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Abstract: The assessment of time irreversibility, i.e., of the lack of invariance of the statistical prop-
erties of a system under the operation of time reversal, is a topic steadily gaining attention within
the research community. Irreversible dynamics have been found in many real-world systems, with
alterations being connected to, for instance, pathologies in the human brain, heart and gait, or to
inefficiencies in financial markets. Assessing irreversibility in time series is not an easy task, due
to its many aetiologies and to the different ways it manifests in data. It is thus not surprising that
several numerical methods have been proposed in the last decades, based on different principles and
with different applications in mind. In this contribution we review the most important algorithmic
solutions that have been proposed to test the irreversibility of time series, their underlying hypothe-
ses, computational and practical limitations, and their comparative performance. We further provide
an open-source software library that includes all tests here considered. As a final point, we show
that “one size does not fit all”, as tests yield complementary, and sometimes conflicting views to the
problem; and discuss some future research avenues.

Keywords: irreversibility; time-reversal symmetry; nonlinearity

1. Introduction

For a viewer watching the movie of an ideal pendulum undergoing no friction it is
impossible to tell whether the movie is played forward or in reverse, the only differences
between these two motions being the pendulum’s initial position and speed. The system’s
motion is then said to have time-reversal symmetry. More formally, time reversal symmetry
is the symmetry of a physical law or a realisation of a physical phenomenon under the
time-reversal transformation t 7→ −t.

There are at least two somehow dual approaches to time-reversal symmetry. In the first
approach, observed phenomena are thought of as a realisation of a stochastic dynamical
process, and the goal is to try to understand what information the time-reversal symmetry
and its breakdown provide on the statistical properties of these processes [1–4]. In a
statistical sense, time-reversal symmetry quantifies the extent to which it is possible to
discern a preferred time direction of a time ordered realisation of some stationary stochastic
process . . . , X−2, X−1, X0, X1, X2, . . ., i.e., the extent to which it can be distinguished from
the time-reversed sequence . . . , X2, X1, X0, X−1, X−2, . . . [5].

Once time-reversal symmetry is treated as a property of a given time series, it can
be shown that reversibility implies stationarity [3] and, furthermore, that linear Gaussian
random processes and static non-linear transformations of such processes are reversible.
Conversely, the presence of time irreversibility rules out Gaussian linear processes or linear
autoregressive moving average (ARMA) models as possible generating dynamics, implying
instead non-linear dynamics or (linear or non-linear) non-Gaussian [1–4]. Time-reversal
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symmetry can be due to the presence of dissipative forces which are reflected by long-range
correlations and nonlinear dependences, and, therefore, in turn affecting the degree of time
series predictability. The presence of time irreversibility implies nonlinear dynamics, non-
Gaussian (linear or nonlinear), or linear ARMA models as possible generative processes,
ruling out Gaussian linear models, such processes and their static nonlinear transformations
being reversible. Memory acts as a hidden dissipative external force [6], while the presence
of noise results in loss of perceived temporal asymmetry of a given process [7,8].

The second approach to time-reversal symmetry focuses on the association of this
symmetry with deep properties of physical and biological systems characterising their
intrinsic modus operandi. An essential characteristic of irreversible thermodynamic pro-
cesses is the breakdown of the time-reversal symmetry of the microscopic dynamics [9].
Moreover, broken time-reversal symmetry is the hallmark of systems operating away from
equilibrium [10]. Such systems use part of their free energy budget to perform work or
store it in alternative forms, dissipating the rest as heat in the environment, and this is
associated with an irreversible increase in entropy of the environment, in agreement with
the second law of thermodynamics.

The rate of entropy production, or dissipation, is associated with broken time-reversal
symmetry of the associated dynamics, its rate constituting a measure of statistical irre-
versibility of non-equilibrium processes [7,11–13]. When dissipation is large, time asymme-
try becomes conspicuous, reflecting the price in entropy lost to dissipation. Hence the idea
that time-reversal symmetry can be used not only as an indicator of whether a system is at
equilibrium or not, but also as a quantifier of its distance from such a condition [14].

The relationship between irreversibility of thermodynamic processes, the breakdown
of time-reversal symmetry expressing it, and entropy production in systems operating
away from equilibrium can be investigated in various ways.

Time-reversal symmetry breaking may be signalled by directed flows or currents.
Irreversibility may therefore be detected by highlighting the existence of such flows or
fluxes [10]. This can be done by using different but related symmetries of the system and
measuring their breakdown. One possible strategy makes use of the fact that equilibrium
fluctuations obey detailed balance of the probability fluxes: the net current between any
pair of states vanishes at long enough times, i.e., given two states w1 and w2 and a transition
rate W(·) following condition holds:

ρ(w1)W(w1 → w2) = ρ(w2)W(w2 → w1), (1)

where ρ(·) is the equilibrium probability distribution. Thus, in particular, every forward
microstate trajectory must have the same probability to occur as its time-reverse coun-
terpart. Non-equilbrium steady states can break detailed balance, with the formation of
flux loops [10,15]. This condition can be understood in terms of the symmetry property
of the probability distributions P(wt) = P(Iwt) of a trajectory wt = (w1, w2, . . . , wt) of
length t and its time-reversed one, where I is the time reversal operator. An important
result is that the ratio between these two quantities, which quantifies the distance between
the forward and backward path in the appropriate space, provides a estimate of the ther-
modynamic entropy production (diS)/dt [9,16–18]. The ratio diS/dt = ln[P(wt)/P(Iwt)]
is strictly positive for non-equilibrium systems and vanishes only if detailed balance is
satisfied. This ratio can also be interpreted in terms of the Kullback-Leibler distance D(ρ||ρ̃)
between the space phase densities ρ and ρ̃ respectively of the forward and backward
path. For non-equilibrium steady state systems, this relation can be expressed in terms
of Kolmogorov-Sinai entropy of the forward and backward paths, respectively h and
hR [11,16]:

diS
dt

= kB(hR − h). (2)

This relation indicates that in non-equilibrium steady states, the typical paths are more
ordered in time than the corresponding time-reversed paths, pointing to a fundamental
relationship between system’s dynamics and its thermodynamics [16]. It is also directly
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related to Landauer’s principle, which quantifies the minimal dissipation associated with
information erasure [19,20]. Remarkably, the left-hand side is a purely physical macroscopic
quantity, whereas the right-hand side is a statistical magnitude associated with microscopic
fluctuations, which does not depend on the generating mechanism [21].

Instead of studying the ratio of the two aforementioned quantities, which quantifies
the distance between the forward and backward path in the appropriate space providing an
estimate of the entropy production (diS)/dt by means of Kolmogorov-Sinai entropy in the
previous equation, one may employ the entropy change ∆S under time reversal [22] of the
entropy S in natural time analysis [23–26], which in general does satisfy the requirement
to identify time-reversal asymmetry. The advantage of using ∆S is that the study of its
fluctuations can identify when a system approaches a dynamic phase transition, as for
example the occurrence of a large earthquake [22,27].

A further way to quantify irreversibility and therefore dissipation can be found by
looking at a related symmetry and its breakdown, i.e., by experimentally assessing [28,29]
violations of the fluctuation-dissipation relations, connecting equilbrium system’s sponta-
neous fluctuations, response to exogenous perturbations and temperature [30,31]. Viola-
tions of the fluctuation-dissipation relations reflect the breakdown of detailed balance and
the extent of the violation is related to the system’s rate of dissipation [32]. The departure
from equilibrium is often studied by introducing effective temperatures [33]. However,
in addition to correlations of the unperturbed system, this approach also requires active
measuring of the system’s response properties to particular fields that leave the system
sufficiently close to equilibrium. Moreover, there is no direct relation between effective
temperatures and time-reversal symmetry breaking.

More generally, non-equilibrium systems obey fluctuation relations ruling the fluctu-
ating amounts of work or entropy produced during far from equilibrium processes, which
hold for any stationary process, independently of the dynamics [34–38]. These relations
describe the behaviour of a system driven from equilibrium by an external perturbation.
Contrary to linear response theory, these expressions are exact irrespective of the perturba-
tion strength, or of how far from equilibrium the system has been driven to. In particular,
the relation

P(−Σt) ∼ P(Σt)e−Σt (3)

where Σt = diS/dt is the entropy production probability for a finite non-equilibrium
system flowing against the direction mandated by the second law of thermodynamics.
This fluctuation relation can be seen as a symmetry property of the entropy current’s
large deviation function resulting from driving the system into a non-equilibrium steady
state [35,39].

Importantly, for a large class of systems, thermodynamic quantities like heat, work
and entropy can be defined at the level of single stochastic trajectories [40,41], bridging the
gap between the two seemingly separate approaches to time-reversal symmetry sketched
above. From these can be derived not only fluctuation relations, but also statistical bounds,
known as thermodynamic uncertainty relations [42,43], on the precision [42], rate [44] and
speed of state transformation [45] of the underlying process [46].

1.1. Applications

These two approaches to time-reversal symmetry have been applied to the experimen-
tal study of very diverse physical, economical and biological systems.

One of the earliest applications of time-reversal symmetry analysis addressed the long-
standing question in hydrodynamic turbulence of the nature of the cascade describing its
emergence; it was shown that it constitutes a genuine dynamical process involving a time
arrow rather than an instantaneous spatial structure, viscosity turning out to be key to the
symmetry breakdown [47]. A similar finding was associated with the avalanche structure
of financial time series. In particular, the two-point correlation functions of intraday return
volatility across time scales was shown to be characterised by a causal information cascade
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from large to fine scales [48]. More generally, time reversal symmetry metrics have been
used to characterize economic and financial time series [8,49–52]. In the domain of finance,
various empirical studies have been undertaken to test the so-called Efficient Market
Hypothesis [53], whereby a market is said to be efficient if asset prices incorporate all
publicly available information, so that no single agent can on average outperform the
market using such information. Thus, efficiency is related to the amount of information
available to predict future market prices, with lower efficiency corresponding to higher
residual predictive information in the past sequence of stock prices [54]. Financial time
series have been found to be time irreversible [8,49,55,56], the degree of asymmetry varying
greatly from stock to stock [51]. Furthermore, time-reversal symmetry breaking allows
ranking a given market’s quality, mature ones turning out to be more time-symmetric
than emerging ones [57]. Musical pieces ranging from Renaissance to the early Modern
period have also been found to be characterised by time-reversal symmetry, associated with
the presence of strong nonlinearities, indicating a structure richer than that of previously
reported pink noise [58].

