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Abstract

Nowadays, mathematical models and numerical simulations are widely used in the whole
fluid dynamics research field. They represent a powerful resource to better understand
phenomena and processes and to significantly reduce the costs that would otherwise be
necessary for carrying out laboratory experiments (sometimes even allowing to obtain
useful data that could not be collected by measurements).
Currently there are many important industries of hydraulic systems which, for the cor-
rect analysis of the behavior of the designed systems, require the preventive use of an
accurate mathematical model, able to describe the trend of the properties of the fluid
in the pipelines. On the other hand, the availability of robust and efficient mathemati-
cal instruments, together with the engineering know-how in the fluid mechanics sector,
represents an invaluable tool for a consistent support even in hemodynamics studies,
providing practical approaches for the quantification of variables involved in the cardio-
vascular fluid dynamics.
The correct characterization of the interactions occurring between the fluid and the wall
that circumscribes the motion of the fluid itself, is a fundamental aspect in all the contexts
involving deformable ducts, which requires the utmost attention at every stage of both
the development of the computational scheme and the interpretation of the results and
at their application to cases of practical interest.
In this PhD Thesis, innovative mathematical models able to predict the behavior of the
fluid-structure interaction mechanism that underlies the dynamics of flows in different
compliant ducts is presented. Starting from the purely civil engineering sector, with the
study of plastic water pipelines, the final application of the proposed tool is linked to
the medical research field, to reproduce the mechanics of blood flow in both arteries and
veins. With this aim, various linear viscoelastic models, from the simplest to the more
sophisticated, have been applied and extended to obtain augmented fluid-structure in-
teraction systems in which the constitutive equation of the material is directly inserted
into the system as partial differential equation. These systems are solved recurring to
second-order Finite Volume Methods that take into account the recent evolution in the
computational literature of hyperbolic balance laws systems. The models have been ex-
tensively validated through different types of test cases, highlighting the advantages of
using the augmented formulation of the system of equations. Numerical results have
been compared with quasi-exact solutions of idealized time-dependent tests for situa-
tions close to reality or with reference values obtained with numerical schemes gener-
ally adopted in the specific research field investigated. Furthermore, comparisons with
experimental data have been considered both for the water pipelines scenario and the
blood flow modeling, recurring to ad hoc in-vivo measurements for the latter. Accuracy
and efficiency analyses have been performed in different contexts, as well as a sensitivity
analysis with regards to the final part of the project, related to a more applicative study
on arterial hypertension.
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Sommario

Oggigiorno, modelli matematici e simulazioni numeriche sono ampiamente utilizzati
nell’intero campo della ricerca fluidodinamica. Essi rappresentano una potente risorsa
per comprendere meglio i fenomeni e i processi e per ridurre significativamente i costi
che sarebbero altrimenti necessari per la realizzazione di esperimenti di laboratorio (a
volte anche per ottenere utili dati che non potrebbero essere raccolti mediante misura-
zioni).
Attualmente esistono molte importanti industrie di sistemi idraulici che, per la corretta
analisi del comportamento dei sistemi progettati, richiedono l’uso preventivo di un accu-
rato modello matematico, in grado di descrivere l’andamento delle proprietà del fluido
nelle tubazioni. D’altra parte, la disponibilità di strumenti matematici robusti ed effi-
cienti, insieme al know-how ingegneristico nel settore della fluidodinamica, rappresenta
uno strumento inestimabile per un supporto costante anche negli studi emodinamici,
fornendo approcci pratici per la quantificazione delle variabili coinvolte nella fluidodi-
namica cardiovascolare.
La corretta caratterizzazione delle interazioni tra il fluido e la parete che ne circoscrive il
moto, è un aspetto fondamentale in tutti i contesti di condotte deformabili, che richiede
la massima attenzione in ogni fase dello sviluppo dello schema di calcolo e della inter-
pretazione dei risultati e nella loro applicazione a casi di interesse pratico.
In questa Tesi di Dottorato vengono presentati innovativi modelli matematici in grado
di prevedere il comportamento del meccanismo di interazione fluido-struttura che sta
alla base della dinamica dei flussi in diverse condotte deformabili. Partendo dal set-
tore dell’ingegneria puramente civile, con lo studio di condotte idrauliche in plastica,
l’applicazione finale dello strumento proposto è legata al campo della ricerca medica,
per riprodurre la meccanica del flusso sanguigno sia nelle arterie che nelle vene. A
tal fine, sono stati applicati ed estesi diversi modelli viscoelastici lineari, dai più sem-
plici ai più sofisticati, per ottenere sistemi aumentati di interazione fluido-struttura in cui
l’equazione costitutiva del materiale è direttamente inserita nel sistema come equazione
alle derivate parziali. Questi sistemi sono risolti ricorrendo a Metodi ai Volumi Finiti al
secondo ordine che tengono conto della recente evoluzione della letteratura computazio-
nale dei sistemi iperbolici di leggi di bilancio. I modelli sono stati ampiamente validati
attraverso diversi tipi di casi test, evidenziando i vantaggi dell’utilizzo del sistema di
equazioni in forma aumentata. I risultati numerici sono stati confrontati con soluzioni
quasi esatte di problemi ideali dipendenti dal tempo per situazioni vicine alla realtà o
con valori di riferimento ottenuti con schemi numerici adottati solitamente nello spe-
cifico campo di ricerca indagato. Inoltre, sono stati presi in considerazione confronti
con dati sperimentali sia per lo scenario delle condotte idriche che per la modellazione
del flusso sanguigno, ricorrendo a misurazioni in-vivo ad hoc per quest’ultimo. Sono
state effettuate analisi di accuratezza ed efficienza in diversi contesti, nonché un’analisi
di sensitività per quanto riguarda la parte finale del progetto, relativa ad uno studio più
applicativo sull’ipertensione arteriosa.
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Chapter 1

Introduction

1.1 Background and Motivation

Flexible plastic pipes are playing an increasingly important role in pressurized and
non-pressurized hydraulic systems, often being preferred to other materials for the com-
ponents of most water distribution and sewage networks, due to their cost-effectiveness
and ease of installation. Currently there are many important industries of hydraulic sys-
tems which, for the correct analysis of the behavior of the systems themselves, require
the preventive use of an accurate mathematical model, able to describe the trend of the
properties of the fluid in the pipelines already in the design phase. With computational
simulations, one must be able to verify the behavior of the networks especially in case
of fast hydraulic transients. In addition, due to the increasing complexity of the indus-
trial systems used, it is necessary to have more and more efficient numerical models and
simulations, which will ensure the increasingly stringent standards of safety and envi-
ronmental protection.
The effects of fluid-structure interaction, in situations of hydraulic transients, have not
yet been fully studied for pipelines that manifest a complex mechanical behavior. Some
researches have been performed with reference to systems consisting of a single pipe,
very few investigating the behavior of networks of systems using viscoelastic models
(already proven in this context significantly more efficient than linear elastic models),
which better take into account the real compliance of the plastic material (Evangelista et
al., 2015; Meniconi et al., 2014; Meniconi, Brunone, and Ferrante, 2012; Covas et al., 2004;
Covas et al., 2005; Ramos et al., 2004).
The possibility of analyzing the results of mathematical models suitably adaptable to
a wide range of mechanical behaviors would have a very strong impact on the indus-
trial level. The most onerous situations of complex pipelines could be verified, possible
leakages could be foreseen, pressure involved in the event of water hammers could be
defined more precisely, strengthening the guarantee conditions in a functional way, both
for producers and purchasers.

The same studies can be applied not only in the case of water supply or drainage sys-
tems, but in a wide range of cases in the analysis of fluid dynamics systems. In particular,
reference is made to the fact that in the last twenty years, the research in the field of hy-
drodynamics of pressure waves (and also the research interested by various mathematics
fields) approached the research in the medical sector, giving rise to stimulating interac-
tions both in the choice of topics to be investigated and in the refinement of techniques to
approach new challenging problems (Alastruey et al., 2011; Alastruey, Parker, and Sher-
win, 2012; Müller and Toro, 2013; Müller and Toro, 2014a; Mynard and Smolich, 2015).
The knowledge and modeling of computational fluid dynamics, able to give quantitative
and not only qualitative responses to the problems studied, have been used, for example,
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to support research conducted in support of the analysis of particular diseases still incur-
able, hypothetically related to abnormalities in the venous system (Toro, 2016). In fact,
it has been proven that arteries and veins can be seen, with the due corrections specifi-
cally provided by hemodynamics, as highly flexible, viscoelastic tubes, tending almost to
collapse under certain physiological conditions in the case of veins, when the transmural
pressure reaches negative values (Spiller et al., 2017).
The application of fluid mechanics studies in the development of mathematical models
able to reproduce the behavior of the cardiovascular system, would lead to the achieve-
ment of essential quantitative results in medical researches. Numerical simulations could
indeed provide efficient approaches for the quantification of fluid dynamics phenomena
in the cardiovascular network, supplying meaningful data that otherwise would require
invasive techniques (or simply would not be available with general clinical measure-
ments) and even help the prediction of the possible onset of diseases and development
of pathologies (Liang, Guan, and Alastruey, 2018; Müller et al., 2019).

1.2 Aims and Objectives

This PhD research aims at realizing a mathematical model able to predict different
behaviors, first elastic and then viscoelastic, of the fluid-structure mechanism character-
izing various flexible ducts. The desired model should be able to provide celerity of the
propagating waves, pressure and deformation state of the system, which are the typical
features in fluid transients events, as well as to correctly capture, with high resolution,
the profiles of the shock waves, rarefactions and contact discontinuities that may occur
during these phenomena. The correct characterization of the interactions between the
fluid and the wall, when the latter is deformable, is a fundamental aspect of the method,
which requires the utmost attention at every stage of both the development of the com-
putational scheme and the interpretation of the results and at their application to cases of
practical interest. This goal can be achieved recurring to second-order numerical schemes
that take into account the recent evolution in the computational literature concerning hy-
perbolic balance laws systems.
Starting from the purely civil engineering sector, with the study of plastic water pipelines,
the final application of the proposed tool is expected to interact with the field of hemo-
dynamics, to reproduce the behavior of the human cardiovascular network. The most
ambitious goal of this research would therefore be part of a multidisciplinary project in
which the joint use of mathematics, physics and engineering on the one hand and of
physiology and medicine on the other, should contribute to the solution of problems of
great interest for the improvement of human health and quality of life for patients suffer-
ing from serious diseases or otherwise potentially disabling.

1.3 Thesis Outline

This PhD Thesis is structured in four main Chapters, which guide the reader from a
general introduction of the theory underlying the viscoelastic behavior of the materials
under interest, to the development of the mathematical model of fluid-structure interac-
tions valid first for water pipelines and then for blood flow in arteries and veins, to the
final real application study cases.
In Chapter 2, a necessary overview of the theory of linear viscoelasticity is presented.
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The phenomenological aspects underlying the behavior of the wide field of viscoelas-
tic materials are first discussed. Furthermore, the main mathematical models used to
simulate linear viscoelastic materials are analyzed. Starting from the Maxwell and the
Kelvin-Voigt model, defined by solely two parameters, the discussion ends with the pre-
sentation of the generalized Kelvin-Voigt chain, in which the number of base elements
(and, by consequence, of the parameters) is extended to allow a more flexible response of
the model, possibly closer to the real response of the material.
In Chapter 3, the fluid-structure interaction model of water flow in compliant pipelines
is presented, with a specific characterization made for each numerical scheme, constitu-
tive law and friction model adopted for the numerical analyses. An original extension of
existing techniques for the numerical treatment of multi-parameter viscoelastic models
is also introduced. Three different numerical models are chosen to solve the resulting
hyperbolic system of partial differential equations: the standard Method of Characteris-
tics, a second-order Explicit path-conservative Finite Volume Method and a second-order
staggered Semi-Implicit Finite Volume Method. After a focused calibration of the vis-
coelastic parameters involved, the performance of these three schemes is compared in
terms of accuracy, efficiency and robustness through different test cases concerning hy-
draulic transients phenomena, including cross-sectional changes, highly flexible materi-
als and cavitation episodes. Moreover, two water hammer tests in high-density polyethy-
lene pipes are designed to compare numerical solutions with the experimental data pro-
vided. A specific Section is entirely dedicated to the analysis of the relevance of the
unsteady friction effects, with respect to the quasi-steady ones, and to the validation of
the ODE friction model, for the first time applied to turbulent flow cases.
The innovative augmented fluid-structure interaction system of blood flow is derived
and discussed in Chapter 4, together with the description of the constitutive laws cho-
sen for the characterization of the vessel wall mechanics, whether elastic or viscoelas-
tic. A second-order Implicit-Explicit Runge-Kutta scheme, for applications to hyperbolic
systems with stiff relaxation terms, is chosen for the resolution of the system. The pro-
posed model is validated through very demanding Riemann Problems, C-property tests
(providing also the analytical proof of the well-balancing of the model) and problems
designed with the Method of Manufactured Solutions. The expected order of accuracy
of the proposed scheme is then verified through a focused analysis, comparing the re-
sults with those that would be obtained if a simple Splitting-technique were used to treat
stiff problems like those considered in this work. The computational code, written in
MATLAB (MathWorks Inc.) language, with the implementation of the above discussed
tests, is made available in Mendeley Data repository (Bertaglia, Caleffi, and Valiani, 2020).
Further tests are designed to evaluate the applicability of the model to real case stud-
ies in single vessels, assessing its capability to serve as valuable tool even for practical
medical applications. Hence, numerical results concerning the blood flow in the upper
thoracic aorta and in the common carotid artery are compared to literature benchmark
solutions which were obtained with six different one-dimensional schemes and a three-
dimensional one. Furthermore, specific test cases regarding the common carotid artery
and the common femoral artery are designed starting from in-vivo data recorded in six
volunteers: using the velocity waveform extrapolated from Doppler measurements as in-
let boundary and comparing the pressure waveforms measured by a PulsePen tonometer
with the computed pressures. In-vivo data acquisition and extrapolation methodologies
are discussed in a separate Section. Finally, a preliminary effective procedure to estimate
the fluid-structure parameters of the proposed model, returning hysteresis curves dissi-
pating energy fraction in line with literature values, is provided.
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In Chapter 5 an application study on essential arterial hypertension related to the Self-
ish Brain Hypothesis is discussed. In this Chapter, the potential of a mathematical in-
strument such as the Müller-Toro model, a global multi-scale closed-loop mathemati-
cal model of the entire human circulation, composed by a one-dimensional representa-
tion of the network of major arteries and major veins and lumped-parameter models
for microvasculature (arterioles, capillaries and venules), heart, pulmonary circulation
and cerebrospinal fluid circulation, is assessed. In the study here presented, the Müller-
Toro model is developed to permit simulations of adult healthy subjects (and not only
young subjects) and hypertensive patients, with a proper recalibration of the network
parameters involved in the aging and hypertensive process and a thorough sensitivity
analysis of the model. Furthermore, to analyze the effects of the presence of congenital
cerebrovascular abnormalities, in connection with the development of a persistent high
arterial pressure state (as according to the Selfish Brain Hypothesis of essential hyperten-
sion), a preliminary computational study is conducted, taking into account three different
configurations of anatomical cerebrovascular variants.
Finally, Chapter 6 provides a general discussion of issues arising from this Thesis, includ-
ing an assessment of the strengths and limitations of the proposed models, an overview
of the main findings and suggested directions for future work.
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Chapter 2

Viscoelastic Materials

2.1 Introduction

The study of viscoelasticity is of interest in several contexts. Materials used in engi-
neering may exhibit a viscoelastic behavior that has a profound influence on the perfor-
mance of that material and, in applications, one may consider viscoelasticity of specific
materials in the design process to achieve a particular goal. Furthermore, the mathemat-
ics underlying viscoelasticity theory is of interest within the applied mathematics com-
munity and, overall, viscoelastic materials are of interest in some branches of materials
science, metallurgy, and solid state physics. In common metals, such as steel or alu-
minum, as well as in quartz, at room temperature and at small strain, the behavior does
not deviate much from the behavior of linearly elastic materials. Synthetic polymers,
wood, and biological tissues, as well as uncommon metals, at high temperature manifest
large viscoelastic effects. The study of viscoelasticity is therefore pertinent even to appli-
cations concerning medical diagnosis, injury prevention, and, more in general, anatomy
and biology. In some applications, even a small viscoelastic response can be significant
and an analysis or design involving such materials must incorporate their viscoelastic
behavior (Lakes, 2009).

2.2 Phenomenological aspects

A material that exhibits both elastic and viscous characteristics when undergoing de-
formation, responding to external forces in an intermediate manner between the behavior
of an elastic solid and a viscous liquid, is termed viscoelastic material (Gurtin and Stern-
berg, 1962; Christensen, 1982; Lakes, 2009). The mechanical characterization of these
materials often consists on performing uniaxial tensile tests similar to those used for
elastic solids, but modified so as to enable the observation of the time dependency of
the material response due to its intrinsic nature. In viscoelastic materials, the energy put
into the system during the loading phase is not totally recovered during relaxation. Vis-
coelasticity, therefore, results in materials with memory since the strain depends on the
history of stresses (and vice-versa). To study and define the mechanics of a viscoelastic
material, three primary features need to be considered and verified: creep, stress relax-
ation and hysteresis. Creep describes a material in continuous deformation over time
when it is maintained under constant stress; stress relaxation refers to the decrease of
stress over time when it is maintained under constant strain; lastly, the hysteresis loop
(schematically represented in Fig. 2.1) describes the dissipation of energy when a ma-
terial undergoes cyclic loading and unloading (Battista, 2015). The energy dissipation
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σ

ε

FIGURE 2.1: Schematic representation of a hysteresis loop described by loading
and unloading phase of a viscoelastic material.

associated with hysteresis makes the construction and simulation of viscoelastic systems
a nontrivial task.

2.2.1 Creep

In Fig. 2.2, on the left, the typical response of a viscoelastic material to a creep-
recovery test (consisting in a constant load and subsequent removal of that load) is shown.
Creep describes a material in continuous deformation over time when it is maintained
under constant stress. A viscoelastic material, indeed, first suffers an instantaneous strain
upon loading, increasing then it over time with an ever decreasing strain rate. Only part
of the strain accumulated during the loading is recovered during the unloading phase,
with an immediate recovery of the elastic (instantaneous) strain and a delayed recovery
of the anelastic deformation over time. A permanent strain may then be left in the mate-
rial.
In one-dimension (1D), the history of stress σ depends on the time t through the unit
Heaviside step function H(t), defined as 0 for t < 0, 1 for t > 0 and 1/2 for t = 0, with
magnitude σ0 (Lakes, 2009):

σ(t) = σ0H(t). (2.1)

The strain, also depending on time, ϵ(t), defines the so-called creep compliance (Lakes,
2009):

J(t) = ϵ(t)σ0. (2.2)

In linearly viscoelastic materials, the creep compliance does not depend on the stress
level, but solely on time.

2.2.2 Relaxation

Stress relaxation refers to the decrease of stress over time (with an exponential de-
cay) when the material is maintained under constant strain, after an instantaneous initial
peak.
If we suppose the strain history to be a step function with magnitude ϵ0 beginning at
t = 0 (Lakes, 2009),

ϵ(t) = ϵ0H(t), (2.3)
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FIGURE 2.2: Schematic representation of the behavior of a viscoelastic material.
On the left, the material is maintained under constant stress, presenting a con-
tinuous variation of the deformation over time (creep), composed by an elastic
instantaneous strain and a retarded damping effect. On the right, the material is
maintained under constant deformation, exhibiting an exponential relaxation of

the stress over time (stress relaxation) after an instantaneous peak.

the stress σ(t) will decrease as shown in Fig. 2.2, on the right. The ratio

E(t) =
σ(t)
ϵ0

(2.4)

is called relaxation modulus and in linear materials is independent on the stress level
(Lakes, 2009).

2.3 Mathematical Models for Linear Viscoelasticity

Even if only a few of the existent viscoelastic materials behave in a linear way, the
theory of linear viscoelasticity provides a usable engineering approximation for many
applications in polymer and composites engineering. Even in instances requiring more
elaborate treatments, the linear viscoelastic theory has been demonstrated to be a use-
ful starting point for a variety of actual materials and significant problems (Gurtin and
Sternberg, 1962).

A constitutive relation of linear viscoelasticity is built up considering the material as a
sum of linear elastic springs, each one defined by a Young modulus E, and linear viscous
dashpots, characterized by a viscosity coefficient η, to take into account also the time
dependent relaxation of the wall and its damping effect. In general, the more elements we
have, the more accurate the model will be in describing the real response of the material.
But the more complex the model, the more material parameters there will be that need to
be accurately calibrated. The determination of a large number of parameters may in fact
become a very difficult task.
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E η

FIGURE 2.3: Scheme of the Maxwell model.

2.3.1 Maxwell Model

The Maxwell (MX) model consists on a spring and a dashpot in series, as presented
in Fig. 2.3 (Lakes, 2009). The total strain ϵ of the unit will be the sum of two different
contributes, one deriving from the deformation of the spring (ϵ1) and one deriving from
the deformation of the dashpot (ϵ2):

ϵ = ϵ1 + ϵ2.

The total stress σ will be, instead, the same in both elements:

σ = σ1 = σ2.

The constitutive equation of a linear elastic solid coincides with Hooke’s law (Avallone
and Baumeister III, 1916), which can simply be express as:

σ = Eϵ. (2.5)

On the other hand, to define the behavior of a linear dashpot, we have to consider the
mechanics of a piston moving in an ideal incompressible viscous (Newtonian) fluid. For
this dashpot, the rheological law results (Gurtin and Sternberg, 1962):

σ = η
dϵ

dt
, (2.6)

which means, the larger the stress, the faster the material deforms.
Therefore, considering the two contributes in the MX model, the following system of
three equations in four unknowns (σ, ϵ, ϵ1, ϵ2) is obtained:

ϵ = ϵ1 + ϵ2

σ = Eϵ1

σ = η
dϵ2

dt
.

With algebraic manipulations, it is possible to rewrite this system in one rheological equa-
tion, relating total stress to total strain, which represents the constitutive law of the MX
model:

dσ

dt
= E

dϵ

dt
− 1

τr
σ. (2.8)

with τr called relaxation time and in this model defined τr = η/E. The response of the
model to a sudden load, maintained constant in time, reflects an instantaneous deforma-
tion of the spring followed by the additional strain of the dashpot, which takes time to
react. Once the load is removed, the spring reacts again immediately, relaxing, but the
dashpot does not have any tendency to recover. Thus, the system remains with a “creep”
strain due to the dashpot.
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FIGURE 2.4: Scheme of the Kelvin-Voigt model.

The creep response of the MX model is defined in time by the function (Lakes, 2009):

J(t) =
1
E
+

t
η

, (2.9)

which describes the primary creep through an unrealistic straight line. Otherwise, if a
step strain is applied to the unit, the relaxation response results (Lakes, 2009):

E(t) = Ee−
t

τr . (2.10)

2.3.2 Kelvin-Voigt Model

If a single spring and a dashpot are connected in parallel, so that they both experience
the same strain,

ϵ = ϵ1 = ϵ2,

while the total stress is the sum of the stresses in each element,

σ = σ1 + σ2,

we have what is known as Kelvin-Voigt (KV) model, shown in Fig. 2.4 (Lakes, 2009).
Considering again, as for the MX model, the contributes of both spring and dashpot, the
following system of equations is obtained for the definition of the KV unit:

σ = σ1 + σ2

σ1 = Eϵ

σ2 = η
dϵ

dt
.

Rewriting this system in a single equation, relating total stress to total strain, leads to the
following constitutive equation:

σ = Eϵ + η
dϵ

dt
. (2.12)

When the KV model is suddenly loaded with a constant stress over time, the spring
cannot immediately deform because is held back by the dashpot. Hence, this model
is not able to describe an instantaneous elastic strain, since the stress is initially totally
absorbed by the dashpot, being transferred to the spring only successively in time. Also
when unloading the unit, the dashpot does not permit to the spring to instantaneously
relax and no permanent strain is left.
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FIGURE 2.5: Schemes of the Standard Linear Solid Model, with Maxwell unit on
the left and with Kelvin-Voigt unit on the right.

The creep function of the KV model results (Lakes, 2009):

J(t) =
1
E

(︂
1 − e−

t
τc

)︂
, (2.13)

with τc called retardation/creep time and here defined τc = η/E.
On the other hand, if we consider the behavior of the KV unit when loaded by a step
strain, it can be demonstrated that the model cannot describe a realistic relaxation re-
sponse, which represents the main weakness of the model. In this system, indeed, the
relaxation of the material is defined by an impulse plus a constant (Lakes, 2009).

2.3.3 Standard Linear Solid Model

If a linear elastic spring is added in parallel to a MX unit or in series to a KV unit,
the so-called Standard Linear Solid (SLS) model is obtained, as presented in Fig. 2.5. it
can be demonstrated that both the versions of the SLS model reproduce exactly the same
behavior of the material (Lakes, 2009; Gurtin and Sternberg, 1962). Starting analyzing the
SLS model in its formulation with a MX unit, the following system has to be considered:

ϵ = ϵ1 = ϵ2 + ϵD

σ = σ1 + σ2 = σ1 + σD

σ1 = E1ϵ1

σ2 = E2ϵ2

σD = η
dϵD

dt
,

where the subscript D identifies the contributes given by the dashpot and the subscripts
1 and 2 identify those given by each spring, as from Fig. 2.5 left. If the SLS model with a
KV unit is studied, the system of equations to be taken into account results as follows:

ϵ = ϵ1 + ϵ2 = ϵ1 + ϵD

σ = σ1 = σ2 + σD

σ1 = E1ϵ1

σ2 = E2ϵ2

σD = η
dϵD

dt
.
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When manipulating the previous systems, in both the cases the same constitutive law,
valid for a general SLS model, is obtained:

dσ

dt
= E0

dϵ

dt
− 1

τr
(σ − E∞ϵ), (2.16)

where E0 is the instantaneous Young modulus and E∞ is the asymptotic Young modulus.
In the MX unit case, the instantaneous Young modulus, the asymptotic Young modulus,
the relaxation time and the retardation/creep time result, respectively:

E0 = E1 + E2, E∞ = E1, τr =
η

E2
, τc = η

E1 + E2

E1E2
; (2.17)

while with the KV unit:

E0 = E1, E∞ =
E1E2

E1 + E2
, τr =

η

E1 + E2
, τc =

η

E2
. (2.18)

This model is able to realistically exhibit all the three primary features of a viscoelastic
material: creep, stress relaxation and hysteresis. Analyzing first the mechanics of the
model in its MX configuration, it can be noticed that when the system is suddenly loaded,
the two springs are immediately strained, while only successively the load is distributed
also to the dashpot. The instantaneous elastic modulus of the system, indeed, takes into
account both the contributes of the two springs, E1 and E2. If the same load is applied to
the SLS model with the KV unit, the instantaneous response is attributed solely to the first
spring, being indeed E0 = E1. The dashpot then takes up the stress, transferring the load
to the second spring as it slowly opens over time. If the load is maintained constant in
time, in the SLS model with the MX unit tends asymptotically to reach a state in which the
elastic response is governed only by E1, while in the second configuration, with the KV
unit, the two springs collaborate as if there were only the two of them in series: 1/E∞ =
1/E1 + 1/E2. While reaching this asymptotic state, in the first configuration, the creep is
attributed to the joint reaction of the two springs, while, in the second case, only to the
one in parallel with the dashpot. Finally, when unloading the system, considering both
the formulations of the SLS model, the first spring relax immediately while the second
reacts slowly, being held back by the dashpot.
Applying the Laplace transform theory it is possible to derive the creep response of this
model, represented by the following function (Lakes, 2009):

J(t) =
1
E0

e−
t

τc +
1

E∞

(︂
1 − e−

t
τc

)︂
. (2.19)

It is also possible to define the relaxation function (Lakes, 2009), which describes, through
the relaxation time τr, how the stiffness of the material changes in time, starting from the
instantaneous value and reaching the asymptotic one:

E(t) = E0e−
t

τr + E∞

(︂
1 − e−

t
τr

)︂
. (2.20)

2.3.4 Generalized Kelvin-Voigt chain

Starting from the SLS in its configuration with a KV element, it is possible to extend
the number of KV units obtaining the so-called generalized Kelvin-Voigt (g-KV) chain,
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FIGURE 2.6: Scheme of the generalized Kelvin-Voigt chain.

shown in Fig. 2.6. With this system we obtain the following equations for the basic stress-
strain relations, with the subscript k referring to parameters of the kth element (with NKV
number of total KV units in series with a single spring) and the additional subscript D
identifying the contributes given by the dashpot:

ϵ = ϵ0 +
NKV

∑
k=1

ϵk

σ = σ0 = σk + σk,D

σ0 = E0ϵ0

σk = Ekϵk

σk,D = ηk
dϵk

dt
.

The algebraic manipulation of this system, leads to:

dϵ

dt
=

dϵ0

dt
+

NKV

∑
k=1

dϵk

dt
=

1
E0

dσ

dt
+

NKV

∑
k=1

(︃
σ − Ekϵk

ηk

)︃
and thus,

dσ

dt
= E0

dϵ

dt
+ E0

(︄
NKV

∑
k=1

Ekϵk

ηk
− σ

NKV

∑
k=1

1
ηk

)︄
. (2.22)

The same procedure can be followed starting from the SLS model with a MX unit, extend-
ing the amount of MX elements in parallel with the single spring. Such models contain
many parameters and exhibit a whole array of relaxation and retardation times.
The creep function of a g-KV chain is expressed by:

J(t) = J0 +
NKV

∑
k=1

Jk

(︂
1 − e−

t
τck

)︂
, (2.23)

with J0 = 1/E0 , Jk = 1/Ek and the retardation/creep time of each KV element defined:
τck = ηk/Ek. As a matter of fact, the relaxation function will be:

E(t) = E0 +
NKV

∑
k=1

Ek

(︂
1 − e−

t
τrk

)︂
, (2.24)

depending on the relaxation time of each KV unit.
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Chapter 3

Viscoelasticity in pipelines

3.1 Introduction

Flexible plastic pipes in polyvinyl chloride (PVC), polyethylene (PE) and in particular
high density polyethylene (HDPE) are gaining an increasingly important role in pressur-
ized and not pressurized hydraulic systems, being often preferred to other materials (i.e.
steel and concrete) for water distribution networks, irrigation plants and sewage sys-
tems. This trend is a consequence of the excellent mechanical and chemical properties
of polymer materials, even more considering the easy and rapid process of installation
required and the cheaper prices. Almost without exception, polymers belong to a class
of substances that show viscoelastic properties, responding to external forces in an inter-
mediate manner between the behavior of an elastic solid and a viscous liquid (Shaw and
MacKnight, 2005), attributing to the material an elastic instantaneous strain together with
a retarded dampening effect. This aspect is particularly visible in case of hydraulic tran-
sients, for which it has already been demonstrated that the classical Allievi-Joukowsky
theory for water hammer, based on the assumption of a linear elastic wall behavior and
quasi-steady friction losses (Chaudhry, 1979), fails in the prediction of the real pressure
trend in flexible tubes (Covas et al., 2004; Covas et al., 2005). From the experimental point
of view, a recent thorough work has been done by Ferràs et al. (2016) for the distinction
of the main effects of dampening during hydraulic transients in PE pipes. Ramos et al.
(2004) discussed the importance of the implementation of a viscoelastic constitutive law
for plastic pipes and also the relevance of the unsteady friction with respect to the steady
one. Their results show that the pressure wave dissipation is more sensitive to the vis-
coelastic damping effects than to the unsteady friction losses. Furthermore, Duan et al.
(2010) demonstrated that the viscoelastic effects are deeply more significant when the re-
tardation time is less than the wave travel time along the entire pipeline length. Other
researches regarding the unsteady friction losses had already been done by Zielke (1968)
and Franke and Seyler (1983), while recently Ioriatti, Dumbser, and Iben (2017) proposed
a new more efficient approach for evaluating the convolution integral of the unsteady
wall shear stress.

