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Abstract 

The occurrence of micropollutants in wastewater is largely documented as well as the environmental risk 

posed by their residues in the aquatic environment. Many investigations have been carried out and plan to 

study and improve their removal efficiency in existing wastewater treatment plants. At the same time, 

efforts are being made to develop new technologies or upgrade existing ones to increase the removal of a 

selection of micropollutants. Due to the great variability in their chemical and physical properties, it would 

be advisable to find representative compounds or identify the factors which most influence the removal 

mechanisms under specific conditions. This study analyses the removal efficiencies of a great number of 

micropollutants in wastewater treated in a membrane bioreactor coupled with powdered activated carbon 

(PAC), which was the subject of a review article we have recently published. The main operational 

parameters (i.e. PAC dosage, PAC retention time and sludge retention time) and compound physico-

chemical properties (i.e. octanol-water distribution coefficient, charge and molecular weight) were first 

selected on the basis of a dedicated screening step and then an attempt was carried out to clarify their 

influence on the removal of micropollutants from wastewater during its treatment. To this end, a statistical 

analysis, mainly based on exploratory methods (cluster analysis and principal component analysis) and 

regression analysis, was carried out to compare and discuss the different results published in the scientific 

literature included in the cited review article. It emerged, that, based on the collected dataset, 

micropollutant charge and LogDow seem to play the most important role in the removal mechanisms 

occurring in MBR coupled with PAC. 
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Graphical abstract 

 

1 Introduction 

The occurrence of micropollutants in the aquatic environment has been well documented by many 

investigations worldwide (Wilkinson et al., 2022) and their effect on the environment as well as on human 

health is an issue of increasing concern. Wastewater treatment plants are considered one of the most 

important pathways for their immission into the environment (Ghirardini et al., 2021). Environmental 

quality standards and legal limits regarding treated effluent release into surface water bodies have been set 

for only a few of them (e.g. pesticides, plasticisers and insect repellents as in Directive 2013/39/EU of the 

European Parliament and of the Council (EC, 2013)) and only in some countries (e.g. some European Union 

member States and Switzerland). Despite this fact, great efforts are being made worldwide to test solutions 

that are able to improve the removal of selected micropollutants from wastewater (namely, antibiotics, 

analgesics and anti-inflammatory drugs, psychiatric drugs and antidiuretics). End-of-pipe treatments based 

on advanced oxidation processes (e.g. ozonation, O3/H202), filtration and sorption on activated carbon (AC) 

are some of the options suggested for secondary effluent polishing. This is the case in Switzerland, 

according to their Micropol strategy 

(https://www.eawag.ch/en/department/eng/projects/abwasser/strategy-micropoll/). In addition, the 

upgrading of or changes to existing wastewater treatment steps may represent another strategy to 

guarantee a higher removal of a selection of micropollutants (Rizzo et al., 2019). In this context, limiting the 

attention to the secondary biological treatment, it was confirmed that the removal efficiencies are higher in 

a membrane bioreactor (MBR) than in a conventional activated sludge system for a great number of 

micropollutants (Choi et al., 2022; Radjenović et al., 2009; Verlicchi et al., 2013, 2012). In recent years, 

many, diverse attempts have been made to further improve MBR performance (Neoh et al., 2016; Woo et 
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al., 2016) by combining MBRs with innovative treatment technologies such as consolidated ones (i.e. 

activated carbon and ozonation) or others that have not yet been fully implemented (i.e. advanced 

oxidation processes, membrane distillation bioreactors, biofilm/bio-entrapped MBRs, nanofiltration and 

reverse osmosis) (Rizzo et al., 2019). In all the investigations, the common aim has been to foster 

degradation and/or sorption removal mechanisms for a selection of micropollutants, by favouring or 

optimising the operational conditions. Among these modified MBRs, often called “hybrid systems” 

(Alvarino et al., 2017), the combination of an MBR coupled with powdered activated carbon (PAC) has 

attracted the interest of many researchers worldwide. 

In a recent review paper (Gutiérrez et al., 2021), we presented and discussed the enhancement of the 

removal achieved for a multitude of MPs by the addition of PAC to the MBR or by means of a specific post-

treatment using powdered or granular AC. Limiting the attention to the case of PAC added in the 

bioreactor, in the cited study, the removal efficiencies were related to different factors: micropollutant 

properties, AC characteristics, PAC addition point and duration, operational conditions (sludge and 

hydraulic retention times, SRT and HRT respectively) and characteristics of the wastewater under treatment 

(mainly dissolved organic matter, DOM). It was remarked that for weakly charged substances, the 

lipophilicity of a compound plays a crucial role in its adsorption to the PAC surface, while in the case of 

charged substances, also the electrostatic interactions between the PAC surface and the functional groups 

become relevant (Alvarino et al., 2017). Furthermore, DOM present in the aeration tank is likely to interfere 

with the PAC and the occurring micropollutants, leading to either direct competition with the 

micropollutants for the PAC adsorption sites or pore constriction (Delgado et al., 2012). As a result, the 

parameters involved in the phenomenon are manifold. 

Considering the compounds, it is worth mentioning (i) the octanol-water partition coefficient (KOW), or 

better the octanol-water distribution coefficient (DOW which accounts for acid-base speciation), which 

provides an indication of the lipophilicity of a substance, (ii) the acid dissociation constant (pKa), (iii) the 

charge and the presence of specific functional groups for its electrostatic affinities, and (iv) the molecular 

weight (MW) and size, which give a view of the potential to be intercepted by the PAC pores (Kovalova et 

al., 2013). 