Insofar as time-reversal symmetry reflects the way a system produces entropy, and
hence the extent to which it operates away from equilibrium, time irreversibility becomes
a good descriptor of biological systems at all scales. Irreversibility, and the associated
entropy production, are indeed fundamental elements for understanding life development
and maintenance [59,60]. At microscopic scales, time-reversal symmetry breaking has
been found in hair-cell bundle fluctuations. Hair cells in the inner ear transduce sound-
evoked mechanical vibrations of their hair bundle into electrical signals, which are then
sent to the brain. It was first shown that their spontaneous fluctuations violate fluctuation-
dissipation theorem, indicating that such fluctuations are active ones [28] and are therefore
characterised by probability phase spaces fluxes and entropy production. Recently, it was
further shown that such dynamics are characterised by time-reversal symmetry [61].

At meso- and macroscopic scales, time reversal asymmetry has been used to char-
acterise healthy and pathological activity of various biological systems. One of the most
studied such systems is the human heart [62–69]. In particular, it was found that heart
period fluctuations are characterised by time reversal asymmetry stemming from faster
heart decelerations than accelerations, which result in period variability with steeper up-
ward than downward side. Furthermore, a portion of heart period variability is due to
the cardiac arm of the baroreflex. This reflex also shows asymmetry, as it is influenced
by the sign of arterial pressure variations, which more efficiently compensates systolic
rises than drops [70]. At even more coarse-grained scales, time-reversal symmetry has
been used to characterise the dynamics of human limbs; for instance, it has been used to
classify hand tremors [71], and to analyse gait, comparing healthy subjects and patients
with Alzheimer’s dementia [72,73].

The time-reversal symmetry properties of brain activity have also attracted some atten-
tion [74–79]. Resting brain activity has been shown to be generically time irreversible, time-
reversal symmetry being modulated by opening or closing eyes [78], phase of sleep [80],
and altered in a pathology-specific way in psychiatric and neurological disease [78]. Tem-
poral irreversibility appears to be the hallmark of wakeful consciousness [81]. Indices of
time asymmetry seem to be altered at various scales in brain pathology and may therefore
be used as diagnostic tools [82]. In particular, time symmetry appears to be altered in a
disease-specific way in psychiatric and neurological pathologies including schizophrenia,
Alzheimer’s and Parkinson’s diseases [78]. Moreover, in epilepsy, increased irreversibility
has consistently been reported for ictal activity in both scalp and intracranially recorded
electrical brain activity [75,79,83,84]. Importantly, surgical removal of brain areas with
irreversible intracranial electroencephalography (iEEG) signals was associated with seizure-
free postsurgical outcome [83].
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1.2. Assessing Irreversibility in Real-World Time Series

Assessing time reversal symmetry is not an easy task. This is due not only to the
many aetiologies of irreversibility, but also to the theoretical background within which
irreversibility is studied and to the experimental evaluation of the properties each method
strives to quantify. As a result, various methods have been proposed in the last decades,
based on different principles, goals and applications. In the remainder, we illustrate some
of these methods, comparing their performance in various contexts.

The aforementioned comparison will here be based on a large set of synthetic
(Section 3.2) and real (Section 3.4) time series, the former ones created using well-known
dynamical systems. Additionally, we here assume that the researcher has no prior informa-
tion about the time series, including information about its (non-)stationarity. It is worth
noting that a non-stationary time series is by definition irreversible, and that the classical
approach to irreversibility has been to disregard such time series. On the contrary, we here
include also non-stationary models (as, e.g., the Generalised Autoregressive Conditional
Heteroskedasticity model [85]), with the aim of not just detecting this trivial irreversibility,
but also of quantifying it (for a deeper discussion on this topic, see [86]).

We complement this analysis with an open-source software library, which integrates
the main tests here discussed, and that has been the basis of all reported results-see
Section 4. We invite the reader to check and use it, and send to us any suggestions for
improvement.

We finally close this review with a discussion of the limitations of the methods hitherto
proposed, and of the avenues for their further development.

2. Numerical Methods
2.1. The BDS Statistic

The BDS statistic was initially proposed by Broock, Dechert and Scheinkman in a
working paper in 1988, then being published as [87] and extensively tested in [88]. This
test was designed to check for the presence of low-dimensional chaos in economic and
financial data, and hence the adequacy of fitting a linear model to a time series; the use of
the BDS statistic for assessing time irreversibility was a later application.

Given a time series {xt} composed of T observations, the statistic is defined as:

wd(r, T) =
√

T
Cm(r, T)− C1(r, T)m

σm(r, T)
, (4)

where Cm(r, T) is the sample correlation integral at embedding dimension m and scaling
parameter r, and σm(r, T) is the estimated standard deviation of the BDS statistic under the
null hypothesis of independence. wd is distributed asymptotically as N (0, 1) under the
null hypothesis of independently and identically distributed data.