In many industrial applications involving the design of hydraulic networks, accurate
computational models able to correctly a priori evaluate the behaviour of systems are
required. The mathematical model has to properly describe the mechanics of the phe-
nomenon also in terms of resistance and deformation of the pipe wall, especially in the
event of water hammers which could seriously damage the whole system. Moreover,
considering the increase in complexity of these systems, numerical simulations need to
be more and more efficient and robust.
The main numerical method used for studies concerning hydraulic transients has always
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been the Method of Characteristics (MOC) (Ghidaoui et al., 2005). Among these stud-
ies, a lot of research has been done for the single-pipe plastic system by Covas et al.
(2004), Covas et al. (2005), Soares, Covas, and Reis (2008), and Apollonio et al. (2014).
There are also applications performed with a 2D axially symmetric model in Duan et al.,
2010; Pezzinga, 2014. Meniconi, Brunone, and Ferrante (2012) and Meniconi et al. (2014)
analyzed the effects of water hammer pressure waves in case of sudden contraction or
expansion of the cross-sectional area or with an in-line valve in the pipeline. Evangelista
et al. (2015) even investigated the behavior of more complex hydraulic systems, with a
Y-shaped configuration.
Other techniques are only seldom applied for the resolution of transient flows in pipelines
(Seck, Fuamba, and Kahawita, 2017) and include in particular Finite Volume Methods
(FVM). Starting from this consideration, in the present work the explicit path-conservative
FVM associated with the Dumbser-Osher-Toro (DOT) Riemann solver proposed by Dumb-
ser and Toro (2011a) and Dumbser and Toro (2011b) and the semi-implicit staggered FVM
(further simply called SI) presented by Dumbser, Iben, and Ioriatti (2015) are tested, to-
gether with the MOC, for the simulation of two water hammer problems in single HDPE
pipelines. Results are compared with experimental data and further methods are ana-
lyzed also in terms of efficiency. It has to be mentioned that the DOT solver had never
been used before for this type of applications, only for frequency analysis by Leibinger
et al. (2016), while the SI method had already been tested with hydraulic transients, but
only considering an elastic tube wall behavior by Ioriatti, Dumbser, and Iben (2017). In
the present research, water hammer test cases are performed taking into account different
linear viscoelastic models: the SLSM and the g-KV chain (see Section 2.3), with the aim
to evaluate if a more complex model is worth to be chosen to achieve a better agreement
with experimental data. Furthermore, a comparison of the results obtained implement-
ing a quasi-steady friction model and an unsteady friction model, with the approach
proposed by Ioriatti, Dumbser, and Iben (2017), is evaluated in case of turbulent flow. To
stress the investigated numerical schemes, in order to reveal their weaknesses, tests are
executed also with three challenging Riemann problems (RP), adopting an elastic rheo-
logical behavior of the tube wall. The aim of the Riemann problems here presented is to
evaluate the robustness of each scheme, pointing out the performance of every method
in case of cross-sectional changes, when more flexible materials are considered and when
cavitation occurs.

3.2 Methods

3.2.1 Mathematical model

The governing balance laws system of a compressible fluid through a flexible tube
is obtained averaging the three-dimensional compressible Navier-Stokes equations over
the cross-section under the assumption of axial symmetry of the geometry of the conduct
and of the flow. The resulting simplified one-dimensional non-linear hyperbolic system
of partial differential equations (PDE), composed by the continuity equation and by the
momentum equation, reads (Ghidaoui et al., 2005):

∂

∂t
(Aρ) +

∂

∂x
(Aρu) = 0 (3.1a)

∂

∂t
(Aρu) +

∂

∂x
(Aρu2 + Ap)− p

∂A
∂x

= FR. (3.1b)
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where x is the space, t is the time, A is the cross-sectional area, ρ is the cross-sectional
averaged density of the fluid, u is the averaged fluid velocity, p is the averaged fluid
pressure and FR is a model of the friction between fluid and tube wall, further presented
in Section 3.2.1.2.
To close system (3.1), an equation of state (EOS) and a constitutive tube law must be
added. In most of the technical applications it is usually sufficient to assume a barotropic
behavior of the fluid, therefore ρ = ρ(p). Nevertheless, taking into account the cavitation
phenomena may be useful. An EOS for barotropic flow taking into account cavitation is
presented in Section 3.2.1.1.
The tube law describes the relationship between the tube cross-section and the internal
pressure, containing all the information about the rheological behavior of the pipe ma-
terial. It can be expressed in different ways. To take into account the deformability and
the flexibility of the tube wall, two different rheological models are here considered: the
first one defining an elastic behavior and the second one for a more complex viscoelastic
behavior, which is necessary to reproduce the real performance of plastic tubes (Evan-
gelista et al., 2015; Covas et al., 2004; Covas et al., 2005). These models are presented in
Section 3.2.1.3 and 3.2.1.4.

Returning to system of equations (3.1), it is possible to derive the classical water ham-
mer equations in terms of piezometric head h = p/ρg and velocity u, when temperature
changes can be neglected. From Eq. (3.1a),

∂

∂t
(Aρ) +

∂

∂x
(Aρu) = ρ

∂A
∂t

+ A
∂ρ

∂t
+ ρu

∂A
∂x

+ Aρ
∂u
∂x

+ Au
∂ρ

∂x
= 0.

Gathering terms, we obtain:

ρ

(︃
∂A
∂t

+ u
∂A
∂x

)︃
+ A

(︃
∂ρ

∂t
+ u

∂ρ

∂x

)︃
+ Aρ

∂u
∂x

= 0. (3.2)

On the other hand, manipulating Eq. (3.1b), considering a quasi-steady friction model,
with g gravity acceleration and j frictional head loss coefficient per unit length (see Sec-
tion 3.2.1.2),

∂

∂t
(Aρu) +

∂

∂x
(Aρu2) + A

∂p
∂x

= Aρ
∂u
∂t

+ u
∂(Aρ)

∂t
+ Aρu

∂u
∂x

+ u
∂(Aρu)

∂x
+ A

∂p
∂x

= −Aρgj.

Dividing both members for Aρg and using Eq. (3.1a), follows:

1
g

(︃
∂u
∂t

+ u
∂u
∂x

)︃
+

1
ρg

∂p
∂x

= −j. (3.3)

Assuming that 1
ρg

∂p
∂x ≈ ∂

∂x (
p

ρg ), which means that the spatial variation of the density is
negligible, Eq. (3.3) becomes:

1
g

(︃
∂u
∂t

+ u
∂u
∂x

)︃
+

∂h
∂x

= −j. (3.4)

A generic function F (x, t) that represents any characteristics of the pressure wave con-
cerning water hammer problems is now introduced. Standing on the wave frame refer-
ence, the characteristic F remains constant in both time and space, thus it can be written
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that:
dF
dt

=
∂F
∂t

+
∂F
∂x

dx
dt

= 0,

being a = dx/dt the wave speed. Rearranging this equation and dividing for the velocity
in the duct, it results:

a
u
= −

∂F
∂t

u ∂F
∂x

. (3.5)

Since, in a general water hammer problem in flexible tubes (and even more in rigid tube
cases), a is considerably bigger than u (Wylie and Streeter, 1978), from Eq. (3.5) it follows
that all the convective terms u∂F/∂x can be neglected compared to terms ∂F/∂t. Thus,
system of equations (3.2) and (3.4) becomes:

ρ
∂A
∂t

+ A
∂ρ

∂t
+ Aρ

∂u
∂x

= 0 (3.6a)

1
g

∂u
∂t

+
∂h
∂x

= −j. (3.6b)

Manipulating again Eq. (3.6a), in order to write it in terms of piezometric head and
velocity,

1
A

∂A
∂p

∂p
∂t

+
1
ρ

∂ρ

∂p
∂p
∂t

+
∂u
∂x

= 0,

and considering again the assumption 1
ρg

∂p
∂t ≈ ∂

∂t (
p

ρg ), it follows that:

ρg
(︃

1
A

∂A
∂p

+
1
ρ

∂ρ

∂p

)︃
∂h
∂t

+
∂u
∂x

= 0. (3.7)

To reduce terms in brackets, it is necessary to introduce Hooke’s law (Avallone and
Baumeister III, 1916):

dp = Ke
dρ

ρ
, (3.8)

with Ke water bulk modulus of elasticity. Considering a cylindrical tube with diameter
D, and referring to Eq. (2.5), Hooke’s law can also be written as:

dσ = E0
dD
D

, (3.9)

with E0 instantaneous Young (elastic) modulus of the wall material. Introducing then
Barlow’s formula (Avallone and Baumeister III, 1916):

pD = 2σs0, (3.10)

with s0 thickness of the tube (assumed constant in space and time) and σ tension stress,
it immediately follows that

dp =
2s0

D
dσ,

and applying Eq. (3.9),

dp =
2s0E0

D2 dD. (3.11)
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Since 1
A

dA
dp = 2

D
dD
dp , substituting Eq. (3.11) and Eq. (3.8) into Eq. (3.7), we obtain:

∂h
∂t

+
1
g

Ke
ρ(︂

1 + D
s0

Ke
E0

)︂ ∂u
∂x

= 0. (3.12)

Hence, the simplified unsteady pipe flow system of equations, in which the convective
transport terms have been neglected, following the classical Allievi-Joukowsky theory,
finally results:

∂h
∂t

+
a2

g
∂u
∂x

= 0 (3.13a)

1
g

∂u
∂t

+
∂h
∂x

= −j, (3.13b)

where the general definition of a is given by:

a =

⌜⃓⃓⃓
⎷ ∂p

∂ρ

1 + ρ
A

∂A
∂p

∂p
∂ρ

=
c′s√︂

1 + c′2s
c2

=
1√︂

1
c′2s

+ 1
c2

. (3.14)

Here c′s =
√

∂p/∂ρ is the speed of sound, which represents the celerity contribute linked
to the compressibility of the fluid. It results equal to cs when cavitation episodes do not
occur, hence when the fluid component is only liquid. On the other hand, c is the celerity
contribute due to the fluid-structure interaction (FSI), hence due to the relation between
inner pressure p and cross-sectional area A:

c =

√︄
A
ρ

∂p
∂A

. (3.15)

It can be noticed that Eq. (3.14) can also be written as

1
a2 =

1
c′2s

+
1
c2 (3.16)

which recalls the sum of two resistances in parallel of an electric circuit. Therefore, we
can see the total wave speed of the system a as the result of two resistances in parallel
defined by the two celerity contributes c′s and c.
Eq. (3.14) can be made explicit when suitable EOS and tube law are selected.

3.2.1.1 Equation of state

When considering a barotropic fluid, the density only depends on the pressure, hence
ρ = ρ(p). To take into account cases in which cavitation occurs means supposing to have
cases in which p < pv, where pv is the vapor pressure. Thus, to account also for cavitation
cases, the following equation of state with an homogeneous mixture approximation is
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FIGURE 3.1: Representation of the behavior described by the selected EOS. The
density remains almost constant with decreasing pressure until the pv value is

reached, after which a very sharp decrease of the density occurs.

selected (Dumbser, Iben, and Ioriatti, 2015):

ρ(p) =

⎧⎨⎩ ρ0 +
1
c2

s
(p − pv) if p ≥ pv[︂

φ(p)
ρv(p) +

1−φ(p)
ρ0

]︂−1
if 0 < p < pv

(3.17)

with ρ0 and p0 the reference density and pressure in equilibrium state respectively, cs the
speed of sound in the fluid at reference conditions, φ(p) = −Kc(p− pv) the mass fraction
of vapor, with Kc cavitation constant, and ρv(p) = p

RvT0
the vapor density, calculated con-

sidering the gas constant Rv at reference temperature T0. The general behavior defined
by the selected EOS is shown in Fig. 3.1.

3.2.1.2 Friction model

Concerning the friction model applied to water hammer problems, it is possible to
define the parameter P as the ratio between the diffusion time scale and the wave time
scale:

P =
2D/f u0

L/a
, (3.18)

where L is the length of the pipe, f is the friction factor, as defined by the Darcy-Weisbach
formula (Wylie and Streeter, 1978), u0 is the initial velocity and a is given by Eq. (3.14). It
has been shown that accurate physically based unsteady friction models are required if
P is of order 1 or less (Ghidaoui, Mansour, and Zhao, 2002; Duan et al., 2010). If P ≫ 1,
it is possible to consider only a quasi-steady friction model, for which the term FR in Eq.
(3.1b) reads:

FR = −Aρgj, (3.19)

with the frictional head loss per unit length j = f
D

u|u|
2g and f friction coefficient. Con-

sidering a cylindrical tube with axially symmetric flow, the same quantity FR can also be
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expressed in terms of the wall shear stress τw as:

FR = −2πRτw, (3.20)

where R is the pipe radius and with τw concerning only the quasi-steady contribute τs,
hence:

τw = τs = f
ρu|u|

8
. (3.21)

If unsteadiness effects need to be taken into account, hence when P ≪ 1, the wall shear
stress τw is written as sum of quasi-steady τs and unsteady contribute τu:

τw = τs + τu. (3.22)

Thus, considering the expression by Zielke (1968):

τw = f
ρu|u|

8
+

2µ

R

∫︂ t

0
w(t − t′)

∂u
∂t

(t′)dt′, (3.23)

where µ is the dynamic viscosity, w is a weighting function and t′ is the integral variable
having dimension of time.

The evaluation of the convolution integral in Eq. (3.23) is very time consuming and
several solutions have been proposed for it (see Urbanowicz and Zarzycki (2012) and
Shamloo, Norooz, and Mousavifard (2015) for extensive summaries). The first who de-
veloped an effective method was Trikha (1975), while the most diffused formulation is
the one proposed by Kagawa et al. (1983), who improved Trikha’s approach. Recently,
a novel approach has been proposed by Ioriatti, Dumbser, and Iben (2017) in the case
of laminar flow. In particular, the solution of the convolution integral is reduced to the
solution of a set of ordinary differential equations (ODEs). This solution allows to gain ef-
ficiency with respect to Kagawa’s formula (which requests the evaluation of exponential
functions). In the following, the ODE approach is extended, proposing the ODE friction
model even for turbulent flow cases.
First, the weighting function in turbulent regime proposed by Urbanowicz and Zarzycki
(2012), expressed as a series of exponential functions, is considered:

w(t) =
Nw

∑
i=1

A∗m∗
i exp

[︃
−(n∗

i + B∗)
νt
R2

]︃
, (3.24)

where ν = µ/ρ is the kinematic viscosity of the fluid, Nw = 16, (n∗
1 , ..., n∗

16) = (4.78793,
51.0897, 210.868, 765.03, 2731.01, 9731.44, 34668.5, 123511, 440374, 1578229, 5481659, 18255921,
59753474, 192067361, 616415963, 1945566788) and (m∗

1 , ..., m∗
16) = (5.03392, 6.4876, 10.7735,

19.904, 37.4754, 70.7117, 133.460, 251.933, 476.597, 902.22, 1602.04, 2894.84, 5085.55, 9190.11,
16118.6, 29117.3). Since in this work only smooth pipes are considered, the parameters
A∗ and B∗ are chosen as those proposed by Vardy and Brown (2003):

A∗ =
√︂

1/(4π) B∗ = Rek/12.86 with k = log10(15.29/Re0.0567), (3.25)



20 Chapter 3. Viscoelasticity in pipelines

where Re = |u|D/ν is the Reynolds number. Substituting Eq. (3.24) into the convolution
integral, the unsteady wall shear stress is computed as:

τu =
Nw

∑
i=1

τu,i =
Nw

∑
i

2µ

R

∫︂ t

0
A∗m∗

i exp
[︃
−

ν(n∗
i + B∗)

R2 (t − t′)
]︃

du
dt

(t′)dt′. (3.26)

Then, the left and the right side of the i-th contribution in the last equation are derived
with respect to the time. Applying the Leibniz rule yields the following ODE:

d
dt

τu,i = −
(n∗

i + B∗)ν

R2 τu,i +
2µ

R
du
dt

m∗
i A∗, (3.27)

which is discretized in time using the implicit Euler method (Ioriatti, Dumbser, and Iben,
2017):

τn+1
u,i − τn

u,i

∆t
= −

(n∗
i + B∗)ν

R2 τn+1
u,i +

2µ

R
un+1 − un

∆t
m∗

i A∗. (3.28)

Finally, the total unsteady wall shear stress at time tn+1 = tn +∆t is computed as follows:

τn+1
u =

Nw

∑
i=1

τn+1
u,i with τn+1

u,i =
τn

u,i +
2µ
R (un+1 − un)m∗

i A∗

1 + (n∗
i +B∗)ν

R2 ∆t
i = 1, 2, ...Nw. (3.29)

3.2.1.3 Elastic constitutive tube law

To study water hammer events occurring in commercial pipes, it is usually sufficient
to consider an elastic rheological behavior of the tube wall. This is valid in particular
when dealing with steel ducts, but also to obtain a first fair approximation working with
plastic pipes. To derive the well-known elastic tube law (also called Laplace law) Hooke’s
law (3.9) and Barlow’s formula (3.10) need to be considered. The combination of these
two equations leads to

dA
A

=
D

E0s0
dp,

from which it follows that: √
π

2A
√

A
dA =

1
E0s0

dp.

Integrating both members and linearizing (with Taylor series) the resulting equation, the
linearized version of the Laplace law is obtained:

p = p0 +
K
2
(α − 1), (3.30)

where α = A/A0 is the ratio between the cross-sectional area A and the equilibrium cross-
sectional area of the tube A0, being the latter related to the equilibrium pressure p0. In
this elastic constitutive equation the cross-sectional area only depends linearly on the
pressure p through a coefficient K, which accounts for all the elastic properties of the
material:

K =
E0s0

R0
=

E0

W
, (3.31)
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with R0 the radius that corresponds to the equilibrium area A0 and

W =
R0

s0
(3.32)

a geometry parameter.
As proposed by Leibinger et al. (2016), to derive the closure equation for system (3.1) in
PDE form, we need to differentiate Eq. (3.30) with respect to t:

∂p
∂t

=
K

2A0

∂A
∂t

.

Considering that
∂p
∂t

=
∂p
∂ρ

∂ρ

∂t
= c′2s

∂ρ

∂t
(3.33)

and
∂ρ

∂t
=

1
A

(︃
∂(Aρ)

∂t
− ρ

∂A
∂t

)︃
, (3.34)

we can obtain:

c′2s
∂(Aρ)

∂t
=

(︃
ρc′2s +

Kα

2

)︃
∂A
∂t

.

Finally, recurring to the continuity equation (3.1a), leads to:

∂A
∂t

+
1

ρ + Kα
2c′2s

∂(Aρu)
∂x

= 0, (3.35)

where c′s again depends on the selected EOS.

3.2.1.4 Viscoelastic constitutive tube law

To better reproduce the real behavior of a polymer material, as those used in indus-
tries, it is necessary to introduce a viscoelastic model. The simplest model yet able to cor-
rectly reproduce the stress-strain behavior of a polymer material is the Standard Linear
Solid model, which can be structured with a Maxwell or a Kelvin-Voigt element (please
refer to Section 2.3). The schematic representation of both the types is shown in Fig. 2.5.
To obtain more complex models, it is possible to extend the chain of Maxwell or Kelvin-
Voigt units up to an infinite number. In general, the more elements there are, the more
accurate the model will be in describing the real response of the material. But that said,
the more complex the model is, the more material parameters need to be evaluated by
delicate calibrations.
A sensitivity analysis was carried out by Covas et al. (2005) to estimate the number of
Kelvin-Voigt elements beyond which the accuracy of the results doesn’t improve any-
more, and the optimal number resulted equal to 4.
For the simulations here presented, first the SLS model has been considered. Then, to
test the applicability of the extension to more complex models, some tests considering
the generalized Kelvin-Voigt chain with 5 KV units have also been carried out.

The aim is to obtain the viscoelastic material closing equation for system (3.1). Thus,
as previously done for the elastic case in Section 3.2.1.3, starting from the constitutive
equation of the SLS model presented in Eq. (2.16) and applying Barlow’s formula, Eq.
(3.10), the linearized kinematic relation between the strain and the cross sectional area of
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the pipe α = (1 + ϵ2) ≈ 1 + 2ϵ, and the continuity equation (3.1a), leads to (Leibinger
et al., 2016):

∂A
∂t

+
1

ρ + Kα
2c′2s

∂(Aρu)
∂x

=
1
τr

[︄
A(p − p0)

ρc′2s + Kα
2

− AKE∞(α − 1)
2E0

(︁
ρc′2s + Kα

2

)︁]︄ , (3.36)

which represents the partial differential form of the SLS model constitutive equation.
Comparing this equation to the Laplace PDE (3.35), it can be noticed that all the viscous
properties of the material are totally enclosed in the source term.

Furthermore, it is possible to write Eq. (3.36) into an ODE considering that the PDE
can be expressed as:

∂A
∂t

=
2A

τrKα
(p − p0)−

2c′2s
Kα

[︃
∂(Aρu)

∂x
+ ρ

∂A
∂t

]︃
− A0E∞

τrE0
(α − 1). (3.37)

From Eq. (3.33) and Eq. (3.34) it follows that

∂p
∂t

=
c′2s
A

[︃
∂(Aρ)

∂t
− ρ

∂A
∂t

]︃
and recurring to the continuity equation (3.1a), it results:

∂p
∂t

= − c′2s
A

[︃
∂(Aρu)

∂x
+ ρ

∂A
∂t

]︃
.

If we use this last equation into (3.37), the SLS model ODE finally results:

dA
dt

=
2A
Kα

dp
dt

+
1
τr

[︃
2A(p − p0)

Kα
− A0E∞(α − 1)

E0

]︃
. (3.38)

To extend the applicability of Eq. (3.36) to viscoelastic models characterized by more
than three parameters, an original formulation is proposed. Considering a generalized
Kelvin-Voigt chain, with NKV Kelvin-Voigt units in series and one isolated spring, as
shown in Fig. 2.6, the procedure starts from the constitutive equation of the model,
Eq. (2.22). Recurring to the same manipulations previously described for the SLS case,
the following closure equation for the g-KV model is obtained:

∂A
∂t

+
1

ρ + Kα
2c′2s

∂(Aρu)
∂x

=
AE0(p − p0)

ρc′2s + Kα
2

NKV

∑
k=1

1
ηk

− AK
ρc′2s + Kα

2

NKV

∑
k=1

ϵk

τck
. (3.39)

in which ηk and Ek, τck = ηk/Ek, are the viscoelastic parameters of the kth KV element (refer
to Section 2.3.4) and ϵr represents the retarded strain of the system, equal to the sum of
the strains of each KV unit: ϵr = ∑NKV

k=1 ϵk. Again, it is possible to derive the corresponding
ODE of (3.39), resulting:

dA
dt

=
2A
Kα

dp
dt

+
2AE0(p − p0)

Kα

NKV

∑
k=1

1
ηk

− 2A0

NKV

∑
k=1

ϵk

τck
. (3.40)

On the other hand, when choosing to consider the system of the classical water-
hammer equations, taking into account the viscoelasticity of the tube wall means that
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a specific term must be added into the continuity equation (3.7), whereas the momentum
equation (3.13b) remains unaltered (Covas, 2003), following:

∂h
∂t

+
a2

g
∂u
∂x

= −2a2

g
dϵr

dt
, (3.41)

Boltzmann superposition principle states that for small strains each increment of load
makes an independent and linearly additive contribution to the total deformation (Shaw
and MacKnight, 2005). Hence, the elastic deformation results:

ϵe(t) = J0σ(t), (3.42)

where J0 is the instantaneous creep compliance (J0 = 1/E0 for linear viscoelastic materi-
als), while the retarded deformation is defined as:

ϵr(t) =
∫︂ t

0
σ(t − t′)

∂J
∂t
(t′)dt′, (3.43)

with J(t′) creep function at time t′. The total deformation of the system is the sum of these
two contributes, ϵ = ϵe + ϵr. Applying Barlow’s formula (3.10), the total circumferential
strain can also be expressed as (Covas et al., 2005):

ϵ = ϵe + ϵr = W [p(t)− p0] J0 + W
∫︂ t

0

[︁
p(t − t′)− p0

]︁ ∂J(t′)
∂t

dt′ (3.44)

with the thickness s0 considered constant in time. This equation is valid for a g-KV model
with a selected NKV , being the creep function of the pipe wall represented by a mathe-
matical expression, Eq. (2.24), which can be implemented numerically.
It is worth to notice that, for the SLS model of KV type, NKV is equal to 1 and it is possible
to go back to the equations of this model directly starting from the generalized equations
of the g-KV chain.

3.2.1.5 Complete coupled system of the FSI problem

As described in the previous Sections, the continuity and the momentum equations
can be expressed in different forms. Moreover, the closure equations have different for-
mulations depending on the assumed behavior of the pipe material and the relevance of
the flow unsteadiness in the computation of friction effects. The more appropriate formu-
lation of the system of governing equations depends on the chosen numerical integration
technique. In this Section, we summarize, for each numerical method considered in this
work, the most suited form of the complete system of equations.

To take into account the FSI, working in the context of an explicit Finite Volume
Method (Leibinger et al., 2016), the PDE of the material model can be inserted into the
system of averaged Navier-Stokes equations (3.1), obtaining and augmented FSI (a-FSI)
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system:

∂

∂t
(Aρ) +

∂

∂x
(Aρu) = 0 (3.45a)

∂

∂t
(Aρu) +

∂

∂x
(Aρu2 + Ap)− p

∂A
∂x

= FR (3.45b)

∂

∂t
A + d

∂

∂x
(Aρu) = S (3.45c)

∂

∂t
A0 = 0. (3.45d)

Equation (3.45c) unifies both the elastic and the viscoelastic wall models (Leibinger et al.,
2016). The parameter d identifies the solely elastic contribute of the wall, having indeed
the same formulation if choosing an elastic or a viscoelastic characterization, while the
source term S takes into account the viscous information of the wall behavior. Hence,
concerning the Laplace elastic law

d =
1

ρ + Kα
2c′2s

, S = 0. (3.46)

For the viscoelastic SLS model

d =
1

ρ + Kα
2c′2s

, S =
1
τr

[︃
Ad
c′2s

(p − p0)−
AdKE∞

2c′2s E0
(α − 1)

]︃
, (3.47)

being in general for a viscoelastic g-KV model

d =
1

ρ + Kα
2c′2s

, S =
AdE0

c′2s
(p − p0)

NKV

∑
k=1

1
ηk

− AdK
c′2s

NKV

∑
k=1

ϵk

τck
. (3.48)

It has to be remembered that if we are considering a thick-walled tube (which means that
the ratio between external wall radius Re and inner radius R is bigger than 1.2) Barlow’s
formula (3.10) is not valid anymore, and the geometry parameter W is defined as follows
(Leibinger et al., 2016):

W = 2

(︂
Re
R

)︂
(1 + νp) + 1 − 2νp(︂

Re
R

)︂2
− 1

. (3.49)

with νp Poisson’s ratio.
Eq. (3.45d) simply states that the spatially variable equilibrium cross-section A0 is

constant in time. This trivial equation is introduced to allow a formally correct treatment
of discontinuous longitudinal changes of A0. In fact, in case of discontinuous A0, the sys-
tem of governing equations is non-conservative and appropriate numerical techniques
must be selected, as done in other contexts (Müller and Toro, 2013; Gallardo, Parés,
and Castro, 2007). The explicit scheme proposed by Dumbser and Toro (2011b) and fur-
ther discussed by (Leibinger et al., 2016) belongs to the family of the path-conservative
schemes that have specifically been developed to address the problem of discontinuous
variables arising in applications governed by non-conservative balance laws. The reader
is addressed to Parés (2006) for the theory related to the path-conservative schemes.

Considering the semi-implicit numerical scheme proposed by Dumbser, Iben, and



3.2. Methods 25

Ioriatti (2015) for the resolution of the problem, we can more easily consider the standard
two-equation system

∂

∂t
(Aρ) +

∂

∂x
(Aρu) = 0 (3.50a)

∂

∂t
(Aρu) +

∂

∂x
(Aρu2) = −A

∂p
∂x

FR, (3.50b)

associated with the tube law expressed by Eq. (3.30) for an elastic wall model and the
ODEs (3.38) and (3.40) when considering the viscoelastic SLS and g-KV models, respec-
tively.

On the other hand, using the MOC for the discretization, the classical water hammer
equations considering the FSI have the following final form (Covas, 2003):

∂h
∂t

+
a2

g
∂u
∂x

= SM (3.51a)

1
g

∂u
∂t

+
∂h
∂x

= − 4τw

ρgD
= −j. (3.51b)

with SM = 0 for an elastic wall behavior and

SM = −2a2

g
dϵr

dt
(3.52)

for a viscoelastic wall behavior. The retarded deformation ϵr in Eq. (3.52) is computed by
(3.43), selecting the appropriate creep function (2.24) for the SLS and g-KV models.

Finally, in Eqs. (3.45b), (3.50b) and (3.51b) the friction term FR is evaluated through
Eq. (3.20), considering a wall shear stress τw computed with Eq. (3.21) if the quasi-steady
model is applicable or using Eq. (3.23) if taking into account unsteady flow effects results
necessary.

3.2.2 Numerical models

To solve the mathematical models presented in Section 3.2.1, three different numeri-
cal schemes have been chosen and compared. The standard way to solve the simplified
system (3.51) in case of water hammer problems is recurring to the Method of Charac-
teristics. Other two methods have been tested and compared, in terms of accuracy and
efficiency, to the classical MOC: the explicit path-conservative FVM associated with the
DOT Riemann solver presented in Dumbser and Toro (2011b) and Dumbser and Toro
(2011a) and the semi-implicit FVM for axially symmetric compressible flows in compli-
ant tubes proposed by Dumbser, Iben, and Ioriatti (2015).

3.2.2.1 Method of Characteristics

The simplified system (3.51), obtained by neglecting the convective terms and thus
leading to approximately straight characteristic lines ∆x/∆t = ±a, can be solved with
the numerical scheme proposed by Covas et al. (2005):

hn+1
i − hn

i∓1 ±
a
g

(︂
un+1

i − un
i∓1

)︂
+

2a2∆t
g

(︃
dϵr

dt

)︃
± f ∆x

2gD
un

i∓1

⃓⃓
un

i∓1

⃓⃓
= 0 (3.53)
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valid along the characteristic lines, using a uniform grid of Nx elements with mesh spac-
ing ∆x = xi+1 − xi and a time step size ∆t = tn+1 − tn which respects the Courant-
Friedrichs-Lewy, CFL, condition (Toro, 2009):

∆t = CFL
∆x

max|u ± a| . (3.54)

Decoupling the problem we get:

un+1
i =

un
i−1 + un

i+1

2
+

g
a

(︃
hn

i−1 − hn
i+1

2

)︃
− g∆x

2a
(︁

jn
i−1 + jn

i+1
)︁

, (3.55a)

hn+1
i =

hn
i−1 + hn

i+1

2
+

a
g

(︃
un

i−1 − un
i+1

2

)︃
− ∆x

2
(︁

jn
i−1 − jn

i+1
)︁
− 2a∆x

g

(︃
dϵn

r
dt

)︃
, (3.55b)

with
jn
i−1 =

f
2gD

un
i−1

⃓⃓
un

i−1

⃓⃓
and jn

i+1 =
f

2gD
un

i+1

⃓⃓
un

i+1

⃓⃓
.

Starting from Eq. (3.44), the time-derivative of ϵr is computed as a sum of each kth Kelvin-
Voigt element contribution at time n:

dϵn
r

dt
=

NKV

∑
k=1

dϵn
k

dt
=

NKV

∑
k=1

[︃
Wρg

Jk

τck
(hn − h0)−

ϵn
k

τck

]︃
, (3.56)

with h0 equilibrium piezometric head and considering the numerical approximation of
each retarded strain in each node as:

ϵn
k ≈ ϵ̃n

k = Jk F̂n − Jke−∆t/τck F̂n−1 − Jkτck

(︂
1 − e−∆t/τck

)︂ F̂n − F̂n−1

∆t
+ e−∆t/τck ϵ̃n−1

k , (3.57)

with the function F̂ at time n defined by:

F̂n
= Wρg

Jk

τck
(hn − h0) .

