 = 0.5;
(b) d = 50, d1 = 0.4, d2 = 0.7, d3 = 0.5.
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We used both the formulations (5.5) and (5.6) to build the corresponding constrained
versions of test problems (i) and (ii), whereas for test problem (iii) we used the latter
form only. In our tests, v was randomly generated from a uniform distribution in
(0, 1) and for each of the functions φ(x) the following choices for the functions hi(x)
were made, as suggested in [24]:

(1) βi(xi − x∗i );
(2) αi(xi − x∗i )3 + βi(xi − x∗i );
(3) αi(xi − x∗i )7/3 + βi(xi − x∗i ),

where αi are random numbers in (0.001, 0.011) and βi = 10−ηindeg, with ηi random
numbers in (0, 1) and ndeg = 1, 4, 10. In order to retain first-order optimality condi-
tions, the Lagrangian multiplier of the single linear equality constraint must be equal
to 1 up to sign (for the case (5.5)) or to φ(x∗) up to sign (for the case (5.6)), while the
Lagrangian multipliers associated with the active constraints are easily assigned equal
to the values βi and, therefore, the parameter ndeg allows us to control the degeneracy
of the problem at x∗. The vectors ` and u were defined in order to have the number
of active constraints at the solution equal to a prefixed value na; in particular, we set
na ≈ 0.1 ·n, 0.5 ·n, 0.9 ·n and the same number of lower and upper active constraints
at x∗. The resulting dataset is composed of 162 nonquadratic SLB test problems. We
evaluated the performance obtained by running the GP method equipped with the
step lengths rules BB1, BB2, ABBmin, EQ-BB2, EQ-ABBmin, EQ-VABBmin. The
considered schemes shared the following parameter settings: α0 = 1, τ = 0.7, and

ma = 2 for defining αABBmin

k and α
EQ-ABBmin

k and τ1 = 0.7, ma = 2 and ζ = 1.3 for

α
EQ-VABBmin

k . As for the starting vector, we considered
• x(0) = ΠΩ(x∗ + 0.3 r), where r ∈ Rn has random entries from a uniform

distribution in [−π, π] when φ(x) is the trigonometric function previously
defined in (i);

• x(0) = ΠΩ(x∗ + 0.8 r), where r ∈ Rn has random entries from a uniform dis-
tribution in [−1, 1] when φ(x) is the chained Rosenbrock function previously
defined in (ii);

• x(0) = ΠΩ( `+u2 ) when φ(x) is the Laplace2 function previously defined in (iii).
In these tests, we adopted the stopping criterion (5.2). The results obtained were

compared using the performance profiles proposed in [23]. We assumed as performance
measure of interest the execution time required by each scheme to satisfy the stopping
criterion, declaring a failure when it was not fulfilled within the maximum number
of 4000 iterations. Some performance profiles of different GP versions are reported
in Figure 2. In particular, each profile ρ(θ) gives the fraction of the problems that a
solver is able to solve within a factor θ of the best time of all the solvers; thus, ρ(1)
represents the fraction of problems for which the considered solver is the winner, while
the performance profile corresponding to the largest value of θ gives the fraction of
problems for which the considered solver is successful.

The performance profiles the random nonquadratic SLB problems confirm the
results obtained in the quadratic framework. By capturing the information about the
active set at each iteration, the EQ-BB2 step length strategy allows the GP method
to improve its behavior in terms of computational time with respect to the case in
which the original BB2 rule is used. This improvement still holds if we employ the
alternating strategies equipped with the new EQ-BB2 rule in place of the BB2 one.

5.2. SLB problems from real-life applications. In this section we evaluate
the performance of the GP method with both standard and modified BB strategies
for solving SLB problems arising from three different real-life applications.
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Fig. 2. Runtime performance profiles of the GP method equipped with different step length rules
on a set of 162 nonquadratic SLB test problems.