2.2. Ramsey and Rothman’S Time Reversibility Test

The second metric for detecting irreversibility from time series was proposed by
James B. Ramsey and Philip Rothman in 1996 [49]. Given a zero mean and stationary time
series {xt} composed of T observations, it is based on calculating the method-of-moments
estimators of two sample bicovariances:

B̂2,1(k) = (T − k)−1
T

∑
t=k+1

x2
t xt−k, (5)

and

B̂1,2(k) = (T − k)−1
T

∑
t=k+1

xtx2
t−k, (6)

for various integer values of k. The estimator γ̂2,1(k) = B̂2,1(k)− B̂1,2(k) is then constructed,
and under the null hypothesis that the time series is reversible, the value of γ̂2,1(k) is
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expected to be zero for all k. As γ̂2,1(k) is asymptotically normally distributed, a simple
T-test can be performed to check whether B̂2,1(k) and B̂1,2(k) have identical average values.
Through the use of Monte-Carlo simulations, the Ramsey and Rothman’s test (called Time
Reversibility test in the original paper, and here shortened to Ramsey’s test for the sake
of clarity) has been proved to have a higher power than the BDS test and excellent size
properties [89].

2.3. The DFK Test

The DFK test, proposed by Daw, Finney and Kennel [90], is based on the symbolisation
of the time series. This involves partitioning the data range and assigning a symbol to each
time series’ value based on the region into which it falls. While this partitioning can be done
in a variety of ways, the simplest one involves dividing the data range in n equiprobable
regions. After all values are assigned to a partition, and hence transformed to “symbols”,
groups of L of these are merged to create “words”. To illustrate, suppose the time series
x = {3, 5, 4, 3, 6, 6}; for n = 2, two ranges are created, corresponding respectively to the
ranges x < 4.5 and x > 4.5, thus yielding a symbolised time series {1, 2, 1, 1, 2, 2}; for
L = 3, triplets of consecutive symbols are joined together, yielding the sequence of words
(121), (211), (112) and (122). As a final step, the probability of appearance of each word is
calculated, both for the original and the time-reversal version of the time series, and the
two probability distributions are compared using a χ2 test.

2.4. Permutation Patterns (Permp) Test

Over the past few years, multiple irreversibility tests based on the concept of permuta-
tion patterns have independently been proposed [52,84,91–93]. The underlying element is
the symbolisation of a time series using permutation patterns, i.e., (usually short) patterns
describing the order that has to be applied to the elements of a time series to sort them. To
illustrate, the permutation pattern associated to values (8, 4, 5) would be (2, 3, 1), as the
second element is the smallest one, followed by the third and the first. The frequencies of
these patterns have proven to be useful descriptors of the underlying dynamics, as e.g., of
the degree of complexity (or determinism vs. stochasticity) of time series [94–96].

Constructing an irreversibility test based on permutation patterns is easily done.
Given a time series X = {x1, x2, . . . , xN} composed of N values, this is divided into
N − δ + 1 overlapping windows of length δ, such that the i-th window is defined as
wi = {xi, . . . , xi+δ−1}. Values composing each window are then sorted from smaller to
larger, and the corresponding permutation pattern πi is extracted. One can further note
that, in a reversible time series, the distribution of the permutation pattern probabilities
p(π) should be the same in the original and time reversed time series. This similarity
can be assessed through the Jensen-Shannon divergence, i.e., a measure of the similarity
between two probability distributions [97]. Finally, a test based on surrogate time series
can be performed to check the statistical significance of the difference between the two
distributions, and eventually obtain a p-value [84].

It is worth noting that the previously described testing strategy, based on surrogate
time series, is computationally very expensive; for instance, in order to check for p-values
below 0.01, the irreversibility test has to be performed to at least 102, but more commonly
> 104, surrogate time series. An alternative can be obtained by observing that permutation
patterns pair under the operation of time reversal; for instance, pattern (1, 2, 3) becomes
(3, 2, 1), and so forth. If the time series is reversible, those pairs of patterns should appear
with approximately the same frequency, otherwise they can be used to fix a direction of the
arrow of time. Irreversibility can then be detected through binomial tests applied to these
pairs of patterns [52].

The various studies proposing a permutation pattern-based irreversibility measure
based on permutation patterns [52,84,91–93] mainly differ in the statistics used to assess
the significance of the results. While we here use the method proposed in [52], the reader
should be aware of the available alternatives [84,92,93].
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2.5. The Ternary Coding (TC) Test