For further details about this scheme the reader can refer to Covas et al. (2005).
It is here specified that to obtain reliable results in the Riemann problems presented in
Section 3.3.1, the Method of Specified Intervals has been applied, with a linear interpo-
lation from the known values in the grid nodes at each time step (Wylie and Streeter,
1978).

3.2.2.2 Explicit Path-Conservative Finite Volume Method

A non-linear hyperbolic system of PDE with a conservative and a non-conservative
part can be written in the following general form:

∂Q
∂t

+
∂

∂x
f (Q) + B(Q)

∂Q
∂x

= S(Q) (3.58)

where Q is the conservative variables vector, f is the analytical fluxes vector related to
the conservative part, B(Q) is the matrix related to the non-conservative part and S(Q) is
the source term vector containing all the head losses and material viscosity information,
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depending on the viscoelastic model adopted (see Section 3.2.1.5).
System (3.58) can also be written in the quasi-linear form,

∂Q
∂t

+ A(Q)
∂Q
∂x

= S(Q), (3.59)

in which the matrix A(Q) = ∂ f /∂Q + B(Q) is diagonalizable, with a diagonal matrix
Λ(Q) containing all real eigenvalues λl and a complete set of linearly independent eigen-
vectors R(Q) (Leibinger et al., 2016).
Considering system (3.45),

Q =

⎛⎜⎜⎝
Aρ

Aρu
A
A0

⎞⎟⎟⎠ f (Q) =

⎛⎜⎜⎝
Aρu

Aρu2 + Ap
0
0

⎞⎟⎟⎠ ,
∂ f
∂Q

=

⎛⎜⎜⎝
0 1 0 0

c′2s − u2 2u p − ρc′2s 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

B(Q) =

⎛⎜⎜⎝
0 0 0 0
0 0 −p 0
0 d 0 0
0 0 0 0

⎞⎟⎟⎠ , A(Q) =

⎛⎜⎜⎝
0 1 0 0

c′2s − u2 2u −ρc′2s 0
0 d 0 0
0 0 0 0

⎞⎟⎟⎠ ,

Λ =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 u − a 0
0 0 0 u + a

⎞⎟⎟⎠ , R =

⎛⎜⎜⎜⎝
ρc′2s

c′2s −u2 0 1
d

1
d

0 0 u−a
d

u+a
d

1 0 1 1
0 1 0 0

⎞⎟⎟⎟⎠ ,

with wave speed from Eq. (3.14) considering the linearized version of the Laplace law
(3.30):

a =
√︂

c′2s (1 − ρd) =
c′s√︂

1 + 2ρc′2s
Kα

, (3.60)

where

c′s =

√︄
∂p
∂ρ

=

{︄
cs if p ≥ pv
(ρ0KRvT0−Kp)(p−pv)−p√

ρ0K(ρ0T0Rv pv−p2)
if 0 < p < pv

. (3.61)

The explicit second order total variation diminishing (TVD) finite volume discretiza-
tion of system (3.45) is:

Qn+1
i = Qn

i −
∆t
∆x

(︂
F i+ 1

2
− F i− 1

2

)︂
− ∆t

∆x

(︂
Di+ 1

2
+ Di− 1

2

)︂
− ∆tB

(︃
Qn+ 1

2
i

)︃
∆Qn

i
∆x

+ ∆tS
(︃

Qn+ 1
2

i

)︃
,

(3.62)
with F i± 1

2
numerical fluxes and Di± 1

2
fluctuations, both evaluated at the cell interfaces,

using a uniform grid of Nx elements with mesh spacing ∆x = xi+ 1
2
− xi− 1

2
and a time

step size ∆t = tn+1 − tn that follows the CFL condition of Eq. (3.54). Here the slope ∆Qn
i

is evaluated by using the classical minmod slope limiter (Toro, 2009) and variables at the
intermediate time step ∆t/2 are evaluated with the following equation:

Qn+ 1
2

i = Qn
i +

1
2

∆t∂tQn
i , (3.63)
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with the time derivative

∂tQn
i = −

f
(︁
Qn

i +
1
2 ∆Qn

i
)︁
− f

(︁
Qn

i − 1
2 ∆Qn

i
)︁

∆x
− B (Qn

i )
∆Qn

i
∆x

+ S (Qn
i ) . (3.64)

The numerical flux is obtained applying the DOT solver as defined by Dumbser and Toro
(2011a):

F i± 1
2
=

1
2

[︂
f
(︂

Q+
i± 1

2

)︂
+ f

(︂
Q−

i± 1
2

)︂]︂
− 1

2

∫︂ 1

0

⃓⃓⃓
A
(︂

Ψ
(︂

Q−
i± 1

2
, Q+

i± 1
2
, s
)︂)︂⃓⃓⃓ ∂Ψ

∂s
ds, (3.65)

with a numerical dissipation related to matrix A including both conservative and non-
conservative terms.
The fluctuations given by the non-conservative part then read (Dumbser and Toro, 2011b):

Di± 1
2
=

1
2

∫︂ 1

0
B
(︂

Ψ
(︂

Q−
i± 1

2
, Q+

i± 1
2
, s
)︂)︂ ∂Ψ

∂s
ds. (3.66)

The boundary-extrapolated values within cell i are given by:

Q−
i+ 1

2
= Qn

i +
1
2

∆Qn
i +

1
2

∆t∂tQn
i , Q+

i− 1
2
= Qn

i −
1
2

∆Qn
i +

1
2

∆t∂tQn
i . (3.67)

The symbol Ψ stands for the path connecting left to right boundary values in the phase-
space. In this work, a simple linear segment has been chosen (Parés, 2006), hence:

Ψ = Ψ
(︂

Q−
i+ 1

2
, Q+

i+ 1
2
, s
)︂
= Q−

i+ 1
2
+ s

(︂
Q+

i+ 1
2
− Q−

i+ 1
2

)︂
. (3.68)

For an extension to a non-linear path scheme, the reader can refer to applications for
the Shallow Water Equations (Caleffi and Valiani, 2017). Approximating Eq. (3.65) and
(3.66) with a Gauss-Legendre quadrature formula we get the final expressions to solve
Eq. (3.62) numerically:

F i+ 1
2
=

1
2

[︂
f
(︂

Q+
i+ 1

2

)︂
+ f

(︂
Q−

i+ 1
2

)︂]︂
− 1

2
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⃓⃓⃓
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(︂

Ψ
(︂
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2
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i+ 1
2
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)︂)︂⃓⃓⃓]︂ (︂
Q+

i+ 1
2
− Q−

i+ 1
2

)︂
(3.69)

Di+ 1
2
=

1
2

NG

∑
j=1

[︂
ωjB

(︂
Ψ
(︂

Q−
i+ 1

2
, Q+

i+ 1
2
, sj

)︂)︂]︂ (︂
Q+

i+ 1
2
− Q−

i+ 1
2

)︂
, (3.70)

where ωj and sj are the weights and nodes of the Gauss-Legendre quadrature, in the
present work chosen with 3 nodes (NG = 3).
For the evaluation of the source term related to the tube wall viscosity, it has to be noticed
that, when choosing the g-KV model, ϵrk in Eq. (3.48) can be calculated with the numerical
approximation already presented in Eq. (3.57).

3.2.2.3 Semi-Implicit Finite Volume Method

To solve the problem a semi-implicit numerical method, it is considered that along
the pipe of length L there are Nx intervals of constant length ∆x = L/Nx. The one-
dimensional domain is composed by two overlapping grids according to the staggered
approach: one is for the evaluation of pressure, called main grid, and the other is for the
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evaluation of the fluxes, the dual mesh. The pressure is located at the cell barycenter xi,
meanwhile the velocities and the mass fluxes are defined at the edges xi± 1

2
of each cell.

Then, to easily achieve second order of accuracy in time, the so called θ-method is used
(Ioriatti, Dumbser, and Iben, 2017). θ is an implicitness parameter chosen in the interval
0.5 ≤ θ ≤ 1 for stability. In particular, when θ = 1 the scheme is first order accurate
in time and when θ = 0.5 the method corresponds to a Crank-Nicolson type scheme
of the second order. In the latter situation, the scheme is non-monotone and spurious
oscillations could appear near strong discontinuities (Toro, 2009). To have an example,
the θ-method applied to the pressure leads to:

pn+θ
i = θpn+1

i + (1 − θ)pn
i .

The continuity equation is discretized in the main grid in a semi-implicit way:

ρA
(︂

pn+1
i

)︂
= ρA (pn

i )−
∆t
∆x

(︂
Qn+θ

i+ 1
2
− Qn+θ

i− 1
2

)︂
, (3.71)

where ρA (pi) = ρ (pi) A (pi) and the mass flow rate Qn+1
i+ 1

2
= ρn

i+ 1
2
An

i+ 1
2
un+1

i+ 1
2

, expressing

ρn
i+ 1

2
= 1

2 ρ
(︁
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i
)︁
+ 1

2 ρ
(︁
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i+1

)︁
and An

i+ 1
2
= 1

2 A
(︁

pn
i
)︁
+ 1

2 A
(︁

pn
i+1

)︁
.

Then, the semi-implicit discretization of the momentum equation yields to:

Qn+1
i+ 1

2
− FQn

i+ 1
2

∆t
= −An

i+ 1
2

∆t
∆x

(︂
pn+θ

i+1 − pn+θ
i

)︂
− 2πRn

i+ 1
2
(τn

w)i+ 1
2

, (3.72)

where, as from Eq. (3.22),

(τn
w)i+ 1

2
= (τn

s )i+ 1
2
+ (τn

u )i+ 1
2
= f n

i+ 1
2

ρn
i+ 1

2
un

i+ 1
2
un+1

i+ 1
2

8
+ (τn

u )i+ 1
2

and τn
u computed with the approximation of the Zielke integral presented in Section

3.2.1.2. Furthermore, FQ is an explicit and nonlinear operator for the convective terms.
Here it is considered a robust explicit upwind approach based on the Rusanov method
which allows also to keep the well-balancing properties of the flux as done by Dumbser,
Iben, and Ioriatti (2015) and Ioriatti, Dumbser, and Iben (2017):

FQn
i+ 1

2
= Qn

i+ 1
2
− ∆t

∆x

(︂
f Rus,n
i+1 − f Rus,n

i
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, (3.73)

with
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, (3.74)

Smax = 2 max
(︂
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2
|, |un

i+ 1
2
|
)︂

. (3.75)

In addition, Eq. (3.72) is manipulated resulting:

Qn+1
i+ 1

2
= Gn

i+ 1
2
− θAn

i+ 1
2

∆t
∆x

(︂
pn+1
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2
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2

, (3.76)
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where the term γn
i+ 1

2
=

2πRn
i+ 1

2
f n
i+ 1

2
|un

i+ 1
2
|

8An
i+ 1

2

≥ 0 accounts for the explicit contribution of the

quasi-steady friction and Gn
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2
collects all the explicit terms:
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Collecting all the quantities with Qn+1
i+ 1

2
on the left side member yields to the following

expression:

Qn+1
i+ 1

2
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. (3.78)

Coupling Eq. (3.78) with Eq. (3.71) gives:

ρA
(︂
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(3.79)
with the known right hand side,

bn
i = ρA (pn

i ) +

(︃
G

1 + ∆tγ

)︃n

i+ 1
2

.

Eq. (3.79) can also be written in the following mildly non-linear form,

ρA
(︂

pn+1
)︂
+ T pn+1 = bn, (3.80)

where ρA is the non-linear diagonal contribution, T is the linear and symmetric three-
diagonal matrix and pn+1 is the unknown vector pressure and bn.
System (3.80) can be solved by using a Newton-type algorithm such as the one proposed
by Brugnano and Casulli (2008) and Brugnano and Casulli (2009) or the more general
one by Casulli and Zanolli (2010) and Casulli and Zanolli (2012). For more details the
reader can refer to Ioriatti, Dumbser, and Iben (2017), Dumbser, Iben, and Ioriatti (2015),
Tavelli, Dumbser, and Casulli (2013), Fambri, Dumbser, and Casulli (2014), and Casulli,
Dumbser, and Toro (2012). The density is updated using the closure EOS presented in
Eq. (3.17) while the cross-sectional area is updated using the Laplace law (3.30) or the
ODE versions of Eq. (3.38) and Eq. (3.40), respectively discretized as follows:

An+1
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(3.81)
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. (3.82)

Also in this case, ϵrk in Eq. (3.82) is evaluated with the numerical approximation pre-
sented in Eq. (3.57).
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Finally, the velocity is computed as:

un+1
i+ 1

2
=

Qn+1
i+ 1

2

ρn
i+ 1

2
An

i+ 1
2

.

The time step ∆t for the semi-implicit model is the one given by the stability condition
for the computation of the non-linear convective terms. In this case we have that

∆t = CFL
∆x

2|umax|
,

instead of the standard CFL condition defined in Eq. (3.54). It is worth underling that this
condition is based only on the fluid velocity and not taking into account the wave speed,
which makes this method very efficient especially in the low Mach number regime. In
addition, for some simulations, the contribution of the convective terms can be neglected,
resulting FQ = Q, and the scheme becomes unconditionally stable. However, it is impor-
tant to properly choose the time step ∆t to reduce the numerical viscosity of the method.

3.2.3 Unsteady friction effects and ODE friction model validation

In order to better analyze the effects of the unsteady friction term and to validate the
ODE friction model presented in Section 3.2.1.2 for turbulent flow cases, a water hammer
test case is analyzed assuming, as first attempt, that the pressure damping is determined
only by friction losses, neglecting viscoelastic effects. In Fig. 3.2 the classical water ham-
mer solution obtained considering only the quasi-steady friction term in Eq. (3.22) is pre-
sented together with the solutions derived taking into account the complete expression
of the equation, using different unsteady friction models. Reference solutions are repre-
sented by Brunone’s model, Thrika’s and Kagawa’s formulation. In the same figure, the
experimental curve is also shown.
Simulations are run only using the explicit path-conservative method presented in Sec-
tion 3.2.2.2, since the unsteady friction models behave in the same way in all the numeri-
cal schemes, not being affected by the chosen numerical discretization.

Brunone’s model (Brunone et al., 2000) belongs to the Instantaneous Acceleration (IA)
methods, based on the hypothesis that the unsteady wall shear stress is directly propor-
tional to the acceleration of the flow, thus:

τu =
ρDKBru

4

[︃
∂u
∂t

+ sign
(︃

u
∂u
∂x

)︃
cs

∂u
∂x

]︃
, (3.83)

considering for the coefficient KBru the expression suggested by Vardy and Brown (Vardy
and Brown, 1995):

KBru = 0.5

√︃
7.41
Reχ , χ = log

(︃
14.3
Re0.05

)︃
. (3.84)

Trikha’s and Kagawa’s formulations belong to the class of the Convolution Integral (CI)
methods, as the ODE friction model presented in this work, for which the analytic ex-
pression for the unsteady losses is given by Zielke’s convolution integral, Eq. (3.23). To
solve this integral in turbulent flow conditions, firstly Trikha (1975) proposed to use the
same approach adopted for the laminar case with the following approximated weighting
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function:

w(t) =
Nw

∑
i=1

mi exp
(︃
−ni

νt
R2

)︃
(3.85)

with Nw = 3, (m1, m2, m3) = (40.0, 8.1, 1) and (n1, n2, n3) = (8000, 200, 26.4). Writing the
weighting function as a series of exponential functions, the unsteady wall shear stress
calculated with Trikha’s formulation becomes:
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. (3.86)

Successively, Kagawa et al. (1983) proposed a more efficient formulation to approxi-
mate the convolution integral. Considering the weighting function for turbulent cases
presented in in Eq. (3.24) with Urbanowicz and Zarzycki coefficients (Urbanowicz and
Zarzycki, 2012), Kagawa’s solution becomes:
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(3.87)
It can easily be observed from Fig. 3.2 that with none of the friction formulations it

is possible to correctly reproduce the dampening behavior of an HDPE pipe in case of
hydraulic transients, confirming that viscoelastic effects must be taken into account if
realistic solutions are expected. It is possible to observe that the shape of the pressure
wave appears significantly different than the reference solution. In particular, Brunone’s
model has a less smooth behavior, as already highlighted by other publications (Brunone
et al., 2000; Ioriatti, Dumbser, and Iben, 2017). This particular shape of the wave is a
feature of all the IA methods. There is also a small disagreement between Trikha’s and
Kagawa’s formulations that can be attributed to the different sets of parameters adopted
in each case for the weighting function (Ioriatti, Dumbser, and Iben, 2017; Urbanowicz
and Zarzycki, 2012).
Nevertheless, with this test, it can be confirmed that the ODE friction model reproduces
reliable results if compared to the other unsteady friction models. As expected, adopting
the ODE friction model the same solution given by Kagawa’s formulation is obtained.
Both these two unsteady friction models, indeed, belong to the CI methods category and
are based on the same weighting function and coefficients. The advantage of choosing
the ODE friction model lies in the reduced computational cost, as already discussed in
(Ioriatti, Dumbser, and Iben, 2017) for laminar flow cases.

3.2.4 Viscoelastic parameters calibration

For the water hammer test cases, a calibration of the viscoelastic parameters is neces-
sary to accurately reproduce the behavior of the pipe material. The instantaneous elastic
modulus E0 is estimated accordingly to the reference elastic wave speed of each test. As
a matter of fact, knowing the mean value of the wave speed, estimated by observing the
oscillation period on the basis of experimental measurements, and using definition in
Eq. (3.60), it is possible to obtain the proper value of E0 (Evangelista et al., 2015). Con-
cerning the rest of the viscoelastic parameters, for a g-KV model, while τk are fixed as in
references (Covas et al., 2005; Evangelista et al., 2015), Ek are calibrated by minimizing



3.3. Numerical results and Discussion 33

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10 EXP

Quasi-steady

Brunone

Trikha

Kagawa

ODE Model

FIGURE 3.2: Experimental data compared with numerical results obtained using
different friction models for the water hammer problem in a HDPE DN50 smooth-
wall pipe with turbulent flow (Q0 = 2,00 l/s, Re ≈ 51000). Pressure p(Nx) at the

downstream.

the least square error (LSE) between numerical and experimental pressure at the down-
stream end of the pipe, considering the entire time interval and not the single peaks. The
same principle is followed for the calibration of E∞ and η with the SLS model. To perform
these optimizations, the SCE-UA (Shuffled Complex Evolution - University of Arizona)
algorithm, a general purpose global optimization method originally developed by Duan,
Sorooshian, and Gupta (1992) and Duan, Gupta, and Sorooshian (1993), is used.
Two main approaches are followed to calibrate the creep function and test the numeri-
cal models. Having observed in Section 3.2.3 that in general the unsteady friction term
cannot extensively describe the dissipation of transient waves in HDPE pipes, in the first
calibration unsteady friction effects are neglected, considering only the pipe wall vis-
coelasticity as diffusive effect. In the second calibration, instead, unsteady friction losses
are considered as part of the damping. It has been noticed that the calibration of vis-
coelastic parameters is not independent of the specific test facilities, in terms of diameter
and length of the tube, wall thickness and anchors. Hence, in order to achieve the best
fitting between numerical and experimental results, a specific calibration has been made
for each test analyzed, considering not to have parameters generally valid for a given
material. Moreover, it is worth to mention that the existence of different combinations
of viscoelastic parameters that can describe the behavior of a plastic tube, with the same
sum of squared errors against experimental data, has been confirmed by Ferrante and
Capponi (2017) when using the SLS model. Viscoelastic calibrated parameters are fur-
ther presented in Section 3.3.2 for each water hammer test case.

3.3 Numerical results and Discussion

To compare the three numerical methods, two different types of problems are se-
lected. The first kind of test cases regards three different Riemann problems (i.e. ini-
tial value problems governed by conservation laws with piece-wise constant initial data
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FIGURE 3.3: Schematic representation of the experimental setup of water hammer
tests. The supply system is provided by a centrifugal pump submerged in a water
reservoir with a capacity of 5 m3. At the upstream of the pipe there is a pressurized
tank of galvanized steel with 500 l volume and 8 bars nominal pressure. Pressure
transmitters (P) and a flow meter (FM) are employed for the data acquisition. The

closure of a downstream ball valve is used to recreate hydraulic transients.

having a single discontinuity), solved only in the elastic case, for which a quasi-exact so-
lution is available (Dumbser, Iben, and Ioriatti, 2015). Furthermore, two water hammer
problems in HDPE tubes are presented, for which experimental data already used by
Pignatelli (2014) and Evangelista et al. (2015) were provided and assumed as reference.
A sketch of the experimental setup is shown in Fig. 3.3. For this kind of tests, viscoelastic
parameters calibration is also discussed.

In all the simulations presented in this chapter the following assumptions are consid-
ered: CFL = 0.9, νp = 0.4, ρ0 = 998.2 kg m−3, p0 = 105 Pa, cs = 1400 m s−1, T0 = 293 K,
pv = 2300 Pa, Rv = 303 K−1 m2 s−2 and Kc = 10−6 Pa −1.

3.3.1 Riemann Problems

The chosen Riemann problems are very demanding test cases, selected to stress nu-
merical schemes and evaluate their possible weaknesses. The first two Riemann prob-
lems, RP1 and RP2, are designed considering a sudden increment of the cross-section of
the conduct in the middle of the domain and differ each other only for the material of the
pipe taken into account, hence for the Young modulus. Precisely, this information is con-
tained within the parameter K, defined in Eq. (3.31). While in RP1 K = 2.40 · 108 Pa/m2,
corresponding to an elastic modulus typical of polymer materials, in RP2 K = 2.40 · 106

Case pL uL A0L pR uR A0R K tend Nx
[Pa] [m/s] [cm2] [Pa] [m/s] [cm2] [Pa] [s] [-]

RP1 100·γ0 0.0 15.00 20·γ0 0.0 34.00 2.40 · 108 0.3 400
RP2 100·γ0 0.0 15.00 20·γ0 0.0 34.00 2.40 · 106 3.0 400
RP3 105 0.0 0.50265 102 0.0 0.50265 10.053 · 108 0.0005 500

TABLE 3.1: Initial states for the Riemann problems, with γ0 = ρ0g. Subscripts
L and R stand respectively for left and right state of the piece-wise constant initial

values typical of Riemann problems.
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FIGURE 3.4: Comparison of the numerical results obtained with MOC, DOT and
SI against the quasi-exact solution (ExactRS) in Riemann problem RP1 at time

tend in terms of (a) density, (b) velocity, (c) total head and (d) flow rate.

Pa/m2, which corresponds to a typical elastic modulus of a rubber material. To have
higher stiffness means to have higher wave speeds (with a flow velocity that becomes
negligible in comparison with the celerity itself) and a substantial non-variance of the
celerity across the rarefaction and the shock waves, which relates exactly to a linear be-
havior. To confirm this assertion, the trend of the celerity in RP1 and RP2 is presented
in Fig. 3.6, focusing on the concept of non-variance just discussed. In the same figure,
velocity values are also shown to compare them to the celerity ones. The solution of the
problem consists of a rarefaction wave, propagating to the left, followed by a station-
ary contact discontinuity in the middle of the domain, where there is the cross-sectional
jump, and a final shock wave, propagating to the right. The differences between the
two solutions are connected to the different material properties: only concerning a very
flexible material the rarefaction wave appears well extended (while in the first case the
rarefaction could be confused with a shock wave) and the central contact discontinuity is
stronger in RP2 than in RP1.
The last Riemann problem, RP3, concerns a general elastic flexible pipe in which cavita-
tion occurs: the initial left state is liquid, while the right state is in the wet steam region,
with pR < pv. In this test, therefore, there is a very large pressure drop across the two
phases, of three orders of magnitude. Moreover, a very strong rarefaction traveling also
through the phase change, followed by an equally severe shock wave, is observed.
All of the RP tests are solved only considering the Laplace constitutive law, to make it
possible to compare the results with a quasi-exact solution (Dumbser, Iben, and Ioriatti,
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FIGURE 3.5: Comparison of the numerical results obtained with MOC, DOT and
SI against the quasi-exact solution (ExactRS) in Riemann problem RP2 at time

tend in terms of (a) density, (b) velocity, (c) total head and (d) flow rate.

FIGURE 3.6: Celerity and velocity values in RP1 (a) and RP2 (b). Position of the
rarefaction and of the shock wave highlighted in each case. The light blue dotted
line represents the celerity while the orange dotted line represents the velocity.
While in RP1 numerical methods works in a weakly non-linear context, in RP2

the more flexible material returns a fully non-linear response.

2015). Initial data of each Riemann problem are presented in Tab. 4.1 and the final results
are shown in figures from 4.6 to 4.8. Concerning the SI scheme, ∆tmax = 10−3 s in RP1 and
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FIGURE 3.7: Comparison of the numerical results obtained with MOC, DOT and
SI against the quasi-exact solution (ExactRS) in Riemann problem RP3 at time
tend in terms of (a,c) density, (b,d) velocity, (e) pressure and (f) cross-sectional area.
Figures (c) and (d) are zooms of (a) and (b) respectively, to show the complexity of

the solution in the middle of the domain.
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RP2, while ∆tmax = 10−6 s in RP3. In addition, for all the simulations, θ = 0.80 in order
to reduce the numerical diffusion without generating excessive non-physical oscillations.
Only for the RP3 the non-linear operator for the convective terms has been considered.

It has to be mentioned that, to obtain reliable results solving the Riemann problem test
cases with the MOC, the Method of Specified Intervals (Wylie and Streeter, 1978) was
used and computations were separated for the two parts of the domain with constant
initial values. Moreover, for RP1 and RP2, it was also necessary to impose the total head
and mass flow rate conservation at the interface to avoid an unrealistic jump of the flow
rate in the middle of the domain. This aspect has to be underlined to make the reader
understand that the simplest way to implement and use the MOC is generally not enough
in case of more challenging problems.

Considering RP1 in Fig. 4.6, the less demanding Riemann problem, with a weakly
non-linear response given by the material, the semi-implicit scheme appears a bit more
diffusive along the shock wave than the other two numerical methods. This is due to the
parameter θ, fixed equal to 0.8 (hence tending a bit more to a first order scheme) to avoid
oscillations after the rarefaction and before the shock.

In RP2 (Fig. 4.7), in a fully non-linear context, both the DOT and the SI schemes
present oscillations in proximity of the contact discontinuity, with the SI showing the
same flaw also before the shock wave. In this very demanding situation, the DOT solver
shows a deficiency in the correct conservation of the total head across the stronger con-
tact discontinuity, which is more heavily transferred to the velocity (Fig. 4.7). This prob-
lem of oscillation is most probably due to the use of a linear path that doesn’t correctly
represent the non-linearity given by the material. Thus, recurring to a non-linear path,
referring for example to Caleffi and Valiani (2017), the mentioned flaw might be reduced.
On the other hand, in the SI method, the θ-method causes overshoots in the proximity of
the strong gradients, as explained in Section 3.2.2.3. The MOC performs in the best way
near the contact discontinuity (thanks to the separation in this point of the computations,
imposing the conservation of the total head and of the mass flow rate at the interface)
but it is the most diffusive scheme in the shock and rarefaction zone. However, in RP2
the Method of Characteristics needed another rearrangement of the code: to obtain cor-
rect wave speeds, non-straight characteristic curves (i.e. dx/dt = u ± a) are considered,
without neglecting the velocity with respect to the celerity. The reason for this distinct
demand lays in the difference between the values of velocity and celerity in RP2 and RP1,
already discussed and confirmed by Fig. 3.6.

Observing results of RP3, presented in Fig. 4.8, the rarefaction wave becomes evident
in the density only when the pressure reaches values below the vapor pressure, as de-
duced from Eq. (3.17). On the other hand, the pressure starts to drop earlier, reaching
the vapor pressure and maintaining a constant value until x = 0, with a mixture that
is still liquid and hence represented by the typical water density value. The tail of the
rarefaction wave is further ahead in the domain, before a very short constant state that
separates the rarefaction from the shock wave in the wet steam region.
With this problem, the MOC demonstrates again to be not very robust. In this case,
indeed, the scheme is not able to capture the correct evolution of the rarefaction and es-
pecially of the shock wave, clearly visible in the velocity plot of Fig. 4.8. The reason of
this deficiency lays in the violation of one of the hypothesis made to obtain the classical
Allievi-Joukowsky equations (3.13): the assumption of considering weakly compressible
fluids, for which it is possible to neglect the spatial variation of the density (refer to Sec-
tion 3.2.1). Thus, in these circumstances, the MOC cannot properly capture the whole
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FIGURE 3.8: Calibrated viscoelastic creep functions of the HDPE pipes considered
in the present study, concerning the SLS and g-KV model, compared with creep
functions for HDPE pipes taken from literature (Evangelista et al., 2015; Covas et
al., 2005). Results (a) neglecting unsteady friction and (b) considering unsteady

friction.

complexity of the phenomenon because of its mathematical structure (e.g. the shock
wave in the wet steam region is completely absent).

3.3.2 Water hammer problems

For the water hammer (WH) problems, two HDPE tubes have been chosen, consider-
ing the available experimental data (Evangelista et al., 2015; Pignatelli, 2014). Test WH1
concerns a straight DN50 pipe of length 203.3 m, while test WH2 regards a straight DN32
pipe of 101.9 m. The main features of the systems are listed in Tab. 3.2. The average wave
speeds a were given from the laboratory experiments, estimated as mean values of those
obtained as ratio between four times the total length of the pipe and the time elapsed be-
tween two pressure peaks. Pipelines were fixed to the ground by means of metal clamps
along the entire length, to avoid any axial movement of the pipes. For this reason, in the
WH simulations the geometric parameter W defined in Section 3.2.1.3 is multiplied by an

Test DN D s0 L Q0 a f
[mm] [mm] [mm] [m] [l/s] [m/s] [-]

WH1 50 44.0 3.0 203.3 2.00 350 0.02105
WH2 32 23.2 4.4 101.9 0.25 500 0.03006

TABLE 3.2: Data of the water hammer tests WH1 and WH2.

Parameter WH1 - QS WH1 - US WH2 - QS WH2 - US
E0 [GPa] 1.90 1.90 1.90 1.90
E∞ [GPa] 1.51 1.59 1.59 1.67
η [GPa s] 0.085 0.080 0.043 0.060

TABLE 3.3: Viscoelastic parameters calibrated for water hammer tests WH1 and
WH2 solved with the SLS model in case of a quasi-steady friction model (QS) or
considering the unsteady friction losses (US). Please refer to Section 3.2.4 for the

calibration procedure.
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axial pipe-constraint dimensionless parameter (Wylie and Streeter, 1978):

αpc =
s0

R0
(1 + νp) +

2R0

2R0 + s0

(︂
1 + ν2

p

)︂
,

finally being

W =
αpcR0

s0
. (3.88)

In both cases, to experimentally generate a transient test, a fast and complete closure of
the downstream ball valve is done, with a controlled closure time fixed at 0.1 s (set as
outlet boundary condition in the computations). The discharge of the flow is provided
upstream from a pressurized tank, whose pressure is measured at each time step and
used as inlet boundary condition (see Fig. 3.3). For further details about the experimental
setup and the procedure, the reader can refer to Evangelista et al. (2015) and Pignatelli
(2014).