Otherwise, considering the adsorbent, the properties that mainly influence the fate of micropollutants in an 

MBR coupled with PAC regard (i) the characteristics of the adopted PAC (e.g. pore size and texture), (ii) the 

addition quantity and mode (PAC dosage, PAC retention time and dosage point in the reactor), and (iii) the 

reactor operational parameters (e.g. redox, pH, temperature, HRT, SRT, mixed liquor suspended solids) 

(Alvarino et al., 2018a; Mailler et al., 2016). 

The cited review, which includes 64 peer-reviewed papers published between 2009 and 2020, emphasizes 

the complexity of the phenomena under study. Furthermore, it emerged that the different operational 

conditions and wastewater characteristics adopted in the past investigations sometimes led to different 
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findings that, in some cases, did not coincide. As a result, a more rigorous approach to elaborate and 

interpret the collected data is needed to identify the main parameters affecting the removal of 

micropollutants in MBRs coupled with PAC. This could be useful in designing such a hybrid system or in 

optimising its performance. The novelty of our study consists in evaluating the joint effect of all the factors. 

In other words, instead of considering the predictors once at the time, we included all of them as 

explanatory variables. With such approach it is possible to assess the effect of each factor less other effects. 

Since the goal is to find new scientific results based on empirical evidence, generalizable beyond the 

observed cases, in our opinion, the most appropriate modeling practice is that based on inferential 

approach and not the one typical of machine learning. One of the goals of the paper is also to provide 

rigorous tools for interpreting data by providing robust modeling tools for the benefit of water treatment 

professionals. 

In this context, the main operational parameters (i.e. PAC dosage, PAC retention time and SRT) and the 

physico-chemical properties of the compounds (i.e. LogDOW, charge and MW) were selected on the basis of 

a dedicated screening step and then an attempt was made to clarify their influence on the removal of 

micropollutants from wastewater during its treatment. To this end, a statistical analysis, mainly based on 

exploratory methods (principal component analysis and cluster analysis) and regression analysis, was 

carried out to compare and discuss the different results published in the scientific literature included in the 

cited review article.  

 

2 Material and Methods 

2.1 Characteristics of the adopted dataset 

The dataset adopted in this work was retrieved by Gutiérrez et al. (2021) and refers only to the data 

(observations) provided by 10 studies investigating the fate of micropollutants in an MBR coupled with PAC. 

Those referring to PAC or granular activated carbon (GAC) as a polishing treatment after an MBR were 

excluded. Table S1 of the Supplementary Material lists the studies and the relative observations included in 

the current analysis. Among these, only the observations in which all the parameters necessary for this 

study are available (i.e. SRT, PAC dosage, PAC retention time, DOW, charge and MW) were maintained. 

Therefore, 26 observations (namely, the ID observations from Table S1 8–9, 37–38, 52, 57, 73–74, 89–90, 

99, 102, 119–120, 125, 128–131, 138–139, 151–152, 167 and 172–174) were excluded from the original 

dataset (red records in Table S1). Then, the observation number 154, referring to carbamazepine, was 

excluded as its removal value (-90%) was considered an outlier of the dataset. 

The resulting dataset includes 146 observations referring to 37 compounds (of which 6 non-steroidal anti-

inflammatories drugs (NSAID), 7 antibacterials, 1 antiseptic, 5 hormones, 1 lipid regulator, 1 non-ionic 

surfactant, 2 pesticides, 4 psychiatric drugs, 2 stimulants, 3 synthetic musks and 5 others uncategorised 
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compounds) collected from 7 studies (namely, Alvarino et al., 2017, 2016; Asif et al., 2020; Li et al., 2011; 

Nguyen et al., 2013; Serrano et al., 2011; Yu et al., 2014) (Table S1). 

All the data included in the refined dataset refer to laboratory-scale plants, with the exception of the 9 

observations reported by Serrano et al. (2011) which refer to a pilot-scale study. All the experimental 

reactors were fed with synthetic wastewater, made by adding specific compounds in water to simulate the 

matrix effects expected in real wastewater. Its compositions in the different studies were provided as 

reported in Gutiérrez et al. (2021). 

The durations of the investigations range between 65 days (Asif et al., 2020) and 306 days (Nguyen et al., 

2013). The configurations of the reactors adopted in the selected studies are reported schematically in 

Table 1. Here, in 4 out of 7 studies (providing a total of 117 observations) the membrane unit is placed in 

the biological reactor, while in the other 3 studies (29 observations) the membrane unit is in a separate 

tank (Table 1). The variability ranges of the operational conditions adopted in the studies are reported in 

Table 2. 

Six parameters were chosen on the basis of a dedicated screening of data availability. In addition they were 

selected only if they present a wide and heterogeneous variability range, six parameters were chosen. Their 

influence on the micropollutant removal mechanism during treatment in an MBR coupled with PAC is well 

known (Gutiérrez et al., 2021). Other variables which could affect the removal (e.g. membrane shape, pore 

size, biomass characteristics) were not considered as the investigations available in the literature do not 

provide the full set of data to be included in the dataset or few data were found. 

 

Table 1.  

 

Table 2.  

 

2.2 Statistic tools 

A univariate linear regression analysis was initially carried out to predict average removal as a function of 

the other considered variables. To test the Goodness of Fit, both the parametric and non-parametric 

ANOVA were applied. In both the cases the p-value indicated no significance. After that, non-linear 

relationships were considered through the application of linear models to transformed variables. In 

particular, it was taken into account the logit of average removal as dependent variable, the inclusion of 

the squared explanatory variables and of the interactions in the set of predictors, the logarithmic 

transformation of the explanatory variables and combinations of this modifications of the original model. 