5.2.1. Support vector machines. The learning methodology called support
vector machines (SVMs) requires one to solve a quadratic SLB problem. In order to
delineate the features of such a problem, we briefly recall the SVMs framework (we
refer the reader to [11, 15] for a detailed discussion). If

D = {(zi, yi), i = 1, . . . , n, zi ∈ Rm, yi ∈ {−1, 1}}

is a training set of labeled examples, the SVM algorithm performs classification of
new examples z ∈ Rm by using a decision function F : Rm −→ {−1, 1} of the form

(5.7) F (z) = sign

(
n∑
i=1

x∗i yiK(z, zi) + b∗

)
,

where K : Rm × Rm −→ R denotes a kernel function and x∗ = (x∗1, . . . , xn)T is the
solution of

(5.8)

min f(x) =
1

2
xTAx−

n∑
i=1

xi

subject to 0 ≤ x ≤ C,
n∑
i=1

yixi = 0 .

Once the vector x∗ is computed, the quantity b∗ in (5.7) is easily derived. The Hessian
matrix A of (5.8) has entries Aij = yiyjK(zi, zj), i, j = 1, 2, . . . , n, and C ∈ Rn is a
vector with all entries equal to a positive parameter. For our test problems we consider

a Gaussian kernel, namely, K(zi, zj) = e−
‖zi−zj‖

2
2

2σ2 with σ ∈ R. In order to appreciate
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the validity of the considerations made in section 2, we compare the behavior of the
GP method (1.2) by varying the step length among αBB1

k , αBB2
k , αVABBmin

k , αEQ-BB2
k ,

α
EQ-VABBmin

k in solving problem (5.8) for four different datasets with the following
features:

MNIST1000 n = 1000, C = 10, σ = 1800, rank(A) = 1000;
MNIST2000 n = 2000, C = 10, σ = 1800, rank(A) = 2000;
ADU n = 1000, C = 1, σ =

√
10, rank(A) = 985;

WEB n = 1000, C = 5, σ =
√

10, rank(A) = 736.
We generated these datasets starting from a learning problems repository, called LIB-
SVM, available at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. We se-
lected some datasets for the binary classification and we set the dimension by our-
selves. For the alternating step length selection rules we adopted τ1 = 0.7, ma = 2,
and ζ = 1.3. Finally, the GP method (1.2) has been stopped when either the relative
distance between two successive iterations was lower than 10−8 or 1000 iterations have
been performed. The initial point for all the considered schemes is the null vector.

Given the smallest value f∗ of the objective function among the ones obtained
by the different methods at the end of the iterative process, Table 2 shows the num-
ber of iterations and the computational time needed by the considered schemes to
reduce the relative difference (5.3) below a certain tolerance tol. If a method does not
succeed in realizing this goal in the prefixed maximum number of iterations (1000),
the corresponding entry of the table reports the minus sign. In Figure 3, we can
appreciate the decrease of the relative error (5.3), with respect to the computational
time, for the four datasets. The results reported in Table 2 and Figure 3 confirm the
effectiveness of the modified BB2 selection rule with respect to the original one, also
within the alternating scheme. The benefits gained by employing EQ-BB2 instead of
BB2 are clear in terms of both number of iterations and computational time.

5.2.2. Reconstruction of fiber orientation distribution in diffusion MRI.
The aim of this section is to consider the problem of intravoxel reconstruction of the
fiber orientation distribution function (FOD) in each voxel of the white matter of the
brain from diffusion MRI data. In [34] the authors clarify that the diffusion signal can
be represented as the convolution of a response function with the FOD function and,
as a consequence, the estimation of the intravoxel structure can be shaped through a
linear model of the form

(5.9) b = Φx+ η,

where x ∈ Rn represents the FOD function, b ∈ Rm is the vector of measurements, Φ
is the linear measurement operator, and η is the acquisition noise. Since problem (5.9)
is ill posed, it has been proved [1] to be convenient in finding a meaningful solution
by means of a reweighted `1-minimization process which involves at each step the
solution of a convex problem of the form

(5.10)
min
x∈Rn

f(x) ≡ ‖Φx− b‖22

subject to x ≥ 0, ‖Wx‖1 = K,

where W ∈ Rn×n is a diagonal matrix with positive entries and K is the estimated
maximum number of fibers to be detected in the brain volume. The weighted `1-norm
constraint induces sparsity on the solution and the weighting matrix W forces some
anatomical properties of the fiber bundles in neighboring voxels. A complete overview
about the properties of W can be found in [1].
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Table 2
Number of iterations required by each algorithm to reduce the difference (5.3) below given tol-

erances for the four SVM test problems. The corresponding computational time (averaged over 20
runs) is also reported.