To solve WH problems considering the correct FSI between water and tube wall, both
the SLS model and the g-KV model with 5 KV units (5-KV) are tested for all the numerical
schemes. The viscoelastic parameters (calibrated as explained in Section 3.2.4) are listed
in Tab. 3.3 and 3.4 for each case and for both the friction models taken into account,
the simple quasi-steady (QS) and the unsteady (US) one (using the ODE friction model
discussed in Section 3.2.1.2). In Fig. 3.8 it is possible to observe the trend of the calibrated
creep functions adopted for the present study compared with those used by Evangelista
et al. (2015), neglecting the unsteady friction effects with a 5 KV elements model, and

WH1 - QS
Parameter k = 1 k = 2 k = 3 k = 4 k = 5

Jk [10−11 Pa−1] 8.14 1.55 14.53 0.0016 23.85
τrk [s] 0.05 0.50 1.50 5.00 10.00
WH1 - US
Parameter k = 1 k = 2 k = 3 k = 4 k = 5

Jk [10−11 Pa−1] 6.57 0.45 3.98 0.026 89.62
τrk [s] 0.05 0.50 1.50 5.00 10.00

WH2 - QS
Parameter k = 1 k = 2 k = 3 k = 4 k = 5

Jk [10−11 Pa−1] 4.40 15.41 0.013 0.021 0.43
τrk [s] 0.05 0.50 1.50 5.00 10.00
WH2 - US
Parameter k = 1 k = 2 k = 3 k = 4 k = 5

Jk [10−11 Pa−1] 1.91 1.00 25.64 0.93 9.78
τrk [s] 0.05 0.50 1.50 5.00 10.00

TABLE 3.4: Viscoelastic parameters calibrated for water hammer test WH1 and
WH2 solved with the 5-KV model in case of a quasi-steady friction model (QS) or
considering the unsteady friction losses (US), with E0 = 1.90 GPa. Please refer

to Section 3.2.4 for the calibration procedure.
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FIGURE 3.9: Comparison of the numerical results obtained with MOC, DOT
and SI against the experimental solution (EXP) of the water hammer test WH1
with each viscoelastic and friction model configuration: (a) SLS and quasi-steady
friction model, (b) 5-KV and quasi-steady friction model, (c) SLS and unsteady
friction model and (d) 5-KV and unsteady friction model. Pressure p(Nx) at the

downstream end.

Covas et al. (2004) and Covas et al. (2005), neglecting the unsteady friction effects or con-
sidering them with the 5-KV model or using creep data experimentally determined by
mechanical tests. It has to be mentioned that the creep function proposed by Covas et
al. (2005) is referred to a PE pipe and an average pressure wave speed of 395 m/s, cor-
responding to an instantaneous Young modulus E0 = 1.43 GPa. It can be noticed that
the calibrated creep functions are really comparable to the one presented by Evangelista
et al. (2015) neglecting the unsteady friction effects. On the other hand, considering the
unsteady losses, the trend of the curves is similar to those calibrated by Covas et al. (2004)
and Covas et al. (2005). In this case it is also visible an increment of the parameters Jk,
with respect to the calibration made neglecting the unsteady friction, which confirms a
reduction of the elastic modulus Ek due to the consideration of the unsteadiness as part of
the damping. The difference between DN32 and DN50 creep functions can be attributed
again to the different facilities and conditions of the two tests: being the viscoelastic mod-
els adopted for this work always considerably affected by these aspects, it is generally not
possible to fix a unique set of parameters universally valid for a specific material. Finally,
if we compare the curves obtained with 1 KV element (SLS model) with those with 5 KV
elements (5-KV model) it can be clearly noticed that adding Kelvin-Voigt elements it is
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FIGURE 3.10: Comparison of the numerical results obtained with MOC, DOT
and SI against the experimental solution (EXP) of the water hammer test WH2
with each viscoelastic and friction model configuration: (a) SLS and quasi-steady
friction model, (b) 5-KV and quasi-steady friction model, (c) SLS and unsteady
friction model and (d) 5-KV and unsteady friction model. Pressure p(Nx) at the

downstream end.

possible to obtain a behavior of the creep functions that is substantially not constant for
increasing time.

Considering that the parameter P as defined in (3.18) is largely bigger than 1 for the
systems analyzed in this study (respectively, P = 5.5 in WH1 and P = 12.7 in WH2),
it was initially adopted a quasi-steady friction model inside all the numerical schemes.
Nevertheless, the effect of the ODE unsteady friction model are also tested with respect
to the steady one.

Comparisons between numerical and experimental pressure values in the immediate
proximity of the closing valve are shown in Fig. 3.9 for test WH1 and in Fig. 3.10 for test
WH2, with each viscoelastic model and friction configuration. For all the simulations
the number of cells is maintained Nx = 50. With the semi-implicit scheme θ = 0.55 and
∆tmax = 0.01 s, except for WH2 with the SLS viscoelastic model, for which a smaller ∆t
was necessary to obtain an accurate result: ∆tmax = 0.001 s. This behavior can be ex-
plained in terms of wave speed. In WH2, indeed, the wave speed is higher than in WH1,
meaning that a higher resolution in terms of time steps is necessary if the viscoelastic
model adopted is the simplest one.
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FIGURE 3.11: Results of the efficiency analysis for the test WH1 with the (a) SLS
and (b) 5-KV viscoelastic model, neglecting unsteady friction losses. Trend of the

norm L2 with respect to the CPU/computational time tCPU .

In general it can be noticed that the three numerical methods reproduce similar re-
sults in both the test cases. The first clear observation is related to the contribution of
the unsteady friction model, which seems to be negligible, as already predictable by the
parameter P related to the experiments (Ghidaoui, Mansour, and Zhao, 2002; Duan et al.,
2010). This result underlines once more what established by Ghidaoui, Mansour, and
Zhao (2002): the unsteady friction term assumes relevance only when the wave has to
travel from one end of the pipe to another less than once in order to have the pre-existing
turbulent characteristics, throughout the whole cross-section of the pipe, influenced by
the wall shear pulse.
The second remark concerns the viscoelastic models: in the simulations it is visible that
the increment of KV elements, from 1 to 5, does not yield to a consistent improvement
of the results, weighting, on the other hand, in terms of computational costs and adding
difficulties to the calibration procedure.

3.3.3 Efficiency analysis

For the water hammer test WH1, an efficiency analysis is computed to evaluate the
performance of each numerical model adopted for the present study. In Fig. 3.11 errors in
terms of norm L2 are compared against the computational time tCPU , separately using the
SLS and the 5-KV viscoelastic models for each numerical scheme. Given a vector differ-
ence between the numerical values of the pressure pnum and the measured experimental
values of the pressure pexp, the norm L2 is here defined as:

L2 =

⌜⃓⃓⎷ Nx

∑
i=1

⃓⃓
pnum,i − pexp,i

⃓⃓2 ∆x. (3.89)

Because of the low impact of the unsteady friction losses with respect to the accuracy of
the results (as observed in Section 3.3.2), with these analysis only a quasi-steady friction
model is considered. Solutions are computed for five different meshes: Nx = 25, 50, 100,
250, 500 for DOT and SI schemes and Nx = 100, 250, 500, 1000, 1500 for MOC (augmented
because of the higher efficiency of this scheme).
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Comparing the two graphs in Fig. 3.11, it is evident that the increment of viscoelastic pa-
rameters adopted to characterize the material mechanics leads to an inevitable increment
of computational costs not balanced by a comparable error reduction. In the case of the
5-KV model, errors are less because the more parameters we have for describing the nu-
merical pressure curve, the more adaptable to the experimental reference the curve itself
will be. However, even if there is this error reduction adopting the 5-KV model instead
of the SLS model (very small with DOT and SI methods), the consequent CPU time incre-
ment makes the choice fruitless. Considering both the viscoelastic models, it can clearly
be deduced that the MOC is the most efficient scheme. The SI method starts to be com-
petitive only when it is necessary to increase the number of cells of the domain, aiming to
obtain very small errors. A parallel observation concerns the trend of each curve: while
MOC and DOT maintain almost the same slope (typical of a second order scheme), the
SI method presents a steeper slope, meaning a higher order of accuracy. Both these par-
ticular behaviors of the SI method are a consequence of the double condition that needs
to be respected choosing the maximum admissible ∆t. With these simulations, the CFL
condition is always by-passed by the ∆tmax fixed to avoid excessive numerical diffusion.
In this way, the real order of the scheme is hidden and even with a limited number of
cells the simulation remains slower than it could be without the fixed time step. Finally,
the DOT is always less efficient than the MOC and more efficient than the SI only when
fewer cells are considered for the discretization of the domain.

3.4 Concluding remarks

Accuracy, robustness and efficiency of three different numerical schemes have been
analyzed and compared when applied for the resolution of hydraulic transients in flex-
ible polymer tubes: the Method of Characteristics, the explicit path-conservative FVM
with DOT solver (Dumbser and Toro, 2011b; Dumbser and Toro, 2011a) and the stag-
gered semi-implicit FVM (Dumbser, Iben, and Ioriatti, 2015). Results show a good agree-
ment with the experimental data for all the numerical methods, whether the SLS model
or a g-KV chain is chosen for the characterization of the viscoelastic behavior of HDPE
tube walls. This aspect encourages the adoption of less complex models, like the SLS,
yet able to adequately capture the correct behavior of the material and ensuring in the
meantime the minimum computational cost. The same applies concerning the friction
term, for which it has been confirmed that, in the scenarios investigated in this study, the
unsteady wall-shear stress can be neglected in favour of a quasi-steady friction model. It
is worth remembering that the calibration of the model parameters for viscoelasticity and
unsteady friction term is complicated by the fact that both these aspects are manifested
in the damping effect of over-pressure and under-pressure waves. Therefore, a precise
calibration of the specific coefficients is hard to achieve.
Furthermore, a new efficient resolution of the convolution integral of the unsteady wall-
shear stress has been tested in turbulent flow conditions and an original formulation of
the g-KV viscoelastic constitutive law for its applicability to augmented FSI finite volume
schemes.

The Method of Characteristics results the most efficient numerical model, among
those considered in this study, explaining why it is generally preferred for the resolu-
tion of hydraulic transients. Only the SI method becomes competitive with respect to
the MOC when it is necessary to have a rich discretization of the domain, aiming to
obtain very small errors. However, the Riemann problem test cases highlight that the
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MOC is not as robust as DOT and SI schemes. To obtain adequate solutions considering
more complex configurations in the analysis (e.g. cross-sectional changes) or more flex-
ible materials (e.g. rubber), indeed, it is not possible to apply the MOC in its simplest
way. The code needs to be rearranged for the specific request. In all the RPs here pre-
sented, the Method of Specified Intervals has been necessarily used and computations
have been separated for the two parts of the domain with different initial values, impos-
ing the variables congruence at the interface. Furthermore, in RP2, it had been necessary
to consider non-straight characteristic curves, without neglecting the flow velocity with
respect to the celerity. In addition, when considering cavitation cases, the MOC presents
difficulties in the correct capture of the discontinuities inherent in the problem due to the
simplifying hypothesis underlying its classical derivation. Aware of the existence of im-
proved versions of the MOC with more complex cavitation models, such as the Discrete
vapor Cavity model or the Discrete Gas Cavity model (Bergant, Simpson, and Tijssel-
ing, 2006), it was not consistent to implement them to simulate the cavitation problem
concerned in this study. In these models, indeed, is it assumed that the pressure cannot
reach values below the vapor pressure or that the celerity of the mixture only depends
on the liquid phase contribution. The purpose was to compare finite volume methods to
the standard MOC, implemented in its classic and most used form, not recurring to very
complex implementations, for an equilibrated analysis.

To summarize all the results achieved in the study presented, it can be said that while
for simple systems the adoption of the MOC is generally encouraged, when dealing with
complex configurations the choice of the numerical scheme becomes more complicated,
requiring the evaluation of the critical aspects involved in the specific case and the maxi-
mum error admissible for the results.
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Chapter 4

Viscoelasticity in blood vessels

4.1 Introduction

The availability of robust and efficient mathematical instruments, together with the
engineering know-how in the fluid mechanics sector, represents an invaluable tool for
a consistent support in hemodynamics studies. It is a proven fact that computational
modeling can provide efficient approaches for the quantification of fluid dynamics phe-
nomena in the cardiovascular network, supplying meaningful data that otherwise would
require invasive techniques or simply would not be available with general clinical mea-
surements (Pedley, 1980; Formaggia, Quarteroni, and Veneziani, 2009; Ambrosi, Quar-
teroni, and Rozza, 2012; Willemet, Vennin, and Alastruey, 2016). Mathematical models
and numerical simulations can also help the prediction of the possible onset of diseases
and development of pathologies (Cavallini, Caleffi, and Coscia, 2008; Delestre and La-
grée, 2013; Toro, 2016; Liang, Guan, and Alastruey, 2018; Müller et al., 2019). Numerical
modeling of the entire cardiovascular system by means of 3D models is currently not af-
fordable, because of the complexity of the computational domain, which is composed of
thousands of arteries and veins and billions of arterioles, capillaries and venules, and the
consequent demanding computational cost. For most applications, 1D models coupled
to 0D/lumped-parameter models, derived from the full 3D models by means of simpli-
fying assumptions on the flow, the structure, and their interaction, result one of the best
realistic compromise (Toro, 2016). Optionally, these averaged models can be coupled
with 3D ones. For instance, for cases involving the evaluation hemodynamic quantities
such as the wall shear stress, when there is the formation of vortices, due to vessel oc-
clusions and stenotic configurations (Caiazzo et al., 2014), or generally when localized
(especially patient-specific) phenomena need to be analyzed (Blanco and Feijóo, 2013;
Quarteroni, Manzoni, and Vergara, 2017). A thorough comparison of 1D and 3D com-
putational hemodynamics in arterial models with compliant vessel walls is presented by
Xiao, Alastruey, and Figueroa (2014). In this work, it is confirmed that accurate predic-
tions can be made with a 1D model when the flow is predominantly unidirectional.

In recent years, mathematical models have been consistently developed, focusing on
different aspects and fundamental issues that need to be addressed to successfully model
the circulatory system. Among these, it has to be considered that blood flow mechanically
interacts with vessel walls and tissue, giving rise to complex fluid-structure interactions
whose mathematical analysis is difficult to properly describe and numerically simulate
in an efficient manner (Holenstein, Niederer, and Anliker, 1980; Leguy, 2019). The wall
of a blood vessel consists of three layers of different tissues: an epithelial inner lining, a
middle layer consisting of a smooth muscle and elastic connective tissue, and a connec-
tive tissue outer covering. These three structural layers, from innermost to outermost, are
called tunica interna (intima), tunica media and tunica externa (Tortora and Derrickson,
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2013). The smooth muscle cells attribute a viscoelastic behavior to the wall (Valdez-Jasso
et al., 2009; Battista, 2015), which assumes a fundamental role when high frequencies are
dominant (Alastruey et al., 2012). Whereas when the stress is applied very slowly, the
viscous aspects do not become apparent and the wall behaves as purely elastic (Wester-
hof et al., 2019). At a macroscopic level, indeed, the vessel wall can be seen as a com-
plex multi-layer viscoelastic structure which deforms under the action of blood pressure
(Nichols, O’Rourke, and Vlachlopoulos, 2011; Wang, Golob, and Chesler, 2016), even col-
lapsing, in the case of veins, under certain circumstances (Shapiro, 1977; Pedley, 1983;
Toro and Siviglia, 2013; Spiller et al., 2017). Modeling the interaction between blood flow
and vessel wall mechanics requires the definition of a constitutive law which has to cor-
rectly describe the energy transfer between the two means, to accurately represent wave
propagation phenomena (Pedley, 1980; Fung, 1997; Leguy, 2019). Moreover, as in all vis-
coelastic materials, the energy put into the system during strain is not totally recovered
during relaxation, causing a viscous damping of the pulse waves. This phenomenon can
be found in many biological tissues and it is visible when plotting pressure against area
variations in time: the presence of a widening pressure-area loop (hysteresis) represents
the effective energy dissipated during dilatation and contraction cycles (Valdez-Jasso et
al., 2009; Raghu et al., 2011; Battista, 2015). When modeling the vessel wall mechanics
simply by means of an elastic law, the whole information related to the loss of energy of
the phenomenon vanishes and pressure peaks levels could be overestimated (Holenstein,
Niederer, and Anliker, 1980; Alastruey et al., 2011; Montecinos, Müller, and Toro, 2014;
Battista, 2015).

Even though frequently, in hemodynamics models, the viscosity of vessels is ne-
glected for simplicity, there is an increasing number of contributions showing the ben-
efits of modeling the mechanical behavior of the vessel wall using a viscoelastic rheo-
logical characterization. Bessems et al. (2008) formulate a 1D viscoelastic model whose
results are compared with in-vitro data measured in single tapered polyurethane ves-
sels, showing that wall viscoelasticity is necessary to accurately predict the propagation
and attenuation of pressure and flow waves. Reymond et al. (2009) compare the simula-
tions computed with a 1D viscoelastic model of the human arterial network with average
pressure values and flow waveforms measured at several arterial locations in a group of
young subjects. Both qualitative and quantitative comparisons of systolic, diastolic and
mean pressure and flow suggest a significant importance of the viscous term of vessels
walls, especially in peripheral branches. In fact, since pulse waves are subject to a vis-
coelastic response along each arterial segment, damping effects become more consistent
as moving away from the heart (Valdez-Jasso et al., 2009; Alastruey et al., 2012; My-
nard and Smolich, 2015). Similar results are presented by Alastruey et al., 2011 with
the assessment of 1D viscoelastic simulations against measurements collected from a 37-
branches network, in silicone material, representing the largest central systemic arteries
of the human arterial tree. For these reasons, many attempts have recently been made to
improve the rheological characterization of vessels wall on the basis of linear, quasilinear
viscoelasticity or more complex non-linear models (Montecinos, Müller, and Toro, 2014;
Battista, 2015; Ghigo et al., 2017).

In this Chapter, a novel 1D a-FSI system, able to capture viscoelastic wall effects, is
presented for the blood flow modeling of both arterial and venous network and solved
with a FVM with the implementation of a second-order strong-stability-preserving (SSP)
Implicit-Explicit (IMEX) Runge-Kutta (RK) scheme (Pareschi and Russo, 2005). For the
characterization of the wall mechanics, in this work it is proposed the use of the SLS
model in its version with a KV unit (see Section 2.3.3). The same viscoelastic model
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was already used by Bessems et al. (2008) and Valdez-Jasso et al. (2009), with success-
ful comparisons of numerical results with experimental data. Moreover, Bessems et al.
(2008) use a mathematical approach similar to the one presented in this work, based
on an augmented system of equations, but with a different formulation of the final SLS
model constitutive law and solely for the arterial network, associated to a spectral ele-
ment discretization. Nevertheless, in the computational hemodynamics field, the most
commonly used viscoelastic model is the KV model (see Fig. 2.4), due to its simplicity
(Alastruey et al., 2011; Montecinos, Müller, and Toro, 2014; Wang, Fullana, and Lagrée,
2014; Mynard and Smolich, 2015; Liang, Guan, and Alastruey, 2018). This model, indeed,
formulates pressure as a function of cross-sectional area, making it straightforward the
incorporation into a fluid dynamics model. However, as already discussed in Section
2.3.2, the KV model has the lack of being able to describe an exponential relaxation of the
stress (pressure) over time, which is one of the main attributes of viscoelastic materials
(Lakes, 2009). Furthermore, when inserted into the system of equations in its general for-
mulation, the KV viscoelastic law gives rise to a second-order derivative and consequent
numerical issues related to the parabolic term. In literature this complication is treated
in different manners. Alastruey et al. (2011) adopt a discontinuous Galerkin scheme with
a spectral/hp spatial discretization. Montecinos, Müller, and Toro (2014) pass through
a hyperbolic reformulation of the system introducing a numerical relaxation parameter
(applying Cattaneo’s law) and solving it with an ADER scheme. While, Formaggia, Lam-
poni, and Quarteroni (2003), Mynard and Smolich (2015), and Wang, Fullana, and Lagrée
(2014) employ a specific operator-splitting procedure. The SLS model, together with the
a-FSI system here proposed, directly overcome these issues, because the resulting system
is natively hyperbolic. Still, it maintains ease of implementation and usage, with very
good efficiency and robustness granted by the selected IMEX RK algorithm, and con-
vergence is verified, even when dealing with viscoelastic arteries and veins. The model
is validated for idealized and real case studies in single vessels, assessing its capability
to serve as valuable tool even for practical medical applications, cardiovascular diagno-
sis and the study of circulatory pathologies. With this aim, in-vivo flow velocity and
pressure measurements of human common carotid arteries (CCA) and common femoral
arteries (CFA) are performed and compared with numerical results. Moreover, a prelimi-
nary effective strategy to estimate the viscoelastic parameters of the SLS model adopted is
proposed, evaluating numerical hysteresis curves of different CCAs with corresponding
literature ones.

4.2 Methods

4.2.1 Mathematical model

4.2.1.1 General one-dimensional formulation

The standard 1D mathematical model for blood flow, valid for medium to large-size
vessels, is obtained averaging the incompressible Navier-Stokes equations over the cross-
section, under the assumption of axial symmetry of the vessel and of the flow, obtain-
ing the well established equations of conservation of mass and momentum (Formaggia,
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Quarteroni, and Veneziani, 2009):

∂t A + ∂x(Au) = 0 (4.1a)

∂t(Au) + ∂x(Au2) +
A
ρ

∂x p =
FR

ρ
. (4.1b)

The reader can easily observe that this system coincides with system (3.1) when the con-
sidered fluid is incompressible (ρ constant in space and time).
To close the governing PDE system (4.1), a tube law, representative of the interaction
between vessel wall displacement (through the cross-sectional area A) and blood pres-
sure p, is required. As for water pipelines (Section 3.2), this can be performed through a
constitutive model, relating strain and stress.

4.2.1.2 Friction model

The blood flow velocity profile is considered self-similar and axisymmetric even in
sections with large curvature (e.g. in the aortic arch). The typical velocity profile used for
blood flow satisfying the no-slip condition is (Alastruey, Parker, and Sherwin, 2012):

v(x, r, t) = u
ζ + 2

ζ

[︃
1 −

(︂ r
R

)︂ζ
]︃

, (4.2)

where r is the radial coordinate and ζ = 2−αc
αc−1 is the polynomial order depending on αc,

Coriolis coefficient, which accounts for the non-linearity of the sectional integration of
the velocity. With Eq. (4.2) it is possible to define different profiles between close to flat
(αc ≈ 1) to parabolic (αc = 3/4, ζ = 2). For blood flow in arteries it has been demonstrated
that the velocity profile is on average rather blunt in central arteries and not parabolic
(Quarteroni and Formaggia, 2004), with the consequence that the choice of αc = 1.1 (ζ =
9) provides the best compromise to fit experimental data (Xiao, Alastruey, and Figueroa,
2014). A parabolic velocity profile is in any case more suitable for non-central arteries.
For the velocity profile given by Eq. (4.2), the friction loss term finally results:

FR = −2(ζ + 2)µπu , (4.3)

where µ is the dynamic viscosity of blood.

4.2.1.3 Elastic constitutive tube law

In the simplest case, the pressure-area relationship is defined considering a perfectly
elastic behavior of the vessel wall, with the widely adopted elastic constitutive tube law
(Formaggia, Lamponi, and Quarteroni, 2003; Matthys et al., 2007; Müller and Toro, 2013):

p = pext + ψel = pext + K (αm − αn) . (4.4)

In this equation, pext is the external pressure, ψel is the elastic contribution of the transmu-
ral pressure which depends on α, K, which is the stiffness coefficient of the material, and
m and n, specific parameters related to the behavior of the vessel wall, whether artery or
vein. If dealing with arteries, this tube law corresponds to the well known Laplace law
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presented in Eq. 3.30 in its linearized form (Wylie and Streeter, 1978). Indeed, consider-
ing the definition of the geometry parameter W in Eq. (3.32), for an artery we have:

K =
E0

W
, m = 1/2, n = 0, (4.5)

with the formulation of the stiffness parameter K coinciding with the one presented in Eq.
(3.31). When dealing with veins, their possible collapse in case of large negative trans-
mural pressures needs to be considered (Carpenter and Pedley, 2001; Toro and Siviglia,
2013; Murillo, Navas-Montilla, and García-Navarro, 2019). The collapsed state for veins
is identified by a cross-sectional area assuming a buckled, dumbbell shape configuration,
in which opposite sides of the interior wall touch each other, still leaving some fluid in
the two extremes (Carpenter and Pedley, 2001; Spiller et al., 2017). This particular aspect
leads to the assumption of different parameters for the mechanical characterization of the
wall behavior (Shapiro, 1977):

K =
E0

12W3 , m = 10, n = −3/2. (4.6)

Following what presented in Section 3.2.1.3, it is also possible to derive with respect to
time Eq. (4.4) and to use the continuity Eq. (4.1a) to obtain a PDE representative of the
elastic behavior of the vessel wall:

∂t p +
K
A
(mαm − nαn) ∂x(Au) = 0, (4.7)

with the same set of parameters K, m and n discussed above for the characterization of
arteries (4.5) or veins (4.6).

4.2.1.4 Viscoelastic constitutive tube law

Even though mathematical models representing the blood circulation frequently ne-
glect the viscous component of the vessel wall, it is well known that blood vessels (and
living tissues in general) exhibit viscoelastic properties (Fung, 1997; Nichols, O’Rourke,
and Vlachlopoulos, 2011; Salvi, 2012). Viscoelastic effects are simulated in literature us-
ing different more or less complex rheological models, whether linear or not (Holenstein,
Niederer, and Anliker, 1980; Bessems et al., 2008; Valdez-Jasso et al., 2009; Wang, Golob,
and Chesler, 2016; Ghigo et al., 2017; Mitsotakis et al., 2019). The most frequently used
viscoelastic model results being the KV model (see Section 2.3.2 for details about the
model). Considering initially a generic artery, the deformation of the wall is geometri-
cally related to the cross-sectional area through equation ϵ = αm − αn =

√
α − 1. Involv-

ing Barlow’s formula, for which σ = W(p − pext), as in Eq. (3.10), and the continuity
Eq. (4.1a), it is possible to reformulate the constitutive law of the KV model, presented in
Eq. (2.12), in the following pressure-area relation:

p = pext + K (αm − αn)− Γ
A0

√
A

∂(Au)
∂x

, (4.8)

with

Γ =
ηs0

√
π

2
(4.9)



52 Chapter 4. Viscoelasticity in blood vessels

representing the viscous contribution of the material. With the same approach, consid-
ering m = 10 and n = −3/2 as in Eq. (4.6) for ϵ = αm − αn and assuming a relationship
between stress and pressure defined as σ = 12W3(p − pext), to take into account the po-
tential collapsibility of the vessel wall, it is possible to obtain exactly the same equation
(4.8), valid also for veins.
This viscoelastic law, which is widely adopted among literature’s well recognized blood
flow models (Alastruey et al., 2011; Montecinos, Müller, and Toro, 2014; Wang, Fullana,
and Lagrée, 2014; Mynard and Smolich, 2015), has the deficiency of defining a relaxation
response that is an impulse/spike plus a constant. Setting the strain to be a constant, in-
deed, the constitutive Eq. (2.12) reduces to the simple Hooke’s law: σ = Eϵ. In this way,
the stress is taken up by the spring and is constant; so in fact there is no stress relaxation
over time (Lakes, 2009).

A more realistic behavior can be modeled by the SLS model, represented in Fig. 2.5 (in
this study chosen in its form with a KV unit). As already discussed in Section 2.3.3, the
SLS model is yet able to exhibit all the three primary features of a viscoelastic material:
creep, stress relaxation and hysteresis (Battista, 2015). Concerning hysteresis, indeed, it
is possible to see vessels pressure-area loops representing the energy dissipated during
expansion and contraction cycles (Nichols, O’Rourke, and Vlachlopoulos, 2011; Salvi,
2012). Moreover, with the SLS model, it is possible to define the so-called relaxation
function, defined in Eq. (2.20), which describes, through the relaxation time τr, how
the stiffness of the material changes in time, starting from the instantaneous value, E0,
and reaching the asymptotic one, E∞. As previously presented for the KV model and
in Section 3.2.1.3, it is possible to write the SLS model constitutive equation in terms
of pressure and area. Taking into account a generic artery and parameters K, m and n
as presented in Eq. (4.5), differentiating with respect to time equation ϵ = αm − αn and
Barlow’s formula, it follows that: dϵ/dt = A−1 (mαm − nαn) dA/dt and dσ/dt = Wdp/dt.
Introducing these equations in the rheological law, presented in Eq. (2.16), and using the
continuity equation (4.1a), the sought PDE is obtained:

∂t p +
K
A
(mαm − nαn) ∂x(Au) =

1
τr

[︃
E∞

E0
ψel − (p − pext)

]︃
. (4.10)

Also with the SLS model it is possible to extend the applicability of the equation to the
case of veins with the same procedure discussed for the KV model, considering in this
case the set of parameters K, m and n presented in Eq. (4.6). It is here highlighted that the
viscosity coefficient η of the SLS model can be reconducted to the KV model’s viscosity
parameter Γ directly through Eq. (4.9):

η =
2Γ

s0
√

π
. (4.11)

4.2.1.5 The augmented FSI system

Based on the choice on how to simulate the mechanical behavior of the vessel wall,
whether elastic or viscoelastic, adding respectively Eq. (4.7) or Eq. (4.10) inside system
(4.1), it is possible to obtain a novel 1D a-FSI system valid for the blood flow modeling.
Furthermore, to accommodate longitudinal discontinuities of geometrical and mechan-
ical properties, such as equilibrium cross-sectional area, instantaneous Young modulus
E0 (or eventually the asymptotic one, E∞) and external pressure pext, it is necessary to in-
troduce additional equations to the system, to allow a formally correct treatment (Müller
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and Toro, 2013). Considering that these variables are constant in time, the additional
equations result: ∂t A0 = 0, ∂tE0 = 0 and ∂t pext = 0.
The complete coupled system of the FSI problem finally results:

∂t A + ∂x(Au) = 0 (4.12a)

∂t(Au) + ∂x(Au2) +
A
ρ

∂x p =
FR

ρ
(4.12b)

∂t p + d ∂x(Au) = S (4.12c)
∂t A0 = 0 (4.12d)
∂tE0 = 0 (4.12e)
∂t pext = 0. (4.12f)

In Eq. (4.12c), the parameter d(A, A0, E0) represents the elastic contribution of the tube
law (as in Eq. (3.45c) in the case of compressible fluids systems), having indeed the same
formulation if choosing an elastic or a viscoelastic characterization of the wall:

d =
K
A
(mαm − nαn) . (4.13)

In the same equation, the source term S(x, t) takes into account the viscous information
of the vessel wall behavior, hence simply being S = 0, as in Eq. (4.7), if an elastic wall
behavior is considered, or

S =
1
τr

[︃
E∞

E0
ψel − (p − pext)

]︃
, (4.14)

as in Eq. (4.10), if a more realistic viscoelastic behavior is chosen.
The reader is invited to observe how the formulation of the source term in Eq. (4.14)

is coherent with the wall’s mechanical behavior assumed. When one considers that the
viscosity coefficient tends to zero, η → 0, and therefore also the relaxation time τr → 0,
one is asymptotically tending to a perfectly elastic behavior of the material, which auto-
matically leads to S → 0 through Eq. (4.12c). On the other hand, a relaxation time that
tends to zero means, referring to the relaxation function presented in Eq. (2.20), that the
Young modulus is constant in time, being E∞ ≡ E0, hence E∞/E0 → 1. This is, moreover,
in accordance with the fact that, when tending to a perfectly elastic behavior, one direct
consequence is that ψel → (p − pext). These two final aspects, together, lead again to the
result S → 0.
It is also worth to underline that the choice of inserting the tube law in the form of a
PDE straight inside the system of equations is even more advantageous when selecting a
viscoelastic rheological characterization of the vessel wall. Indeed, if the classical formu-
lation is followed, together with the choice of the KV viscoelastic model, Eq. (4.8) enters
inside the system through Eq. (4.1b), and in particular through the derivative in space of
the pressure. This procedure gives rise to a second order derivative in space of the flow
rate Au, which leads to deal with a non-hyperbolic system and also to substantial nu-
merical issues. In literature this problem is treated differently, e.g. resorting a hyperbolic
reformulation of the system, introducing a numerical relaxation parameter mimic Catta-
neo’s law (Montecinos, Müller, and Toro, 2014), using a discontinuous Galerkin scheme
(Alastruey et al., 2011), or considering a specific operator-splitting procedure (Formag-
gia, Lamponi, and Quarteroni, 2003; Mynard and Smolich, 2015). When considering the
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proposed 1D a-FSI system, instead, the system persists to be natively hyperbolic.
Writing the non-linear non-conservative system (4.12) in the general compact form

leads to:
∂tQ + ∂x f (Q) + B(Q)∂xQ = S(Q), (4.15)

in which

Q =

⎛⎜⎜⎜⎜⎜⎜⎝

A
Au
p

A0
E0
pext

⎞⎟⎟⎟⎟⎟⎟⎠ , f (Q) =

⎛⎜⎜⎜⎜⎜⎜⎝

Au
Au2

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , S(Q) =

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
S
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ , B(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 A

ρ 0 0 0
0 d 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The system can also be written in the quasi-linear form,

∂tQ + A(Q)∂xQ = S(Q), (4.16)

considering A(Q) = ∂ f /∂Q + B(Q), with

∂ f
∂Q

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−u2 2u 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

It can be demonstrated that the system is hyperbolic, being the matrix A(Q) diagonal-
izable, with a diagonal matrix Λ(Q) containing all real eigenvalues λl , with l = 1, · · · , N
and N number of unknowns of the system (in this work N = 6), and a complete set of
linearly independent eigenvectors represented by the columns of the matrix R(Q):

Λ(Q) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 u + c 0
0 0 0 0 0 u − c

⎞⎟⎟⎟⎟⎟⎟⎠ , R(Q) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A
ρu2 0 0 0 1

d
1
d

0 0 0 0 u+c
d

u−c
d

1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

In this system, since we are dealing with an incompressible fluid (in which the speed of
sound cs tends to infinity), the wave speed a coincides with the solely contribute c arising
from the FSI (see Eqs. (3.14) and (3.16) for a comparison with the compressible case):

c =

√︄
A
ρ

∂p
∂A

=

√︄
A
ρ

d =

√︄
K
ρ
(mαm − nαn) . (4.17)

Concerning the eigenvectors, the fifth and the sixth characteristic fields are genuinely
non-linear and are associated to shocks and rarefactions, whereas the remaining fields
are linearly degenerate (LD) and are associated with stationary contact discontinuities.
Evaluating the Riemann invariants (RI) of the system, those associated with the genuinely
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FIGURE 4.1: Schematic representation of the hemodynamic model. Inlet bound-
ary condition given by qin or uin and recurring to the first Riemann invariant Γ1,
defined in Eq. (4.18). The 1D a-FSI model is coupled to the 3-element Windkessel
model (analogous to the RCR electric circuit) at the outlet through the solution
of a Riemann problem at the 1D/0D interface, recurring to the second Riemann

invariant Γ2, defined in Eq. (4.18).

non-linear fields are:

Γ1 = u −
∫︂ c

A
dA, Γ2 = u +

∫︂ c
A

dA; (4.18)

while those associated with the linearly degenerate fields result:

ΓLD
1 = p +

1
2

ρu2, ΓLD
2 = Au , ΓLD

3 = p −
∫︂

d dA = p − ψel . (4.19)

It has to be noticed that when dealing with arteries, integrals in the RI associated with
the genuinely non-linear fields can be analytically resolved, resulting:

Γ1 = u − 4c, Γ2 = u + 4c.