Then, the same previous attempts were done with the bivariate model, considering the average of removal 

and the standard deviation of removal as response variables and finally it was repeated the analysis on a 

multivariate version of the model with average, standard deviation, minimum and maximum of removal as 
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dependent variables. In no case the Goodness of Fit tests were significant. Finally, the univariate two-

sample NPC test approach was applied. The logit of average removal took the role of response and logDow 

as a “treatment”. Again there was not empirical evidence of a significant effect of the factor on the 

dependent variable. Based on these results other tools were considered. 

 

2.2.1 Principal Component Analysis 

Principal Component Analysis (PCA) was applied in order to reduce the dimensionality of the dataset. The 

application of PCA aims to reduce the number of variables by eliminating a small proportion of data 

variability. PCA transforms the original correlated observed variables into new uncorrelated variables 

(Principal Components), with minimum loss of the original information represented by the observed 

variability. The principal components (PCs) are linear combinations of the original observed variables. The 

first component is the linear combination with maximum variance. It corresponds to the dimension along 

which the dispersion of data is maximum. The second component is the linear combination with maximum 

variance among those corresponding to orthogonal directions with respect to the first component. The 

subsequent components are detected in a similar way, considering orthogonal directions and maximising 

the variance. Hence, the resulting PCs are uncorrelated themselves and represent a new set of variables, 

related to the original variables by a defined linear combination (Lever et al., 2017). 

The loadings are the correlations between the principal components and original variables. They 

correspond to the weights of the linear combinations explaining the variables by the components. The 

scores of the principal components map the different samples in the new dimensional space of the 

principal components facilitating the investigation of the different relationships between the variables 

(Vasilaki et al., 2018). 

In this study, PCA was performed using R software ((Beiras, 2018), (software available at https://www.r-

project.org). Then, Varimax orthogonal rotation was applied for the PCA axes and to reduce the 

contribution of the less relevant parameters within each PC (Jollife and Cadima, 2016). 

 

2.2.2 Cluster analysis 

Clustering techniques are widely applied in order to identify and group underlying patterns in high 

dimensional datasets. It is not easy to categorize them clearly, nevertheless they can be classified into four 

classes: partitioning, hierarchical, density-based and grid methods. Cluster Analysis (CA) aims to group 

datapoints (or equivalently statistical units) into homogeneous groups (clusters). Therefore, in the current 

study it was used to analyse the similarities among the different observations and gather potential 

relationships between them and their removal. The latter then were investigated better using the 

regression analysis. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

7 
 

In this study, CA was carried out adopting the K-means method which is one algorithm of the partitioning 

method. K-means is a partitional clustering algorithm which creates a defined number (K) of groups (also 

called clusters, ck) of datapoints xi. The within-cluster sum of squares S between the datapoints and the 

cluster empirical mean (i.e. the centroid, µk) (which measures the within-cluster heterogeneity) between 

the datapoints is minimised (Hennig et al., 2016), according to eq. 1: 

 

𝑆 = min∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖
2

𝑥𝑖∈𝑐𝑘

𝐾

𝑘=1

 (eq. 1) 

In particular, this algorithm begins by fixing the number of clusters K and their corresponding centroids. 

Then, each statistical unit is included in the cluster with the nearest centroid. Once all the units have been 

classified, every centroid is recalculated as the value providing the lowest distance to all the members of its 

class. As the centroids have changed, the distance between each datum and the centroids must be 

calculated again so that the units are reassigned to the closest cluster. The process is repeated until no 

improvement in the classification process is obtained (de la Vega and Jaramillo-Morán, 2018). 

As this algorithm needs a fixed number of clusters prior to starting the clustering process, in some cases 

several possible K values must be tested and evaluated to find out which one provides the best 

classification. The number of clusters must not be too high in order to guarantee that the classification 

obtained is both useful and meaningful (de la Vega and Jaramillo-Morán, 2018). 

The number of clusters (K) which better describes the similarities within the dataset is often tricky to 

evaluate and there is no predefined criterion for its evaluation (Jain, 2010). In this work, the well-known 

Elbow and Silhouette methods were adopted to overcome this issue (Kassambara, 2017). The first was used 

to identify a range of K graphically which may be adopted for the analysis. In the former method, the sum 

of squares for each possible number of clusters is calculated and plotted, in order to detect an evident 

slope change point (a bend) that corresponds to the optimal number of clusters. The latter method 

provides a measurement of the similarity of each unit with those inside its own cluster compared with 

those outside the cluster. Now, if the silhouette of each datum inside a cluster is represented in decreasing 

order, a graphic representation of the quality of the allocation of data inside them is provided for all the 

clusters. The mean value of the silhouettes for all the clusters will provide a measurement of the quality of 

the clustering carried out, so that the higher the value, the better the classification. Therefore, the different 

clustering configurations were compared based on their average Silhouette value (Silave) in order to assess 

the consistency of the solutions proposed by the graphical interpretation of the Elbow method results. 

Before the analysis, the dataset values were standardised to reduce outliers which may drive the grouping 

(Mohamad and Usman, 2013). 
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2.2.3 Regression analysis  

Finally, regression analysis was used to investigate the influence of the selected parameters on the removal 

of micropollutants in an MBR coupled with PAC. 

The regression analysis was conducted to find a possible relationship between average removal (response 

of the model) and some explanatory variables in order to predict the response values. The function lm in 

the R software environment was used to carry out the analysis, with a significance level =0.05. 

