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Abstract
A novel methodology is presented for the reliability-based manufacturing cost optimisation of composite aircraft structures. 
A comprehensive bottom-up costing approach is employed, enabling precise manufacturing cost estimation in terms of 
material, machine, labour, tooling, and indirect costs. This approach splits the manufacturing process into many individual 
activities, which can be combined in many different ways, allowing the proposed optimisation methodology to be applied 
to a wide range of composite aircraft structures. A genetic algorithm (GA) is coupled with a deep neural network (DNN) 
to efficiently determine the optimal composite ply stacking sequence for every part of an assembled structure. A numerical 
example featuring a composite-stiffened aircraft fuselage panel is investigated. The reliability of the panel is measured in 
terms of its buckling resistance, and its manufacturing cost is estimated based on the individual costs of over 20 activities. 
The labour times for each activity were estimated based on data collected from an aerospace company specialising in the 
manufacture of advanced composite aircraft structures. Results indicate that material, machine, labour, and tool costs can 
vary significantly depending on the level of structural reliability required, demonstrating the importance of accounting for 
non-material costs when designing composite aircraft structures.

Keywords  Reliability-based design optimisation (RBDO) · Manufacturing cost optimisation · Bottom-up · Composites · 
Aircraft-stiffened panel

1  Introduction

Cost estimation is vital for any aircraft part manufacturer. 
If a design can be manufactured at low cost, it can have 
a significant impact on the extremely competitive aviation 
market. It is therefore essential for manufacturers to accu-
rately estimate the costs of their designs and have a good 
understanding of the many factors that influence these costs. 
Cost estimation is even more important for composite air-
craft parts. Although composite materials have demonstrated 
their superiority, in terms of weight and mechanical prop-
erties, over more traditional materials, such as aluminium, 

their use is often limited due to their relatively high cost. For 
composites to become more widely used in the extremely 
competitive aviation market, accurate cost estimation of 
composite aircraft parts is essential.

Many examples can be found in the literature presenting 
methods for the comprehensive manufacturing cost estima-
tion of composite aircraft parts (Sun et al. 2021; Muflikhun 
and Yokozeki 2021; Zabihi et al. 2020; Van Grootel et al. 
2020; Clarke et al. 2020; Chen et al. 2020; Hueber et al. 
2019; Hagnell 2019; Wang et al. 2018; Soares et al. 2018; 
Shama Rao et al. 2018; Aniruddha 2018; Al-Lami et al. 
2018; Pinto 2017; Kalantari et al. 2016; Hueber et al. 2016; 
Hagnell et al. 2016; Hagnell and Åkermo 2015; Shehab 
et al. 2013; Schubel 2012; Weitao 2011; Song et al. 2009; 
Liu 2009; Mazumdar 2002; Haffner 2002). One notable 
example is a doctoral thesis by Haffner (2002) which pro-
vides a comprehensive overview of common methods used 
to manufacture composite aircraft parts, including detailed 
estimates for material, tool, machine, and labour costs. In a 
book authored by Mazumdar (2002), a thorough breakdown 
is provided In Chapter 11 for various costs involved in the 
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manufacturing of composite aircraft parts. In a thesis by 
Liu (2009), detailed cost information was collected for a 
wide variety of materials and equipment used in compos-
ite manufacturing. In a thesis by Weitao (2011), detailed 
industry cost data were obtained from surveys of several 
composite aircraft part manufacturers, including key cost 
drivers and detailed breakdowns of material, tool, machine, 
labour, and indirect/fixed costs. Hagnell and Åkermo (2015) 
presented a cost model for several methods used for the 
manufacture of composite aircraft parts and demonstrated 
this model with an aircraft wing. Hagnell et al. (2016) later 
presented a detailed study of the costs associated with the 
full production of a composite aircraft wing box, including 
layup, bagging, curing, non-destructive testing (NDT), and 
assembly. Van Grootel et al. (2020) investigated the envi-
ronmental impact of composite aircraft manufacturing. It 
was found that, by reducing manufacturing variability, the 
fuel consumption of aircraft could be significantly reduced.

Although it is important to take into account manufac-
turing cost when designing a composite part, the safety/
reliability of the part is also a very important considera-
tion to take into account as well, especially for parts used in 
aircraft. There are many examples in which the reliability 
of a structure is optimised under the presence of uncertain-
ties (Farokhi et al. 2020; Yoo et al. 2020; Bacarreza et al. 
2014; Lopez et al. 2016; Simoes et al. 2006; Hu et al. 2016). 
One notable example is (Farokhi et al. 2020) in which the 
geometric design of an aircraft mono-stringer composite-
stiffened panel was optimised based on reliability. Reli-
ability was estimated based on buckling behaviour and 
under the presence of uncertainties in composite material 
properties. Another notable example is (Yoo et al. 2020) in 
which a multi-fidelity modelling-based approach was taken 
to the reliability optimisation of another composite aircraft 
mono-stringer composite-stiffened panel. The multi-fidelity 
approach was found to significantly improve the efficiency of 
the optimisation process. Bacarreza et al. (2014) optimised 
the geometry and layup properties, such as the number of 
plies and the stacking sequence, of an aircraft composite-
stiffened panel. The optimisation was performed under the 
presence of uncertainties, with the aim of improving the 
robustness of the stiffened panel to buckling loads.

Ideally, both manufacturing cost and reliability should 
be accounted for during the design stage. There are some 
examples of this in the literature (Dey et al. 2016; Fang 
et al. 2019; Chakri et al. 2017; Jiang et al. 2016; Beck and 
Gomes 2012; Dersjo and Olsson 2011; Strano 2010; Beck 
and Gomes 2010). One notable example is (Fang et  al. 
2019), where a time-variant methodology was developed 
for optimising the reliability and the welding cost of a beam 
structure. Chakri et al. (2017) developed a directional bat 
algorithm also for the reliability and welding cost of a beam 
structure. Jiang et al. (2016) developed a methodology for 

the reliability and re-manufacturing cost optimisation of a 
lathe bed. Beck and Gomes (2012) optimised the reliabil-
ity and manufacturing cost, in terms of material and labour 
costs, of a three-bar structure, a plane truss structure, and 
a built-up column. Dersjo and Olsson (2011) optimised the 
reliability and the manufacturing cost, in terms of material 
and machining costs, of a drag link arm, a component of the 
steering gear of a heavy duty truck. Strano (2010) developed 
a methodology for the reliability and cost optimisation, in 
terms of material cost and cost of failure, of a sheet-metal 
stamping process.

The above works have investigated the costs associated 
with very specific structures, and the developed method-
ologies for reliability and cost optimisation are often not 
applicable to other structures. Ideally, a reliability and cost 
optimisation methodology should be robust and comprehen-
sive, allowing it to be applied to a wide range of different 
composite parts. This is achieved in this current work by the 
use of a bottom-up approach to cost estimation, splitting the 
manufacturing process into many different activities. These 
activities can be combined in many different ways, enabling 
the proposed optimisation methodology to be applied to 
a wide range of composite aircraft structures. The above 
works on reliability optimisation have also mainly consid-
ered only material costs. Although material costs account for 
a large percentage of the cost associated with manufacturing 
a composite aircraft part, typically 30–59% depending on 
production volume (Mazumdar 2002; Shehab et al. 2013; 
Weitao 2011), the remaining 41–70% can contribute signifi-
cantly to the overall manufacturing cost and should not be 
disregarded. Based on composite part cost studies presented 
in the literature, labour costs can be in the range of 20–54%, 
machine costs in the range of 4–28%, tool costs in the range 
of 2–10%, and indirect/fixed costs typically around 10% 
(Mazumdar 2002; Shehab et al. 2013; Weitao 2011). There-
fore, the designer should not only take into account material 
costs, but other costs as well when optimising the design 
of composite parts. Furthermore, reliability optimisation 
approaches typically involve optimising designs in terms 
of geometrical parameters such as length, width, thickness, 
area, and so on. The effect of these parameters on material 
costs is often clear. However, it is not often clear how these 
parameters can affect other costs, such as labour, machine, 
or tooling costs. This current work aims to address this issue.

In summary, this current work develops a novel com-
prehensive methodology for optimising the reliability and 
manufacturing cost of composite aircraft structures. The 
main novelties of this work are as follows:

–	 This work couples a comprehensive bottom-up approach 
for cost estimation with a structural reliability optimisa-
tion procedure. This bottom-up approach splits the manu-
facturing process into many individual activities, which 
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can be combined in many different ways, enabling the 
proposed manufacturing cost and reliability optimisation 
methodology to be applied to a wide range of composite 
aircraft structures. The efficiency of this optimisation 
methodology is significantly improved through the use 
of a genetic algorithm (GA) and a deep neural network 
(DNN).