tol = 10−2 tol = 10−4 tol = 10−6 tol = 10−8

It. Time It. Time It. Time It. Time
MNIST1000

BB1 47 0.016 91 0.046 140 0.061 177 0.072
BB2 88 0.025 223 0.060 297 0.079 389 0.102
EQ-BB2 41 0.014 88 0.027 114 0.035 146 0.056
VABBmin 48 0.017 92 0.029 145 0.043 175 0.064
EQ-VABBmin 36 0.013 81 0.026 121 0.038 142 0.044

MNIST2000
BB1 77 0.136 172 0.299 285 0.500 418 0.732
BB2 171 0.314 458 0.789 917 1.558 - -
EQ-BB2 78 0.138 153 0.272 219 0.381 268 0.460
VABBmin 71 0.114 162 0.255 250 0.398 337 0.538
EQ-VABBmin 57 0.096 130 0.219 186 0.313 233 0.392

ADU
BB1 23 0.009 45 0.017 79 0.028 113 0.040
BB2 30 0.010 73 0.022 163 0.047 322 0.098
EQ-BB2 22 0.008 47 0.016 72 0.024 104 0.034
VABBmin 29 0.010 67 0.023 109 0.035 164 0.051
EQ-VABBmin 23 0.009 60 0.022 85 0.031 111 0.040

WEB
BB1 84 0.027 254 0.082 519 0.163 755 0.234
BB2 315 0.079 1000 0.304 - - - -
EQ-BB2 59 0.020 193 0.062 338 0.107 468 0.155
VABBmin 103 0.030 260 0.075 488 0.141 767 0.223
EQ-VABBmin 60 0.020 162 0.053 343 0.112 407 0.133

0 0.02 0.04 0.06 0.08 0.1 0.12
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

MNIST1000 MNIST2000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
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10 -2
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ADU WEB

Fig. 3. Plots of the relative difference (5.3) with respect to the computational time for the four
SVM test problems.
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Table 3
Number of iterations and computational time required by each algorithm to reduce the differ-

ence (5.3) below given tolerances for problem (5.10). The corresponding computational time is also
reported.

tol = 10−3 tol = 10−5 tol = 10−8 tol = 10−10

It. Time It. Time It. Time It. Time
P-BB1 263 2.7 1025 10.6 3541 38.7 - -
P-BB2 620 6.4 - - - - - -
P-EQ-BB2 282 3.1 830 9.4 2552 29.9 - -
P-VABBmin 283 2.9 3175 36.0 - - - -
P-EQ-VABBmin 271 3.1 683 8.1 2169 26.5 3034 37.7

It has been shown in [13] and [8] that the presence of a variable metric in first-
order methods can significantly improve the performance in solving problem (5.10)
with respect to their standard nonscaled versions. For this reason we only report the
results obtained by comparing the variable metric GP method SGP with different
choices for the step length parameter. Particularly, we consider the P-BB1 and P-
BB2 defined in (4.3) and (4.5), respectively, the modified version of P-BB2 fixed in
(4.4), called P-EQ-BB2, and the alternating strategies P-EQ-VABBmin set in (4.6)
and P-VABBmin, which can be obtained from (4.6) by considering the P-BB2 rule
instead of the P-EQ-BB2. For P-EQ-VABBmin and P-VABBmin the parameters ma,
τ1, and ζ have been chosen equal to 2, 0.5, and 3, respectively. As for the variable
metric, the sequence {Dk}k∈N has been selected by mimicking the split gradient-based
scaling proposed in [3] for quadratic problems: the scaling matrix has the following
form

(5.11) Dk = diag

(
max

(
1

µk
,min

(
µk,

x(k)

ΦTΦx(k)

)))−1

,

where µk =
√

1 + 1011

(k+1)2 . Thanks to the parameter µk we force the sequence {Dk}k∈N
to asymptotically approach the identity matrix [14, Lemma 2.3]. This condition
ensures the convergence of the sequence of the iterates generated by the SGP scheme
to a solution of the minimization problem, as proved in [9, Theorem 3.1].