Moreover, when dealing with a purely elastic system, the third RI associated with a lin-
early degenerate field results:

ΓLD
3 = pext.

Finally, it is here mentioned that, under physiological conditions, the source term of sys-
tem (4.12) may become stiff, depending on the spatial discretization applied. Referring
to Müller, Montecinos, and Toro (2013), indeed, a source term can be considered stiff if

∆x
max{| βl |}
max{| λl |}

> 1, l = 1, · · · , N, (4.20)

with βl representing the l-th eigenvalue of the Jacobian of S(Q). It can be evaluated that
max{| βl |} = 1/τr, which could reach values up to 5 orders of magnitude more than
max{| λl |} = u + c. Additionally, it is evident that the relaxation time of the material τr,
related to viscoelasticity, is the key parameter leading to stiffness.

4.2.1.6 Lumped-parameter models

Linearizing the continuity equation (4.12a) and the momentum equation (4.12b) with
respect to a reference state (A, Au, p) = (A0, 0, 0) and integrating them along the length
L of the vessel domain, the following system is obtained (Alastruey et al., 2008):

C dt( p̂ − pext) = qin − qout
Ldtq̂ + R q̂ = pin − pout ,

(4.21)
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where qin(t) = q(0, t), qout(t) = q(L, t), pin(t) = p(0, t), pout(t) = p(L, t) are flow rates
and pressures at the inlet and outlet interface of the domain, p̂(t) = 1

L

∫︁ L
0 p dx, q̂(t) =

1
L

∫︁ L
0 q dx are mean pressure and flow rate over the entire domain and

R = − FRL
A2

0u
, L =

ρL
A0

, C =
A0L
ρc2

0
,

are respectively resistance related to the blood viscosity, inductance related to the blood
inertia and capacitance related to the wall compliance of the vessel, with c0 reference
wave speed. System (4.21) can be equivalently regarded as the mathematical descrip-
tion of an electric circuit known as "L-circuit". Indeed, in this hydraulic-electric analogy,
pressure and flow rate correspond respectively to electric voltage/potential and current
(Milišić and Quarteroni, 2004).

The 0D model commonly used to simulate the effects of peripheral resistance and
compliance on pulse wave propagation in large 1D arteries is the so-called RCR model
(or 3-element Windkessel model), which consists of a resistor with resistance R1 con-
nected in series with a parallel combination of a second resistor with resistance R2 and a
capacitor with compliance C, as shown in Fig. 4.1 (Boileau et al., 2015; Alastruey, Parker,
and Sherwin, 2012; Reymond et al., 2009; Willemet, Vennin, and Alastruey, 2016; Xiao,
Alastruey, and Figueroa, 2014). Note that in this model the inductance is neglected since
peripheral inertias have a minor effect on reflected waves under normal conditions (Alas-
truey et al., 2008). In the present work, to impose outflow conditions, the RCR model has
been chosen considering that the external pressure is constant in time, hence dt pext = 0.
Thus, referring to Fig. 4.1 for the nomenclature, the resulting final system for the 0D
model reads:

C dt pC = q∗ − qout (4.22a)
R1 q∗ = p(A∗)− pC (4.22b)
R2 qout = pC − pout , (4.22c)

where pC is the pressure at the capacitor and q∗ = A∗u∗.
In the RCR model, the first resistance R1 is introduced to absorb incoming waves and re-
duce artificial backward wave reflections in large arteries (Alastruey et al., 2008). There-
fore, R1 is fixed to match the characteristic impedance Z0 of the terminal 1D vessel:

R1 = Z0 =
ρc0

A0
. (4.23)

4.2.2 Numerical model

To solve system (4.12), the IMEX RK schemes proposed by Pareschi and Russo (2005)
for applications to hyperbolic systems with stiff relaxation terms have been considered.
This scheme is asymptotic preserving (AP) and asymptotic accurate in the zero relax-
ation limit (i.e. the consistency of the scheme with the equilibrium system is guaranteed
and the order of accuracy is maintained in the stiff limit), with an elevated robustness
given by the use of an implicit Runge-Kutta scheme for the treatment of the stiff part.
Usually, simpler splitting techniques are preferred to solve these kind of problems; for
example Strang splitting provides second order of accuracy if each step is at least sec-
ond order accurate in space (Strang, 1968). However, as shown in different references
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(LeVeque and Yee, 1990; Descombes and Massot, 2004; Pareschi and Russo, 2005; Duarte,
Massot, and Descombes, 2011) and confirmed here for the specific application discussed
in section 4.3.4, this technique, which does not present the AP property, reduces to first
order of accuracy when the problem becomes highly stiff. In these situations, indeed,
the fastest time scales play a leading role in the global physics of the phenomenon and
the composed solution of the splitting technique fails to capture the proper dynamics
of the event. Recently developed RK schemes overcome this issue. Thus, a formally
implicit finite volume discretization is adopted, applying a second-order L-stable diag-
onally implicit Runge-Kutta method (DIRK) to the stiff part and a second-order explicit
strong-stability-preserving (SSP) method to the non-stiff terms, with the addition of the
path-conservative DOT Riemann solver, as applied in Section 3.2.2.2 for compressible
flows in polymer tubes.

4.2.2.1 IMEX Runge-Kutta scheme

The second-order IMEX RK finite volume discretization of system (4.15) is written as
follows:

Q(k)
i = Qn

i −
∆t
∆x

k−1

∑
j=1

ãkj

[︃(︃
F(j)

i+ 1
2
− F(j)

i− 1
2

)︃
+

(︃
D(j)

i+ 1
2
+ D(j)

i− 1
2

)︃
+ B

(︂
Q(j)

i

)︂
∆Q(j)

i

]︃
+ ∆t

k

∑
j=1

akjS
(︂

Q(j)
i

)︂
(4.24a)

Qn+1
i = Qn

i −
∆t
∆x

s

∑
k=1

ω̃k

[︃(︃
F(k)

i+ 1
2
− F(k)

i− 1
2

)︃
+

(︃
D(k)

i+ 1
2
+ D(k)

i− 1
2

)︃
+ B

(︂
Q(k)

i

)︂
∆Q(k)

i

]︃
+ ∆t

s

∑
k=1

ωkS
(︂

Q(k)
i

)︂
(4.24b)

using a uniform grid of length L and Nx elements with mesh spacing ∆x = xi+ 1
2
− xi− 1

2
=

L/Nx and a time step size ∆t = tn+1 − tn that follows the CFL condition of Eq. (3.54), with
Qn

i vector of the averaged variables on the i-th cell of the domain at time tn.
Matrices Ã = (ãkj), with ãkj = 0 for j ≥ k and A = (akj) are s × s matrices such that the
resulting scheme is implicit in S(Q) and explicit for all the rest, with s number of stages.
Moreover, being a DIRK scheme, akj = 0 for j > k. An IMEX Runge-Kutta scheme is
characterized by these two matrices and by the coefficient vectors ω̃ = (ω̃1, ..., ω̃s)T, ω =
(ω1, ..., ωs)T, which can be easily represented by a double tableau in the usual Butcher
notation (Pareschi and Russo, 2005):

c̃k ãkj

ω̃T
k

ck akj

ωT
k

where coefficient vectors c̃k and ck are given by:

c̃k =
k−1

∑
j=1

ãkj, ck =
k

∑
j=1

akj.

In particular, in the present work it has been chosen the stiffly accurate IMEX-SSP2(3,3,2)
Runge-Kutta scheme, characterized by s = 3 stages for the implicit part, 3 stages for the
explicit part and 2nd order of accuracy, which can be defined by the following tableau
(explicit part on the left and implicit part on the right):
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0 0 0 0
1/2 1/2 0 0

1 1/2 1/2 0
1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0

1 1/3 1/3 1/3
1/3 1/3 1/3

noticing that the explicit discretization coincides with an improved Euler method (Heun’s
method). The explicit RK methods are those in which the only non-zero entries in the Ã
matrix lie strictly below the diagonal. Entries at or above the diagonal will cause the right
hand side of Eq. (4.24a) to involve Q(j)

i , giving a formally implicit method. Nevertheless,
it is worth to highlight that, for the system of equations presented in this work, it is
possible to obtain a totally explicit algorithm, which leads to a consistent reduction of the
computational cost. More details concerning the implemented IMEX algorithm can be
found in Appendix A, at the end of the Thesis.
For each step of the method, the numerical fluxes are obtained applying the DOT solver
as defined by Dumbser and Toro (2011b) and Dumbser and Toro (2011a) and already
discussed in Section 3.2.2.2. Hence, numerical fluxes are evaluated through Eq. (3.65)
and fluctuations through Eq. (3.66), with integrals approximated by a simple 3-points
Gauss-Legendre quadrature formula. The boundary-extrapolated values within cell i in
this case are given by:

Q−
i+ 1

2
= Qi +

1
2

∆Qi, Q+
i− 1

2
= Qi −

1
2

∆Qi.

with the slope ∆Qi again evaluated using the minmod slope limiter (Toro, 2009), to avoid
spurious oscillations near discontinuities. Finally, the path Ψ connecting left to right
boundary values in the phase-space (Parés, 2006) is linear, as presented in Eq. (3.68).

4.2.2.2 Well-balancing proof

A numerical scheme is here defined exactly well-balanced or, with the same conno-
tation, satisfies the exact conservation property, i.e. C-property (Bermudez and Vazquez,
1994), if it is exact when applied to the stationary case in the zero flow rate condition. For
the particular case of a scheme of the form (4.24) for system (4.12), this means that, for a
given initial state of rest Qn

i , ∀i ∈ [1, · · · , Nx], for each RK stage it results that:

F i+ 1
2
− F i− 1

2
= 0, Di+ 1

2
+ Di− 1

2
= 0, B (Qi)∆Qi = 0, ∀i ∈ [1, · · · , Nx].

In a condition of zero velocity (u = 0, Au = 0), observing system (4.12), p must be
constant in x. Thus, both the second and the third component in ∆Qi are necessarily
zero. Evaluating then the product B (Qi)∆Qi, it can be noticed that the only non-zero
columns in B (Qi) multiply exactly the two zero components in ∆Qi, obtaining a null
vector as result. Choosing a simple linear path Ψ, the same applies also to the term
B (Ψ) ∂Ψ

∂s when evaluating the fluctuations Di± 1
2

through Eq. (3.66) and to the product

|A (Ψ)| ∂Ψ
∂s when evaluating the numerical fluxes F i± 1

2
with Eq. (3.65). Finally, the analyt-

ical fluxes f
(︂

Q±
i± 1

2

)︂
are automatically null when considering a zero flow rate state.

It is therefore proved that the numerical model here discussed is well-balanced for the
a-FSI system of blood flow equations. It is also underlined that the C-property arises in
a straightforward way from the construction of the explicit part of the scheme and not
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from the implicit one, which leads to have more freedom when choosing the particular
set of coefficients of the IMEX method.

4.2.2.3 Pressure update analysis

Evaluating the Rankine-Hugoniot conditions related to the continuity equation (4.12a)
and to the additional elastic constitutive PDE (4.12c), it is observed that the celerity of the
shock wave results respectively (Toro, 2009):

ξ =
∆(Au)

∆A
, ξ =

∆(Au)
∆p

∫︂ 1

0
d ds.

Since the celerity of the discontinuity is unique, it must be:

∆p
∆A

=
∫︂ 1

0
d ds =

∫︂ 1

0

∂p
∂A

ds.

This expression is always true when dealing with linear systems and can be considered
a good approximation in case of mildly non-linear systems, but it is certainly not valid
when working in a scenario of highly deformable and even collapsible veins (Carpenter
and Pedley, 2001). In fact, adding the tube law inside the system of equations leads, in
the elastic case, to an over-abundant system and a consequent inconsistency.
Hence, to correctly update through the tube law the non-conservative variable p, in ac-
cordance with the update of the related conservative variable A, even in the case of
non-linear systems, an alternative evolution of the pressure is introduced in the scheme.
Defining, for each k-th Runge-Kutta step, the pressure with physical sense if an elastic
behavior of the vessel wall is considered as:

p(k)el,i = pext,i + ψ
(k)
el,i , p(k+1)

el,i = pext,i + ψ
(k+1)
el,i ,

the contribution for the pressure variation in time exclusively linked to the area variation,
both in the elastic and in the viscoelastic case, results:

∆p(k)el,i = p(k+1)
el,i − p(k)el,i .

Thus, the additional pressure update, containing all the information of the time evolu-
tion, even regarding the viscoelastic contribute enclosed in the source term, results:

p(k+1)
i = p(k)i + ∆p(k)el,i + ∆t

s

∑
j=1

akjS
(︂

Q(j)
i

)︂
. (4.25)

In the same way, the final pressure update between time tn and tn+1 will be:

pn+1
i = pn

i + ∆pn
el,i + ∆t

s

∑
k=1

ωkS
(︂

Q(k)
i

)︂
. (4.26)

Involving this additional evaluation, p is properly updated following the time evolution
of the variable A through the constitutive law, with the due phase-synchronization of the
two variables requested by the elastic part of the rheological model.
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4.2.2.4 Boundary conditions

When simulating real case studies (see Fig. 4.1), inflow boundary conditions are de-
fined prescribing the inlet flow rate qin or the inlet velocity uin (depending on the avail-
able data) and recurring to the first Riemann Invariant Γ1 associated with the genuinely
non-linear fields, defined in Eq. (4.18). The viscosity of the vessel wall is neglected
when imposing boundary conditions, recurring to the simple elastic model relating p
to A (Alastruey, Parker, and Sherwin, 2012).

At the outflow of the 1D domain, to simulate the effects of resistance and compliance
of downstream vessels on the pulse wave propagation, the RCR model is coupled with
the 1D model through the solution of the problem at the interface. A null outlet pres-
sure, pout = 0, which represents the pressure at which the flow arrives in the venous
system, is prescribed (Xiao, Alastruey, and Figueroa, 2014). Referring again to Fig. 4.1 for
the nomenclature, the discretization of system (4.22), considering the intermediate IMEX
time step size ∆t = t(k+1) − t(k), leads to:

p(k+1)
C − p(k)C =

∆t
C

[︂
(q∗)(k+1) − q(k+1)

out

]︂
(4.27a)

(q∗)(k+1) =
1

R1

[︂
p(A∗)(k+1) − p(k+1)

C

]︂
(4.27b)

q(k+1)
out =

1
R2

[︂
p(k+1)

C − pout

]︂
. (4.27c)

Subtracting Eq. (4.27c) from Eq. (4.27a) gives:

p(k+1)
C =

R2

ϕ
(q∗)(k+1) +

ϕ − 1
ϕ

p(k)C +
pout

ϕ
, (4.28)

where ϕ = R2C
∆t + 1. Using Eq. (4.28) into Eq. (4.27b) the expression for q∗ is obtained,

which reads:

(q∗)(k+1) =
p(A∗)(k+1) − p̃

R1 +
R2
ϕ

, (4.29)

with p̃ = ϕ−1
[︂

pout + (ϕ − 1)p(k)C

]︂
. Combining Eq. (4.29) with the second Riemann Invari-

ant Γ2 defined in Eq. (4.18), evaluated in the last cell and at the outlet interface of the 1D
domain, yields to a non-linear equation in A∗, solved using Newton’s method (Alastruey
et al., 2008). Once A∗ is obtained, u∗ is calculated through Γ2 and p(A∗) is evaluated with
the elastic tube law.

4.2.3 Human in-vivo blood flow velocity and pressure waveforms: data ac-
quisition and extrapolation

To obtain in-vivo data useful to validate the proposed model, blood flow velocity and
pressure waveforms are extrapolated from ad hoc measurements performed in six differ-
ent healthy volunteers, from whom proper informed consent was previously obtained.
The Doppler ultrasound technique (Xario 100, Toshiba Medical System, Shimoishagami,
Japan) in combination with a 4.8/11 Hz linear transducer (Toshiba PLU-704BT) is used
to record the time evolution of blood velocity (Gill, 1985; Hwang, 2017). Ultrasound im-
ages of velocity are essentially obtained from measurements of movement. In ultrasound
scanners, a series of pulses is transmitted to detect movement of blood. Echoes from
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FIGURE 4.2: Example of the display of a Doppler ultrasound record. On the top,
the individuation of the sample volume, placed in the middle of the vessel. On the

bottom, the pulse velocity signal recorded.

stationary tissue are the same from pulse to pulse. Echoes from moving scatterers (red
cells) exhibit slight differences in the time for the signal to be returned to the receiver.
These differences can be measured as a direct time difference or, more usually, in terms
of a phase shift from which the Doppler frequency is obtained. They are then processed
to produce either a color flow display. In four volunteers blood velocity is measured in
the right CCA, while in two volunteers measurements are executed in the right CFA. A
beam-flow angle of 60◦ and a sample volume defined by a window size of 1.0-1.5 mm
are chosen for the experiments. Aware of the possible sources of error and non-optimal
accuracy of Doppler ultrasound measurements (Blanco et al., 2015; Gill, 1985; Park et
al., 2012), this technique resulted the most applicable, since it is largely adopted for re-
search experiments reported in literature and in hospitals. An example of the display of
a Doppler ultrasound record is shown in Fig. 4.2.
In the post-processing, a threshold segmentation of the raw velocity is first applied to
extract the maximum envelope of the signal. Then, considering the point of maximum
derivative as starting point of a new cardiac cycle, an average of all the waves obtained
for each cardiac cycle is carried out, obtaining a representative waveform for each case
study. Finally, under the assumption of a parabolic velocity profile in non-central arter-
ies (see Section 4.2.1.2), a scaling coefficient of 0.5 is used to estimate the average cross-
sectional velocity signal.

To measure pressure waveforms, the arterial applanation tonometry technique is used
(Giannattasio et al., 2008; O’Rourke and Hashimoto, 2007; Townsend et al., 2015; Salvi et
al., 2004; Salvi, 2012; Spronck et al., 2016). A PulsePen tonometer (DiaTecne srl, Milan,
Italy), which consists of a tonometric probe and an electrocardiography (EKG) unit, is
chosen for this purpose (Salvi et al., 2004). The measurement is performed by placing the
sensor over the skin, applying a moderate pressure to partially flatten the artery (appla-
nation tonometry) with a balance of the circumferential forces inside the vessel. In this
way the sensor records the pressure in the middle of the compressed artery.
In the post-processing, a detrending of the signal is applied to remove the low-frequency
oscillations caused by the respiration of the subject, recurring to a low-pass filter. To carry
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FIGURE 4.3: Different steps of the post-processing for pressure data recorded by a
tonometer. The first row represents the initial measured pressure and EKG signal;
the following rows show the thresholding procedure (red stars), made using the
EKG signal (second row) and then transposed to the pressure waveform (third

row).
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FIGURE 4.4: Example of the overlapping of the pressure waveforms extracted
from the post-processed pressure signal. The thick black line represents the mean

curve.

out a phase averaging, the EKG is used as baseline signal to estimate the duration of the
cardiac cycles, through a peak-detection algorithm. An explanatory example is presented
in Fig. 4.3. For all the cardiac cycles, the pressure waveform is re-sampled and averaged
into a representative one (see Fig. 4.4). Finally, for the calibration of the phase-averaged
pressure waveform, the diastolic and systolic pressure of the subject measured in the
brachial artery (by means of a sphygmomanometer at the beginning of the experiment)
are used as reference values. It is indeed recalled that mean arterial pressure remains
constant from the aorta to the peripheral arteries, as the diastolic pressure, which tends
to decrease insignificantly from the center to the periphery (Salvi, 2012).
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4.2.4 FSI parameters estimation

In the case of a purely elastic model, the single Young modulus E0 is evaluated through
a given reference celerity c0, taken from literature (Müller and Toro, 2014a). Inverting the
wave speed Eq. (4.17), considering a reference state (in this work the diastolic state) in
which A = A0 (Alastruey, Parker, and Sherwin, 2012; Alastruey et al., 2012), leads to:

E0 =
2R0ρc2

0
s0

. (4.30)

When the viscosity of the vessel wall is taken into account considering the SLS model
(Fig. 2.5), the elastic component is represented by two different Young modulus: the in-
stantaneous, E0, and the asymptotic one, E∞, defined in Eq. (2.18). The elastic modulus
of the system E(x, t) changes in time, from the instantaneous to the asymptotic value,
following the so-called relaxation function presented in Eq. (2.20). How rapidly the vis-
coelastic material reaches the asymptotic condition depends on the third parameter of
the model: the relaxation time, τr. Moreover, when the viscoelastic material undergoes
cyclic loading and unloading, the amount of energy dissipated (represented by the hys-
teresis loop) does not only depend on the viscous parameter η, but also on the ratio E∞/E0,
hence on how much the behavior of the material differs from the elastic one (for which
E∞ ≡ E0).

The estimation of the three viscoelastic parameters defining the SLS model aims to
obtain a viscoelastic system that correctly matches with the corresponding elastic in the
asymptotic case. When considering the SLS model with η = 0, the equivalent elastic
system is represented by two springs in series for which the equivalent Young modulus
exactly results E∞. Therefore, when switching from elastic to viscoelastic simulations, E∞
is imposed equal to the previously calculated E0 in the elastic case through Eq. (4.30).
For the determination of the viscosity parameter η, we refer to parameters estimated by
Alastruey et al. (2012) for the viscosity coefficient Γ of the viscoelastic KV model, for
which the linear relationship with η (neglecting Poisson’s ratio) is presented in Eq. (4.11)
(Alastruey et al., 2011; Montecinos, Müller, and Toro, 2014; Mynard and Smolich, 2015;
Wang, Fullana, and Lagrée, 2014).
Finally, the ratio E∞/E0 is evaluated in order to obtain numerical results reproducing real-
istic energy losses, based on published hysteresis loops from in-vivo pressure-diameter
measurements of human CCAs (Giannattasio et al., 2008; Salvi, 2012), shown in grey-
scale in Fig. 4.5 for subjects with different ages. The energy dissipated in literature hys-
teresis curves is numerically evaluated by an integral, being the area inside the loop in the
p-A plane. Observing Fig. 4.5, it can be noticed that there is a high variability of hysteresis
loops recorded in young subjects from those in elderly subjects, this also being the case
for subjects with a higher compared with a lower blood pressure level, as highlighted by
Giannattasio et al. (2008). To cope with these large fluctuations of energy losses, values of
energy dissipated by viscoelastic effects are converted to energy fractions dividing them
for the reference stored energy. The area of the triangle below the pulse pressure line,
again in the p-A plane (refer to Fig. 4.5), is assumed as reference stored energy (Wang
and Chesler, 2012). The weighted average over age is then taken as target for the com-
parisons with simulated dissipations.
The empirical relation which returned the best fit with reference data in CCAs is:

E∞

E0
= e−1.3·10−5η , (4.31)
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FIGURE 4.5: Hysteresis curves of one cardiac cycle presented in terms of relative
pressure and relative diameter. A representative numerical result compared to
hysteresis curves available in literature (Giannattasio et al., 2008; Salvi, 2012).
The highlighted areas represent an example of the evaluation of the reference stored
energy (red, left) and of the dissipated energy (blue, right) used for the viscoelastic

parameters calibration discussed in Section 4.2.4.

through which the viscoelastic E0 can be imposed. Eq. (4.31) is used for the estimation of
Young modulus ratios in all the arteries of the studies further presented due to the limited
p-D data available in literature concerning other human vessels. The reader is invited
to notice that the proposed relation respects the elastic asymptotic limit, being E∞/E0 = 1
when η = 0. For a more robust estimation of viscoelastic parameters for the entire human
cardiovascular network, further measurements should be made by collecting additional
in-vivo data from humans.
A schematic algorithm of the above discussed procedure is available in Appendix B.

Variable RP1 RP2 RP3 RP4 RP5
AL [mm2] 6.4138 2.5082 0.9900 4.7030 2.0000
AR [mm2] 3.1282 3.2921 2.0800 2.1947 0.2222
uL [m/s] 0.00 1.00 0.00 0.00 0.00
uR [m/s] 0.00 0.00 0.00 0.00 0.00

pL [mmHg] 80.00 146.67 9.97 178.99 43.38
pR [mmHg] 80.00 108.78 46.05 8.05 4.58
A0,L [mm2] 6.2706 1.5677 1.1000 3.1353 1.0000
A0,R [mm2] 3.1353 3.1353 1.3000 3.1353 1.0000
E0,L [MPa] 2.7655 1.3828 0.4604 1.9555 0.3991
E0,R [MPa] 1.9555 1.9555 5.9153 1.9555 0.3991

pext,L [mmHg] 75.00 30.00 10.00 80.00 5.00
pext,R [mmHg] 85.00 0.00 5.00 80.00 5.00

x0 [m] 0.10 0.05 0.05 0.10 0.15

TABLE 4.1: Initial states for the Riemann problems. Subscripts L and R stand
respectively for left and right state of the piece-wise constant initial values, while
x0 indicates the position of the initial discontinuity. For all the tests, L = 0.2 m,

s0 = 0.3 mm, CFL = 0.9 and Nx = 100.
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4.3 Numerical results and Discussion

To check the accuracy and the robustness of the proposed model, for ranges of param-
eters found in the human body and reported in applications regarding cardiovascular
mathematics, different types of tests have been set up. Initially, five Riemann problems
have been selected, considering only an elastic behavior of the vessel wall, for which an
exact solution is available (Toro and Siviglia, 2013). The first of these RPs (RP1) aims to
verify the well-balancing of the scheme in a state of rest condition, while the second (RP2)
and the third (RP3) are related to unsteady problems in a 1D segment representative of a
portion of the aorta and of the internal jugular vein (reproduced referring to Müller and
Toro (2013)). Successively, in RP4 and RP5, the C-property of the scheme (as defined in
Section 4.2.2.2) is tested also when, on the left and on the right side of the discontinuity,
smooth functions are defined, in the case of a generic artery and a generic vein segment.
Furthermore, since an exact solution of the problem does not exist when considering ves-
sels viscoelasticity, to validate the contribution given by the viscoelastic source term in
Eq. (4.14), the Method of Manufactured Solutions (MMS) is applied (Roache, 2002). Thus,
a problem for a modified non-linear system of equations that is a perturbation of the orig-
inal one via a source term vector has been designed, applying it to a generic artery and
a generic vein segment. In addition, with these validation problems, the accuracy of the
proposed scheme is verified. Accuracy results obtained with the IMEX RK scheme are
also compared to those obtained adopting the Strang splitting technique, with which a
reduction of the expected order of accuracy is observed.

For the geometrical and mechanical parameters of the vessels, Müller and Toro (2013),
Müller and Toro (2014a), and Xiao, Alastruey, and Figueroa (2014) are taken as refer-
ence. The computational code, written in MATLAB (MathWorks Inc.) language, with the
implementation of the above presented tests, is available in Mendeley Data repository
(Bertaglia, Caleffi, and Valiani, 2020).

Further tests are designed to evaluate the applicability of the proposed model to
real case studies in single vessels, assessing its capability to serve as valuable tool even
for practical medical applications, cardiovascular diagnosis and the study of circulatory
pathologies. Additional simulations are initially performed considering the elastic tube
law to compare numerical results with benchmark data sets available in literature. The
upper TA and the CCA, are first analyzed considering a constant radius (Boileau et al.,
2015) and then with a linearly tapered radius (Xiao, Alastruey, and Figueroa, 2014). Sim-
ulations for the tapered vessel cases are also run using the viscoelastic SLS model.
Furthermore, specific test cases regarding the CCA and the CFA are designed using the
recorded in-vivo data discussed in Section 4.2.3: the velocity waveform extrapolated from
each Doppler measurement is imposed at the inlet boundary (uin) as described in 4.2.2.4,
while the pressure waveform measured by the PulsePen tonometer is compared to the
computed pressure obtained in the last cell of the domain (this being, for both types of
vessels, the position that is considered closest to the data measurement position). For
these tests, simulations are performed comparing results using the elastic and the vis-
coelastic model, to assess the effects of the wall viscoelasticity.

In all the presented problems, when switching from the elastic to the viscoelastic tube
law, only the viscoelastic parameters are activated, without changing other properties,
including inlet and outlet boundary conditions. Outflow RCR parameters are calibrated
following the procedure proposed by Alastruey et al., 2012 and Xiao, Alastruey, and
Figueroa, 2014. Viscoelastic parameters are estimated with the procedure presented in
Section 4.2.4 and summarized in Appendix B.
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FIGURE 4.6: Results obtained in test RP1, at time tend = 0.01 s, solving the 1D a-
FSI system with the IMEX Runge-Kutta scheme, in terms of flow rate q, pressure
p, non-dimensional cross-sectional area α and velocity u, with respect to the exact

solution.

4.3.1 Riemann problems

The first Riemann problem, RP1, is designed to verify the well-balancing, in a rest
state, of the IMEX RK scheme here proposed for the resolution of the a-FSI system (4.12).
The problem presents an initial discontinuity in A, A0, E0 and pext. Results of RP1 at
tend = 0.01 s (after 94 complete time iterations), shown in Fig. 4.6 confirm that the scheme
is able to preserve the initial condition in the case of zero flow rate. Indeed, the L2 norm
calculated for the evolutive variables A, Au and p results, respectively: 3.83 × 10−20, 0
and 0 (values in SI units).