–	 Although material costs account for a large percentage of 
manufacturing costs, other costs contribute significantly 
to the overall manufacturing cost and should not be dis-
regarded. The methodology developed in this work takes 
into account not only material costs, but also other costs 
such as machine, tooling, labour, and indirect costs. This 
work also investigates how these costs are influenced by 
various design parameters, and how these costs are dis-
tributed when different levels of structural reliability are 
desired.

The layout of the paper is as follows: The methodology for 
calculating reliability is described in Sect. 2.1. The meth-
odology for the comprehensive bottom-up manufacturing 
cost estimation of aircraft composite structures is described 
in Sect. 2.2. When optimising a composite structure, the 
number of plies and ply thickness will need to be optimised, 
this means that the layup stacking sequence of the composite 
part will need to be optimised as well. This is achieved by 
coupling a genetic algorithm (GA) with a deep neural net-
work (DNN) and is described in Sects. 2.3 and 2.4. Finally, 
a numerical example featuring a composite-stiffened panel 
from an aircraft fuselage subjected to buckling is presented 
in Sect. 3.

2 � Methodology

2.1 � Reliability analysis

Reliability analysis offers engineers many advantages when 
designing structures. It enables them to understand how 
uncertainties in various design parameters influence the 
reliability of their structure and allows them to focus on the 
most critical areas of their design and helps them identify 
ways of improving its overall reliability. This is especially 
important for aircraft structures.

In the field of reliability analysis, the boundary between 
succeeding or failing to meet a certain set of criteria can be 
represented mathematically by a limit state function (LSF) 
g(�) . For example, if the goal is to investigate the probability 
of a structure failing due to load, the LSF will be:

(1)g(�) = R − S(�),

where � is a vector of random variables ( � ∈ ℝ
nr where nr 

is the number of random variables), and � is a subset of � 
if R is a random variable, where R is the resistance of the 
structure to some load S. If S(�) > R then g(�) < 0 and the 
structure is considered to have failed, while if S(�) ≤ R then 
g(�) ≥ 0 and the structure is considered safe.

The probability that the set of criteria has failed to be 
met is termed the probability of failure PF , while the prob-
ability that the set of criteria has been successfully met is 
termed reliability PR . In the example outlined above, these 
probabilities would correspond to the probabilities of the 
structure failing or being safe under the load S, respectively. 
Reliability can be determined by evaluating the following 
integral:

where f
�
(�) is the joint probability density function (PDF) 

of � . PR and PF are obtained by integrating over the failure 
region ( g(�) < 0 ) and the safe region ( g(�) ≥ 0 ), respec-
tively. All of the design variables are assumed to be mutu-
ally independent. The integral in Eq. (2) can be difficult to 
evaluate if there are many variables in � or if the bound-
ary g(�) = 0 is non-linear. Therefore, several methods have 
been developed to evaluate the integral in Eq. (2). The most 
widely known are Monte Carlo simulations (MCS), the first-
order reliability method (FORM), and the second-order reli-
ability method (SORM). This work will focus on the FORM 
due to its efficiency.

The reliability PR shown in Eq. (2) can be represented in 
terms of a reliability index � as:

while the probability of failure PF can be represented as:

where Φ denotes the cumulative distribution function (CDF) 
of the standard normal distribution. A large value for the 
reliability PR corresponds to a large value for the reliability 
index � . � can be found by rearranging the above equation 
to yield:

where Φ−1 is the inverse of the CDF of the standard normal 
distribution.

2.2 � Bottom‑up manufacturing cost estimation 
for composites

This section presents a comprehensive general framework 
for estimating the manufacturing cost of composite parts 

(2)PR = 1 − PF = P{g(�) > 0} = ∫g(�)>0

f
�
(�)d�,

(3)PR = 1 − PF = 1 − Φ(−�) = Φ(�),

(4)PF = 1 − PR = Φ(−�) = 1 − Φ(�),

(5)� = Φ−1(PR) = Φ−1(1 − PF),
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using a bottom-up approach. The user is free to combine 
the activities as they wish and use whatever input values 
they desire.

The manufacturing cost of a part Cpart can be calculated 
by adding up the cost of each of the individual activities used 
to manufacture the part:

where Cact i
 is the direct cost associated with the ith activity 

used to manufacture the part and includes material, machine, 
tool, and labour costs. n is the total number of activities 
needed to manufacture the part. Cind is the indirect cost (also 
known as fixed costs) associated with the manufacturing of 
the part such as facility costs, indirect labour costs such as 
supervision costs, and process trouble-shooting costs and 
is typically calculated as a percentage of the total activity 
costs:

where %ind is the indirect cost percentage. The indirect costs 
Cind typically account for around 10% of the total cost Cpart 
associated with the manufacture of composite aircraft parts 
(Mazumdar 2002). Therefore, %ind = 10% and

The cost of an individual activity can be broken down in 
terms of material costs (e.g. purchasing composite prepregs), 

(6)Cpart =

n∑
i=1

Cact i
+ Cind,

(7)Cind =
%ind

100
Cpart =

%ind

100 − %ind

( n∑
i=1

Cact i

)
,

(8)Cind = 0.1Cpart = 0.11

( n∑
i=1

Cact i

)
,

tool costs (e.g. mould costs), machine costs (e.g. autoclave 
costs), and labour costs:

where Cmat i
 are the material costs, Ctooli

 are the tool costs, 
Cmachinei

 are the machine costs, and Clabi
 are the labour costs 

for the ith activity.

2.2.1 � Material costs

The material cost for the ith activity is:

where Cunit_mat j
 is the unit cost of the jth material, Qij is the 

quantity of the jth material used in the ith activity, %waste is 
the percentage of the jth material that is wasted, and m is the 
number of different materials used to manufacture the part. 
It is expected that there will be some material waste during 
the manufacturing process. Previous research studies con-
cerning the bottom-up cost modelling of composites have 
considered waste percentages between 10 and 30% (Weitao 
2011; Haffner 2002; Hueber et  al. 2016; Hagnell and 
Åkermo 2015). Therefore, an average waste percentage of 
20% is used for all the materials in this work.

The units costs, waste percentages, and descriptions of 
common materials used in the manufacture of composite 
parts can be seen in Table 1. There are a total of 9 materials, 
so m = 9 in Eq. (10). The unit cost and waste percentage 
for each material are fixed and so do not change between 

(9)Cact i
= Cmat i

+ Ctooli
+ Cmachinei

+ Clabi
,

(10)Cmat i
=

m∑
j=1

Cunit_mat j
Qij(1 + %wastej

),

Table 1   Common materials involved in composite manufacturing. Their typical unit costs and waste percentages are shown

Material Unit cost Waste (%) Quantity Description

Composite prepregs 181.56 €/kg 20 Part mass “Pre-impregnated” composite fibres and partially cured matrix, in flat form
Mould cleaning fluid 1.23 €/m2 20 Mould area Used to clean the mould surface before applying the release agent and films
Release agent 0.97 €/m2 20 Mould area Applied to a mould surface after cleaning to prevent sticking between the 

mould and part
Release film 2.54 €/m2 20 Mould area A solid release film placed over the layup that is often perforated with a 

uniform hole pattern. Restricts the amount of resin bleed that is able to pass 
through the film

Breather fabric 1.97 €/m2 20 Mould area Loosely woven fabric placed over the bleeder fabric. Provides a vacuum path 
throughout the bag so that air can escape

Vacuum bag 1.22 €/m2 20 Mould area An airtight flexible sheet placed over a layup and sealed along its edges. 
During curing, the bag is evacuated via a vacuum pump and the layup is 
compacted

Sealant tape 0.91 €/m 20 Mould perimeter Thick adhesive tape used to form a seal between the vacuum bag and the 
mould surface

Paint primer 6.83 €/m2 20 Part surface area The first coat of paint on the part. Creates a better bond between the part and 
the top coat

Paint top coat 4.31 €/m2 20 Part surface area The final coat of paint on the part. Provides corrosion and wear resistance
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activities. The only parameter in Eq. (10) that can change 
between activities is the quantity Qij , which can be zero for 
some activities and non-zero for others. The unit costs seen 
in Table 1 were chosen based on units costs found from a 
variety of sources: previous research studies concerning the 
manufacturing cost of aerospace composite parts, commer-
cial websites, and information provided by our industry part-
ner Plyform Composites Srl a company specialising in the 
manufacturing and assembly of advanced composite materi-
als. The unit costs of the 7 materials from these sources can 
be seen in Table 2. These costs have been converted to Euros 
and adjusted for inflation.