A conceptually similar but simplified version of the previous permutation pattern
test was proposed ten years earlier by Cammarota and Rogora [98], and is based on the
analysis of the ternary coding (TC) of the differentiated time series. Specifically, let us start
from a time series {xt} composed of T observations; from this, a differentiated time series
{dt} is obtained, whose elements are defined as di = xi+1 − xi. The elements of this latter
series are then coded as follows:

st =


1, if dt > α

−1, if dt < −α

0, otherwise,

(7)

with α being a user-defined constant. Note that, in synthesis, elements of the original
time series are transformed into +1 and −1, respectively representing large increases and
decreases; also note that 0 is not used in subsequent analyses. An irreversibility test can be
constructed by noting that a sequence of consecutive +1 values of st will transform into a
sequence of −1 values under a time reversal operation-0 values will map into themselves,
and this is why they are not taken into account. As with permutation patterns, a time
series will be reversible if and only if the number of +1 and −1 sequences are not different
in a statistical significant way. Given a sequence length, that in the case of ref. [98] was
three elements, one can then count the number of sequences composed of only +1 values
(denoted as N+) and of only −1 values (denoted as N−). A simple binomial test could be
performed at this stage, i.e., to check whether the probability associated to N+ is statistically
different from the one associated to N−. Cammarota and Rogora instead opted for another
possibility, and specifically split the original time series into long non-overlapping segments
(in the original work, these segments were of length 1, 000); calculate N+(i) and N−(i)
for each segment i, and the corresponding difference ∆3(i) = N+(i)− N−(i); and finally
perform a sign test for the differences ∆3, assuming these are independent and equally
distributed. While this introduces the need for longer time series and of the definition of an
additional parameter (i.e., the segment length), it also simplifies the analysis of time series
that are non-stationary, or that are irreversible only a fraction of the time.

2.6. Micro-Scale Trends (MSTrends) Test

Also indirectly leveraging the concept of permutation patterns, ref. [99] proposed a
test based on micro-scale trends, i.e., the slope of a polynomial fit performed over small
overlapping windows of the original time series. The time reversal operation changes the
sign of these slopes; thus, if a subwindow is associated with a slope of +α, the correspond-
ing time-reversed subwindow will have a slope of −α. As the probability distribution of
these slopes must be the same in the original and time-reversed time series for this to be
reversible, the probability distribution must be symmetrical with respect to zero.

As in previous cases, let us start from a time series {xt} composed of T observations,
which we divide into N − δ + 1 overlapping windows of length δ, such that the i-th
window is defined as wi = {xi, . . . , xi+δ−1}. Afterwards, a least squares polynomial fit of
degree d < δ is applied to each window, and the highest power coefficient a is extracted.
Finally, two probability distributions of a, for the original and time-reversed time series,
are extracted and compared through a Kolmogorov-Smirnov test.

Note that this test is conceptually similar to the permutation patterns and the ternary
coding ones, as all three are based on detecting correlations in consecutive elements of the
time series. The main difference resides in the fact that the micro-scale trends test explicitly
includes the amplitude of the signal, or more specifically the magnitude of the changes in
the time series, in the assessment of irreversibility.

Finally, as also proposed in ref. [99], this test can be applied to any modification of
the original time series. Specifically, suppose that a new time series yt is created from xt,
by calculating the second (standard deviation) or third (skewness) central moments of the
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sub-time series {xt, . . . , xt+∆} (note that ∆ 6= δ, and that usually ∆� δ). The proposed test
can then be applied to the new time series y, in order to, for instance, detect time series
alternating between upward and downward movements with an increasing (or decreasing)
frequency.

2.7. Visibility Graphs

One recent and innovative approach to time series analysis is represented by a fam-
ily of methods that map a time series into the nodes of a network, based on geometric
criteria [100,101]. In all of these methods, a complex network [102] is created, whose nodes
correspond to the individual data of the time series; pairs of nodes are then connected
when they fulfil some geometrical rule, usually based on whether they can “see” each other-
hence the name “visibility graph”. Such network is then analysed using standard complex
network theory tools, and involves for instance quantifying the degree distribution or other
topological metrics or the network induced by the data [103].

Time series irreversibility has been assessed using one such methods, viz. the so-called
directed Horizontal Visibility Graphs (dHVG), in which pairs of nodes are connected if
the line connecting both values is not obstructed by another intermediate point [101]. In
other words, given two nodes i and j, a link is created if xi, xj > xn, ∀n|i < n < j, with xi
being the element of the time series mapped into node i. Afterwards, the irreversibility
of the time series can be assessed by comparing the distributions of in- and out-degrees
(i.e., respectively the number of links arriving to and departing from a given node), and by
calculating a Kullback-Leibler divergence. Specifically, as the in-degree of a node becomes
its out-degree under a time reversal transformation, reversibility implies equality of both
distributions and a Kullback-Leibler divergence converging to zero [51,104].

Note that the original study using dHVG to assess irreversibility only proposes the use
of the Kullback-Leibler divergence as a metric of the amount of irreversibility, but that this
is not a statistical test, and as such cannot yield a p-value. This shortcoming can be solved,
on one hand, by comparing the obtained divergence with what observed in surrogate time
series [58], albeit at a large computational cost. On the other hand, one can use standard
statistical tests to assess the equality of the two in- and out-degree distributions. In order
to test this option, we report in Figure 1 the fraction of times an irreversible time series
is detected as such by the visibility graph method with 104 surrogates (black lines), by a
Kolmogorov-Smirnov (KS) test (cyan lines), by an Epps-Singleton test (blue lines) [105],
and an k-sample Anderson-Darling test (magenta lines) [106]. Time series were generated
with two classical chaotic maps, specifically the logistic and the Henon map (see Section 3.2
for definitions), for T = 50, 200 and 800, and with different amplitudes of a Gaussian
additive noise. It can be appreciated that the Epps-Singleton test outperforms the surrogate
approach, being more sensitive for short time series and high levels of additive noise. It is
also more sensitive than the KS test, whose use was previously proposed in [107]; this is
easy to explain, as the Epps-Singleton test is specifically designed to test data coming from
discrete distributions, as is the case of the degree, while the KS test expects continuous
ones.
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Figure 1. Performance of different statistical tests applied to the Visibility graph methodology. Each panel reports the
evolution of the fraction of time series identified by the test as irreversible, as a function of the noise amplitude. Top
panels correspond to time series generated through the logistic map, bottom ones through the Henon map - see Section 3.2
for definitions. Left, central and right panels respectively correspond to time series lengths of T = 50, 200 and 800. The
horizontal dashed line in each panel represents the expected fraction of time series detected as irreversible for a significance
level α = 0.01.