The second Riemann problem, RP2, schematically represents a systolic pressure and
peak flow rate arriving in a portion of the thoracic aorta. In this problem, the left side
of the aorta, so the part that in the initial state was already reached by the systolic peak
(represented in Fig. 4.7 by the shock wave on the right), is compressed, while on the
right of the initial discontinuity the aorta is 10 times stiffer than the part on the left. This
idealized configuration leads to a partial reflection of the incoming wave, which can be
noticed in Fig. 4.7 by the presence of the shock wave on the left. From the same Figure it is
possible to observe that a good agreement between the exact solution and the numerical
results is achieved for all the variables.

In RP3, the effects of an idealized Valsalva maneuver on a portion of the internal jugu-
lar vein are depicted. The Valsalva maneuver consists in the practice of exhaling while
closing all the airways, producing a sharp increase of the central venous pressure of the
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FIGURE 4.7: Results obtained in test RP2, at time tend = 0.007 s, solving the
1D a-FSI system with the IMEX Runge-Kutta scheme, in terms of flow rate q,
pressure p, non-dimensional cross-sectional area α and velocity u, with respect to

the exact solution.

analyzed subject. Moreover, in this test it is considered that downstream, in the corre-
spondence of the heart, there is an incompetent valve causing a venous reflux towards
the head (represented in Fig. 4.8 by the elastic jump traveling to the left). Even in this
very challenging test, in which there is also the presence of a rarefaction wave traveling
to the right, numerical results agree very well with the exact solution.

RP4 and RP5, presented in Fig. 4.9 and 4.10, concern, again, a single 1D segment
having geometrical and mechanical properties representative of the thoracic aorta and
of the internal jugular vein, respectively. In these problems, a single initial jump in the
cross-sectional area (and thereby in the pressure, being evaluated through the tube law)
is considered, to assess the effects of a solely geometrical discontinuity. Even in these
tests, numerical results correctly capture the exact solution, confirming once more the
suitability of the model to solve also unsteady problems, both in arteries and veins. It is
here underlined that, in RP5, the small undershoot/overshoot of the numerical solution
of α and u in correspondence of the tail of the rarefaction wave (Fig. 4.10 bottom) depends
on the chosen slope limiter. This irregularity, indeed, would not appear if using the
superbee limiter instead of the minmod. Nevertheless, it was decided to present the
results using a single slope limiter for all the simulations in a uniform manner, with
the minmod being the most accurate among all the tests. Additionally, comparing the
rarefaction wave in the pressure plot with the one in the adimensional area plot, it is
possible to observe the typical neither concave nor convex behavior of veins (Spiller et
al., 2017) given by the specific parameters adopted in the tube law, presented in Eq. (4.6).
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FIGURE 4.8: Results obtained in test RP3, at time tend = 0.025 s, solving the
1D a-FSI system with the IMEX Runge-Kutta scheme, in terms of flow rate q,
pressure p, non-dimensional cross-sectional area α and velocity u, with respect to

the exact solution.

The complete set of initial data is listed, for each RP, in Tab. 4.1.

4.3.2 C-property problems

To test the C-property of the scheme even in the case in which smooth functions are
defined on the left and on the right side of a central initial discontinuity (and not piece-
wise constant values), two additional problems have been designed. The first test (CP1)
takes into account a portion of a generic artery, while the second one (CP2) a portion of a
generic vein, in both the cases simply concerning an elastic behavior of the wall. Mechan-
ical and geometrical reference data are given in Tab. 4.2, whereas initial conditions are
specified in Tab. 4.3. The non-trivial initial conditions regard variables A0, E0 and pext,
all influencing the initial condition of the area, evaluated involving the tube law. Results

Test L [m] s0 [mm] u0 [m/s] p0 [mmHg] a0 [mm2] e0 [MPa] pe [mmHg]
CP1 0.10 1.50 0.00 80.00 1.00 1.00 80.00
CP2 0.10 0.30 0.00 10.00 0.01 0.10 10.00

TABLE 4.2: Parameters used for the C-property tests: domain length L, vessel
wall thickness s0, reference velocity u0, reference pressure p0, reference cross-
sectional area a0, reference instantaneous Young modulus e0, reference external

pressure pe. In both the tests, CFL = 0.9 and Nx = 100.
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FIGURE 4.9: Results obtained in test RP4, at time tend = 0.01 s, solving the 1D a-
FSI system with the IMEX Runge-Kutta scheme, in terms of flow rate q, pressure
p, non-dimensional cross-sectional area α and velocity u, with respect to the exact

solution.

Variable IC
uL [m/s] u0

uR [m/s] u0

pL [mmHg] p0

pR [mmHg] p0

A0,L [mm2] a0 +
a0
2 sin

(︁ 8πx
L

)︁
A0,R [mm2] 2a0 +

a0
2 sin

(︁ 8πx
L

)︁
E0,L [MPa] e0 +

e0
2 sin

(︁ 8πx
L

)︁
E0,R [MPa] 2e0 +

e0
2 sin

(︁ 8πx
L

)︁
pext,L [mmHg] pe +

pe
2 sin

(︁ 8πx
L

)︁
pext,R [mmHg] 2pe +

pe
2 sin

(︁ 8πx
L

)︁
x0 [m] 0.5 L

TABLE 4.3: Initial conditions for the C-property tests CP1 and CP2. Subscripts L
and R stand for the smooth initial values respectively on the left and on the right
of the initial discontinuity, located in x0. The initial condition of the area A is
evaluated solving the tube law presented in Eq. (4.4). For parameters u0, p0, a0, e0

and pe refer to Tab. 4.2.
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FIGURE 4.10: Results obtained in test RP5, at time tend = 0.015 s, solving the
1D a-FSI system with the IMEX Runge-Kutta scheme, in terms of flow rate q,
pressure p, non-dimensional cross-sectional area α and velocity u, with respect to

the exact solution.

are graphically shown in Fig. 4.11 for CP1 and in Fig. 4.12 for CP2.
Furthermore, errors are evaluated in terms of L2 norm at time tend = 0.25 s for both the
tests. It is here specified that, with the chosen tend, the number of complete time iterations
is 4208 in CP1 and 1896 in CP2, being in fact fairly large. The L2 norm for the evolutive
variables A, Au and p results, respectively: 1.18 × 10−20, 0, 0 in CP1 and 1.34 × 10−22,
0, 0 in CP2 (values in SI units). By consequence, the well-balancing proof presented in
Section 4.2.2.2 is here confirmed even by numerical results.

Test s0 [mm] Ã0 [mm2] ã0 [mm2] P̃ [kPa] p̃ [kPa] Ẽ0 [MPa] ẽ0 [MPa] E∞ [MPa] τr [ms]
VV1 1.50 4.00 0.40 10.00 2.00 2.00 0.20 1.60 0.36
VV2 0.30 0.40 0.04 1.50 0.30 1.75 0.10 1.50 0.06

TABLE 4.4: Parameters used in the tests designed with the MMS to validate the
viscoelastic term for a generic artery (VV1) and for a generic vein (VV2). Values
chosen or calibrated in accordance with standard ranges found in the human body.

In both the tests, CFL = 0.9 and Nx = 100.
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FIGURE 4.11: Results obtained in the C-property problem CP1, at time tend =
0.25 s, solving the 1D a-FSI system with the IMEX Runge-Kutta scheme for a
generic artery, in terms of flow rate q, pressure p, non-dimensional cross-sectional

area α and velocity u, with respect to the exact solution in the state of rest.

4.3.3 Problems for the validation of the viscoelastic term

To validate also the additional contribution given by viscoelasticity in the proposed
model, the Method of Manufactured Solutions (Roache, 2002) is used. Manufactured so-
lutions are exact solutions to a set of governing equations that have been modified with
forcing terms. Hence, starting from system (4.16), a smooth, exact solution of the per-
turbed system, which is a non-homogeneous non-linear system, is prescribed as follows:

Q̂(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

Â(x, t)
Auˆ (x, t)
p̂(x, t)
Â0(x)
Ê0(x)
p̂ext(x)

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

Ã0 + ã0 sin
(︁ 2π

L x
)︁

cos
(︁ 2π

T t
)︁

Ã0u − ã0
L
T cos

(︁ 2π
L x
)︁

sin
(︁ 2π

T t
)︁

P̃ + p̃ cos
(︁ 2π

L x
)︁

sin
(︁ 2π

T t
)︁

Ã0 + ã0 sin
(︁ 2π

L x
)︁

Ẽ0 + ẽ0 sin
(︁ 2π

L x
)︁

P̃ext + p̃ext sin
(︁ 2π

L x
)︁

⎞⎟⎟⎟⎟⎟⎟⎠
with L = 1.0 m, T = 1.0 s, Ã0u = 0.0 m3/s, P̃ext = 0.0 Pa and p̃ext = 50.0 Pa. The rest
of the parameters, characterized for each of the two tests, are listed in Tab. 4.4. Introduc-
ing the prescribed solution in system (4.16), a non-homogeneous system with a residual
source term R(x, t) (arising because Q̂ is not the exact solution) is obtained:

∂tQ̂ + A(Q̂)∂xQ̂ − S(Q̂) = R(x, t) . (4.32)
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FIGURE 4.12: Results obtained in the C-property problem CP2, at time tend =
0.25 s, solving the 1D a-FSI system with the IMEX Runge-Kutta scheme for a
generic artery, in terms of flow rate q, pressure p, non-dimensional cross-sectional

area α and velocity u, with respect to the exact solution in the state of rest.

Knowing R(x, t), which can be analytically obtained with algebraic manipulations, it is
possible to solve the system enriched by the additional source term:

∂tQ + A(Q)∂xQ = S(Q) + R(x, t) . (4.33)

The numerical scheme must therefore reproduce the prescribed Q̂ as unique solution.
The initial condition is fixed as Q̂(x, 0). For this type of test, periodic boundary conditions
are imposed, in accordance with the periodicity of the expected solution. Results are
reported in Fig. 4.13 (test VV1, concerning an artery) and Fig. 4.14 (test VV2, concerning
a vein) and confirm the validity of the model discussed in the present work also with
respect to the proposed treatment of viscoelasticity in vessels.

4.3.4 Accuracy analysis

With the same test cases discussed in the previous section 4.3.3, for which the pre-
scribed solution is intended as the exact one, it is also performed an accuracy analysis.
It can be noticed, observing results reported in Tab. 4.5, that the expected second-order
of accuracy is confirmed for all the evolutive variables. Given the set of parameters pre-
sented in Tab. 4.4 for each test case, following what stated in Eq. (4.20), it is worth to
highlight that when considering a discretization with ∆x > 1.0 × 10−4 m the two prob-
lems become stiff. Therefore, this analysis confirms the AP property of the chosen IMEX
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FIGURE 4.13: Results obtained in test VV1, designed with the MMS to validate
the viscoelastic term with configuration of a generic artery, at time tend = 0.75
s, solving the 1D a-FSI system with the IMEX Runge-Kutta scheme, in terms
of flow rate q, pressure p, non-dimensional cross-sectional area α and velocity u,

with respect to the exact solution.

RK scheme, which preserves the expected order of accuracy also in the zero relaxation
limit.
On the other hand, it is verified that resolving the same problems with a simpler Strang
splitting technique (Strang, 1968), which should provide second-order of accuracy if each
step is at least second order accurate in space, leads to a reduction of the expected accu-
racy to first-order, as shown in Tab. 4.6 for test VV1. The non-asymptotic preserving be-
havior of this technique in the stiff limit was already discussed in literature for different
contexts (LeVeque and Yee, 1990; Descombes and Massot, 2004; Pareschi and Russo, 2005;
Duarte, Massot, and Descombes, 2011). In the present study, this aspect is confirmed even
for the specific application of blood flow modeling. A qualitative comparison highlight-
ing the difference between numerical results obtained with the selected IMEX RK and
with the Strang splitting technique is also shown in Fig. 4.15.

4.3.5 Benchmark test cases

Parameters for the benchmark test cases, simulated referring to Boileau et al. (2015)
and Xiao, Alastruey, and Figueroa (2014), concerning a constant-radius upper thoracic
aorta (cTA), a tapered-radius upper thoracic aorta (tTA), a constant-radius common carotid
artery (cCCA) and a tapered-radius common carotid artery (tCCA) are given in Tab. 4.7.
In all the benchmark tests ρ = 1060 kg/m3, µ = 0.004 Pa s and CFL = 0.9.
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FIGURE 4.14: Results obtained in test VV2, designed with the MMS to validate
the viscoelastic term with configuration of a generic vein, at time tend = 0.75 s,
solving the 1D a-FSI system with the IMEX Runge-Kutta scheme, in terms of
flow rate q, pressure p, non-dimensional cross-sectional area α and velocity u,

with respect to the exact solution.

FIGURE 4.15: Qualitative comparison of numerical results obtained with the se-
lected IMEX RK (left) and with the Strang splitting technique (right) in test VV1,

in terms of flow rate q.

4.3.5.1 Thoracic aorta benchmark test cases

The constant radius upper thoracic aorta test case (cTA) is simulated using a purely
elastic wall model to allow comparisons with solely elastic benchmark available data by
Boileau et al. (2015), from which also the flow rate signal imposed at the inlet qin is taken.
Fig. 4.16 shows a comparison of the numerical results obtained solving the a-FSI system
(4.12) with the IMEX RK scheme against benchmark data. Such data were obtained using
a three-dimensional (3D) model and six different 1D numerical methods: discontinous
Galerkin (Alastruey, Parker, and Sherwin, 2012), locally conservative Galerkin (Sherwin
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et al., 2003), Galerkin least-squares finite elements (Watanabe, Blanco, and Feijóo, 2013),
finite volumes (Müller and Toro, 2013), finite difference MacCormack (Leinan, 2012) and
simplified trapezium rule method (Kroon et al., 2012). It can be observed that, for all the
variables, IMEX results are in perfect agreement with 1D benchmark solutions. Larger
but still acceptable differences are observed when compared to the 3D benchmark.

To account for spatial variations of the properties along the vessel length, the problem
with a linearly tapered upper thoracic aorta (tTA) is simulated, following Xiao, Alastruey,
and Figueroa (2014). All other geometrical and mechanical parameters are unaltered with
respect to the baseline model, including inflow and outflow Windkessel total resistance,
RT = R1 + R2, and compliance. To evaluate the relevance, in terms of damping mech-
anism, of viscoelastic effects in a large central artery like the aorta, the tTA simulation
is run also considering the viscoelastic SLS model. Results are presented in Fig. 4.17 for
three different points in the domain (inlet, midpoint and outlet) and compared to the ref-
erence elastic solution. It can be noticed that IMEX elastic results totally agree with the

Test Variable Nx L1 O(L1) L2 O(L2) L∞ O(L∞) tCPU [s]

9 4.70×10−07 - 5.19×10−07 - 7.52×10−07 - 0.5
27 6.25×10−08 1.84 6.97×10−08 1.83 1.02×10−07 1.82 3.7

A 81 7.27×10−09 1.96 8.09×10−09 1.96 1.18×10−08 1.96 30.3
243 8.20×10−10 1.99 9.12×10−10 1.99 1.33×10−9 1.99 276.5
729 9.15×10−11 2.00 1.02×10−10 2.00 1.49×10−10 2.00 2478.7

9 2.08×10−06 - 2.37×10−06 - 3.66×10−06 - 0.5
27 1.71×10−07 2.27 1.98×10−07 2.26 3.34×10−07 2.18 3.7

VV1 Au 81 1.91×10−08 1.99 2.21×10−08 1.99 3.74×10−08 1.99 30.3
243 2.16×10−09 1.98 2.50×10−09 1.98 4.23×10−09 1.99 276.5
729 2.36×10−10 2.02 2.73×10−10 2.02 4.62×10−10 2.02 2478.7

9 6.89×10+01 - 7.67×10+01 - 1.23×10+02 - 0.5
27 8.20×10+00 1.94 9.18×10+00 1.93 1.45×10+01 1.94 3.7

p 81 9.03×10−01 2.01 1.01×10+00 2.01 1.59×10+00 2.01 30.3
243 1.02×10−01 1.99 1.14×10−01 1.99 1.79×10−01 1.99 276.5
729 1.10×10−02 2.02 1.23×10−02 2.02 1.94×10−02 2.02 2478.7

9 2.49×10−07 - 2.83×10−07 - 4.04×10−07 - 0.1
27 1.99×10−08 2.30 2.27×10−08 2.30 3.65×10−08 2.19 0.5

A 81 1.91×10−09 2.14 2.22×10−09 2.12 3.93×10−09 2.03 3.4
243 2.04×10−10 2.03 2.38×10−10 2.03 4.31×10−10 2.01 29.2
729 2.25×10−11 2.01 2.62×10−11 2.01 4.77×10−11 2.00 257.5

9 2.47×10−07 - 2.74×10−07 - 4.36×10−07 - 0.1
27 4.23×10−08 1.61 4.74×10−08 1.60 8.17×10−08 1.52 0.5

VV2 Au 81 5.11×10−09 1.92 5.71×10−09 1.92 9.59×10−09 1.95 3.4
243 5.82×10−10 1.98 6.50×10−10 1.98 1.09×10−09 1.98 29.2
729 6.52×10−11 1.99 7.28×10−11 1.99 1.21×10−10 1.99 257.5

9 5.98×10+00 - 6.68×10+00 - 1.18×10+01 - 0.1
27 4.95×10−01 2.27 5.97×10−01 2.20 1.30×10+00 2.00 0.5

p 81 5.20×10−02 2.05 7.33×10−02 1.91 1.76×10−01 1.82 3.4
243 5.54×10−03 2.04 7.98×10−03 2.02 1.95×10−02 2.00 29.2
729 6.15×10−04 2.00 9.04×10−04 1.98 2.21×10−03 1.98 257.5

TABLE 4.5: Results of the accuracy analysis for the tests designed with the MMS
to validate the viscoelastic term solved with the IMEX-SSP2 scheme, with config-
uration of a generic artery (VV1) and of a generic vein (VV2). Errors computed
for variables A, Au and p in terms of norms L1, L2 and L∞, using the Interna-

tional System of Units. CPU times listed for each simulation.
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FIGURE 4.16: Baseline thoracic aorta case (cTA). Solution of the 1D a-FSI system
with the IMEX scheme with elastic tube law compared to six 1D and one 3D
benchmark solutions, all taken from Boileau et al. (2015). Results presented in
terms of pressure at the midpoint (a), inlet-outlet pressure difference (b), flow rate

at the midpoint (c) and change in radius from diastole at the midpoint (d).

1D elastic benchmark in all the locations. On the other hand, wall viscosity in IMEX vis-
coelastic results already plays an important role in the TA, being the viscoelastic behavior
of vessels mainly attributed to smooth muscle cells (Gow and Taylor, 1968; Valdez-Jasso
et al., 2009; Battista, 2015).

Test Variable Nx L1 O(L1) L2 O(L2) L∞ O(L∞)

9 1.44×10−06 - 1.61×10−06 - 2.32×10−06 -
27 3.78×10−07 1.22 4.20×10−07 1.22 6.32×10−07 1.18

A 81 1.34×10−07 0.94 1.49×10−07 0.94 2.20×10−07 0.96
243 4.61×10−08 0.97 5.12×10−08 0.97 7.50×10−08 0.98
729 1.55×10−08 0.99 1.72×10−08 0.99 2.52×10−08 0.99

9 4.98×10−06 - 5.95×10−06 - 1.00×10−05 -
27 1.79×10−06 0.93 2.04×10−06 0.98 3.31×10−06 1.01

VV1 Au 81 5.91×10−07 1.00 6.71×10−07 1.01 1.09×10−06 1.01
243 1.96×10−07 1.00 2.22×10−07 1.00 3.60×10−07 1.00
729 6.53×10−08 1.00 7.40×10−08 1.00 1.20×10−07 1.00

9 7.10×10+01 - 8.01×10+01 - 1.22×10+02 -
27 1.24×10+00 1.58 1.38×10+00 1.60 2.05×10+01 1.62

p 81 5.60×10+00 0.73 6.25×10+00 0.72 9.52×10+00 0.70
243 1.24×10+00 1.37 1.39×10+00 1.37 2.19×10+00 1.34
729 2.18×10−01 1.58 2.43×10−01 1.59 3.66×10−01 1.63

TABLE 4.6: Results of the accuracy analysis for the test VV1 (configuration of a
generic artery) solved with the Strang splitting technique. Errors computed for
variables A, Au and p in terms of norms L1, L2 and L∞, using the International

System of Units.
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FIGURE 4.17: Tapered thoracic aorta case (tTA). Results obtained solving the 1D
a-FSI system with the IMEX scheme with elastic and viscoelastic tube law com-
pared to 1D elastic benchmark, taken from Xiao, Alastruey, and Figueroa (2014),
presented in terms of flow rate at the inlet (a), flow rate at the midpoint (b), flow
rate at the outlet (c), pressure at the inlet (d), pressure at the midpoint (e), pressure

at the outlet (f).

Parameter cTA tTA cCCA tCCA
L [cm] 24.137 24.137 12.60 12.60
R0,in [mm] 12.0 15.0 3.0 4.0
R0,out [mm] 12.0 10.0 3.0 2.0
s0 [mm] 1.2 1.2 0.3 0.3
p(x, 0) [kPa] 0 0 0 0
u(x, 0) [m/s] 0 0 0 0
αc [-] 1.1 1.1 4⁄3 4⁄3
pD [kPa] 9.467 9.467 10.933 10.933
pout [kPa] 0 0 0 0
R1 [MPa s m−3] 11.752 18.503 248.75 685.48
R2 [MPa s m−3] 111.67 104.92 1869.7 1433.0
C [m3 GPa−1] 10.163 10.163 0.17529 0.17529
E0 [MPa] 0.5333 0.7275 0.9333 1.7367
E∞ [MPa] - 0.5333 - 0.9333
η [kPa s] - 23.884 - 47.768
τr [s] - 0.009 - 0.013

TABLE 4.7: Model parameters of the TA and the CCA, with constant or tapered
radius, taken from Xiao, Alastruey, and Figueroa (2014) and Boileau et al. (2015):
vessel length L, inlet equilibrium radius R0,in, outlet equilibrium radius R0,in,
vessel wall thickness s0, initial pressure p(x, 0), initial velocity u(x, 0), Coriolis
coefficient αc, diastolic pressure pD (in this model coincident with the external
pressure pext for the equilibrium), outflow pressure pout, Windkessel resistance
R1, Windkessel resistance R2, Windkessel compliance C, instantaneous Young
modulus E0, asymptotic Young modulus E∞, viscosity coefficient η, relaxation
time τr. The number of cells in the domain is Nx = 12 for tests in the TA and
Nx = 6 for tests in the CCA; for the TA cases 20 cardiac cycles are simulated,
corresponding to a final time tend = 19.10 s, while for the CCA cases 9 cardiac

cycles are simulated, corresponding to a final time tend = 9.90 s.
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FIGURE 4.18: Baseline common carotid artery case (cCCA). Solution of the 1D
a-FSI system with the IMEX scheme with elastic tube law compared to six 1D
and one 3D benchmark solutions, all taken from Boileau et al. (2015). Results
presented in terms of pressure at the midpoint (a), inlet-outlet pressure difference
(b), flow rate at the midpoint (c) and change in radius from diastole at the midpoint

(d).
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FIGURE 4.19: Tapered common carotid artery case (tCCA). Results obtained solv-
ing the 1D a-FSI system with the IMEX scheme with elastic and viscoelastic tube
law compared to 1D elastic benchmark, taken from Xiao, Alastruey, and Figueroa
(2014), presented in terms of flow rate at the inlet (a), flow rate at the midpoint
(b), flow rate at the outlet (c), pressure at the inlet (d), pressure at the midpoint

(e), pressure at the outlet (f).

4.3.5.2 Common carotid artery benchmark test cases

The constant radius common carotid artery test case (cCCA) is simulated using a
purely elastic configuration of the wall mechanics to allow comparisons with solely elas-
tic benchmark available data, from which also the inlet flow rate qin is taken (Boileau
et al., 2015). Figure 4.18 shows results obtained solving the a-FSI system (4.12) with the
IMEX scheme against the benchmark solution. All the IMEX waveforms are almost in-
distinguishable from the reference ones, confirming the ability of the model to correctly
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simulate pulse wave hemodynamics in single arterial segments.
Also for the CCA, the problem with a linearly tapered radius (tCCA) is performed

as presented by Xiao, Alastruey, and Figueroa (2014). Designed in the same manner as
for the TA, the simulation is executed initially considering a simple elastic behavior of
the vessel wall and further taking into account viscoelasticity. In Fig. 4.19 it is possible
to observe an excellent correspondence between IMEX elastic results and the 1D elas-
tic benchmark along the whole length of the vessel. All other parameters being equal,
the introduction of the viscoelastic model entails a significant damping effect of pressure
waves, associated with a loss of energy of the system. Since the pulse wave is subject to
a viscoelastic response along each arterial segment, the damping effect increases toward
the periphery of the cardiovascular system: the frequency of the wave increases as the
wall viscosity η, while the equilibrium radius R0 decreases (Alastruey, Parker, and Sher-
win, 2012; Alastruey et al., 2012; Mynard and Smolich, 2015; Valdez-Jasso et al., 2009),
with a relaxation time of the wall that behaves almost like a biological constant (Ghigo
et al., 2017). It can be verified that this concept is well reproduced by the proposed model
when comparing damping effects in the TA (Fig. 4.17) to those in the CCA (Fig. 4.19).

Parameter CCA-A CCA-B CCA-C CCA-D FA-E FA-F
Age [years] 29 28 44 28 44 32
L [cm] 17.70 17.70 17.70 17.70 14.50 14.50
R0,in [mm] 4.0 4.0 4.0 4.0 3.7 3.7
R0,out [mm] 3.7 3.7 3.7 3.7 3.14 3.14
s0 [mm] 0.3 0.3 0.3 0.3 0.3 0.3
p(x, 0) [mmHg] 0 0 0 0 0 0
u(x, 0) [m/s] 0 0 0 0 0 0
αc [-] 4⁄3 4⁄3 4⁄3 4⁄3 4⁄3 4⁄3
pD [mmHg] 90.0 70.0 80.0 75.0 90.0 90.0
pout [mmHg] 0 0 0 0 0 0
R1 [MPa s m−3] 145.91 145.91 145.91 145.91 241.26 241.26
R2 [MPa s m−3] 768.17 588.83 702.28 756.13 4140.0 2352.1
C [m3 GPa−1] 0.29178 0.24997 0.49551 0.11168 0.11155 0.13208
E0 [MPa] 1.7742 1.7742 1.7742 1.7742 2.2352 2.2352
E∞ [MPa] 0.9535 0.9535 0.9535 0.9535 1.2012 1.2012
η [kPa s] 47.768 47.768 47.768 47.768 47.768 47.768
τr [s] 0.0125 0.0125 0.0125 0.0125 0.010 0.010

TABLE 4.8: Model parameters of the CCA and CFA test cases for the 6 different
subjects (A-F) from whom in-vivo velocity and pressure data were measured: sub-
ject age, vessel length L, inlet equilibrium radius R0,in, outlet equilibrium radius
R0,in, vessel wall thickness s0, initial pressure p(x, 0), initial velocity u(x, 0),
Coriolis coefficient αc, diastolic pressure pD (in this model coincident with the
external pressure pext for the equilibrium), outflow pressure pout, Windkessel re-
sistance R1, Windkessel resistance R2, Windkessel compliance C, instantaneous
Young modulus E0, asymptotic Young modulus E∞, viscosity coefficient η, relax-
ation time τr. The number of cells in the domain is Nx = 7 and 10 cardiac cycles

are simulated, corresponding to a final time tend = 10.00 s.
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FIGURE 4.20: Common carotid artery (CCA) cases with in-vivo data. Results
obtained solving the 1D a-FSI system with the IMEX RK scheme, with elastic
and viscoelastic tube law, for four different subjects. First (flow rate) and second
(pressure) rows related to subject A; third (flow rate) and forth (pressure) rows
related to subject B; fifth (flow rate) and sixth (pressure) rows related to subject
C; seventh (flow rate) and eight (pressure) rows related to subject D. First column
shows results in the first cell of the domain, second column shows results in the
central cell of the domain, third column shows results in the last cell of the domain.
Inlet velocity waveform obtained for each subject from Doppler measurements.
Computed pressure obtained in the last cell of the domain compared to pressure

waveforms measured for each subject with the PulsePen tonometer.
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FIGURE 4.21: Common femoral artery (CFA) cases with in-vivo data. Results
obtained solving the 1D a-FSI system with the IMEX RK scheme, with elastic
and viscoelastic tube law, for two different subjects. First (flow rate) and second
(pressure) rows related to subject E; third (flow rate) and forth (pressure) rows
related to subject F. First column shows results in the first cell of the domain,
second column shows results in the central cell of the domain, third column shows
results in the last cell of the domain. Inlet velocity waveform obtained for each
subject from Doppler measurements. Computed pressure obtained in the last cell
of the domain compared to pressure waveforms measured for each subject with the

PulsePen tonometer.

4.3.6 In-vivo data test cases

Not having found benchmark test cases of blood flow in single viscoelastic vessels in
literature, data measured in-vivo in human CCAs and CFAs (see Section 4.2.3) are used
as reference for the validation of the proposed model in its viscoelastic form. The velocity
waveform extrapolated from each Doppler measurements (for four subjects in the CCA
and for two subjects in the CFA) is imposed at the inlet boundary as described in Section
4.2.2.4. The pressure waveform measured with the PulsePen tonometer is compared to
the computed pressure obtained in the last cell of the domain, this being, for both type of
vessels, the position that is considered closest to the data measurement position. Model
parameters for each in-vivo data test case are listed in Tab. 4.8. Physiological data for
arteries are chosen referring to Müller and Toro (2014a), while the diastolic pressure is
fixed based on values measured in the brachial artery for each patient. Outflow parame-
ters are calibrated following the procedure proposed by Alastruey et al. (2012) and Xiao,
Alastruey, and Figueroa (2014) and viscoelastic parameters are estimated as presented in
Section 4.2.4. In all the cases, ρ = 1060 kg/m3, µ = 0.004 Pa s and CFL = 0.9.

Figures 4.20 and 4.21 show flow rate and pressure results, obtained solving the a-FSI
system, considering the simple elastic and the SLS viscoelastic model, with the chosen
IMEX RK scheme, in three different positions along the domain of each CCA and CFA,
respectively. It can be noticed that IMEX viscoelastic results correctly capture the shape
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FIGURE 4.22: Hysteresis curves representative of one cardiac cycle presented in
terms of relative pressure and relative diameter, with respect to diastolic values,
pD and DD respectively. Results obtained solving the 1D a-FSI system with the
IMEX RK scheme, with elastic and viscoelastic tube law, for each subject of the
study. Curves for the CCA of subjects A (a), B (b), C (c), D (d) and for the CFA
of subjects E (e), F (f). Numerical results obtained for each CCA are compared to
hysteresis curves available in literature, produced correlating in-vivo diameter and
pressure simultaneous records made in volunteers of different ages (Giannattasio

et al., 2008; Salvi, 2012). Curves develop in time counter-clockwise.

and magnitude of the pressure waveforms of all the volunteers, concerning both the types
of arteries. These results confirm the capability of the proposed model to reproduce real-
istic pressure signals and the importance of taking into account the viscosity of the vessel
wall in order not to overestimate systolic pressure values (Alastruey et al., 2011; Battista,
2015; Westerhof and Noordergraaf, 1970).
In Fig. 4.22, computed p-D hysteresis loops are presented, comparing those related to
CCAs with reference literature hysteresis (Giannattasio et al., 2008; Salvi, 2012). It was
not possible to do the same for CFA results, due to lack of sufficient reference data avail-
able in literature. Comparisons of the dissipated energy fractions, carried out for each
subject from literature loops and computed hysteresis curves (as described in Section
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4.2.4), confirm the correct reproduction of energy losses. Numerical dissipation percent-
age in CCA tests results 21.5%, 20.0%, 22.5% and 23.1%, respectively for subjects from
A to D, while the average over age of the corresponding literature curves results 19.2%,
23.7%, 22.0% and 23.7%. Numerical results in CFA tests reproduce a dissipation percent-
age of 12.6% and 13.7%, respectively for subject E and F, asserting the presence of smaller
areas of hysteresis in more peripheral vessels (Alastruey et al., 2012).