It can be seen in Table 2 that the unit costs for most mate-
rials have significant overlap, indicating the high reliabil-
ity associated with these values. The unit costs from the 
research studies and commercial websites (Liu 2009; Haf-
fner 2002; Aniruddha 2018; Carbon Composites 2017; Easy-
composites; East coast fibre glass supplies) agree well with 
the unit costs from our industry partner. Differences in unit 
costs can be explained by differences in location, differences 
of the fibres and matrix, e.g. tow, tape (for the prepregs), and 
whether they were purchased in bulk, etc. Based on infor-
mation provided by our industry partner, coverage levels of 
25 m2/L were assumed for the mould cleaning fluids and 
the release agents. There do not seem to be any significant 
outliers in Table 2; therefore, the average of the unit costs 
for each of the materials seen in Table 2 was used as the unit 
costs seen in Table 1.

2.2.2 � Tool costs

The cost of the kth tool for the ith activity can be calcu-
lated by dividing the total investment cost of the tool 
Investmenttoolk by the number of parts the tool help manu-
facture over its life Ntool_partsk

:

A common tool used in composite part manufacturing is 
the mould. Akermo and Astrom (2000) provides investment 
cost data for aluminium moulds and steel moulds for various 
mould areas. Fitting a simple linear regression line to this 
data yields the following relationship for the investment cost 
of an aluminium mould:

where Amould is the area of the mould. In this work, the area 
of the mould is assumed to be 20% higher than the surface 
area (one side only) of the part. For aluminium moulds, 
(Haffner 2002) suggested a minimum of 500 parts per 
mould, a number also used by Weitao (2011).

(11)Ctoolik
=

Investmenttoolk

Ntool_life_partsk

.

(12)Investmentmould = 3, 820 + 79, 210Amould

2.2.3 � Machine costs

The cost of the lth machine for the ith activity can be 
calculated as:

where Cmac_utilizationil
 is the utilisation cost of the lth machine 

of the ith activity:

where tmac_totalil
 is the total time for which the lth machine of 

the ith activity is used, and TDUmacil
 is:

where Investmentmacil
 is the investment cost of the lth 

machine of the ith activity. For autoclaves, this cost can vary 
significantly depending on the size of the autoclave, typical 
values in the literature are between €450,000 and 1,300,000 
(Liu 2009; Al-Lami et al. 2018; Weitao 2011; Mazumdar 
2002) after converting to Euros and adjusting for inflation. 
Therefore, an average of €875,000 is used in this work for 
the autoclave. Based on the literature, the investment costs 
for the ultrasonic scanner used in NDT is between €124,000 
and 143,000 (Weitao 2011; Hagnell et al. 2016). Therefore, 
an investment cost of €143,000 for the ultrasonic scanner is 
used in this work.

In Eq. (15), Nyears_dep is the number of years in which 
the machine is depreciated. For autoclaves, this value can 
vary between 10 and 20 years (Weitao 2011; Liu 2009; 
Van Grootel et al. 2020). Therefore, an average of 15 years 
is used in this work. A value of 10 years is used for the 
ultrasonic scanner.

In Eq. (15) Nwork_days is the number of work days per 
year in the company, Nshif ts is the number of shifts per day, 
and Nshif t_length is the length of each shift in hours. tmac_totalil

 
in Eq. (14) is the total machine time required for the lth 
machine of the ith activity per load. For autoclaves, this 
time can vary depending on the size of the load, but is 
typically 7–10 h (Mazumdar 2002; Hagnell and Åkermo 
2015; Liu 2009; Haffner 2002). Therefore, a time of 8 
hours is used in this work for tmac_totalil

 and Nshif t_length for 
the autoclave ( tmac_totalil

= Nshif t_length = 8 ), so that there can 
be three shifts per day ( Nshif ts = 3 ). The number of work 
days per year is assumed to be 240 days ( Nwork_days = 240 ). 
It is assumed that the ultrasonic scanner uses the same val-
ues for Nwork_days , Nshif ts , and Nshif t_length as the autoclave.

In Eq. (13), Cmac_energyil
 is the total energy cost of the lth 

machine of the ith activity; it is a function of the energy 

(13)Cmacil
=

Cmac_utilizationil
+ Cmac_energyil

Nmac_parts_workedil

,

(14)Cmac_utilizationil
= TDUmacil

tmac_totalil
,

(15)TDUmacil
=

Investmentmacil

Nyears_depNwork_daysNshif tsNshif t_length

,
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cost per kWh Cunit_energy and the total energy required by 
the lth machine of the ith activity:

For autoclaves, (Weitao 2011) gave an estimate of 10$/h. 
This equates to 10.6€/hr after converting to Euros and 
accounting for inflation. The ultrasonic scanner is assumed 
to have a power consumption of 3.35kW (Hagnell et al. 
2016) and an energy cost of 0.1 €/kWh. The machining time 
is determined using Eq. (36).

It is worth pointing out that the bottom-up approach 
described in this section is general in nature and that the user 
is free to use different values for the above input parameters 
based on their own personal experience.

2.2.4 � Labour costs

The labour cost of an activity is a function of the direct 
labour rate Cunit_lab , the number of operators performing the 
activity Noperators , and the total time required to perform the 
activity tlabour i (h):

Recent research studies concerning bottom-up cost mod-
elling of composites have considered direct labour rates 
between 20 and 37 €/hr depending on location and expertise 
(Weitao 2011; Liu 2009). Therefore, an average labour rate 
of 28 €/hr is used in this work.

The total time required to perform the ith activity tlabour i 
can be split into a variable time part tvar

labour i
 and a constant 

time part tconst
labour i

:

The variable time part tvar
labour i

 includes the time required for 
tasks that can vary depending on part properties such as the 
area of the part, the area of the mould, number of plies, 
thickness of plies, and so on. The constant time part tconst

labour i
 

includes the time required for tasks that do not depend on 
part properties, e.g. the time required to check for leaks in a 
vacuum bag.

Table 3 presents a list of common activities involved in 
the manufacture of composite parts, their descriptions, and 
the order in which they occur during the manufacturing pro-
cess. The labour time relationships for each of these activi-
ties are detailed below. The labour times are given in hours.

The below activity labour time relationships were deter-
mined based on data collected by our industry partner. 
The time required for a worker to complete an activity was 
recorded multiple times for different values of the input param-
eters (such as mould area Amould or number of plies Nplies ), and 

(16)Cmac_energyil
= Cunit_energytmac_totalil

.

(17)Clabi
= Cunit_labNoperatorstlabour i .

(18)tlabour i = tconst
labour i

+ tvar
labour i

.

linear regression was used to create a relationship linking the 
value of the input parameters to labour time.

Activity 1: Material withdrawal, inspection, and set-up The 
labour time required to issue, inspect, and set-up all the materi-
als is assumed to be:

Activity 2: Mould inspection The labour time required for 
inspecting the mould is:

where Amould is the mould area ( m2 ) for the part.

Activity 3: Mould preparation The time required to apply 
cleaning fluid, release agent, and release film to the mould to 
prevent sticking of the part to the mould is:

where Amould is the mould area ( m2 ) for the part.

Activity 4: Manual ply cutting The labour time required to cut 
the composite prepregs to shape is:

where x is the total ply perimeter (m):

where Nplies is the number of plies used to create the compos-
ite part, and Pply (m) is the perimeter of each individual ply.

Activity 5: Manual layup The labour time required to place the 
composite prepregs by hand to create a layup is:

where tvar
labour i

 is depends on the geometric complexity of the 
composite part:

where Aply, is the area of each ply.

(19)tlabour i = 0.5.