2.8. Local Clustering Coefficient

Based on the previous concept of visibility graph, Donges and coworkers proposed
to assess irreversibility not just by looking at differences in the degree distributions, but
more generally, in any topological property of the obtained visibility networks [107]. They
specifically focussed on the local clustering coefficient, a measure assessing the degree to
which nodes in a graph tend to form triangles. Two versions of the metric are created,
respectively describing the connectivity due to past and future observations, and thus
resulting in the retarded and advanced local clustering coefficients:

Cr
i =

(
kr

i
2

)−1

∑
j<i,k<i

ai,jaj,kak,i (8)

and

Ca
i =

(
ka

i
2

)−1

∑
j>i,k>i

ai,jaj,kak,i. (9)

As standard in complex network theory, ai,j represents the element (i, j) of the ad-
jacency matrix A, and its value is one if a link exists between nodes i and j, and zero
otherwise. Additionally, kr

i and ka
i , respectively, represent the retarded and advanced

degrees of node i, i.e., its number of connections with previous and following nodes. Once
the two distributions Cr

i and Ca
i have been obtained, these have to be compared. As in the

case of the visibility graph, this can be done through a Kullback-Leibler distance, using
surrogate time series to extract a p-value; or through statistical tests, like the KS or the
Epps-Singleton [105] ones.



Entropy 2021, 23, 1474 10 of 32

2.9. Additional Irreversibility Tests

For the sake of completeness, we also mention a few additional irreversibility tests that
have been proposed in the literature. These were not included in the analysis presented
below due to a number of reasons, including their computational cost that makes them
unsuitable for most real-world problems; their problem-specificity narrowing their scope;
or their overlap with other included methods.

This list should indeed start with the test proposed by Yves Pomeau in 1982 [5], to
the best of our knowledge the first instance of an irreversibility test, and which probably
received way less attention than deserved for being written in French. Pomeau proposed
to use any function asymmetric with respect to time, as for instance

ψ(τ) = x(t)[x(t + 2τ)− x(t + τ)]x(t + 3τ), (10)

being τ a lag constant. The idea proposed in ref. [5] is important for introducing several
relevant concepts: the fact that multiple functions, similar to ψ, could be introduced, i.e.,
the idea that no single definitive solution to the irreversibility problem exists; and the
introduction of a lag τ, effectively enabling the possibility of multi-scale analyses. On
the other hand, ψ is only a metric of irreversibility; in order to create a statistical test,
the function has to be calculated over a large number of surrogate time series, with the
consequent major computational cost. Finally, the attentive reader will easily recognise the
similarity between this and the Ramsey test of Section 2.2.

Following a chronological order, the next test worth mentioning is the one proposed
by Diks and coauthors [108]. It is based on a test checking whether two sets of vectors are
drawn from the same multi-dimensional probability distribution; specifically, the distance
between pairs of vectors is calculated, for then deriving an unbiased estimator and the
expected variance under the null hypothesis of independence. Given a time series {xt}, its
irreversibility can be estimated by comparing vectors representing x and its time-reversed
version; these vectors can easily be created by considering non-overlapping sub-windows
with embedding dimension m, and eventually an embedding delay τ, as customary in
permutation pattern analyses [94,95].

Costa, Goldberger and Peng proposed a method to study the irreversibility of heartbeat
dynamics, based on the analysis of the increases and decreases in heart rate [62]. A heart rate
time series X = {xi} is converted into a sequence of heart rate increments and decrements
Y = {yi}, yi = xi+1 − xi, representing the competition between the neuroautonomic
stimuli controlling the heartbeat. Such increments and decrements are then studied from
a thermodynamical perspective, the authors specifically supposing that they require an
amount of energy related to their magnitude. If the time series is reversible, then the
average energy for heart rate “activation” (i.e., for yi > 0) must be similar to the average
energy for its “relaxation” (yi < 0); hence a test can be constructed by calculating the
difference between the two average energies, and comparing the result with the one
obtained for surrogate time series. The approach is further generalized by proposing a
time asymmetry index Â, defined as:

Â(τ) =
∑yτ>0 p(yτ) ln p(yτ)

∑yτ
p(yτ) ln p(yτ)

−
∑yτ<0 p(yτ) ln p(yτ)

∑yτ
p(yτ) ln p(yτ)