4.4 Concluding remarks

In the present study, an innovative augmented fluid-structure interaction system is
proposed for the blood flow modeling with regards to the viscoelastic effects of arterial
and venous walls. The model has been validated through idealized time-dependent tests
for situations close to reality, considered as a tool for checking the accuracy and the ro-
bustness of hemodynamics models. It has been demonstrated that the selected IMEX
Runge-Kutta scheme preserves the expected in order of accuracy also when dealing with
stiff source terms, confirming the AP property also in the blood flow context here dis-
cussed. Furthermore, results obtained considering a simple elastic behavior of single
arteries arise in perfect agreement with 1D and 3D benchmark data available in litera-
ture. Comparisons with in-vivo data, collected from different human healthy volunteers
in CCAs and CFAs, demonstrate that the proposed model is able to correctly simulate
pressure trends in different subjects, serving as a valuable tool to improve cardiovascular
diagnostics and the treatment of diseases.

An effective procedure to estimate viscoelastic parameters of the SLS model is pro-
posed, which returns CCA hysteresis curves dissipating energy fractions in line with
values calculated from literature hysteresis loops in the same vessel. Considering litera-
ture physiological data (for R0, s0, L and c0 in vessels), the procedure presented in Section
4.2.4 permits to obtain all the necessary elastic and viscoelastic parameters. Only brachial
systolic and diastolic pressure values (which can easily be recorded) are needed to cor-
rectly impose reference pressure values and define outlet lumped parameters (Alastruey
et al., 2012; Xiao, Alastruey, and Figueroa, 2014), without the need of specific parameter
adjustments. Given the satisfactory results obtained in all the test cases, it is believed that
the proposed 1D a-FSI system of blood flow equations can be a valid tool for modeling
the human circulation, both in arteries and veins, representing a valuable resource for
different real medical applications. The chosen asymptotic-preserving IMEX-SSP2 RK
scheme ensures at the same time robustness (given by the usage of an implicit discretiza-
tion of the stiff terms) and efficiency (being possible to obtain a totally explicit algorithm
for the specific resolution, as discussed in Appendix A). A simple shift from elastic to
viscoelastic characterization of the vessel wall is ensured by the straightforward addition
of a source term. Recurring to the a-FSI system, in fact, would be mostly advantageous
when taking into account the viscoelastic wall behavior of vessels: all the viscosity infor-
mation would be enclosed within a source term, avoiding the presence of second order
derivatives in the system. Moreover, in this manner the governing system of equations
remains natively hyperbolic.

Finally, the impact of characterizing the mechanics of the vessel wall concerning vis-
coelastic effects and not solely the elastic ones has been pointed out, especially compar-
ing computed pressure waveforms with experimental measurements. In this context, the
viscoelastic SLS model better describes the complex behavior of a viscoelastic material
if compared with the KV model, frequently adopted in the biofluid dynamics literature
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(Alastruey et al., 2011; Montecinos, Müller, and Toro, 2014; Wang, Fullana, and Lagrée,
2014; Mynard and Smolich, 2015), still maintaining ease of implementation and usage.
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Chapter 5

Application study on arterial
hypertension

5.1 Introduction

The viscoelastic behaviour of arterial and venous walls plays a determinant role in
setting the functional level of the cardiovascular system under physiological and, espe-
cially, under pathological conditions such hypertension (Bia et al., 2003).
Arterial hypertension, or persistent high blood pressure, is a well-known pathology, af-
fecting around 30% of the population, with a steep increase with aging. It is the most
common disorder affecting the heart and blood vessels and represents the leading global
risk factor for cardiovascular diseases, chronic kidney diseases, strokes and mortality
(Williams et al., 2018; Hart, 2016; Tortora and Derrickson, 2013). The pathology is also
known as the “silent killer” because it can cause considerable damage to blood vessels,
heart, brain and kidneys before it causes pain or other noticeable symptoms. In blood
vessels, hypertension causes thickening of the tunica media, accelerates development of
atherosclerosis and coronary artery disease and increases systemic vascular resistance. In
the heart, hypertension increases the afterload, which forces the ventricles to work harder
to eject blood (Tortora and Derrickson, 2013).

The latest guidelines for hypertension, published in 2013 by the Task Force for the
management of arterial hypertension of the European Society of Hypertension (ESH)
and of the European Society of Cardiology (ESC), define and classify the following blood
pressure levels, in terms of diastolic pressure (pD) and systolic pressure (pS) expressed in
mmHg (Williams et al., 2018):

• Optimal: pD < 80 and pS < 120;

• Normal: 80 < pD < 84 and/or 120 < pS < 129;

• High normal: 85 < pD < 89 and/or 130 < pS < 139;

• Grade 1 of hypertension: 90 < pD < 99 and/or 140 < pS < 159;

• Grade 2 of hypertension: 100 < pD < 109 and/or 160 < pS < 179;

• Grade 3 of hypertension: pD ≥ 110 and/or pS ≥ 180;

• Isolated systolic hypertension: pD < 90 and pS ≥ 140;

The recommended classification is unchanged from the 2003, 2007 and 2013 ESH/ESC
guidelines, being hypertension still defined as office systolic pressure values at least 140
mmHg and/or diastolic values at least 90 mmHg.
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The number of people with raised blood pressure in the world is increased by 90% dur-
ing the four decades between 1975 and 2015, with the majority of the increase occurring
in low-income and middle-income countries, largely driven by the growth and aging
of the population (NCD Risk Factor Collaboration (NCD-RisC), 2017). Between 90 and
95% of the hypertensive patients are affected by essential/primary hypertension, a per-
sistent elevated blood pressure state that cannot be attributed to any identifiable cause.
The remaining 5-10% of cases are secondary hypertension, which has an identifiable un-
derlying cause, like obstruction of renal blood flow, hypersecretion of aldosterone and
hypersecretion of epinephrine and norepinephrine (Tortora and Derrickson, 2013).

Many people are successfully treated with diuretics, agents that decrease blood pres-
sure by decreasing blood volume because they increase the elimination of water and
salt in the urine. Angiotensin converting enzyme inhibitors block the formation of an-
giotensin II and thereby promote vasodilation and decrease the secretion of aldosterone.
Beta blockers reduce blood pressure by inhibiting the secretion of renin and by decreas-
ing heart rate (HR) and contractility. Vasodilators relax the smooth muscle in arterial
walls, causing vasodilation and lowering blood pressure by lowering systemic vascu-
lar resistance (Tortora and Derrickson, 2013). The alarming aspect, however, is that ap-
proximately one-third of people receiving anti-hypertensive medication still have uncon-
trolled high blood pressure, which reflects the limited understanding of the pathophys-
iology underlying the onset of elevated blood pressure and how this could represent a
significant economic problem for public health-care (Hart, 2016).

For a concrete step forward on hypertension studies as well as other medical re-
searches, quantitative data and non-invasive measurements are increasingly required.
In this context, the available mathematical instruments, together with the engineering
know-how in the field of fluid mechanics, represent a valuable tool for a faster progress
in the knowledge of human hemodynamics. Having this perspective in mind, the aim
of the following study is to model a hypertensive patient with one of the few global
multiscale closed-loop blood flow models available in literature, the Müller-Toro model
(Müller and Toro, 2014a; Müller and Toro, 2014b), examining results obtained with a sen-
sitivity analysis to investigate correlations between hemodynamics variations and the
development of arterial hypertension. Furthermore, since recent findings highlight that
congenital cerebrovascular abnormalities, i.e. vertebral artery hypoplasia (VAH) and in-
complete posterior Circle of Willis (CoW), may play a fundamental role in triggering high
blood pressure (Warnert et al., 2016), some studies are conducted, concerning both nor-
motensive and hypertensive subjects, to assess the effects of the suspected anatomical
variations.

5.1.1 The Selfish Brain Hypothesis of essential hypertension

One of the historical theories which tries to give an explanation to the development
of essential hypertension is termed "the Cushing’s mechanism" (Paton, Dickinson, and
Mitchell, 2009), recently re-proposed under the appellation of "the Selfish Brain Hypoth-
esis" of hypertension by Paton and Hart and their collaborators from the University of
Bristol (Cates et al., 2012). This theory considers it possible that an increase in cere-
brovascular resistances (CVR), leading to cerebral hypoperfusion (a reduction of normal
cerebral perfusion pressure levels, associated with a reduction of cerebral blood flow),
may cause the onset of high sympathetic nerve activity and the consequent rise of blood
pressure, inverting in this way the undisputed cause-effect relationship between hyper-
tension and high cerebrovascular resistance (Hart, 2016). The increment of CVR could be
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due to inflammations, oxidative stresses, changes in collagen and/or elastin content in
the arterial walls or even congenital cerebrovascular abnormalities, i.e. VAH and incom-
plete CoW.

The first researcher starting to speculate about this novel explanation to the rise of
blood pressure is Harvey Cushing, from whom, indeed, the theory takes the name. At the
beginning of the twentieth century, Cushing, conducting experimental analysis in dogs,
verified the presence of a regulatory mechanism of the vasomotor center (located in the
brainstem) which controls blood pressure levels during cerebral compression (Cushing,
1901). First measurements of cerebral blood flow (CBF) and cerebral vascular resistance
in humans concerning what is termed "the Cushing’s response" were presented only al-
most 50 years later by Kety and Schmidt (1948). Thereafter, Dickinson and Thomson, with
ante-mortem and post-mortem studies in hypertensive patients, hypothesized a connec-
tion between the narrowing of vertebral arteries, the brainstem hypoperfusion and the
development of essential hypertension (Dickinson and Thomson, 1959; Dickinson and
Thomson, 1960).

For the introduction of the term "Cushing’s mechanism" (which has a different mean-
ing than the "Cushing’s response", since the latter is intended as a ’last ditch’ self-protection
for a critically ischemic brain, while the former is seen as a physiological mechanism for
long-term control of mean arterial pressure levels) we have to wait until the beginning of
the current century. Paton, Dickinson, and Mitchell (2009), in fact, revisited the Dickinson
hypothesis, focusing on the aspect that brainstem hypoperfusion could cause the onset
of sympathetic hyperactivity and consequent hypertension, by taking a firm stand on the
side of an inverse cause-effect relationship between increased CVR (always accepted as
a consequence of hypertension) and high blood pressure. Two years later, experimental
studies in pre-hypertensive spontaneously hypertensive rats conducted by Cates et al.
(2011) demonstrated the presence of VAH before the onset of hypertension. This gave a
concrete support to the hypothesis that "the Cushing’s mechanism" could effectively be
activated by narrowing of the arteries supplying the brainstem, with a consequent rise in
cerebrovascular resistance. In particular, the authors hypothesized that the narrowing of
these cerebral arteries might be a consequence of inflammation-mediated alterations in
the connective tissue types and elastin.
Recently, thorough reviews of the theory have been presented by Cates et al. (2012) and
Hart (2016), with the introduction of the name "the Selfish Brain Hypothesis", being this
process seen as a fundamental self-protective mechanism of the brain to maintain ade-
quate levels of cerebral blood flow.
Finally, in recent studies performed by Warnert et al. (2016), first findings concerning
normotensive, pre-hypertensive and hypertensive humans demonstrate that congenital
posterior cerebrovascular variants, here specifically intended as VAH and incomplete
posterior CoW, and the associated cerebral hypoperfusion may be a factor in trigger-
ing high blood pressure, highlighting that lowering blood pressure with specific anti-
hypertensive drugs may therefore worsen cerebral perfusion in susceptible individuals,
putting patients at risk of developing cognitive impairment and vascular dementia.

5.1.2 Anatomy of the Circle of Willis and Vertebral Artery Hypoplasia

Referring to Fig. 5.1, the CBF is governed by four inlet vessels: two anterior inter-
nal carotid arteries and two posterior vertebral arteries (VA) which unite into the basi-
lar artery (BA). These vessels feed a circle of communicating arteries known as circle of
Willis, which represents the major source of blood supply of the human brain. From



88 Chapter 5. Application study on arterial hypertension

Middle
cerebral
artery

Anterior
communicating

artery
Anterior

cerebral artery

Posterior
cerebral
artery

Superior
cerebellar

arteryBasilar
artery

Anterior
inferior

cerebellar
artery

Internal
carotid
artery

Posterior
communicating

artery

Pontine
arteries

Vertebral
artery

Anterior
spinal
artery

Posterior
inferior

cerebellar
artery

FIGURE 5.1: Anatomy of the Circle of Willis, circulatory anastomosis that sup-
plies blood to the brain and surrounding structures.

the CoW, other arteries, namely anterior cerebral arteries, middle cerebral arteries and
posterior cerebral arteries, arise and travel to all the parts of the brain. Posteriorly, the
basilar artery divides into left and right posterior cerebral artery and each one commu-
nicates with the ipsilateral internal carotid artery by the respective posterior communi-
cating artery (PcoA). In the anterior part of the brain, internal carotid arteries divide into
the anterior and middle cerebral arteries. Left and right anterior cerebral arteries are con-
nected by the anterior communicating artery (Cipolla, 2010). In the posterior region, the
brainstem is supplied by superior cerebellar arteries and anterior inferior cerebellar ar-
teries, which originate from the BA, and the posterior inferior cerebellar arteries, which
originate directly from each vertebral artery.
The brainstem is composed by thalamus, midbrain, pons and medulla (medulla oblon-
gata). The vasomotor center (VMC) is a portion of the medulla oblongata that, together
with cardiovascular center and respiratory center, regulates blood pressure and other
homeostatic processes. Embedded in the medulla, in fact, there is a series of purely sen-
sory nuclei (clusters of nerve cell bodies) forming a vertical column of gray matter: the
nucleus of the solitary tract (nucleus tractus solitarii, NTS), which is one of the most
effective central sites for modulating the baroreceptor reflex function, a process that is
critically important for blood pressure homeostasis. This tract is known to be heavily
vascularized compared to the other compartments of the brainstem, suggesting that it
exhibits a high level of oxygen demand (Waki et al., 2011), being really sensitive to an
eventual hypoperfusion. A complete CoW exists only in almost 50% of the population,
with different incomplete CoW configurations existing in the rest of the population. An
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incomplete CoW, due to the absence of one or other posterior arteries, might be linked to
cerebrovascular disorders, such as aneurysms, infarctions and other vascular anomalies,
especially if associated to inferior cerebral arteries stenoses (Alastruey et al., 2007).

Another consistent cerebrovascular abormality concerns the vertebral arteries config-
uration and a possible hypoplasia (underdevelopment or incomplete development of the
tissue which is read as a reduced lumen of the vessel) of one of the two. According to re-
cent studies about frequency and effects on cerebellar blood flow characteristics of VAH,
in the literature there is a high incongruence concerning its prevalence and ranges be-
tween 1.9 and ≤ 26.5% (Thierfelder et al., 2014). This discrepancy is in part related to the
fact that there is no consensus on a standard definition of this cerebrovascular variant,
with a cut-off diameter range between 2.0 and 3.0 mm (Katsanos et al., 2013). Despite
its presumably high prevalence, relatively little is known about the clinical relevance of
VAH and there has always been a long-prevailing opinion that this anatomic variant is
harmless. Only recently, VAH has obtained increased attention, mainly because of ev-
idence suggesting that this abnormality confers an increased probability of ischaemic
stroke, especially infarction in the posterior inferior cerebellar arteries and in the lateral
medulla (Chuang et al., 2012; Katsanos et al., 2013; Park, Kim, and Roh, 2007; Thierfelder
et al., 2014). Thierfelder et al. (2014) define VAH by a diameter of the fourth segment of
the VA ≤ 2.0 mm and a concomitant diameter asymmetry ratio ≤ 1 : 1.7 in all of the 4
vertebral segments. Park, Kim, and Roh (2007) define as hypoplastic the vetebral artery
whose diameter is < 2.2 mm. Chen et al. (2010) determined that a VA diameter ≤ 2.5 mm
is an ideal value to define VAH and discriminate marked flow asymmetry and low flow
volume of VA.

5.2 Methods

5.2.1 The Müller-Toro global closed-loop model

The Müller-Toro model is a global multi-scale closed-loop mathematical model for
the human circulation composed by a 1D representation of the network of major arter-
ies and major veins and lumped-parameter (0D) models for microvasculature (arterioles,
capillaries and venules), heart, pulmonary circulation and cerebrospinal fluid (CSF) cir-
culation, taking into account the Starling-resistor like behavior of cerebral veins and the
presence of venous valves (Müller and Toro, 2014a; Müller and Toro, 2014b; Celant, 2018).
The 1D FSI between vessel wall and blood flow is here described using the viscoelastic
KV model (presented in Section 2.3.2) with the general 1D formulation of the PDE sys-
tem (see Section 4.2.1.1), treating the resulting second order derivative in space of the
flow rate introducing a numerical relaxation parameter, as discussed in Section 4.2.1.5
(Montecinos, Müller, and Toro, 2014).

With respect to the model presented by Müller and Toro (2014b) and further devel-
oped by Celant (2018) (to which the reader is invited to refer for details of the model
and physiological data of the cardiovascular network), for the analysis conducted in this
study related to the Selfish Brain Hypothesis, the cerebral autoregulation model (intrinsic
ability of the organ to maintain constant blood flow despite changes in perfusion pres-
sure) is deactivated, aiming to depict cerebral pressure levels changes not affected by sec-
ondary mechanisms. Moreover, the velocity profile chosen follows the simple Poiseuille
law, avoiding the adoption of the not very beneficial and more complex Womersley pul-
satile flow profiles (Womersley, 1957).
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The 1D blood flow equations are solved using a high-order well-balanced non-linear nu-
merical scheme in space and time based on ADER (Arbitrary high-order DERivatives) fi-
nite volume scheme (Müller and Toro, 2013), with a high-order local time stepping (LTS)
scheme based on a high-order coupling strategy and a synchronization approach of the
solution at junctions, as the one proposed by Müller et al. (2016).
Geometrical and physical parameters of the starting model are representative of a healthy
young male aged 25 years at rest. The simulated subject is assumed to have a weight of
75 kg and height of 175 cm, with a body surface area (BSA) of 1.92 m2 and HR equal to
75 beats/min, which corresponds to a heart cycle duration of 0.8 s.

The development of the model in this study consists in the recalibration of the pa-
rameters involved in the representation of a proper hypertensive scenario. To proceed
with a proper comparison between hypertensive and normotensive subjects, without in-
fluences due to aging effects more than hypertension, parameters are firstly rearranged
in order to represent a healthy adult male aged 55 years (maintaining the same BSA and
HR) and further to represent a hypertensive adult male of the same age, as presented in
the following Sections.

5.2.2 Modeling aging effects

Aging effects are imposed referring to previous computational studies published by
Liang et al. (2009) and main references therein (Avolio et al., 1983; McEniery et al., 2005;
Nichols et al., 1985). In addition, calibrations are adapted in accordance to what reported
in other more recent medical papers of the field of interest (Franklin et al., 1997; Maksuti
et al., 2016; Mitchell et al., 2004; O’Rourke and Hashimoto, 2007; Palatini et al., 2011;
Rogers et al., 2001; Scuteri et al., 2014; Strait and Lakatta, 2012; Sugawara and Tanaka,
2015; Tarumi and Zhang, 2018).
Hence, to simulate an adult male aged 55 years, the following parameters are rearranged:

• Aortic radius: as result of an augmented left ventricle afterload, the ascending aorta
inlet radius is increased by 28%, corresponding to an inlet radius of 1.83 cm (Nichols
et al., 1985), with a consequent proportional adaptation of the whole branch until
the abdomen region, maintaining the previous tapering effect.

• Pulse wave celerity of arteries: since the celerity of the blood flow reflects changes
in both thickness and Young elastic modulus, as presented in Eq. (4.17) with the
caracterization of Eq. (4.5), to simulate thickening and stiffening of central arteries,
it was decided to act directly on the celerity on the basis of the body location of the
vessel, referring to pulse wave velocities reported by McEniery et al. (2005) for cen-
tral arteries and by Avolio et al. (1983) for peripheral arteries. In this way, celerity
of vessels in the thorax are increased by 40%, celerity of vessels in the abdomen and
in the upper limbs by 30% and celerity of vessels in the pelvis and lower limbs by
20%. All the other vessels maintained the initial celerity value.

• Total terminal arteries resistance: the total terminal arteries resistance is increased
by 15% to account for the verified increment of the total peripheral resistance with
aging.

5.2.3 Modeling hypertension effects

Research studies reporting other computational analysis on arterial hypertension, de-
veloped by Blanco, Müller, and Spence (2017) and Liang, Guan, and Alastruey (2018),
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are considered as main references to simulate a hypertensive adult male aged 55 years.
Therefore, to obtain a hypertensive scenario, in accordance with literature pressure trends
(Asmar et al., 1995; Cox et al., 1991; De Giusti et al., 2012; Ganau et al., 1992; Laurent et
al., 1994; Palatini et al., 2011), the following parameters of the adult normotensive subject
have been rearranged:

• Pulse wave celerity of arteries: to match carotid-femoral pulse wave velocity (cf-
PWV) measurements (Asmar et al., 1995), wave speeds in arteries are increased by
20% in all the locations, considering an overall increment of the arterial stiffness by
50%.

• Total terminal arteries resistance: the total terminal arteries resistance is increased
by 45% to account for a proper augmented peripheral resistance.

• Total terminal arteries compliance: since in large vessels the compliance is inversely
proportional to the celerity, C ∝ 1

a , the total terminal arteries compliance is de-
creased by 17%.

• Left ventricle elastance: as an adaptation to the elevated arterial load induced by
hypertension, the contractility of the left ventricle might slightly increase; thus, the
left ventricle elastance is increased by 30% to match literature cardiac output (CO)
and cardiac index (CI = CO/BSA) values (Ganau et al., 1992).

It has to be underlined that, in this case, no vessel radius changes are applied follow-
ing Laurent et al. (1994). Finally, it is important to stress that, in all the simulations of
the present study, the total blood volume is kept constant (with a circulating part corre-
sponding to 2,63 l).

5.3 Numerical Results and Discussion

The obtained adult normotensive and adult hypertensive scenarios are first validated
comparing numerical results in terms of central and peripheral pressure levels, CO and
cfPWV with reference literature values (McEniery et al., 2005; Asmar et al., 1995; Benetos
et al., 2002; Cox et al., 1991; De Giusti et al., 2012; Laurent et al., 1994; Ganau et al., 1992).
Subsequently, a sensitivity analysis of the parameters involved in the development of a
hypertensive state is carried out, analyzing the effects of a percentage variation of arterial
stiffness, total terminal arteries resistance, total terminal arteries compliance, heart con-
tractility (left ventricle elastance) and cardiac cycle duration, with respect to a baseline
hypertensive state. Finally, to assess the effects of the presence of a hypoplastic vertebral
artery and an eventual incomplete circle of Willis, based on recent findings presented by
Warnert et al. (2016) concerning the Selfish Brain Hypothesis of hypertension, a prelim-
inary computational study has been conducted, taking into account three different con-
figurations of anatomical cerebrovascular variants concerning adult normotensive and
hypertensive subjects.

5.3.1 Validation of adult and hypertensive scenarios

Comparing results obtained for the young and adult subject against measured pres-
sure ranges taken from McEniery et al. (2005), we observe from Figs. 5.2 - 5.4 that blood
pressure trends are correct in all the regions. Mean arterial pressure (MAP) changes from
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FIGURE 5.2: Mean/brachial arterial pressure of simulated young and adult nor-
motensive patients: aging trend. Reference data range taken from McEniery et al.

(2005).
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FIGURE 5.3: Central/aortic systolic (left) and pulse pressure (right) of simulated
young and adult normotensive patients: aging trend. Reference data range taken

from McEniery et al. (2005).
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FIGURE 5.4: Radial systolic and diastolic pressure (left) and pulse pressure (right)
of simulated young and adult normotensive patients: aging trend. Reference data

range taken from McEniery et al. (2005).
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FIGURE 5.5: Pressure wave in ascending aorta (top), left subclavian artery II
(middle) and left radius (bottom) of the simulated young normotensive (yNTN)
patient, the adult normotensive (oNTN) patient and the adult hypertensive (HTN)

patient.
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FIGURE 5.6: Cardiac output of the simulated young normotensive (yNTN) pa-
tient, adult normotensive (oNTN) patient and adult hypertensive (HTN) patient.
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FIGURE 5.7: Intracranial pressure of the simulated young normotensive (yNTN)
patient, adult normotensive (oNTN) patient and adult hypertensive (HTN) pa-

tient.
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FIGURE 5.8: Mean perfusion pressure, intended as the difference between mean
arterial pressure and intracranial pressure, (left) and posterior cerebral perfusion
pressure, intended as the difference between the basilar pressure and the intracra-
nial pressure, (right) of the simulated young normotensive (yNTN) patient, adult

normotensive (oNTN) patient and adult hypertensive (HTN) patient.
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FIGURE 5.9: Total cerebral blood flow (left) and posterior cerebral blood flow
(right) of the simulated young normotensive (yNTN) patient, adult normotensive

(oNTN) patient and adult hypertensive (HTN) patient.
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93 to 96.5 mmHg and also in the central region both systolic and pulse pressure consider-
ably increase. On the other hand, in the peripheral region of the network, changes are less
evident in the aging process, and indeed systolic, diastolic and consequently pulse pres-
sure maintain more or less unvaried values. All these results are consistent with recent
medical findings (Franklin et al., 1997; Maksuti et al., 2016; Mitchell et al., 2004; O’Rourke
and Hashimoto, 2007; Palatini et al., 2011; Rogers et al., 2001; Scuteri et al., 2014; Strait
and Lakatta, 2012; Sugawara and Tanaka, 2015; Tarumi and Zhang, 2018).
In Tabs. 5.1 and 5.2, brachial pressure values, cardiac index and carotid-femoral pulse
wave velocity obtained in the simulation respectively of the adult normotensive and of
the hypertensive subject are reported together with reference data taken from Asmar
et al. (1995), Benetos et al. (2002), Cox et al. (1991), De Giusti et al. (2012), Ganau et al.
(1992), and Laurent et al. (1994): again it is confirmed that both the calibrations made
return valid results if compared to literature measurements and, according to the 2018
ESH/ESC guidelines (Williams et al., 2018), the modeled hypertensive patient is exactly
at the beginning of grade 2 of hypertension.

Results of the three simulations of young normotensive, adult normotensive and hy-
pertensive patient are shown in Figs. 5.5 - 5.9. Pressure waves forms here presented
appear correct if compared to classical measurements. The effects of aging become less
evident when leaving the central aortic region and reaching the radial peripheral zone,
while hypertension acts with a systematic shift of pressures in all the body regions, as
visible from Fig. 5.5. The CO slightly decrease as a consequence of both aging and hy-
pertension (Fig. 5.6). On the other hand, concentrating on the cerebral area, observing
respectively Fig. 5.7 and Fig. 5.8 right, the intracranial pressure pIC and the posterior per-
fusion pressure (in this study intended as the difference between pressure in the basilar
artery, which is the inlet vessel for the posterior CBF, and the intracranial pressure) in-
crease consistently with the increase in blood pressure. In the same manner, also the mean
perfusion pressure, obtained as the classical difference between MAP and pIC, reaches el-
evated values in the hypertensive subject (Fig. 5.8 left). Concerning Fig. 5.9, a discrete
decrement of the total CBF, and also of the posterior CBF, is observed with aging: total
CBF changes from 700 ml/min in the young normotensive subject to 650 ml/min in the
adult normotensive subject, which is a result consistent with literature trends (Tarumi
and Zhang, 2018). With the development of hypertension, there is then a very slight in-
crease to 660 ml/min of total CBF. In this study, the total CBF is considered as the sum
of the inlet contributes arriving from the two internal carotid arteries (anterior) and the
basilar artery (posterior), which collects incoming blood from the two vertebral arteries;
while the posterior cerebral blood flow is obtained as the sum of the outgoing blood in
anterior inferior cerebellar arteries and posterior cerebral arteries.

5.3.2 Sensitivity analysis

A sensitivity analysis of the parameters involved in the development of a hyperten-
sive state is performed to observe the effects of a percentage variation of arterial stiffness
(i.e. the product Eh, which affects the pulse wave celerity), total terminal arteries resis-
tance, total terminal arteries compliance, heart contractility (i.e. left ventricle elastance)
and cardiac cycle duration (i.e. heart rate) with respect to a baseline hypertensive state.
The reference hypertensive state is assumed to be the result of calibrations discussed in
Section 5.2.3, starting from which the parameters of intereste are varied in an univariate
manner; hence, when a parameter is varied, all the others are fixed at their baseline state.
Percentage variations considered for each parameter are listed in Table 5.3. Again, it has
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Data BSP BDP BPP BMP CI cfPWV
Simulation 122 75 47 96.5 2.65 9.87
Asmar et al. (1995) 125 ± 9 77 ± 8 - - - 8.5 ± 1.5
Benetos et al. (2002) 129.5 ± 0.9 82.4 ± 0.6 47.1 ± 0.7 98.1 ± 0.6 - 10.35 ± 0.1
Cox et al. (1991) 136 ± 16 77 ± 9 - - - -
Laurent et al. (1994) 128 ± 21 71 ± 13 - 90 ± 15 - -
Ganau et al. (1992) - - - - 2.9 ± 0.7 -

TABLE 5.1: Results obtained in the adult normotensive patient simulation
(first row) compared to literature data ranges. BSP = brachial systolic pressure
[mmHg], BDP = brachial diastolic pressure [mmHg], BPP = brachial pulse pres-
sure [mmHg], BMP = brachial mean pressure [mmHg], CI = cardiac index [l
m−2/min], cfPWV = carotid-femoral pulse wave velocity [m/s], calculated with

the foot-to-foot method.

Data BSP BDP BPP BMP CI cfPWV
Simulation 163 102 60.5 129 2.56 11.52
Asmar et al. (1995) 164 ± 13 102 ± 9 - - - 11.8 ± 2.7
Cox et al. (1991) 180 ± 22 96 ± 13 - - - -
De Giusti et al. (2012) 145.6 ± 15.8 87.8 ± 10.4 - - - -
Laurent et al. (1994) 165 ± 25 96 ± 24 - 121 ± 24 - -
Ganau et al. (1992) - - - - 2.4 ± 0.5 -

TABLE 5.2: Results obtained in the adult hypertensive patient simulation (first
row) compared to literature data ranges. BSP = brachial systolic pressure
[mmHg], BDP = brachial diastolic pressure [mmHg], BPP = brachial pulse pres-
sure [mmHg], BMP = brachial mean pressure [mmHg], CI = cardiac index [l
m−2/min], cfPWV = carotid-femoral pulse wave velocity [m/s], calculated with

the foot-to-foot method.

to be reminded that for each simulation the total blood volume is kept constant and equal
to 2.63 l.
Results of the sensitivity analysis are reported in Figs. 5.10-5.44 with respect to pressure
waves in different compartments, cardiac output, intracranial pressure, mean and poste-
rior cerebral perfusion and cerebral blood flow. Moreover, two summary conclusive plots
accounting for variation trends of mean arterial pressure, central systolic pressure, central
diastolic pressure, central pulse pressure, intracranial pressure, mean perfusion, cardiac
output, total cerebral blood flow and total cerebrovascular resistance are presented.
It is here underlined that for the estimation of the CVR it is followed the standard indirect
clinical definition: CVR = MAP/CBF.

Parameter (- -%) (-%) (+%) (++%)
Arterial stiffness -75% -50% +50% +75%
Total terminal arteries resistance -40% -20% +20% +40%
Total terminal arteries compliance -40% -20% +20% +40%
Heart contractility (elastance) -30% -10% +10% +30%
Cardiac cycle duration -20% -10% +10% +20%

TABLE 5.3: List of the percentage variations considered for each parameter of
interest in the sensitivity analysis of the hypertensive scenario with respect to the

baseline state.
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FIGURE 5.10: Sensitivity analysis results concerning arterial stiffness variation:
pressure wave in ascending aorta (top), left subclavian artery II (centre) and left

radius (bottom). Percentage variation of the parameter in legend.
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FIGURE 5.11: Sensitivity analysis results concerning arterial stiffness variation:
cardiac output. Percentage variation of the parameter in legend.
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FIGURE 5.12: Sensitivity analysis results concerning arterial stiffness variation:
intracranial pressure. Percentage variation of the parameter in legend.
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FIGURE 5.13: Sensitivity analysis results concerning arterial stiffness variation:
mean perfusion pressure (left) and posterior cerebral perfusion pressure (right).