(20)tlabour i = 0.05Amould,

(21)tlabour i = 0.16 + 0.05Amould,

(22)tlabour i = 0.25 + 0.015x,

(23)x = Nplies ∗ Pply,

(24)tlabour i = 0.05 + 0.05tvar
labouri

,

(25)tvar
labour i

= 0.04Aply Low complexity ,

(26)tvar
labour i

= 0.06Aply Medium complexity ,

(27)tvar
labour i

= 0.07Aply High complexity ,
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Table 3   The activities involved in composite manufacturing

No. Activity Description

1 Material withdrawal, inspection, and set-up. Issue the needed materials from the store. Inspect the materials for defects. Set them up 
so they are ready for following activities

2 Mould inspection Tools such as moulds are routinely cleaned before use and inspected for damage
3 Mould preparation The mould is prepared. Sticking of the part to the mould could damage the mould and 

the part, so release agent and release film are applied to the surface of the mould
4 Manual ply cutting The composite prepregs are cut to shape before layup
5 Manual layup After the moul is prepared, the composite prepregs are placed by hand to create a layup
6 Debulking ‘Debulking’ is conducted after every 4 plies have been added to the layup. The breather 

fabric, sealant tape, and vacuum bag are placed around the mould, then a vacuum is 
applied using a vacuum pump. This consolidates the layup and removes trapped air 
that could weaken the composite

7 Layup inspection The layup is inspected for defects
8 Layup final vacuum bagging When layup is finished, breather fabric, sealant tape, and vacuum bag are placed one last 

time around the mould, then a vacuum is applied using a vacuum pump. This further 
consolidates the layup significantly reduces trapped air due to the off-gassing that 
occurs as the matrix progresses through its chemical curing stages

9 Vacuum bag inspection The final vacuum bag is checked for leaks
10 Autoclave cure Includes set-up and curing. To bond the adjacent layers strongly, high pressure and heat 

must be provided by the autoclave
11 Demoulding After the part is cured in the autoclave, the vacuum bag and breather materials are 

removed, and then the composite part is removed from the mould. Any excess resin is 
removed

12 Cure inspection The laminate is inspected for obvious defects, such as resin starvation, edge delamina-
tion, or fibre break-out etc

13 Manual trimming The edges of the laminate are trimmed to the correct dimensions, and the edges are 
deburred. This activity is essential to make the surface of the composite part smooth 
and with good quality

14 Non-destructive testing (NDT) NDT is used to detect defects that are not obvious from visual inspections, such as 
internal delaminations. Ultrasonic inspection is the most common NDT method used 
on composites

15 Dimensional inspection The dimensions of the part, such as length and thickness, are checked to ensure they are 
correct

16 Dynamic mechanical analysis (DMA) inspection The physical properties of the part are investigated. Specimens are heated to high 
temperatures to check if the resin in the specimens is sufficiently cured. If it is not 
sufficiently cured, the specimens, and by extension the part, will demonstrate inad-
equate mechanical performance and the manufacturing process must be examined for 
problems

17 Assembly Several parts are assembled together to create an assembled structure. For example, a 
stiffened panel is created by assembling skin, stiffeners, and frames

18 Lap shear test inspection To ensure that the quality of the bonding performed in the assembly is sufficient, a speci-
men is tested via a lap shear test

19 Hole drilling During the assembly of two parts, bonding the parts is not always feasible and fasten-
ers will need to be used instead. Holes will need to be drilled through the two parts to 
facilitate the installation of the fasteners

20 Fastener installation Once the holes have been drilled, fasteners can be installed to join the two parts
21 Paint primer application Paint primer is applied to the surface of the assembly to ensure better adhesion of the 

paint top coat, and to provide additional protection to the surface of the assembly
22 Paint top-coat application Paint top-coating is applied over the paint primer
23 Paint inspection The quality of the painting is inspected. If the quality is insufficient, the surface of the 

assembly will have less protection
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Activity 6: Debulking The labour time required to conduct 
‘debulking’ every 4 plies is:

where x is:

Activity 7: Layup inspection The labour time required to 
inspect the layup for defects is:

where Nplies is the number of plies in the layup.

Activity 8: Layup final vacuum bagging The labour time 
required to perform the final vacuum bagging of the layup 
is:

where Amould is the mould area ( m2 ) for the part.

Activity 9: Vacuum bag inspection The labour time 
required to check the final vacuum bag for leaks is:

Activity 10: Autoclave cure As mentioned in Sect. 2.2.3, the 
total machining time required by the autoclave is estimated 
to be 8 h. Mazumdar (2002) gives estimates for the time 
required to complete various steps involved in the curing 
process. Only about  20% of the total time requires the pres-
ence of an operator. Therefore, the labour time required for 
the autoclave curing of the composite part is assumed to be 
1.6hrs.

Activity 11: Demoulding The labour time required to remove 
the vacuum bag and breather materials, and then remove the 
composite part from the mould, is:

where Amould is the mould area (m2 ) for the part.

Activity 12: Cure inspection The labour time required to 
inspect the laminate for obvious defects, such as resin star-
vation, edge delamination, or fibre break-out, and so on,. is:

(28)tlabour i = 0.3x,

(29)x = (Nplies∕4) + 1,

(30)tlabour i = 0.05Nplies,

(31)tlabour i = 0.25 + 0.15Amould,

(32)tlabour i = 0.05.

(33)tlabour i = 0.16 + 0.1Amould,

Activity 13: Manual trimming The labour time required to 
trim the edges of the laminate to the correct dimensions is:

where Ppart is the outer perimeter (m) of the part.

Activity 14: Non-Destructive Testing (NDT) The labour 
time required to inspect the part using a portable ultrasonic 
scanner is:

where Apart is the area of the part, and Sins is the speed to the 
inspection and is assumed to be 0.2 m/s.

Activity 15: Dimensional inspection The labour time 
required to check for correct dimensions, such as length and 
thickness, is:

where Ndim is the number of dimensions to inspect, and 
tdim = 0.05 is the time required to inspect each dimension 
(hrs per dimension).

Activity 16: Dynamic Mechanical Analysis (DMA) inspec-
tion The time required to perform the DMA inspection is:

where Nspecimens is the number of specimens to test.

Activity 17: Assembly The times required to assemble two 
or more components for various levels of complexity are:

where Ncomponents is the number of components to assemble.
Low complexity is for components that can be assembled 

easily , such as small components.

(34)tlabour i = 0.05.

(35)tlabour i = 0.25 + min(0.08;0.05Ppart ),

(36)tlabour i = 0.25 + Apart∕(3600 × Sins),

(37)tlabour i = 0.05 + Ndimtdim,

(38)tlabour i = 0.55 + 1.0 ∗ Nspecimens,

(39)tlabour i = 0.05Ncomponents Low complexity ,

(40)tlabour i = 0.10Ncomponents Medium complexity

(41)tlabour i = 0.15Ncomponents High complexity ,

(42)tlabour i = 0.25Ncomponents Movement complexity
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Medium complexity is for components that are more dif-
ficult to assemble, such as larger components or components 
that required fine adjustment.

High complexity is for components that are very difficult 
to assemble, such as very large components or components 
that provide limited accessibility to the workers.

Movement complexity is for parts that are difficult move, 
such as parts over 25kg in weight.

Activity 18: Lap shear test inspection The time required to 
perform the lap shear inspection is:

Activity 19: Hole drilling The time required to drill holes 
in a component depends on the diameter of the holes and is:

where NHL is the number of holes to drill.

Activity 20: Fastener installation The time required to 
install fasteners depends on the diameter of the fasteners 
and is:

where NFasteners is the number of fasteners to install.

Activity 21: Paint primer application The time required to 
apply the paint primer is:

where AToBePainted is the surface area to be painted (m2).

Activity 22: Paint top-coat application The time required to 
apply the paint top coat is:

where AToBePainted is the surface area to be painted (m2).

Activity 23: Paint inspection The time required to perform 
a paint inspection is:

(43)tlabour i = 0.50.

(44)tlabour i = 0.010NHL Diameter ≤ 4.8mm .

(45)tlabour i = 0.015NHL Diameter > 4.8mm ,

(46)tlabour i = 0.05NFasteners Diameter ≤ 5mm ,

(47)tlabour i = 0.078NFasteners Diameter > 5mm ,

(48)tlabour i = 0.05 + 0.39AToBePainted,

(49)tlabour i = 0.05 + 0.50AToBePainted,

where Ncoats is the number of paint coats applied. For exam-
ple, if one primer coat and one top coat are applied, then 
Ncoats = 2.

2.3 � Genetic algorithm

When optimising a composite structure, the number of plies 
and ply thickness can be design variables. Since the optimal 
stacking sequence will depend on the number of plies and 
ply thickness, the optimal stacking sequence of the compos-
ite part will need to be determined as part of the optimisa-
tion procedure. In this work, a genetic algorithm (GA) is 
used to optimise the layup stacking sequence of composite 
aircraft structures. In order to ensure good performance of 
a composite layup stacking sequence, several rules need to 
be followed, as suggested by Zein et al. (2016) and An et al. 
(2018): 

1.	 The fibre orientations can take angles of 0, ± 45, and 
90°.

2.	 Each ply in a layup has the same thickness.
3.	 The layup must be symmetric about the mid-plane.
4.	 The stacking sequence should be balanced, so it should 

have the same number of + � plies as - � plies (exclud-
ing 0° and 90° plies). For example, (0, 45, -45, 90)s is 
allowed, but (0, 45, 45, 90)s is not.

5.	 To alleviate matrix cracking, maximum four consecutive 
plies can have the same orientation. For example, (0, 0, 
0, 0, 0, 45, − 45, 90)s is not allowed because there are 
five 0° plies together, and (45, − 45, 90, 0, 0, 0)s is also 
not allowed because there are six 0° plies together.