, (11)

with yτ being the average of y inside moving windows of size τ, thus introducing the
possibility of a multi-scale irreversibility; and p(yτ) representing the probability of finding a
discrete value yτ . Note that this index Â is assessing the difference between the probability
distributions of both increase and decrease trends in the time series, and is thus generalised
by the MS Trends test for δ = 2 and d = 1.
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An even simpler version of the time asymmetry index Â of Equation (11) proposed by
Wang, Shang and Fang involves comparing the number of times a time series increases or
decreases [109]:

Â(τ) =
∑ Θ(−yτ)−∑ Θ(yτ)

N − τ
, (12)

Θ being the Heaviside function, and N the number of elements composing the original time
series X. This metric thus simply counts the difference between the number of increase
and decrease trends, and as such is included in the previously described MS Trends. This
metric is also conceptually close to Porta’s [64] and Guzik’s [67] indices-see also ref. [69]
for a method based on these two.

A completely different approach has more recently been proposed by Alvarez-Ramirez
and co-workers [110], based on a modification of the concept of multi-fractal detrended
fluctuation analysis (DFA) [111]. The analysis starts like a standard DFA, i.e., the time series
is divided in sub-windows of different sizes, and a detrending process is executed on each
one of them. The average fluctuation function is then calculated on these sub-windows, but
discriminating those windows according to the direction of their main slope, i.e., increasing
and decreasing. As sub-windows with upward trends become downwards under the
operation of time reversal, the irreversibility of the time series can be estimated through
the distance between the two (upward and downward) fluctuation functions.

The Visibility Graph approach presented in Section 2.7 has been modified by several
authors. Some proposals include the use of an asynchronicity metric to compare the
sequences of degrees of nodes, in the forward and backward time series [112]; the use of
permutation patterns to encode node degrees [113]; the use of higher moments [114] and
singular value decomposition [115] to analyse the node degree sequence; the analysis of
motifs [116]; and ways to encode multivariate time series in the visibility graph [117].

Salgado-García and Maldonado recently proposed a method for estimating the entropy
rate and the entropy production rate associated with a (finite and symbolic) time series [118],
based on estimating three recurrence-time statistics, namely the return time, the waiting
time, and the hitting time. If the underlying dynamics is time-irreversible, then the entropy
production rate for the forward and backward time series should be different; a test can
then be constructed, by estimating the two rates, and check whether they are different in
a statistically significant way. It is nevertheless worth noting that the estimation of these
recurrence-time statistics requires long time series, as e.g., authors applied the method to
time series generated with chaotic maps of 8× 106 points of length [118]; the applicability
of this test to real-world time series may thus be challenging.

Finally, Dabelow, Bo and Eichhorn consider the problem of studying the trajectory of
a Brownian particle in a thermal bath, also subject to active processes like self-propulsion
or collisions with other active particles [119]. They show that this results in a time irre-
versibility, as the probabilities of trajectories forward and backward in time diverge in a
way described by a non-local memory kernel. Most importantly, this irreversibility can be
estimated from the trajectories themselves-see Equation (1b) in ref. [119].

3. Evaluation and Comparison
3.1. Preliminaries

As customary, we here evaluate each irreversibility test by generating a large amount
of time series, using different dynamical systems and maps of known irreversibility, and by
comparing the fraction of times each test correctly identifies their nature. Before presenting
the obtained results, an important issue has to be clarified. Almost all tests here considered
include some parameters that have to be specified. As will be discussed below, the values
of these parameters have a substantial impact in the results, but no guidelines or rules
are available to define them. As a (admittedly suboptimal) solution, we here test multiple
possibilities (see Table 1 for a full list), for then keeping the one yielding the lowest p-value.
In order to correct for multiple comparisons, this latter p-value is finally multiplied by the
number of tests performed, thus effectively applying a Bonferroni correction.
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Table 1. List of parameter values used in the evaluation of each test.

Test Parameter Values

BDS none

Ramsey k 1, 2, 3, 4

DFK n 2, 3
L 2, 3

Permutation patterns δ 3

Ternary Coding Number of segments 20
α 10th percentile of {di}

MSTrends δ 2, 3, 4
d 1

Visibility graph none

LocalCC none

3.2. Tests’ Performance on Synthetic Data

As a first simple approach to the comparison of the eight tests previously described,
we start by considering time series generated by the well-known logistic map, defined as
xn+1 = axn(1− xn), with a = 4.0. This is an example of a chaotic and dissipative map, and
is by definition irreversible [120]; additionally, due to the clear structures it induces in the
resulting time series x, its irreversibility should be easy to detect even in short time series,
as is its chaotic nature. We further consider the case of an additive observational noise,
such that the analysed time series are given by yn = xn +N (0, σ), with N being random
number drawn from a normal distribution of zero mean and σ standard deviation. We
here report two results. First, Figure 2 reports the fraction of time series that are detected
as irreversible by each method, as a function of their length and for a constant noise level
of σ = 0.2; secondly, Figure 3 reports the same fraction as a function of the noise level,
for a fixed length of T = 200. While all methods tend to recognise all time series as
irreversible, provided enough data are available and noise is low enough, some interesting
behaviours can be appreciated. First of all, the eight methods are quite heterogeneous
in their performance, with minimum lengths for reaching a perfect identification going
from ≈ 200 for DFK to almost 2000 for BDS. Also, BDS seems to be slightly more effective
with short (i.e., T < 50) time series than with intermediate ones-even though this is due
to a larger probability of getting false positive results, as will later be discussed. Finally,
while noise is almost always detrimental to the correct identification of the irreversibility
nature of the time series, as uncorrelated noise is by definition reversible; yet, and most
surprisingly, a small amount of noise is essential in the case of DFK.