Percentage variation of the parameter in legend.
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FIGURE 5.14: Sensitivity analysis results concerning arterial stiffness variation:
total cerebral blood flow (left) and posterior cerebral blood flow (right). Percentage

variation of the parameter in legend.
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FIGURE 5.15: Sensitivity analysis summary results concerning arterial stiff-
ness variation: trends of mean arterial pressure (MAP), central systolic pressure
(CSP), central diastolic pressure (CDP), central pulse pressure (CPP), intracra-

nial pressure (pIC), mean perfusion pressure and cardiac output (CO).
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5.3.2.1 Arterial stiffness variation

Figures from 5.10 to 5.16 show changes in the main hemodynamic aspects when vary-
ing the arterial stiffness in a reference hypertensive subject. In particular, it is evident
that increasing the arterial stiffness, the systolic pressure rises (especially in the cen-
tral region), while the diastolic pressure decreases, with a consequent increment of the
pulse pressure. The mean arterial pressure is only mildly affected by the variation of this
parameter, while a stronger impact is observed in the total cerebral blood flow, which
decreases while the arterial stiffness increases. These last two results explain why the
cerebrovascular resistance increases with the arterial stiffness. In the meantime, cardiac
output decreases while intracranial pressure increases and consequently the perfusion
pressure decreases.

5.3.2.2 Total terminal arteries resistance variation

Figures from 5.17 to 5.23 show changes in the main hemodynamic aspects when vary-
ing the total terminal arteries resistance in a reference hypertensive subject. In particular,
it is evident that increasing the total terminal arterial resistance, both the systolic and
the diastolic pressure rise deeply, with a consequent almost invariance of the pulse pres-
sure. The same increment applies to the mean arterial pressure. Also in the total cerebral
blood flow a strong impact is observed, even if not with a linear trend, with a decre-
ment of this parameter while the arterial resistance increases, while the cerebrovascular
resistance increases with the arterial resistance with a linear trend. The cardiac output
is deeply affected by the increment of the arterial resistance, and indeed a decisive drop
is observed. Finally, even though the intracranial pressure rises with the growth of the
resistance, the perfusion pressure still increase, due to the major rise of the mean arterial
pressure.

5.3.2.3 Total terminal arteries compliance variation

Figures from 5.24 to 5.30 show changes in the main hemodynamic aspects when vary-
ing the total terminal arteries compliance in a reference hypertensive subject. In par-
ticular, it is observed that increasing the total terminal arterial compliance, the systolic
pressure decreases, while the diastolic pressure remains almost stable, with a consequent
slight decrement of the pulse pressure. The mean arterial pressure is only mildly af-
fected by the variation of this parameter, while a stronger impact is observed in the total
cerebral blood flow, which decreases while the arterial compliance increases. These last
two results explain why in parallel the cerebrovascular resistance increases with the ar-
terial compliance. Moreover, also the cardiac output presents a decisive drops. Finally,
the intracranial pressure increases, with a consequent light decrement of the perfusion
pressure.

5.3.2.4 Heart contractility variation

Figures from 5.31 to 5.37 show changes in the main hemodynamic aspects when vary-
ing the heart contractility in a reference hypertensive subject. In particular, it is evident
that increasing the left ventricle elastance, the systolic and the diastolic pressure rise,
with a parallel slight increment of the pulse pressure. The same growth is read in the
mean arterial pressure, while a stronger impact is observed in the total cerebral blood
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FIGURE 5.17: Sensitivity analysis results concerning total terminal arteries re-
sistance variation: pressure wave in ascending aorta (top), left subclavian artery II
(centre) and left radius (bottom). Percentage variation of the parameter in legend.
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FIGURE 5.18: Sensitivity analysis results concerning total terminal arteries re-
sistance variation: cardiac output. Percentage variation of the parameter in leg-

end.
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FIGURE 5.19: Sensitivity analysis results concerning total terminal arteries re-
sistance variation: intracranial pressure. Percentage variation of the parameter in

legend.
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FIGURE 5.20: Sensitivity analysis results concerning total terminal arteries re-
sistance variation: mean perfusion pressure (left) and posterior cerebral perfusion

pressure (right). Percentage variation of the parameter in legend.
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FIGURE 5.21: Sensitivity analysis results concerning total terminal arteries re-
sistance variation: total cerebral blood flow (left) and posterior cerebral blood flow

(right). Percentage variation of the parameter in legend.
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FIGURE 5.22: Sensitivity analysis summary results concerning total terminal
arteries resistance variation: trends of mean arterial pressure (MAP), central
systolic pressure (CSP), central diastolic pressure (CDP), central pulse pressure
(CPP), intracranial pressure (pIC), mean perfusion pressure and cardiac output

(CO).
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FIGURE 5.23: Sensitivity analysis summary results concerning total terminal
arteries resistance variation: trends of total cerebrovascular resistance (CVR) and
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FIGURE 5.24: Sensitivity analysis results concerning total terminal arteries com-
pliance variation: pressure wave in ascending aorta (top), left subclavian artery II
(centre) and left radius (bottom). Percentage variation of the parameter in legend.
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FIGURE 5.25: Sensitivity analysis results concerning total terminal arteries com-
pliance variation: cardiac output. Percentage variation of the parameter in legend.
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FIGURE 5.26: Sensitivity analysis results concerning total terminal arteries com-
pliance variation: intracranial pressure. Percentage variation of the parameter in

legend.
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FIGURE 5.27: Sensitivity analysis results concerning total terminal arteries com-
pliance variation: mean perfusion pressure (left) and posterior cerebral perfusion

pressure (right). Percentage variation of the parameter in legend.
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FIGURE 5.28: Sensitivity analysis results concerning total terminal arteries com-
pliance variation: total cerebral blood flow (left) and posterior cerebral blood flow

(right). Percentage variation of the parameter in legend.
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FIGURE 5.29: Sensitivity analysis summary results concerning total terminal
arteries compliance variation: trends of mean arterial pressure (MAP), central
systolic pressure (CSP), central diastolic pressure (CDP), central pulse pressure
(CPP), intracranial pressure (pIC), mean perfusion pressure and cardiac output
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FIGURE 5.31: Sensitivity analysis results concerning left ventricle elastance vari-
ation: pressure wave in ascending aorta (top), left subclavian artery II (centre) and

left radius (bottom). Percentage variation of the parameter in legend.
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FIGURE 5.32: Sensitivity analysis results concerning left ventricle elastance vari-
ation: cardiac output. Percentage variation of the parameter in legend.
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FIGURE 5.33: Sensitivity analysis results concerning left ventricle elastance vari-
ation: intracranial pressure. Percentage variation of the parameter in legend.
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FIGURE 5.34: Sensitivity analysis results concerning left ventricle elastance vari-
ation: mean perfusion pressure (left) and posterior cerebral perfusion pressure

(right). Percentage variation of the parameter in legend.
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FIGURE 5.35: Sensitivity analysis results concerning left ventricle elastance vari-
ation: total cerebral blood flow (left) and posterior cerebral blood flow (right). Per-

centage variation of the parameter in legend.
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FIGURE 5.36: Sensitivity analysis summary results concerning left ventricle
elastance variation: trends of mean arterial pressure (MAP), central systolic pres-
sure (CSP), central diastolic pressure (CDP), central pulse pressure (CPP), in-

tracranial pressure (pIC), mean perfusion pressure and cardiac output (CO).
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flow, which increases while the heart contractility increases. As a consequence, the cere-
brovascular resistance decreases inversely to the gain in heart contractility. Concerning
the cardiac output, it can be verified its increment, while intracranial pressure remains
almost constant, resulting in a slight increase of perfusion pressure.

5.3.2.5 Cardiac cycle duration variation

Figures from 5.38 to 5.44 show changes in the main hemodynamic aspects when vary-
ing the cardiac cycle duration in a reference hypertensive subject. In particular, it is ob-
served that increasing the cardiac cycle duration, both the systolic and the diastolic pres-
sure decrease, with a little increase of the pulse pressure. Also the mean arterial pressure
and the total cerebral blood flow decrease, even if the latter not with a linear trend. This
last result explains why in parallel the cerebrovascular resistance has a non-monotone be-
haviour. The same applies to the intracranial pressure, while perfusion pressure, mostly
affected by mean arterial pressure trend, decreases. Finally, the cardiac output presents a
significant drop, as expected.

5.3.2.6 Final remarks

If considering the 2018 ESH/ESC guidelines for the management of arterial hyper-
tension (Williams et al., 2018), it is possible to highlight which parameters determine a
change of the hypertension grade with their variation, with respect to the reference state
(represented by a grade 2 of hypertension), or even the transition to a normal pressure
level. Observing Tab. 5.4, it is evident that, to obtain a pressure level change, the most de-
cisive parameter on which action should be taken is the total terminal arteries resistance,
which substantially determines a shift in the pressure grade for each 20% of variation. At
the same time, it can be noticed that also the HR plays an important role when aiming to
reduce arterial pressure values.

5.3.3 Application study to the medical case: the Selfish Brain Hypothesis

To assess the effects of the presence of hypoplastic vertebral artery and eventual addi-
tional incomplete circle of Willis, a preliminary computational study is conducted, taking
into account three different configurations of anatomical cerebrovascular variants.
Since the vertebral artery hypoplasia is found more frequently on the right side (Park,

(- -%) (-%) (+%) (++%)
Variation parameter pS pD pS pD pS pD pS pD
Arterial stiffness 158 115 158 110 169 96 171 94
Total terminal arteries resistance 125 63 145 83 179 119 193 134
Total terminal arteries compliance 171 100 166 101 160 101 158 101
Heart contractility (elastance) 152 95 160 100 165 104 170 106
Heart rate 168 111 166 107 158 96 153 89

TABLE 5.4: Summary of the sensitivity analysis: systolic (pS) and diastolic (pD)
pressure levels expressed in mmHg for each parameter univariation. Different
cell colours identify different pressure level shifts: green represents normotensive
levels, orange represents grade 1 of hypertension, red represents grade 3 of hyper-

tension and blue represents the isolated systolic hypertension.
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FIGURE 5.38: Sensitivity analysis results concerning heart rate variation: pres-
sure wave in ascending aorta (top), left subclavian artery II (centre) and left radius

(bottom). Percentage variation of the parameter in legend.
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FIGURE 5.39: Sensitivity analysis results concerning heart rate variation: car-
diac output. Percentage variation of the parameter in legend.
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FIGURE 5.40: Sensitivity analysis results concerning heart rate variation: in-
tracranial pressure. Percentage variation of the parameter in legend.
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FIGURE 5.41: Sensitivity analysis results concerning heart rate variation: mean
perfusion pressure (left) and posterior cerebral perfusion pressure (right). Percent-

age variation of the parameter in legend.
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FIGURE 5.43: Sensitivity analysis summary results concerning heart rate vari-
ation: trends of mean arterial pressure (MAP), central systolic pressure (CSP),
central diastolic pressure (CDP), central pulse pressure (CPP), intracranial pres-

sure (pIC), mean perfusion pressure and cardiac output (CO).
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Kim, and Roh, 2007; Chen et al., 2010), in the following VAH case simulations it is as-
sumed hypoplastic the right VA. To evaluate a very critic case, in the present study it
is applied a 75% occlusion of the vessel, corresponding to an average diameter of 0.715
mm. The effects of the presence of VAH, in terms of cerebral blood flow variation, are
evaluated first considering an adult, 55 years old, normotensive (NTN) subject (with pa-
rameters calibrated as presented in Section 5.2.2) and then considering an adult hyper-
tensive (HTN) subject (following the calibration discussed in Section 5.2.3). Moreover,
for the NTN configuration, it is also analyzed a more critic scenario, corresponding to the
simultaneous presence of VAH and absence of the two PcoAs, hence an incomplete CoW
with total separation of the anterior region to the posterior region.

5.3.3.1 Vertebral artery hypoplasia in an adult patient

Observing cerebral blood flow variations reported in Fig. 5.5 concerning the adult
NTN case with VAH, compared to arterial CBF baseline values, it can be noticed that
the controlateral VA is able to partially compensate the reduction of flow rate due to the
hypoplastic VA, increasing the flowing rate in its path by 50%. Even though, the flow rate
arriving in the BA is not totally recovered, indeed presenting a considerable reduction of
26%. However, the total arterial CBF does not seem to be affected by the presence of VAH,
since the part of blood flow missing from the posterior inlet is almost fully compensated
by the anterior inlet with the internal carotid arteries.
Focusing on the posterior region, where the VMC is located (see Section 5.1.2), a discrete
reduction of blood flow is observed only in the first part of the posterior cerebral arteries,
as this section of the artery cannot benefit from the compensatory percentage of flow
arriving from the front. Globally, considering the posterior CBF in the model composed
by the sum of the contributes outgoing posterior cerebral arteries and anterior inferior
cerebellar arteries, the posterior region presents solely a small decrease of blood flow
rate in the subject with a hypoplastic VA.

q [ml/min]
Location baseline VAH ∆q
Total CBF 651 647 −0.6%
right internal carotid artery 257 273 +6.2%
left internal carotid artery 254 270 +6.3%
basilar artery 141 105 −26%
right vertebral artery 70 0.40 −99%
left vertebral artery 70 105 +50%
Posterior CBF 164 161 −1.8%
right posterior cerebral artery (I) 65 47 −28%
left posterior cerebral artery (I) 65 47 −28%
right posterior cerebral artery (II) 77 75 −2.6%
left posterior cerebral artery (II) 77 75 −2.6%
right anterior inferior cerebellar artery 5.1 5.0 −2.0%
left anterior inferior cerebellar artery 5.5 5.4 −1.8%

TABLE 5.5: Cerebral blood flow values, with a focus on the posterior region, for
all the arteries of interest concerning the NTN subject, with or without VAH, and

the difference in percentage (∆q) between the two configurations.
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5.3.3.2 Vertebral artery hypoplasia and absence of posterior communicating arteries
in an adult patient

An interesting aspect worth to be noticed regards the compensatory capacity of the
controlateral VA when a configuration of adult NTN with VAH and additional absence of
the two PcoAs is studied. In this scenario, in which the controlateral VA is the only vessel
supplying the posterior region of the brain, the artery demonstrates to be able to totally
compensate the lower blood flow in the hypoplastic VA. Referring to Tab. 5.6, the blood
flow entering in the BA is even increased by 11% with respect to the baseline state, while
a contemporary reduction of the inlet flow from the internal carotid arteries is observed.
In total, the CBF is maintained under an almost constant value.
The second interesting aspect concerns the posterior CBF. It is indeed highlighted that in
the present configuration there is almost 5% less of blood supplying the brainstem. Since
the NTS here located is very sensitive to alteration of perfusion levels, this decrement of
flow rate (and consequent decrement of perfusion) could be seen as triggering factor for
the activation of the response of the Selfish Brain, in agreement with studies performed
by Warnert et al. (2016), Hart (2016), and Cates et al. (2012).

5.3.3.3 Vertebral artery hypoplasia in a hypertensive patient

Tab. 5.7 shows computational results of the study of the effects of the presence of VAH
in a HTN subject when arterial CBF values are analyzed with respect to a baseline state.
These results present an evident agreement with those obtained in the respective NTN
configuration, suggesting that the presence or not of high blood pressure levels do not
affect the redistribution of cerebrovascular flow rates when the subject has a hypoplastic
VA. In fact, even though the controlateral VA increases by 49% the level of blood flowing
within it, the total CBF and also the posterior CBF levels present an irrelevant reduction
thanks to the additional compensation arriving from the internal carotid arteries.

q [ml/min]
Location baseline VAH & no PcoAs ∆q
Total CBF 651 645 −0.9%
right internal carotid artery 257 245 −4.7%
left internal carotid artery 254 243 −4.3%
basilar artery 141 156 +11%
right vertebral artery 70 0.60 −99%
left vertebral artery 70 156 +123%
Posterior CBF 164 156 −4.9%
right posterior cerebral artery (I) 65 73 +12%
left posterior cerebral artery (I) 65 73 +12%
right posterior cerebral artery (II) 77 73 −5.2%
left posterior cerebral artery (II) 77 73 −5.2%
right anterior inferior cerebellar artery 5.1 4.8 −5.9%
left anterior inferior cerebellar artery 5.5 5.2 −5.5%

TABLE 5.6: Cerebral blood flow values, with a focus on the posterior region, for
all the arteries of interest concerning the NTN subject, with or without VAH and
absence of the posterior communicating arteries (PcoAs), and the difference in

percentage (∆q) between the two configurations.
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5.4 Concluding remarks

In the present work, some preliminary studies have been conducted concerning rep-
resentative 55 years old normotensive and hypertensive subjects, to assess the effects
of congenital anatomical variations concentrated in the cerebral vasculature: vertebral
artery hypoplasia and incomplete posterior Circle of Willis, which have been found to
play a possible role in triggering high arterial pressure (Hart, 2016).
With this aim, the Müller-Toro model (Müller and Toro, 2014a; Müller and Toro, 2014b;
Celant, 2018), a global multiscale closed-loop blood flow model, has been extended con-
sidering changes in the vessels network due to aging and hypertension processes. Results
obtained simulating the hypertensive subject have been investigated through a sensitiv-
ity analysis to assess correlations between hemodynamic variations and the development
of arterial hypertension. This analysis confirmed that the parameter affecting the most
changes in pressure levels is the total terminal arteries resistance, which determined a
shift in the pressure grade for each 20% of variation.

Simulations, regarding both the NTN and the HTN subject, highlight that a VAH
state do not generally lead to a decreased total arterial CBF thanks to the compensatory
capability of the other vessels supplying the brain, especially the controlateral VA. The
cerebral circulation network, in fact, has an innate oversizing which guarantees enough
resources to the system when small geometrical abnormalities are present. A possible
reduction of total CBF could eventually occur when this compensatory capacity is lim-
ited (Celant, 2018). We could speculate that when the abnormality continue in time with
excessive/prolonged stress, there could be more chances for the system to not be able to
properly react, activating the Cushing’s mechanism.
What is more interesting about numerical results, is that, in case of simultaneous absence
of posterior communicating arteries and presence of VAH, there is a significant reduction
of the posterior cerebral blood flow (4,9%) associated with a decrease up to 5.9% of the
blood flow in the anterior inferior cerebellar arteries. This finding could lead to hypoth-
esize that there might be a constant total CBF value but with a diminished local CBF in

q [ml/min]
Location baseline VAH ∆q
Total CBF 661 658 −0.5%
right internal carotid artery 261 277 +6.1%
left internal carotid artery 258 274 +6.2%
basilar artery 142 107 −24.6%
right vertebral artery 71 0.40 −99%
left vertebral artery 71 106 +49%
Posterior CBF 167 166 −0.6%
right posterior cerebral artery (I) 66 48 −27%
left posterior cerebral artery (I) 66 48 −27%
right posterior cerebral artery (II) 78 77 −1.3%
left posterior cerebral artery (II) 78 77 −1.3%
right anterior inferior cerebellar artery 5.1 5.1 −1.2%
left anterior inferior cerebellar artery 5.5 5.4 −1.3%

TABLE 5.7: Cerebral blood flow values, with a focus on the posterior region, for
all the arteries of interest concerning the HTN subject, with or without VAH, and

the difference in percentage (∆q) between the two configurations.



5.4. Concluding remarks 117

the area of the medulla, hence a localized hypoperfusion in a specific posterior region,
triggering the Selfish Brain mechanism.

It is important to underline that the work here presented is the result of a preliminary
study on the Selfish Brain Hypothesis of essential hypertension. One limitation is related
to the vessel network implemented in the model, which does not include the posterior
inferior cerebellar arteries, the anterior spinal artery and the superior cerebellar arter-
ies. These last are necessary for the complete representation of the posterior circulation,
while posterior inferior cerebellar arteries and anterior spinal artery, which originate di-
rectly from the vertebral arteries, need to be included because supplying the upper and
caudal medulla, where the VMC is located. Another aspect regards the concept of per-
fusion. In this work, the hypoperfusion is solely associated to a reduction of blood flow,
which is not totally correct since a limited perfusion could be determined solely by the de-
crease of oxygen supplied. This feature could be improved adding a global gas transport
model to evaluate the oxygen and carbon dioxide transfer from vessels to body organs
by convection and diffusion to the model adopted. In this way, cases of brainstem hy-
poxia (deficiency in the amount of oxygen reaching the tissues) could be individuated
and analyzed in relation with high blood pressure levels.

Other triggering factors taken into account by the Selfish Brain Hypothesis, such as
inflammation and alterations in the collagen/elastic content of cerebral vessels, were not
included in the present study. Future works could be developed analyzing the effects of
an augmented blood viscosity and alterations of the Young modulus of cerebral vessels
with respect to the variation of perfusion levels, not only concerning geometrical abnor-
malities. It could also be interesting to evaluate the VAH not only related to a reduction
of the lumen, but also to a thickening of the wall. In fact, in the sensitivity analysis here
reported, variations of the thickness and the Young modulus, considered together in the
product Eh, were already found to be related to a reduction of CBF levels.
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Chapter 6

Conclusions

6.1 Overview

The goal of this PhD research was to propose a mathematical model able to predict
the behavior of the fluid-structure interaction mechanism that underlies the dynamics
of flows in different compliant ducts. Starting from the purely civil engineering sector,
with the study of plastic water pipelines, the final application of the proposed tool is
linked to the field of medical research, to reproduce the fluid mechanics of blood flow
in both arteries and veins. The correct characterization of the interactions occurring be-
tween the fluid and the wall, when the latter is deformable, is a fundamental aspect of
the proposed method. To do so, various linear viscoelastic models, from the simplest
to the more sophisticated, have been applied and extended to permit the obtaining of
augmented fluid-structure interaction systems, in which the constitutive equation of the
material is directly inserted into the system as partial differential equation. These systems
are solved recurring to second-order Finite Volume Methods that take into account the
recent evolution in the computational literature of hyperbolic balance laws systems. To
validate the models, numerical results have been compared with quasi-exact solutions of
idealized time-dependent tests for situations close to reality or reference values obtained
with numerical schemes generally adopted in the specific research field investigated. Fur-
thermore, comparisons with experimental data have been considered both for the water
pipelines scenario and the blood flow modeling, recurring to ad hoc in-vivo measure-
ments for the latter. Accuracy and efficiency analyses have been performed in different
contexts, as well as a sensitivity analysis with regards to the final, more applicative, part
of the project.

6.2 Main Findings and Original Contributions

As done throughout this Thesis, the achievements of the presented research can be
differentiated in three main parts: the water pipelines modeling, the blood flow modeling
and the application study on arterial hypertension.

6.2.1 Water pipelines modeling

The mathematical system for modeling compressible fluids in flexible tubes has been
presented with a particular focus on its augmented FSI form. The proposed model has
been proved to correctly simulate the mechanical behavior of the viscoelastic material an-
alyzed, using two different constitutive models: the Standard Linear Solid model (three-
parameter model) and the more complex generalized Kelvin-Voigt chain (general multi-
parameter model). Original extensions of existing techniques for the numerical treatment
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of the latter have been introduced for this research project for the first time. Two different
models have also been considered for the definition of friction losses: taking into account
the unsteady wall shear stress, with a new approach tested for turbulent flows, or simply
considering a quasi-steady friction model. A predominance of the damping effects due
to viscoelasticity with respect to the one related to the unsteady friction is confirmed in
the contexts studied.

Three numerical schemes, the Method of Characteristics, an Explicit path-conservative
FVM and a staggered Semi-Implicit FVM have been analyzed with respect to the simu-
lation of hydraulic transients in flexible polymeric tubes and compared in terms of ac-
curacy, robustness and efficiency. All the three models show a good agreement with ref-
erence solutions, with the MOC turning out to be the most efficient model among those
considered, explaining the usual preference for using this model in literature studies of
water hammers. However, the MOC does not result as robust as the other two FVMs
when non-standard conditions are taken into account, such as cavitation cases.
Moreover, numerical results do not highlight significant differences if the SLS model or
a g-KV chain is chosen to characterize the rheological behavior of the plastic pipe wall.
This aspect encourages the adoption of less complex models, yet able to adequately cap-
ture the dynamics of the phenomenon, ensuring in the meantime the minimum compu-
tational cost, with a reduced number of parameters to be calibrated. The same applies to
the friction term, for which it has been confirmed that, for the scenarios investigated, the
unsteady wall shear stress can be neglected in favor of a quasi-steady model.

6.2.2 Blood flow modeling

An innovative 1D augmented FSI system has been proposed for the blood flow mod-
eling with regards to the mechanical effects of arterial and venous walls. An easy shift
from the simple elastic to the more realistic viscoelastic characterization of the vessel wall
is ensured by the straightforward addition of a source term. Recurring to the a-FSI sys-
tem, in fact, would be mostly advantageous when taking into account the viscoelastic
wall behavior of vessels: all the viscosity information would be enclosed within a source
term, avoiding the presence of second order derivatives and permitting to work with a
purely hyperbolic system of equations.
The chosen IMEX-SSP2 RK scheme has been demonstrated to preserve the expected or-
der of accuracy also when dealing with stiff source terms, confirming its asymptotic-
preserving property. The implemented IMEX RK scheme ensures at the same time ro-
bustness, given by the usage of an implicit discretization of the stiff terms, and efficiency,
being possible to obtain a totally explicit algorithm for the resolution of the system of
interest.

The model has been extensively validated with success, showing results in perfect
agreement with 1D and 3D benchmark data. The impact of modeling the mechanics of the
vessel wall concerning viscoelastic effects and not solely the elastic ones has been pointed
out, especially comparing computed pressure waveforms with in-vivo measurements.
In this context, the viscoelastic SLS model better describes the complex behavior of a
viscoelastic material if compared with the KV model, frequently adopted in the biofluid
dynamics literature, still maintaining ease of implementation and usage.

An effective procedure to estimate the FSI parameters of the adopted SLS model has
been presented, returning hysteresis curves dissipating energy fractions similar to values
evaluated from literature hysteresis loops in the same vessels. Starting from literature
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physiological data (for radius, thickness, length and reference celerity of vessels), the pro-
posed procedure permits to obtain all the necessary FSI parameters, without additional
specific adjustments.

6.2.3 Application study on arterial hypertension

Some preliminary studies have been conducted concerning representative 55 years
old normotensive and hypertensive subjects, to assess the effects of congenital anatom-
ical variations concentrated in the cerebral vasculature: vertebral artery hypoplasia and
incomplete posterior Circle of Willis, which have been found to play a possible role in
triggering high arterial pressure.
With this aim, the Müller-Toro model, a global multiscale closed-loop blood flow model,
has been extended considering changes in the vessels network due to aging and hyper-
tension processes. Results obtained simulating the hypertensive subject have been in-
vestigated through a sensitivity analysis to assess correlations between hemodynamic
variations and the development of arterial hypertension. This analysis confirmed that
the parameter affecting the most changes in pressure levels is the total terminal arteries
resistance, which determined a shift in the pressure grade for each 20% of variation.

Simulations, regarding both the NTN and the HTN subject, highlight that VAH do
not generally lead to a decreased total arterial CBF thanks to the compensatory capabil-
ity of the other vessels supplying the brain, especially the controlateral VA. The cerebral
circulation network, in fact, has an innate oversizing which guarantees enough resources
to the system when small geometrical abnormalities are present. The most interesting
aspect concerning numerical results, is that, in case of simultaneous absence of posterior
communicating arteries and presence of VAH, there is a significant reduction of almost
5% of the posterior cerebral blood flow associated with a decrease up to almost 6% of the
blood flow in the anterior inferior cerebellar arteries. This finding could lead to hypoth-
esize that there might be a constant total CBF value but with a diminished local CBF in
the area of the medulla, hence a localized hypoperfusion in a specific posterior region,
triggering the Selfish Brain mechanism.

6.3 Future work

One of the main future goals, for a further development of this PhD research project,
consists on the extension of the 1D a-FSI systems here presented through the complex
and delicate implementation of junctions. A challenging aspect consists in taking into
account the viscous component even in the numerical treatment of bifurcations, without
neglecting it as generally happens in the existing reference literature, still maintaining the
desired order of accuracy of the model. Concerning water pipelines, this would allow the
design of more complex networks, increasingly faithful to case studies of real practical
interest, especially for design companies and industries. With respect to the blood flow
modeling, to include a network of the major arteries and veins of the human cardio-
vascular system (still maintaining a 0D treatment of secondary vessels) would provide
an even more effective tool to substantially support studies of circulatory diseases and
broad-spectrum medical applications, allowing to obtain clinical data that would other-
wise be accessible only through invasive measurements on patients.
At the same time, the application of the uncertainty quantification theory is desirable for
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a quantitative characterization and reduction of uncertainties underlying the parameters
involved for the modeling of human hemodynamics.

Other considerations need to be highlighted with respect to the final application study.
It is indeed worth to be mentioned that the work concerning the Selfish Brain Hypothesis
of essential hypertension is the result of a purely preliminary study. To improve the anal-
ysis carried out and the subsequent observations, it would be important to include the
posterior inferior cerebellar arteries, the anterior spinal artery and the superior cerebellar
arteries in the modeled network, to complete the representation of the posterior circula-
tion. In particular, posterior inferior cerebellar arteries and anterior spinal artery, which
originate directly from the vertebral arteries, need to be included because supplying the
upper and caudal medulla, where the VMC is located.
Another aspect regards the concept of perfusion. In this work, the hypoperfusion is solely
associated to a reduction of blood flow, which is not totally correct since a limited perfu-
sion could be determined by the decrease of oxygen supplied alone. This feature could
be improved in further researches adding a global gas transport model to evaluate the
oxygen and carbon dioxide transfer from vessels to body organs by convection and dif-
fusion to the model adopted. In this way, cases of brainstem hypoxia (deficiency in the
amount of oxygen reaching the tissues) could be individuated and analyzed in relation
with high blood pressure levels.
Finally, other triggering factors taken into account by the Selfish Brain Hypothesis, such
as inflammation and alterations in the collagen/elastic content of cerebral vessels, were
not included in the present study. Future work could be developed analyzing the effects
of an augmented blood viscosity and alterations of the Young modulus of cerebral vessels
with respect to the variation of perfusion levels, not only concerning geometrical abnor-
malities. It could also be interesting to evaluate the VAH not only related to a reduction
of the lumen, but also to a thickening of the wall.
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Appendix A

Explicit formulation of the
IMEX-SSP2(3,3,2) method

Analysing each of the s = 3 Runge-Kutta steps necessary to apply the chosen IMEX-
SSP2(3,3,2) method, the following is obtained:
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In particular, analysing the structure of the system, it can be observed that each step
can be analytically linearised, avoiding the adoption of a Newton-Raphson method (or
similar ones) for the evaluation of the implicit part. Replacing the already explicit contri-
butions of the convective part,
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the final totally explicit formulation is here presented in details, for each of the 3 Runge-
Kutta steps, only for the first three equations of system (4.12):
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The time update of the variables finally results:
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Appendix B

Algorithm for the estimation of
elastic and viscoelastic arterial wall
parameters

• Elastic model:

– Input: ρ, R0, s0 and c0 from literature (Müller and Toro, 2014a; Liang et al.,
2009; Alastruey et al., 2012; Xiao, Alastruey, and Figueroa, 2014),

– E0 evaluated with Eq. (4.30),

– K evaluated with Eq. (4.5).

• Viscoelastic model:

– Input: ρ, R0, s0, c0 and Γ from literature (Müller and Toro, 2014a; Liang et al.,
2009; Alastruey et al., 2012; Xiao, Alastruey, and Figueroa, 2014),

– E∞ evaluated adapting Eq. (4.30) for the viscoelastic Young modulus:

E∞ =
2R0ρc2

0
s0

,

– η evaluated with Eq. (4.11),

– E0 evaluated inverting Eq. (4.31):

E0 =
E∞

e−1.3·10−5η

– K evaluated with Eq. (4.5).
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