6.	 When bonding two composite parts, the orientation of 
the plies touching the bond line should be the same. 
For example, if part A has a stacking sequence of (0, 
45, − 45, 90)s, then the 0° ply is touching the bond line. 
Therefore, a stacking sequence of (0, 45, − 45, 90)s is 
allowed for part B because the stacking sequence of part 
B starts with a 0° ply.

7.	 The stacking sequences of two composite parts bonded 
together can have different numbers of plies, as long as 
they follow the above rules. For example, if part A and 
part B are to be bonded together, and if part A has a 
stacking sequence of (0, 45, − 45, 90)s, then part B can 
have a stacking sequence of (0, 90)s.

8.	 Mechanical performance also needs to be considered 
as part of the design process. This could refer to the 
maximum stress in the structure, or resistance to fatigue 
etc., or a combination of these. As an example, this work 
considers the resistance of a composite aircraft structure 

(50)tlabour i = 0.05Ncoats,
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to buckling, as buckling is a common problem encoun-
tered in aircraft parts.

Of the above rules, rules 1–3 can be easily enforced by 
changing the settings or the inputs of the GA. Rules 4–7 are 
more complex and require the application of penalties to the 
fitness function used to rate the performance of a design. The 
fitness function of the GA is based on the buckling perfor-
mance of a design and is the inverse of the minimum buck-
ling load Bmin , the minimum load required to cause buckling 
in the structure:

A design that has a high minimum buckling load Bmin will 
be more resistant to buckling. Therefore, a low value for 
the fitness function f indicates a good design. To enforce 
the above rules, a penalty is applied to the fitness function 
of a design. If a design breaks any of rules 4–7 above, the 
fitness function is set to a very large number, for example 

(51)f =
1

Bmin

.

f = 100 . This rule-breaking penalty encourages the GA to 
avoid designs that break the above rules.

2.4 � Deep neural network

The evaluation of the fitness function in Eq. (51) requires 
the use of a finite element method (FEM) model to evalu-
ate the minimum buckling load Bmin . If the GA has a large 
population size and uses a large number of generations, the 
FEM model will need to be run 100s or 1000s of times. This 
can be very expensive, especially for buckling problems. 
To improve the efficiency of the GA, a deep neural network 
(DNN) can be created that acts as a surrogate model for the 
expensive FEM model. A DNN is defined as a neural net-
work with multiple hidden layers. It is capable of modelling 
more complex behaviour than shallow neural networks that 
only use one or two hidden layers. There are many examples 
in the literature of DNNs being used as surrogate models 
in place of FEM models (Do et al. 2019, 2020; Lee et al. 
2017; Truong et al. 2021) for different problems. Examples 
of shallow and deep neural networks can be seen in Figs. 1 
and 2, respectively.

Although the DNN will be significantly faster than the 
FEM model, a downside to this surrogate model approach 
is that it can require a significant amount of input data to 
achieve similar accuracy to the FEM model. This input data 
are in the form of FEM model responses, and the number 
of input data points required is dependent on the number of 
feasible stacking sequences. However, the number of feasi-
ble stacking sequences can be significantly reduced by the 
application of rules 4–7 in Sect. 2.3, reducing the amount 
of training data needed to create the DNN. Also, when run-
ning the GA, the DNN only needs to be run for designs that 
do not break rules 4–7, further improving computational 
efficiency.

The DNN takes as inputs the ply thickness t, the number 
of plies Nplies , and the composite ply stacking sequence S. 

Fig. 1   A shallow neural network composed of an input layer of 3 
nodes, a hidden layer of 5 nodes, and an output layer of 1 node

Fig. 2   A deep neural network 
(DNN) composed of an input 
layer of 3 nodes, 3 hidden layers 
of 5 nodes each, and an output 
layer of 1 node
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The output of the DNN is the minimum buckling load Bmin . 
This DNN can be written as:

where f is the DNN. This DNN is used to evaluate the fitness 
function seen in Eq. (51).

3 � Numerical example

To demonstrate the proposed methodology, a numerical 
example featuring the composite-stiffened panel seen in 
Fig. 3 is investigated. The composite-stiffened panel is 
composed of three different parts: skin, five stiffeners, and 
three frames. It is subjected to a compressive load of 200 
MPa on the right curved edge and is clamped on the left 
curved edge. The design of the panel is to be optimised 
in terms of manufacturing cost and probability of failure 
with respect to buckling. The design variables are the ply 
thickness in the three parts ( t1 , t2 , and t3 ), and the number 
of plies in the three parts ( Nplies1

 , Nplies2
 , and Nplies3

 ). The 
composite plies used in all three parts have the properties 
E1 = 138GPa , E2 = E3 = 9.5GPa , G12 = G13 = 5.2GPa , 
G23 = 1.45GPa , �12 = �13 = 0.28 , �23 = 0.40 , and mass 
density � = 1400 kg/m3 . The properties of the three parts 
can be seen in Table 3. A genetic algorithm (GA) is used 
to optimise the composite ply stacking sequences of these 
three parts: S1 , S2 , and S3.

A finite element method (FEM) model was created of 
the composite-stiffened panel in Abaqus FEA and can be 
seen in Fig. 4. The FEM model is composed of 9016 nodes 
and 12718 elements, of which 8816 were linear triangular 
elements of type S3 and 3902 were linear quadrilateral 

(52)Bmin = f (t,Nplies, S),

elements of type S4, as this was found to provide conver-
gence in the value of Bmin . The elements are concentrated 
at the edge that is subjected to the buckling load. The aver-
age time to complete an analysis was 117s on a computer 
with an 8-core 3.59 GHz processor.

3.1 � Multi‑objective optimisation

The design of the stiffened panel is to be optimised such 
that both the probability of failure and the manufacturing 
cost of the panel are minimised. The optimisation problem 
is defined as:

where � = [t1, t2, t3,Nplies1
,Nplies2

,Nplies3
], is the vector of 

design variables, and nd = 6 is the number of design vari-
ables. The stacking sequences S1 , S2 , and S3 for the three 
parts are not considered as design variables because they 
are calculated via a GA using the ply thicknesses t1 , t2 , and t3 
and numbers of plies Nplies1

 , Nplies2
 , Nplies3

 for the three parts. 
The probability of failure is calculated with respect to the 
minimum buckling load of the panel Bmin . The limit state 
function (LSF) is:

where Bload is the compressive load applied to the panel 
Bload = 200 MPa. The details of the design variables � , 
including their coefficients of variation (CoV), can be seen 
in Table 5. The ply thicknesses t1 , t2 , and t3 are continuous 
random variables that follow Weibull distributions, while 
the numbers of plies Nplies1

 , Nplies2
 , and Nplies3

 are discrete 
random variables that follow uniform distributions. The 
probability of failure PF(�) in Eq. (53) is calculated using 

(53)
Minimise ∶ {Cost(�),PF(�)}

Subjectto ∶ �
L ≤ � ≤ �

U , � ∈ ℝ
nd
,

(54)g(�) = Bmin(�) − Bload,

Fig. 3   The assembled stiffened 
panel composed of skin, five 
stiffeners, and three frames. The 
ply thickness t, number of plies 
Nplies , and stacking sequence S 
for each of the three different 
parts are shown
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the methodology described in Sect. 2.1. Bmin is the minimum 
applied load that causes buckling in the structure. In this 
example, mode-I buckling requires less applied load than the 
higher modes. Therefore, for the presented example, Bmin is 
the minimum load that causes mode-I buckling. Since the 
higher buckling modes require larger applied loads, they are 
not considered in the reliability analysis. If Bmin is less or 
equal to Bload ( Bmin ≤ Bload ), the structure is considered to 
have failed by buckling. However, if Bmin is more than Bload 
( Bmin > Bload ), the structure is considered to be safe.

The manufacturing cost of the panel Cost(�) is calculated 
using the bottom-up methodology described in Sect. 2.2. In 
total, nine parts need to be manufactured: skin, five stringers, 
and three frames. The manufacture and assembly of these 
parts are carried out by the activities described in Sect. 2.2 
and Table 3.

The optimisation technique NSGA2 (non-dominated sort-
ing genetic algorithm) (Deb et al. 2002) is used to solve 
the multi-objective optimisation problem described in Eq. 
(53). In this technique, each objective is treated indepen-
dently, and a Pareto front of designs is created at the end. 
The designer can use this Pareto front to determine the best 
combination of objective values. On a Pareto front, improv-
ing one objective is impossible without sacrificing the other 
objective. A flowchart showing the steps involved in the pro-
posed multi-objective optimisation procedure can be seen 
in Fig. 5.