We performed two equations: the first, with data in three out of the four identified clusters (e.g. Cluster A, 

B and D), in which the response variable is the average removal and the explanatory variables are SRT, PAC 

retention time, PAC dosage, logDow, charge and MW; in the second, concerning only two clusters (Cluster B 

and D), we have the same response variable and the explanatory variables are SRT, PAC retention time, PAC 

dosage, logDow and MW. 

In the current study, the analysis was carried out considering two different sub-datasets. The first one 

included all the observations except for the seven provided by the study by Asif et al. (2020), which were 

considered outliers due to the especially high PAC dosage adopted (20 g L-1, compared to 0.1 to 1 g L-1 in 

the other studies). In this context, although the influence of PAC is not proportional to the added dosage, 

as discussed in Section 4.1, the especially high dosage may result in different phenomena in the reactor 

(e.g. changes in the rheological properties of the mixed liquor) which make the experiment difficult to 

compare to the others. Accordingly, the differences between these seven observations and the others were 

observed also in the exploratory data analysis (Sections 3.1 and 3.2). 

Otherwise, the regression analysis was conducted considering only the observations related to negatively 

charged and neutral compounds (which correspond to clusters B and D, respectively, as defined in Section 

3.2), in order to investigate their expected behaviour in the reactor, as suggested by different studies (such 

as Alves et al., 2018, Kovalova et al., 2013, and Mailler et al., 2016, to name just a few). A variable was 

considered significantly correlated to the removal when the p-value was less than 0.05. 

Finally, regression analyses were always completed with diagnostic assessments on residuals (see Figure S2 

in Supplementary Materials) 

3 Results 

3.1  Principal Component Analysis 

The results of the PCA in terms of loadings of the considered variables are reported in Table 3, while biplots 

of the first 4 principal components are shown in Figure 1. These biplots of the PCs two by two were used to 

visualise the combined behaviour of the significant variables that affect the system. The biplots enable the 

simultaneous visualisation of the variable loadings and scores of the principal components (Vasilaki et al., 

2018). 
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The dimensionality of the dataset was reduced to 4 principal components (hereinafter PC1, PC2, PC3 and 

PC4) explaining the 87% of the total cumulative variance (27% up to PC1, 50% up to PC2, 70% up to PC3 and 

87% up to PC4. For PC1, the highest loadings were exhibited by charge (0.901), followed by MW (0.804). As 

a result, high positive values of PC1 in Figure 1 represent high values of the physico-chemical properties 

charge and MW of the compounds. SRT and the opposite of the PAC dosage are mostly represented in PC2 

(0.844 and -0.788, respectively) which mainly describes the variation of the operational conditions under 

study, as no considerable values of the physico-chemical property-related loadings emerged (Table 3). High 

positive values of PC2 in Figure 1 correspond to high values of SRT, while negative values of PC2 represent 

high PAC dosages. PC3 and PC4 mainly represent the PAC retention time operational conditions (0.962) and 

the physico-chemical property DOW (0.962), respectively. These two variables appear to be represented only 

by the respective principal components, with negligible loadings in the others (Table 3). 

 

Table 3.  

 

 

 

Figure 1.  

 

3.2 Cluster analysis 

The result of the elbow method is represented in Figure S1 of the Supplementary Material. The obtained 

curve suggests an optimal number of clusters (K) ranging between 3 and 5. The highest Silave for these 

different clustering configurations was found for K=4 (Silave=0.44). Therefore, the dataset was partitioned in 

4 clusters. 

The centroids of the clusters obtained in terms of SRT, PAC dosage, PAC retention time, LogDOW, charge and 

MW, together with the number of observations included in each cluster and their corresponding average 

removal efficiency after the treatment, are reported in Table 4. 

As shown in Table S2 of the Supplementary Material, it emerges that while clusters A, B and D include 

datapoints from various studies, cluster C grouped the observations of the only investigation conducted by 

Asif et al. (2020). This can be explained by the fact that cluster C grouped the observations characterised by 

an extremely high PAC dosage value (Table 4), of which the centroid shows the highest value (20 g L-1) 

compared to the other clusters in which the centroids are centred around a similar value of mean PAC 

dosage (0.4 to 0.6 g L-1). This reflects the particular experimental features of the investigation conducted by 

Asif et al. (2020), in which the adopted PAC dosage (20 g L-1) was considerably higher than those added in 

the other studies (0.03 to 1 g L-1, as shown in Table 2). For this reason, the relevant distance between the 

observations included in cluster C and all the others points in Figures 1a, 1d and 1e is not surprising, due to 
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the high relevance of the PAC dosage in PC2. Furthermore, cluster C also exhibited the lowest average value 

of SRT (30 days). Indeed, with the exception of the 6 observations by Yu et al. (2014) referring to PFOA and 

PFOS (with an SRT of 30 days), the experiment conducted by Asif et al. (2020) was the only one in which an 

SRT lower than 92 days was adopted (as better described below). The combination of a different PAC 

dosage and SRT make it an outlier, in terms of operational conditions. 

The other clusters (A, B and D) are characterised by greater heterogeneity in terms of included studies and 

compounds as well as a higher number of included observations (Table S2). Clusters A and B are 

characterised by the highest and the lowest average charge value (0.9 and -0.9, respectively). In particular, 

cluster B includes observations regarding mainly anionic compounds, grouping the majority of them (59 out 

of 62) among the whole dataset. In detail, the datapoints grouped in B refer to the anionics 

sulfamethoxazole (11 values), diclofenac (10), ibuprofen (10), naproxen (10), PFOA (3), PFOS (3), 17β-

estradiol-acetate (2), fenoprop (2), gemfibrozil (2), ketoprofen (2), pentachlorophenol (2), salicylic acid (2) 

but also the neutrals metronidazole (2), primidone (2) and paracetamol (2). On the contrary, cluster A 

grouped only cationic substances, including erythromycin (8 values) and roxithromycin (8), which represent 

the majority of cationic substance-related observations in the dataset (16 out of 27).  