For the numerical comparison we employed the Phantom dataset, which is avail-
able at https://github.com/basp-group/co-dmri and is described in [1]. In particular,
for this test problem the parameters m,n,K have the following values: m = 19200,
n = 257280, and K = 3840. Table 3 summarizes the number of iterations and the
computational time needed by the considered scheme to guarantee that the distance
(5.3) is below certain thresholds tol. If this requirement is not satisfied in the prefixed
maximum number of iterations (4000), the corresponding entry reports the minus
sign; Figure 4 shows the relative difference (5.3) between the objective function val-
ues provided by the different methods and the minimum computed value f∗.

By analyzing the results offered in Table 3 and Figure 4, we can reach analogous
conclusions to the ones made for the previous numerical experiments. The modified
version of the BB2 rule allows the SGP algorithm to largely improve its behavior in
terms of number of iterations and computational time with respect to the performance
shown when it is combined with the standard BB2 strategy. Similar considerations
can be done by comparing the alternating schemes: the use of EQ-BB2 instead of BB2
makes P-EQ-VABBmin much more effective than P-VABBmin in finding the solution
of the optimization problem.
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Fig. 4. Test problem (5.10): plots of the relative difference (5.3) with respect to the number of
iterations (first panel) and the computational time (second panel) achieved by the SGP methods.

5.2.3. Image deblurring with Poisson noise. In order to evaluate the be-
havior of the proposed step length rules for a nonquadratic problem, we consider the
reconstruction of an image b corrupted by Poisson noise by a smooth TV regular-
ization approach. In a Bayesian framework, an approximation of the original object
can be obtained by solving a constrained problem, where the objective function is
the sum of a discrepancy function, typically depending on the noise type affecting
the data, and a regularization term adding a priori information; simple constraints,
expressing physical requirements, can be considered. In the case of Poisson noise,
the discrepancy function measuring the distance from the data b is the generalized
Kullback–Leibler divergence, having the form

(5.12) f0(Ax+ c; b) =

n∑
i=1

bi log
bi

(Ax+ c)i
+ (Ax+ c)i − bi,

where A ∈ Rn×n is a linear operator modeling the distortion due to the image ac-
quisition system and c ∈ Rn is a known positive background radiation constant. A
typical assumption for the matrix A is that it has nonnegative elements and each row
and column has at least one positive entry (see [5] for the details about the image
deblurring problem in the presence of Poisson noise). A widely used edge-preserving
regularizer is the discrete smooth total variation functional, known also as hypersur-
face regularizer, that for an image of n = N ×N pixels is defined as

(5.13) f1(x) =
∑
k,`

√
(xk+1,` − xk,`)2 + (xk,`+1 − xk,`)2 + γ2 − γ,

where γ is a small positive constant and periodic boundary conditions are assumed.
In summary, a maximum a posteriori estimate of the original image is a solution of
the following nonlinear programming problem

(5.14) min
x∈Rn

f(x) ≡ f0(Ax+ c; b) + ρf1(x) subject to x ≥ 0,

n∑
i=1

xi = K,

where K =
∑n
i=1 bi − n · c is the flux of the image and ρ is a positive parameter bal-

ancing the role of the regularization term and the discrepancy function; the inequality
constraints and the single linear equality constraint express the nonnegativity of the
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Table 4
Image deblurring test problem: number of iterations and computational time (averaged over 10

runs) required to reduce the relative error on the objective function below a prefixed tolerance. The
corresponding relative reconstruction error achieved is also reported.

tol = 5 · 10−2 tol = 10−3 tol = 5 · 10−4

It. Time RRE It. Time RRE It. Time RRE
P-BB1 64 4.8 0.568 884 61 0.447 1000∗ 69∗ 0.447∗

P-BB2 28 2.1 0.531 1000∗ 67∗ 0.446∗ - - -
P-EQ-BB2 27 2.0 0.533 1000∗ 69∗ 0.446∗ - - -
P-VABBmin 26 1.9 0.537 427 29 0.438 1000∗ 68∗ 0.438∗

P-EQ-VABBmin 37 3.0 0.531 264 19 0.438 590 41 0.438

pixels and the conservation of the image flux, respectively. In particular we can con-
sider as test problem a 512 × 512 object representing a microtubulin network inside
a cell [42]. In this case, the values of the original object x are in the range [0, 686],
whereas those of the blurred and noisy image b are in [0, 446]; the background was
set equal to 1 and the relative distance between the original object and the blurred
noisy data in Euclidean norm is 0.756; ρ was set equal to 4 · 10−4. The value of γ
was set equal to 10−6 ·maxi{bi}. A groundtruth solution x∗, i.e., an estimate of the
real minimum point of the problem (5.14), is obtained by executing a huge number of
iterations of the SGP method in [10]. Indeed, it is well known that the above prob-
lem can be efficiently addressed by the GP method equipped with a variable metric
(see, for example, [35, 10, 12]). Mimicking the split gradient-based scaling, as in the
previous section, the sequence of scaling matrices {Dk}k∈N can be selected as follows:

(5.15) Bk = diag

(
max

(
1

µk
,min

(
µk,

x(k)

AT1 + ρV (x(k))

)))−1

,

where 1 is a vector with all entries equal to 1, V (x(k)) is the positive part of the

splitting of ∇f1(x) = V (x)−U(x) at x(k) (see [5, Chapter 5]) and µk =
√

1 + 1011

(k+1)2 .

In Table 4 and Figure 5 we report the behavior of the scaled GP method com-
bined with the step length rules P-BB1, P-BB2, P-EQ-BB2, P-VABBmin, and P-EQ-
VABBmin. For the alternating rules, we have the following setting of parameters:
ma = 2, τ1 = 0.5, and ζ = 3.

Table 4 shows the number of iterations and the time, in seconds, required by
the considered methods to reduce the relative error of the objective function (5.3)
below a fixed threshold tol, where, in this case, f∗ represents the value of f at the

groundtruth x∗. We report also the relative reconstruction error (RRE) ‖x
(It.)−x‖2
‖x‖2 at

the iteration It. If one of the approaches is not be able to reduce the relative error
on the objective function under a certain tolerance within 1000 iterations, Table 4
displays the computational time spent and the RRE achieved after the 1000 iterations
performed. We denote the corresponding results by a star. Figure 5 shows the relative

error of the objective function and the relative minimization error ‖x
(k)−x∗‖2
‖x∗‖2 with

respect to the number of iterations and the computational time.
We observe that the rules P-BB2 and P-EQ-BB2 have the same behavior, very

similar to the one of P-BB1; indeed, for this problem, the variable metric (in particular
the term x(k) in (5.15)) hides the effects of the rules that take into account the
constraints and, at the same time, the equality constraint plays a minor role, since the
assumptions on the matrix A already induce the iterates to satisfy the flux constraint.
Nevertheless, when the alternating rule is adopted, the use of P-EQ-BB2 can still
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Fig. 5. Image deblurring test problem: numerical results of 1000 iterations of the SGP method
combined with different step length rules; first row: relative error of the objective function with
respect to the iterations (left panel) and the computational time (right panel); second row: relative

minimization error
‖x(k)−x∗‖
‖x∗‖ with respect to the iterations (left panel) and the computational time

(right panel).

improve the performance of SGP, achieving in 38 seconds (537 iterations) with P-
EQ-VABBmin the value of the objective function obtained with P-VABBmin after 67
seconds (1000 iterations).

6. Conclusions. This paper deals with the study of the spectral properties of the
well-known BB step length selection rules, often employed to accelerate classical GP
methods. In the literature, several works are devoted to explain how, in the presence of
unconstrained quadratic minimization problems, the step length generated by the BB
strategies are related to the eigenvalues of the symmetric and positive definite Hessian
matrix of the objective function. This relation has been identified as responsible for
the effectiveness of the BB approaches. However the influence of a feasible set on
the behavior of the BB rules has been investigated only very recently [16] in the
case of box-constrained strictly convex quadratic optimization problems. Our work
represents an extension of the analysis presented in [16] for two main reasons.

• A more complicated feasible region defined by a linear equality constraint
together with lower and upper bounds has been investigated. All the results
developed in [16] can be seen as a particular case of the ones achieved in this
paper.

• A possible interpretation of the BB step length strategies has been also offered
in the more general nonquadratic framework in terms of a proper average
matrix depending on the Hessian matrix of the objective function at each
iteration.

Thanks to the spectral analysis, a redefinition of one of the two BB rules has been
suggested in order to take into account not only the second-order information re-
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lated to the Hessian matrix of the objective function, but also the nature of the
constraints. Several numerical experiments, carried out on both quadratic and non-
quadratic datasets, showed the effectiveness of this modified BB strategy, when em-
ployed also in a selection scheme alternating the new rule with the standard BB step
length.
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