3.2 � Genetic algorithm

The ply thickness t and the number of plies Nplies for each 
of the three parts are the design variables � . Since the opti-
mal stacking sequence of a part will depend on the number 
of plies and ply thickness of the part, the optimal stacking 
sequence of the part will need to be determined as part of 
the optimisation procedure. Therefore, once the optimisation 
procedure has chosen the values of the design variables � for 
an iteration, the optimal stacking sequence must be deter-
mined for that iteration. This can be achieved by the use of a 
genetic algorithm (GA), as described in Sect. 2.3. However, 
since the three different parts (skin, stringers, and frames) 
are to be joined together at the end of the manufacturing 
process, the stacking sequence of one part can influence the 
optimal stacking sequence of another. Therefore, the optimal 
stacking sequence of all three parts will need to be con-
ducted at the same time. This can be accomplished in the 
GA by combining all three stacking sequences into a single 
chromosome. Therefore, the population of the GA would be:

where S11 is the stacking sequence of the 1st chromosome for 
part 1, and Sn2 is the stacking sequence of the nth chromo-
some for part 2, etc. The flowchart for the GA used in the 
this work can be seen in Fig. 6.

The GA is stopped if the average relative change in the 
minimum fitness function is less than 1 × 10−6 over 50 gen-
erations, or if the maximum number of generations, 200, is 
reached.

Given that each of the three parts can have 4, 6, or 8 
plies, and that each ply can have an angle of 0°, -45°, +45°, 
or 90°, there are 37,933,056 possible unique combinations 
of the stacking sequences S1 , S2 , and S3 . However, after the 
rules shown at the beginning of Sect. 2.3 are implemented, 
the number of possible unique combinations of S1 , S2 , and S3 
drops to 27,436. This is still a significant number of possible 
unique combinations. Therefore, a large population of 400 
chromosomes and an elite count of 40 (the 40 chromosomes 
with the best fitness function from the current populations 
are carried over to the next population) are needed to ensure 
good convergence in the minimum fitness function.

The convergence history of the GA for an extreme 
case where each of the three parts has 8 plies 
( Nplies1

= Nplies2
= Nplies3

= 8 ), and the thickness of each is 
1.2 mm ( t1 = t2 = t3 = 1.2 mm) can be seen in Fig. 7. The 
GA was automatically stopped after 156 generations because 
the average relative change in the minimum fitness func-
tion was less than 1 × 10−6 over the 50 generations 105–156. 
The minimum fitness function was 0.172. The average fit-
ness function is initially close to 100; this is due to the 
rule-breaking penalty described in Sect. 2.3. The optimal 
stacking sequences found from the GA in this case are as 
follows: S1 = [−45, 45, 90, 90]s , S2 = [−45, 90, 45, 90]s , and 
S3 = [−45, 90, 45, 0]s . All three of these stacking sequences 
follow the rules shown in 2.3.

3.3 � Deep neural network

The GA is run once per optimisation iteration, as shown 
in Fig. 5. Each generation of the GA contains 400 chro-
mosomes, and there can, at most, be 200 generations. This 
means that, at most, 80,000 fitness functions need to be eval-
uated per optimisation iteration. Therefore, the finite element 
method (FEM) model of the stiffened panel seen in Fig. 3 
would need to be evaluated 80,000 times per optimisation 
iteration. Given that the analysis time of the FEM model is 
on average 117s, this translates to 108 days per optimisa-
tion iteration, which is not practical. Therefore, an artificial 

(55)Population =

⎡⎢⎢⎢⎣

S11 S12 S13
S21 S22 S23
⋮ ⋮ ⋮

Sn1 Sn2 Sn3

⎤⎥⎥⎥⎦
,
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neural network (ANN) is created to replace the expensive 
FEM model when evaluating fitness functions in the GA, as 
seen in Fig. 6. The Matlab Deep Learning Toolbox (Math-
works 2022) is used in this work to create the ANN.

Bayesian regularised artificial neural networks 
(BRANNs) are more robust than standard back-propagation 
neural networks and they are difficult to overtrain and over-
fit; they also do not require a validation dataset (Livingstone 
2009). During preliminary testing for this work, BRANNs 
consistently demonstrated lower error with the test dataset 
than other types of ANNs. Therefore, the ANN created in 
this work is a BRANN. The BRANNs were created in the 
Matlab Deep Learning Toolbox via the training function 
’trainbr’, which is based on the Levenberg–Marquardt train-
ing algorithm ’trainlm’. For the same reason, the hyperbolic 
tangent sigmoid transfer function, known as ’tansig’ in Mat-
lab, is used in this work.

The ANN was trained using a train dataset of 7960 runs 
of the stiffened panel FEM model and tested with a test data-
set consisting of a further 1405 runs, for a total of 9365 runs. 
The average time to complete an analysis using the FEM 
model is 117s. Therefore, the total time required to create the 
train and test datasets is (7960 + 1405) × 117 = 1.10 × 106 s, 
or around 12 days. This is significantly less than the time 
to complete an optimisation iteration with the FEM model, 
which is estimated to be 80, 000 × 117 = 9.36 × 106 or 108 
days. The train and test datasets were built by randomly sam-
pling from the distributions of the thicknesses (t1, t2, t3) and 
the numbers of plies (Nplies1

,Nplies2
,Nplies3

) seen in Table 5. 
Then the corresponding stacking sequences (S1, S2, S3) were 
found by picking random combinations from the list of 
27,436 stacking sequence combinations that obey the rules 
shown in Sect. 2.3.

In this work, the performance of an ANN is based on 
its mean squared error (MSE). Ideally, an ANN should 
have an MSE that is as low as possible. To check if the 
performance of the ANN has converged, the gradient of 
MSE with respect to the network weights is calculated for 
each epoch. If this gradient reaches a value less than or 
equal to 1 ×10−7 , the performance of the ANN is consid-
ered to have converged and the training is stopped. Fur-
thermore, to ensure that the performance of the ANN does 
not worsen during training, a limit is enforced for the Mar-
quardt adjustment parameter � used in the training of the 
ANN. When the MSE decreases during training, � is small 
and large steps are taken in the training of the ANN, while 
if a tentative step would increase MSE, � is large and small 
steps are taken. When � reaches a value of 1 ×1010 , the 
training is topped. In addition to the previous stopping 
criteria, and to prevent overtraining, the training of the 
ANN is stopped if the number of epochs reaches 2000.

An incremental approach was taken to determining the 
optimal architecture of the ANN. A total of 24 different 

architectures were investigated to determine the optimal 
architecture of the ANN, and they can be seen in Table 6. To 
ensure that the performance of each architecture was accu-
rately estimated, 100 ANNs with randomised initial weights 
and biases were trained and tested for each architecture, and 
the average MSE across these 100 ANNs when run with the 
train and test datasets was calculated. The average training 
time for each architecture was also calculated. Among the 
first group of architectures (Group 1), the best performing 
architecture was ’9-30-30-1’ which had an average MSE of 
0.0025 with the test dataset. This indicated that a multi-
layer ANN with an initial layer of 30 nodes could be the 
best architecture. Based on this assumption, a second group 
(Group 2) of multi-layer architectures with an initial layer of 
30 nodes was tested. It was found that the best performing 
architectures were ’90-30-20-1’ and ’90-30-10-10-1’ which 
both had an average MSE of 0.0024 with the test dataset. 
Given that the architecture ’90-30-10-10-1’ demonstrated a 
shorter training time than ’90-30-20-1’, 1,902s vs. 2,756s, 
the architecture ’90-30-10-10-1’ was determined to be the 
best performing architecture of group 2. This indicated that 
a multi-layer ANN with an initial layer of 30 nodes and a 
2nd layer of 10 nodes could be the best architecture. Based 
on this assumption, a third group (Group 3) of multi-layer 
architectures with an initial layer of 30 nodes and a 2nd layer 
of 10 nodes was tested. It was found that the best perform-
ing architectures were ’90-30-10-10-1’ and ’90-30-10-20-1’ 
which both had an average MSE of 0.0024 with the test 
dataset. Given that the architecture ’90-30-10-10-1’ demon-
strated a shorter training time than ’90-30-10-20-1’, 1,902s 
vs. 5,910s, the architecture ’90-30-10-10-1’ was determined 
to be the best performing architecture of group 3. Therefore, 
the architecture ’90-30-10-10-1’ is used to create the ANN 
in this work.