Finally, cluster D mainly grouped neutral or zwitterionic compounds (48 observations out of 57 of the 

whole dataset), with the only exception being the neutral/cationic trimethoprim (8 values) and the cationic 

fluoxetine (2). The compounds included in D refer to carbamazepine (13), 17β-ethinylestradiol (8), estrone 

(8), 4-n-nonylphenol (2), 4-tert-butylphenol (2), 4-tert-octylphenol (2), 17β-estradiol (2), bisphenol A (2), 

diazepam (2), estriol (2), triclosan (2), celestolide (1), galaxolide (1) and tonalide (1) (Table S2). This cluster 

is not only characterised by the neutral average charge, but also for the highest LogDOW (= 3.3, Table 4), 

which drove its partitioning.  

The stratification of charge is clearly visible in Figures 1a, 1b and 1c, in which PC1 is displayed. It is also 

interesting to observe that for similar values of charge, clusters B and D are well differentiated by their 

LogDOW values represented by PC4 (Figure 1c). 

 

Table 4. 

 

 

3.3 Regression analysis 

The results of the regression analysis are reported in Table S3 and S4. 

We carried out a multiple linear regression analysis with parameter estimates based on the ordinary least 

squares method. Given the outcome of the diagnostic analysis in which we have no evidence supporting 

the assumption of normality of the errors, instead of the classic parametric t or F tests, we applied the 
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permutation test on the coefficients’ significance and the permutation ANOVA, which are more flexible and 

robust with respect to the departure from normality (see Bonnini and Cavallo, 2022). 

In the first regression, considering Clusters A, B and D, we obtain an Adjusted R-squared equal to 0.1299, 

while in the second regression in Cluster B and D we have an Adjusted R-squared equal to 0.0984. 

Considering the dataset in which all the observations except the seven provided by Asif et al. (2020) were 

included (for a total of 139 observations), it emerged that the removal of micropollutants in an MBR 

coupled with PAC was significantly correlated to their charge (p = 0.049 < 0.05). Here, also LogDOW appears 

to be important in the removal process, albeit the corresponding coefficient estimate appears weakly 

significant (p = 0.088 < 0.10). According to the estimates of the coefficients, a +1 increase in LogDOW 

determines a variation of +2.23 in average removal, while a +1 variation in charge corresponds to a change 

equal to +3.13 in the response. No significance was observed for MW or any of the operational condition-

related variables (p > 0.1) (Table S3). 

The results of the regression analysis conducted when considering the dataset in which there were 123 

observations of clusters B and D revealed that, when excluding the effect of the charge, the LogDOW has a 

strongly significant effect on removal (p < 0.001) and MW gains importance in the removal process, 

although its regression coefficient is weakly significant (p = 0.076 < 0.10). The expected variation of removal 

when LogDOW and MW increase by one is +4.16 and -7.36, respectively. None of the three operational 

condition-related variables resulted in significantly affecting the removal of micropollutants in the MBR 

coupled with PAC (p > 0.1).  

However, given the small values of the coefficients of determination, the results of the regression analysis 

should be evaluated prudently because the goodness-of-fit of the model is low. This may be because other 

explanatory variables (e.g. redox potential, biomass concentration and membrane pore size) not included 

in the model could be more important than those considered as predictors of removal. Another possible 

reason for the low goodness-of-fit could be the non-linear relationship between the variables under study 

and the consequent incorrect specification of the model. In other words, the reasons why the Adjusted R-

square is low and therefore we do not have very satisfactory results can be: (a) the specification of the 

model is not appropriate (perhaps the relationship is not linear and a different specification of the equation 

of the regression model should be considered) or (b) important explanatory variables are missing in the 

model as predictors of the response. Since, as also mentioned in Section 2.2, we tested various model 

specifications that also include nonlinear relations, we can say that most likely the Adjusted R-squared is 

low because important explanatory variables are missing. Hence, in future studies, better models could be 

obtained by adding new predictors. Anyway, even if from the descriptive point of view the goodness-of-fit 

is not high because the specification of the model could be improved, from the inferential point of view, we 

have significances indicating non-null effects of some predictors on the response.  
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4 Discussion 

4.1 Influence of the operational conditions 

Taken together, the collected results provide interesting insights regarding the main factors involved in the 

removal of micropollutants during wastewater treatment by an MBR coupled with PAC. 

The high average removal efficiency of the datapoints grouped in cluster C (97%) suggests that the PAC 

dosage may play an important role in micropollutant removal, especially when a particularly high quantity 

is added in the bioreactor (20 g L-1, as in the case of Asif et al., 2020). Indeed, it is well known that the 

presence of PAC improves the physico-chemical properties of the sludge (i.e. it promotes floc growth and 

structure strength) entailing increased adsorption and, potentially, biodegradation (Alvarino et al., 2020; Hu 

et al., 2015). On the other hand, the variability in the average removal obtained by more commonly 

adopted values of PAC dosages (0.03 to 1 g L-1) ranging from 84% (cluster B) to 98% (cluster A) seems to 

downsize the relevance of this factor. Moreover, the results of the regression analysis that was conducted 

taking into account all the datapoints with the exception of those of cluster C, considered as outliers, 

showed that selected PAC dosages, alone, do not significantly influence the removal of micropollutants 

during the treatment (p = 0.115, Table S3). This result may be due to different factors. Although different 

studies highlighted that the PAC dosage is a crucial operational condition with respect to micropollutant 

removal (among them Alvarino et al., 2017 and Li et al., 2011), its activity may be influenced by (i) PAC 

addition timetable (and therefore PAC aging in the reactor); (ii) wastewater matrix effect (as it affects the 

micropollutant saturation rate and floc biological activity (Alvarino et al., 2018b; Paredes et al., 2018)); (iii) 

characteristics of the selected PAC (mainly: pore size, specific surface area and bulk density (Alves et al., 