To prevent the overtraining of the ANN with the opti-
mal architecture ’90-30-10-10-1’, a study was performed 
to determine a suitable size for the train dataset. Nine dif-
ferent sizes of the train dataset were investigated and 100 
ANNs with the optimal architecture ’90-30-10-10-1’ and 
with randomised initial weights and biases were trained 
for each size of the train dataset. The test dataset was fixed 
at a size of 1405 data points. The results of this study can 
be seen in Fig. 8. It can be seen that the adjusted coeffi-
cient of determination R2

adj
 and the mean absolute percent-

age error (MAPE) for the test dataset increases and 
decreases, respectively, as the size of the train dataset is 
increased. However, the MSE and the mean absolute error 
(MAE) increase. A size of 6369 data points for the train 
dataset offers a good compromise between the four error 
statistics and is therefore used in this work for training the 
ANN with the optimal architecture ’90-30-10-10-1’.
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As stated previously, the optimal architecture is ’90-30-
10-10-1’ and the optimal size of the train dataset is 6369 
data points. To create the data seen in Fig. 8, 100 ANNs 
of the architecture ’90-30-10-10-1’ with randomised ini-
tial weights and biases were trained for each of the nine 
train dataset sizes, including for a train dataset of 6369 data 
points. Out of these 100 ANNs, the best performing ANN 
was found and its error statistics can be seen in Table 7. 
This ANN demonstrates excellent performance and is used 

in this work as part of the newly developed reliability-based 
bottom-up manufacturing cost optimisation procedure for 
composite aircraft structures. The design of this ANN can 
be seen in Fig. 9. The average time to complete a single run 
of the DNN is 0.0079s, this is over 13,000 times faster than 
the FEM model. Using the stopping criteria described earlier 
in this section, the convergence history for the train and test 
sets with respect to epoch is presented in Fig. 10. Conver-
gence was achieved after 1337 epochs, when the Marquardt 
adjustment parameter � exceeded the limit 1 × 1010 , indi-
cating that further training would worsen the performance 
of the ANN. The best epoch, in terms of performance, was 
epoch 1050.

3.4 � Bottom‑up manufacturing cost estimation

The stiffened panel is assembled as shown in Fig. 11. The 
stiffener wet-layups are placed on the wet-layup of the skin 
and they are cured together to create a strong bonding. The 
frames are cured separately and assembled onto the skin. 
Holes are drilled through the frames and the skin, and fas-
teners are installed to securely attach the frames to the skin, 
thereby creating the final stiffened panel.

A more detailed breakdown of the activities involved in 
the manufacturing of the stiffened panel can be seen in the 

Table 4   The properties of the three parts composing the stiffened 
panel

Property Skin Stringer Frame

Quantity 1 5 3
Surface area (1 side) (m2) 4.29 0.562 0.296
Mass (kg) (with 8 plies of 1mm 

thickness each)
51.5 6.75 3.54

Autoclave volume needed (m3) 0.80 0.020 0.012
Mould area needed (m2) 5.1 0.67 0.36
Mould perimeter (m) 9.8 5.4 7.0
Thickness t1 t2 t3

Number of plies Nplies1
Nplies2

Nplies3

Stacking sequence S1 S2 S3

Fig. 4   The FEM model of 
assembled stiffened panel

Table 5   The details of the input 
parameters of the DNN

Input parameter Design 
variable

Description Distribution Mean CoV Allowed values

t1 d1 Ply thickness in part 1 Weibull 1 mm 0.2 –
t2 d2 Ply thickness in part 2 Weibull 1 mm 0.2 –
t3 d3 Ply thickness in part 3 Weibull 1 mm 0.2 –
Nplies1

d4 Number of plies in part 1 Uniform – – [4, 6, 8]
Nplies2

d5 Number of plies in part 2 Uniform – – [4, 6, 8]
Nplies3

d6 Number of plies in part 3 Uniform – – [4, 6, 8]
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flowchart presented in Fig. 12. The activities in this flow-
chart correspond to the activities described in Sect. 2.2 and 
Table 3. It was assumed that each of the activities seen in 
Fig. 12 can be completed by one worker. The labour cost for 
each activity was calculated based on the equations seen in 
Sect. 2.2.4, with the input parameters seen in Table 4. The 
activity ’Material withdrawal, inspection, and set-up’ for 
each part included the costs associated with acquiring the 
composite prepreg material for that part. The activity ’Mould 
preparation’ for each part included the mould cost associated 
the part, as calculated in Eq. (11). The activity ’Dimensional 
inspection’ required the input Ndim , the number of dimen-
sions to inspect, and includes dimensions such as thickness, 
length, width, radius etc. For the frame, Ndim = 8 , and for 
the stiffened panel without frames, Ndim = 12 . For the stiff-
ened panel, ’Dimensional inspection’ involved inspecting the 

quality of the hole drilling, specifically the distance between 
the holes. Since there are three frames, there will be three 
lines of holes, and therefore Ndim = 3 . The paint involved in 
the activities ’Paint primer application’ and ’Paint top-coat 
application’ was only applied on the outside of the stiffened 
panel (the side without stiffeners and frames).

3.5 � Results & discussion

A total of 3200 optimisation iterations were completed, 
the results of which can be seen in Fig. 13. Based on the 
Pareto front points, it is clear that the probability of failure 
PF of the optimal designs decreases as the manufacturing 
cost increases. This suggests that for a design to have a low 
probability of failure PF , it is expected to be more expensive 
to manufacture, which is intuitive. The probability of fail-
ure decreases exponentially as indicated by the fact that the 
Pareto front points in Fig. 13a follow an almost straight line. 
A regression line can be plotted through these Pareto front 
points and is: PF = 4.905 × 103e−5.739×10

−4Cost . This regres-
sion line is plotted in Fig. 13. The two most extreme Pareto 
front designs in Fig. 13 are shown in Table 8. It is clear from 
these designs that reliability can be improved significantly 
by a magnitude of 3 by only doubling the manufacturing 
cost.

The distribution of costs between material, machine, 
labour, tool, and indirect costs for these two designs can be 
seen in Fig. 14. It can be seen that for the design with the 
lowest PF , the material costs are a much larger percentage of 
total costs. This is because to reduce the probability of fail-
ure of the stiffened panel, the ply thickness t and the number 
of plies Nplies need to be increased in the three parts, thereby 
increasing the quantity of composite pregregs needed and 
therefore increasing material costs. It can also be seen that 
the labour costs were higher for the design with the low-
est PF , even though the labour cost percentage decreased. 
This is due to the fact that increasing the number of plies 
increases the time required for cutting the plies, laying-up 
the plies, and inspecting the plies. This is reflected by the 
fact that Eqs. (22), (30), and (28), are functions of Nplies . The 
machine and tool costs, on the other hand, do not change 
between the two designs. The tool/mould costs depend on 
the surface area of the design, and since surface area was not 
a design variable during the optimisation procedure, tool/
mould costs are not expected to change. The machine costs 
include costs associated with autoclave curing and the equip-
ment needed for the NDT inspection. The cost of the NDT 
inspection is a function of the surface area of the design, 
as shown in Eq. (36). Therefore, since surface area was not 
a design variable, the cost of the NDT inspection is not 
expected to change. The cost associated with the autoclave 
curing is a function of the curing time and the investment 
cost of the autoclave.

Fig. 5   Flowchart of the multi-objective optimisation

Fig. 6   Flowchart of the genetic algorithm
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The cost percentages seen in Fig. 14a and b are within the 
ranges seen in the literature. Shehab et al. (2013); Weitao 
(2011), and Mazumdar (2002) give material cost percent-
ages in the range of 30–59%. They also give labour costs in 
the range of 13–54%, machine costs in the range of 4–28%, 
tool costs in the range of 2–10%, and indirect/fixed costs 
typically around 10%. Many of the above cost percentages 
can vary depending on production volume (see Figure 11.16 
in Mazumdar (2002)), and distinction is not often made 
between direct/indirect labour costs, so an exact compar-
ison is not possible, but the percentages seen in Fig. 14a 
and b agree well with the literature. The tool costs given 
in Fig. 14a and b are within those found in the literature 
(2–10%).

The distribution of manufacturing costs between the dif-
ferent parts and assembly levels for the two designs can be 
seen in Fig. 15. It can be seen that the skin and the stiffen-
ers account for larger percentages of the total cost for the 
design with the lowest PF , while the frames account for a 
smaller percentage. This suggests that the optimisation pro-
cedure considered the skin and stiffeners more important for 
increasing reliability. This makes sense, given the buckling 
load is applied parallel to the stiffeners. The costs associ-
ated with the stiffened panel and the stiffened panel without 
frames were the same for the two designs; this is because the 

activities involved in these assembly stages largely depend 
on non-design parameters such as the number of parts to 
assemble, the number of dimensions to inspect, and the sur-
face area of the parts.