2018; Mailler et al., 2016)); and (iv) physico-chemical characteristics of the micropollutants (Alvarino et al., 

2018b). Furthermore, although not found in the selected studies, also (v) PAC potential losses due to excess 

sludge withdrawal, and vi) PAC addition point (e.g. in the anoxic tank as done by Remy et al., 2012, or in the 

aerobic tank as done by Asif et al., 2020 and Echevarría et al., 2019, to name just a few), may influence the 

sorption on the PAC surface. Therefore, the sum of all these factors makes it difficult to discuss statistically 

the significance of the PAC dosage on micropollutant removal efficiency. 

Nevertheless, dedicated works (among them Cecen and Aktas, 2011; Loos et al., 2013 and Yu et al., 2014) 

highlighted that, strongly limiting the influence of the six above listed factors, the positive influence of the 

PAC dosage becomes statistically significant. In this regard, Mailler et al. (2016) observed that the positive 

correlation between the PAC dosage and removal efficiency follows a logarithmic pattern. Therefore, the 

addition of particularly high dosages of PAC may not entail proportional benefits. 

In accordance with the findings of different studies (among them Alvarino et al., 2017, Löwenberg et al., 

2014, and Wei et al., 2016), the PAC retention time appeared to be non-significantly correlated to the 

removal of the investigated micropollutants in both the regression analyses conducted (p = 0.745 
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considering the whole dataset with the exception of cluster C, and p = 0.592 considering only the neutral 

and anionic substances of clusters B and D). Briefly, once PAC is added in the bioreactor, its porous surface 

is entirely available, while after a period of time, its active sites start to be occupied by the sorbed 

micropollutants and the competitor DOM, which are present in the mixed liquor. This leads to a decrement 

of PAC potential sorption capacity, but at the same time, it provides an environment suitable for the 

development of a microbial community in the sludge flocs where the PAC is embedded. A more complex 

and heterogeneous microbial community can potentially enhance the biodegradation processes (Baresel et 

al., 2019). In other terms, the removal mechanisms of the substances may differ based on PAC age, 

promoting the removal of recalcitrant compounds that are more prone to be sorbed in/on fresh PAC (e.g. 

carbamazepine), or those which are more likely to be sorbed and biodegraded in the PAC-sludge floc 

complex. As a result, the effect of the PAC retention time on the removal of micropollutants strongly 

depends on their corresponding physico-chemical properties. In this regard, to achieve a good performance 

of PAC during the treatment for both cited types of substances which are more prone to be sorbed or bio-

transformed, Alvarino et al. (2017) recommend a dosage of 0.2 g L-1 added every 35 days. 

Similar considerations may be applied to the SRT. As shown by Ng et al. (2013), low SRT values (i.e. 10 days) 

implies the addition of fresh PAC, providing a higher sorption of compounds which are prone to be sorbed 

on the PAC surface. On the contrary, high SRTs (> 100 days) promote the development of different species 

in the biomass, entailing a better bio-transformation of the compounds (Alvarino et al. 2018). In 

accordance with these considerations, both regression analyses conducted showed that the SRT is not 

significantly correlated with the removal (p > 0.465). Nevertheless, except for the 7 observations related to 

Asif et al. (2020) in which the SRT was 30 days, SRTs in the dataset are always particularly high (from 92 in 

Alvarino et al., 2017 to 288 days in Serrano et al., 2011) compared to those expected in common conditions 

adopted in MBR reactors (20–50 days, Metcalfe and Eddy, 2014). Indeed, compounds with low 

biodegradability are not expected to increase their removal at high SRTs (Yu et al., 2014) and therefore an 

exhaustive conclusion cannot be provided due to the lack of heterogeneity of the values. 

 

4.2 Influence of the physico-chemical characteristics of the micropollutant 

Concerning the physico-chemical characteristics of the compounds, it is interesting to observe that the 

highest and lowest average removal efficiencies refer to the observations grouped in clusters A and B, 

respectively (98% and 84%). These are also distinguishable by the highest and the lowest average charge 

values. This evidence suggests that the removal of micropollutants is positively correlated to their 

corresponding charge. 

Though this may seem counterintuitive, as the surface of the PAC added in the experiments is generally 

neutral to positively charged at a pH higher than 7, this fact was observed in many studies (among them 

Boehler et al., 2012; Loos et al., 2013; Mailler et al., 2016; Margot et al., 2013). This can be explained 
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bearing in mind that the covering of the DOM, typically negatively charged at neutral pH, on the PAC 

surface entails a consistent decrease in its overall charge (Yu et al., 2012). As a result, a high adsorption 

(indicating the potential of electrostatic interactions, according to Ternes et al., 2004) of positively charged 

micropollutants (i.e. cationic) and the negatively charged PAC-DOM complex surface is expected, as well as 

for repulsion in the case of anionic compounds (de Ridder et al., 2011). 

The reduced average removal efficiency (84%) characterising the observations grouped in cluster B is not 

surprising, as it mostly refers to anionic compounds which are, additionally, also characterised by a low 

LogDOW, and therefore characterised by a low lipophilicity. Hereinafter they are referred to as compounds 

with low absorption potential (Ternes et al., 2004). However, for these compounds, removal may be driven 

by biotransformation and can be enhanced by the presence of the specific functional groups of the 

compound which interact between the PAC-DOM complex, explaining an average removal of 84% (Alvarino 

et al., 2017). 

On the contrary, even if the particularly high average removal efficiency characterising the observations of 

cluster A seems to reflect the same behaviour, this might also be due to other reasons. Indeed, cluster A 

grouped the observations related to 2 substances (namely, erythromycin and roxithromycin) which have 

been demonstrated to be readily biodegradable in bioreactors in which high nitrification is reached, making 

their removals only slightly influenced by the addition of PAC in such reactors (Alvarino et al., 2017). 

The results of the regression analysis confirmed the importance of the role of the charge in the removal of 

micropollutants during wastewater treatment. Excluding the 7 observations related to the study by Asif et 

al. (2020), the removal of the compounds under study showed to be significantly correlated to their charge 

(p = 0.049). 

Despite this, as mentioned above, the sorption of micropollutants on the PAC surface is not only driven by 

adsorption due to electrostatic interactions by their functional groups and the PAC surface. On the 

contrary, especially in the case of non-charged substances, the adhesion of the micropollutants in the PAC-

sludge floc complex may also be due to absorption and, therefore, to compound lipophilicity (Mailler et al., 

2015). 

The results of the statistical analysis that was conducted confirm these considerations. A relatively high 

average removal efficiency was found for the observations grouped in cluster D (91%) in which the high 

presence of non-charged compounds is counteracted by a high average value of LogDOW (= 3.3, Table 4).  

In addition, it is interesting to observe that the removal efficiency appears to be significantly correlated to 

LogDow only when considering the neutral and anionic compounds (p < 0.001). On the contrary, considering 

the whole dataset, no significance was observed (p = 0.088), suggesting that in the absence of strong 

electrostatic interactions, the lipophilicity of a compound plays a crucial role in the sorption mechanism. 

Finally, the outcomes of the statistical analysis suggest that the molecular weight does not play a crucial 

role in the fate of micropollutants in an MBR coupled with PAC. Considering the whole dataset, with the 
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exception of cluster C, the regression analysis shows that MW is not significantly correlated to the removal 

efficiency data (p = 0.453). Nevertheless, considering only the negatively charged and neutral compounds 

(clusters B + D), MW gains relevance in the removal process, albeit remaining non-significant (p = 0.076). 

This suggests that in absence of strong electrostatic interactions, MW may moderately influence the 

removal of compounds with high MW (and therefore high molecular size). These findings are in line with 

those shown in the investigation conducted by Alves et al. (2018) who found that, considering weakly 

charged compounds, a slight positive correlation between the adsorption potential and MW occurs. 

Furthermore, Tadkaew et al., (2011) noted that compounds with relatively high MW may be more prone to 

biodegradation processes, as they present more branches susceptible to be attacked by specialised 

microorganisms developed on the PAC-sludge floc complex, especially in the case of high lipophilic 

compounds. It is important to remark that the cited study refers to MBR. On its basis, it seems that there is 

a weak correlation between the removal efficiencies and MWs. In particular, compounds with higher MWs 

resulted to be more lipophilic (e.g. with higher LogDow). These findings are in agreement with our statistical 

analyses, confirming that in the case of a lack of strong electrostatic interactions between cationic MPs and 

negatively charged PAC-sludge complex, MW gains importance. Tadkaew et al. (2011) also suggested that 

the presence of a specialized biomass in the MBR could justify the increased biodegradation. In our 

selected studies, biomass characterization was not investigated and therefore no specific conclusions about 

the specialized microorganisms can be obtained. 

 

5 Final remarks and further research 

The statistical analysis highlights and suggests interesting conclusions regarding the fate of micropollutants 

in MBR treatments coupled with PAC. 

No significant correlation was found between PAC dosage and micropollutant removal efficiency in the 

studied range of PAC concentrations (0.03 – 1 g/L). Nevertheless, the complexity of the factors influencing 

the sorption of micropollutants on the PAC surface during treatment (e.g. PAC addition timetable and 

point, compounds characteristics and matrix effect), and the difficulty in comparing observations provided 

by different experimental conditions, prevent a clear view in this regard. Further research is needed to 

clarify the role of the PAC dosage on micropollutant removal, as well as to investigate the good practices 

(e.g. timetable and point of addition) leading to a better exploitation of the potential of PAC in the reactor, 

instead of only the variation in the PAC dosage. 

The same applies to the PAC retention time, the relevance of which appears to be strongly related to the 

micropollutant physico-chemical properties. The adoption of a short PAC retention time may enhance the 

removal of those substances which are more prone to be sorbed on PAC-sludge flocs complex, while a long 
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PAC retention time may entail an increased biotransformation of the compounds due to a more complex 

and heterogeneous microbial community in the reactor. 

Inconclusive results were found for the SRT as it generally varied between very high values (92 and 288 

days) and an exhaustive interpretation of all the expected values was not possible. 

Considering the physico-chemical properties, the charge demonstrated to be significantly correlated to the 

removal of micropollutants in an MBR coupled with PAC. This can be explained by the electrostatic 

interactions between the positively charged substances and the negatively charged surface of the PAC 

covered by DOM. 