The distribution of manufacturing costs between all 23 
activities for the two designs can be seen in Fig. 16a and b. 
It can be seen that the activity ’Material withdrawal, inspec-
tion, and set-up’ accounts for the majority of the total activ-
ity costs for both designs (65.7% and 81.3%). This is because 
this activity includes the cost of acquiring the composite 
prepreg material needed for all of the parts. The remaining 
22 activities account for a smaller percentage of the total 
activity costs for both designs (34.3% and 18.7%). Of the 
remaining 22 activities, mould preparation is the largest 
(38.3% and 35.1%), followed by autoclave curing (19.4% 
and 17.8%). The costs for most of these 22 activities remain 
the same between the two designs because the costs of most 
of these activities are functions of non-design parameters 
such as the surface area of the parts. The activities that expe-
rience changes in cost are associated with the layup of the 
composite plies, these are the four activities: ’Manual ply 
cutting’, ’Manual layup’, ’Debulking’, and ’Layup inspec-
tion’. The costs of these four activities are almost doubled 
for the design with the lowest PF , compared with the design 
with the highest PF . This is because the amount of composite 
prepreg material, both in terms of ply thickness and number 

Fig. 7   The convergence history of the GA for an extreme case where each of the three parts has 8 plies, and the thickness of each ply is 1.2 mm
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of plies, is significantly higher for the design with the lowest 
PF , increasing the labour time associated with layup of the 
composite plies.

It is difficult to find detailed activity cost breakdowns in 
the literature, and therefore exact comparisons cannot be 
easily made. However, a detailed cost breakdown of similar 
activities for the manufacture of a composite wing box can 
be found in Hagnell et al. (2016). It was determined that the 
activities associated with manual layup and autoclave curing 
were among those that contributed the most to the overall 
manufacturing cost, as is also the case in this work.

In summary, the results indicate that the proposed novel 
methodology for the reliability and manufacturing cost opti-
misation of composite aircraft structures agreed well with 
costing studies presented in the literature. The distribution 

of costs in terms of material, machine, labour, tool, and indi-
rect costs showed good agreement, as did the distribution in 
terms of activity costs. This demonstrates the good level of 
accuracy associated with the proposed methodology, which 
is general and can be applied to a wide range of composite 
aircraft components.

Furthermore, the proposed novel methodology can opti-
mise cost and structural reliability in one process, thus 
providing an excellent tool for the user and avoiding the 
need to balance the two features separately. It was shown 
that the distribution of material, machine, labour, and 
tool costs can vary significantly depending on the level 
of structural reliability required. It was also shown that 
machine, labour, tool, and indirect costs can contribute 
significantly to the total manufacturing cost. These non-
material costs accounted for roughly 38.7% of the total 
manufacturing for a low-reliability structure and 25.4% for 
a high-reliability structure. This demonstrates the impor-
tance of accounting for non-material costs when designing 
composite parts.

Since the proposed novel methodology is based on bot-
tom-up cost estimation with many individual unique activ-
ities, the cost estimates are very precise. This enables the 
user to examine the impact of both small and large design 
changes on the cost. It can also be easily be extended to 
a wide variety of structures and to both new and existing 
manufacturing procedures. For example, this current paper 
involves activities related to manual layup. New activi-
ties could be developed in the future for automated layup 
- extending the range of structures to which this newly 
developed methodology could be applied.

4 � Conclusions

In conclusion, this work presented a novel comprehensive 
bottom-up methodology for the reliability-based manufac-
turing cost optimisation of composite aircraft structures. The 
proposed approach splits the manufacturing process into 
many individual activities, which can be combined in many 

Table 6   Average MSE with the train and test datasets for 24 differ-
ent ANN architectures.  100 ANNs with randomised initial weights 
and biases were created for each architecture to determine an average 
MSE. Also shown is the average training time for each architecture

Group Architecture Average MSE ttrain (s)

Train Test

1 9-10-1 0.044 0.0084 44
9-20-1 0.026 0.0054 351
9-30-1 0.019 0.0044 361
9-40-1 0.016 0.0039 1330
9-50-1 0.013 0.0036 4322
9-10-10-1 0.029 0.0059 167
9-20-20-1 0.010 0.0029 2998
9-30-30-1 0.0048 0.0025 6183
9-40-40-1 0.0029 0.0035 30,562
9-50-50-1 0.0016 0.0053 41,116

2 9-30-10-1 0.0086 0.0027 1489
9-30-20-1 0.0060 0.0024 2756
9-30-30-1 0.0048 0.0025 6183
9-30-40-1 0.0040 0.0027 6807
9-30-50-1 0.0034 0.0032 9516
9-30-10-10-1 0.0065 0.0024 1902
9-30-20-20-1 0.0036 0.0027 13,894
9-30-30-30-1 0.0024 0.0040 12,692

3 9-30-10-10-1 0.0065 0.0024 1902
9-30-10-20-1 0.0057 0.0024 5910
9-30-10-30-1 0.0052 0.0026 3974
9-30-10-10-10-1 0.0058 0.0026 3414
9-30-10-20-20-1 0.0043 0.0034 6377
9-30-10-30-30-1 0.0029 0.0048 25,641

Table 7   Error statistics for the best performing ANN with the optimal 
architecture ’9-30-30-10-1’

Dataset MSE (MPa2) R
2

adj
MAPE (%) MAE (MPa)

Train 0.0026 0.9920 3.42 0.042
Test 0.00090 0.9845 4.34 0.056
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Fig. 8   Average error statistics of the optimal architecture ’90-30-10-10-1’ for different sizes of the train dataset including a MSE, b R2

adj
 , c 

MAPE, and d MAE
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Fig. 9   The deep neural net-
work (DNN) used to replace 
the expensive finite element 
method (FEM) model of the 
stiffened panel. It is composed 
of an input layer of 9 nodes, 3 
hidden layers with 30, 10, and 
10 nodes, respectively, and an 
output layer of 1 node

Fig. 10   Convergence history for the best performing ANN with the architecture ’90-30-10-10-1’. Convergence was achieved after 1337 epochs. 
The best epoch, in terms of performance, was epoch 1050

Fig. 11   Flowchart showing the 
assembly of the stiffened panel
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Fig. 12   Flowchart of the bottom-up manufacturing cost estimation procedure for the stiffened panel using the activities described in Sect. 2.2
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different ways, allowing the proposed optimisation meth-
odology to be applied to a wide range of composite aircraft 
structures. Furthermore, the proposed methodology takes 
into account not only material costs, but also other important 
costs such as machine, tooling, labour, and indirect costs, 
and investigates how these costs are influenced by the design 
parameters. As part of the optimisation procedure, a genetic 
algorithm (GA) was coupled with a deep neural network 

(DNN) to efficiently determine the optimal composite ply 
stacking sequence for every part of an assembled structure.

The proposed methodology was applied to a numerical 
example featuring a composite-stiffened panel from an air-
craft fuselage composed of nine parts: skin, five stiffeners, 
and three frames. The structural reliability was based on 
buckling, a common mode of failure for aircraft structures. 
Results of the numerical example indicate that the proposed 

Fig. 13   Optimisation results 
of the composite-stiffened 
panel with a log-scale and b 
linear scale. The regression line 
PF = 4.905 × 103e−5.739×10

−4
Cost 

is plotted as a black dotted line 
through the Pareto front points

Table 8   Details of the two most extreme Pareto front designs, in terms of manufacturing cost, from Fig. 13

Design Cost (€) PF t1 t2 t3 Nplies1
Nplies2

Nplies3
S1 S3 S3

Highest PF 14,265 9.90 × 10−1 0.80 0.80 0.82 4 4 4 [90, 0]
s

[90, 0]
s

[90, 0]
s

Lowest PF 28,487 4.14 × 10−4 1.04 0.88 1.11 8 8 8 [45,−45, 0, 0]
s

[45, 90,−45, 90]
s

[45,−45, 0, 0]
s
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methodology for the reliability and manufacturing cost 
optimisation of composite aircraft structures agreed well 
with costing studies presented in the literature. It provided 
percentages for material, machine, labour, tool, and indi-
rect costs, as well as percentages for activity costs, that are 
within ranges seen in the literature. It was shown that the 
material and labour costs can vary significantly depending 
on the level of structural reliability required. The proposed 
procedure is capable of providing an exact estimation of 

the influence of the two features, cost and reliability. For a 
low-reliability structure, material cost was 8750€ and con-
stituted around 61.3% of total manufacturing costs, while 
for a high-reliability structure, this was 21,250€ and con-
stituted around 74.6% of total manufacturing costs. The 
labour costs also increased from 1,850€ to 2,150€, due to 
the fact that more labour time is required to cut, layup, and 
inspect the additional prepreg material. This demonstrates 

Fig. 14   Pie charts showing the 
distribution of manufactur-
ing costs between material, 
machine, labour, tool, and indi-
rect costs for the two extreme 
Pareto front designs seen in 
Table 8
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Fig. 15   Pie charts showing the 
distribution of manufacturing 
costs between the different parts 
and assembly levels for the two 
extreme Pareto front designs 
seen in Table 8
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the importance of accounting for non-material costs when 
designing composite parts.
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