In addition, LogDOW showed to be significantly correlated to the removal of neutral and anionic substances, 

suggesting that the absence of electrostatic interactions, or even the repulsion to the flocs for the anionic 

compounds, is counteracted by the high relevance of the compound lipophilicity. 

Similar behaviour was observed concerning the MW of the substances, which showed to gain importance 

for neutral and anionic compounds, although not being as statistically significant as LogDOW. 

Overall, the results of this study suggest that the variation of the defined operational conditions (i.e. SRT, 

PAC retention time and PAC dosage) does not always entail a better removal efficiency of a broad spectrum 

of micropollutants. On the contrary, confirming the scientific literature on the topic, the specific physico-

chemical characteristics (in particular, charge and LogDOW) of each compound seem to play the most 

important role in such a complex process. 

Nevertheless, precise management of the operational conditions may significantly entail the removal of 

specific micropollutants or groups of them. 

The results obtained may provide a better understanding of the role played by the selected factors in the 

removal of micropollutants in an MBR coupled with PAC. 

It is important to underline that most of the observations included in the dataset referred to lab scale 

studies and synthetic wastewater. This implies that the useful considerations suggested by the results of 

the current statistical analysis should be strengthened by dedicated experiments in full scale plants 

according to (O’Flaherty and Gray, 2013). 

The findings mentioned above may help in the management of such advanced biological treatment in view 

of achieving a higher removal efficiency of the compounds considered in this study, as well as others that 

were not included but that exhibit similar physico-chemical characteristics, and thus behaviour. In addition, 

this study showed that basic statistic means and exploratory data analysis applied to the results of different 

investigations may be an effective tool to elucidate the influence of the main parameters involved in the 

complex phenomena behind the removal of micropollutants in MBR systems coupled with PAC. As 

remarked above, future investigations on this type of upgraded MBR should include other parameters 

including membrane shape, pore size, biomass characteristics, reactor configurations in order to allow a 

more complete statistical analysis.  
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FIGURE Caption 

Figure 1. Biplots of the principal components (PCs) with a representation of the PCA scores (referring to the 

experimental observations) included in each cluster (A-D, according to the results of Section 3.2). The 

vectors represent the loadings of the PCA (i.e. how strongly each variable influences a PC). 

 

 

  
Jo

ur
na

l P
re

-p
ro

of

Journal Pre-proof



 

24 
 

Figures 

 

Figure 1. 
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TABLES 

Table 1. The two configurations of MBR coupled with PAC together with the corresponding references 

included in this study. 

Configuration scheme Description 
Referring studies 

(number of observations) 

 

Submerged MBR: The 

membrane is placed in the 

biological reactor, where 

PAC is added. 

Alvarino et al. (2017) (60); 

Li et al. (2011) (7); 

Nguyen et al. (2013) (44); 

Yu et al. (2014) (6). 

 

Side-stream MBR: The 

membrane is placed in a 

separated tank. PAC is added 

in the biological reactor. 

Alvarino et al. (2016) (13); 

Asif et al. (2020) (7); 

Serrano et al. (2011) (9). 

 

 

Table 2. Selected operational conditions and corresponding values in the included investigations. 

References (no. 

of 

observations) 

Operational 

conditions ↓ 

Alvarino et al. 

(2016) (13) 

Alvarino et al. 

(2017) (60) 

Asif et al. 

(2020) (7) 

Li et al.  

(2011) 

 (7) 

Nguyen et al. 

(2013) (44) 

Serrano et al. 

(2011) (9) 

Yu et al. 

(2014) (6) 

SRT  

[d] 
118 200 30 92 100 288 30 

PAC dosage 

[g L
-1

] 
1 0.25 – 0.75 20 0.1 – 1 0.1 – 0.5 1 0.03 – 0.1 

PAC retention 

time [d] 
118 35 – 105 65 28 – 60 37 – 63 86 88 – 246 

 

 

Table 3. Details of the PCA loadings. The numbers in parenthesis represent the percentage of variance 

explained by each component. 

Variable PC1 (27%) PC2 (23%) PC3 (19%) PC4 (18%) 

SRT 0.253 0.844 -0.112 -0.147 

PAC dosage 0.164 -0.788 -0.127 -0.375 

PAC retention time <0.10 <0.10 0.962 <0.10 

LogDOW <0.10 <0.10 <0.10 0.962 

Charge 0.901 <0.10 -0.131 0.253 

MW 0.852 0.126 0.239 -0.137 

 

Wastewater

PAC

Pre-treatment
Effluent

= Permeate

Wastewater

Membrane 
filtration

PAC

Effluent
= Permeate

Pre-treatment
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Table 4. Characteristics of the clusters, in terms of number of observations included in each cluster, 

average removal efficiency and centroids of each of the six selected variables. 

Cluster 

ID 

Number of observations 

included 

Average 

removal [%] 

SRT 

[d] 

PAC dosage 

[g L
-3

] 

PAC retention 

time [d] 
LogDOW Charge MW 

A 16 97.9 200.7 0.6 78.0 1.39 0.95 785.5 

B 65 84.4 139.7 0.4 73.9 0.69 -0.90 261.5 

C 7 97.4 30.0 20.0 65.0 -0.56 -0.07 286.3 

D 58 91.0 156.1 0.5 67.8 3.35 0.12 261.8 
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Highlights 

 Main factors influencing micropollutant removal in an MBR coupled with PAC 

 The main operational conditions and physico-chemical properties were considered 

 Comparison of the influence of the selected factors based on statistical analysis  

 Principal Component Analysis, Cluster analysis and Regression Analysis were done 

 Micropollutant charge and log Dow result significantly correlated to the removal 
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