In order to better understand the behaviour of the BDS and DFK tests, Figure 4 reports
the evolution of the fraction of time series detected as irreversible as a function of both the
time series length and the noise level. Most interesting, the longer are the time series, the
higher is the minimum level of noise required by the DFK test.
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Figure 2. Evolution of the fraction of time series detected as irreversible by the eight considered tests, as a function of the
time series length. Time series have been created according to the noisy logistic model and with a noise level of σ = 0.2, see
main text for details. Reported values correspond to the average over 103 realisations. The eight methods are distributed in
two panels for the sake of clarity.
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Figure 3. Evolution of the fraction of time series detected as irreversible by the eight considered tests, as a function of the noise level
σ. Time series have been created according to the noisy logistic model and with a fixed length of T = 200, see main text for details.
Reported values correspond to the average over 103 realisations.
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Figure 4. Evolution of the fraction of time series detected as irreversible by the BDS (left panel) and DFK (right panel) tests,
as a function of the time series length (X axes) and the noise level σ (Y axes). Time series have been created according to the
noisy logistic model described in the main text. Each point represents the result for 200 independent time series.

We then move to a more complete comparison, using the following four well-known
and irreversible dynamical systems:

• the previously defined logistic map xn+1 = axn(1− xn), with a = 4.0, and without
observational noise;

• the Henon map, defined as xn+1 = 1+ yn− ax2
n, yn+1 = bxn, with a = 1.4 and b = 0.3;

• the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model [85],
defined as xt = σtzt, with σ2

t = α∗(1 + ∑3
i=1 2−i)x2

t−i + ∑3
i=1 2−jσ2

t−j, α∗ = 1.2, and zt

being independent random numbers drawn from an uniform distribution U (0, 1); and
• the three variables of the Lorenz chaotic system, a continuos system defined as x′ =

σ(y− x), y′ = x(ρ− z)− y, and z′ = xy− βz, with ρ = 28, σ = 10 and β = 8/3.

The results, reported as the fraction of time series that are detected as irreversible
as a function of their length, are depicted in Figure 5. The global picture is one of great
heterogeneity, with no common patterns between different tests, and especially with
no clear winner. While the BDS test is generally outperforming all the other ones, it
yields substantially inferior results in the case of the logistic map-a quite surprising result,
considering the clear irreversible nature of its time series. On the other side, it is easier to
find which tests underperform: the Ramsey, DFK and Ternary Coding might be avoided.
Note that the Ramsey test was found to be more sensitive than the BDS one [89]; yet, this
was based on the study of Self-Exciting Threshold AutoRegressive (SETAR) models alone,
without any confirmation with other tests. As a final note, it is worth noting the case of
DFK, which seem to perform much better in the case of short time series-and it actually
outperform most other tests in the case of the Lorenz system, for time series with less than
50 observations.

In a way similar to Figure 3, we report in Figure 6 the evolution of the fraction of time
series detected as irreversible by each method as a function of the observational noise level
added to them, and for a fixed length of T = 200. The noise is defined as random numbers
drawn from a N (0, σ) distribution, which are then multiplied by the standard deviation
of the time series x in order to maintain a constant relative amplitude; in other words,
σ = 0.5 represents a noise with half the standard deviation of the original time series.
On one hand, and as expected, observational noise is hindering the ability of the tests to
detect irreversibility, although at different levels-for instance, BDS seems very resilient to
noise. On the other hand, one can again see that some levels of noise can be beneficial, as
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is the case of DFK (for almost all dynamical systems) and Permutation Patterns (for the
Henon map).
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Figure 5. Evolution of the fraction of time series detected as irreversible by the eight tests here considered, as a function
of their length. Each point corresponds to the execution of 103 random realisations. See main text for definitions of the
dynamical systems.
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Figure 6. Evolution of the fraction of time series detected as irreversible by the eight tests here considered, as a function of
the observational noise level, and for a fixed length of T = 200. Each point corresponds to the execution of 103 random
realisations. See main text for definitions of the dynamical systems.

We also analyse one aspect that is usually overlooked in works proposing new irre-
versibility tests, i.e., the probability of finding false positives, or when the tests detects
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as irreversible a time series that is actually reversible. For that we considered the four
reversible systems:

• time series composed of random number extracted from a normal distributionN (0, 1);
• time series composed of random number extracted from a uniform distribution

U (−1, 1);
• the x variable of the Arnold Cat map, a conservative (and hence reversible) chaotic

map defined as: xn+1 = (xn + yn)mod(1), yn+1 = (xn + 2yn)mod(1).
• the Ornstein-Uhlenbeck process, i.e., a mean-reverting linear Gaussian process T [1].

Figure 7 reports the fraction of time series that are identified as irreversible, as a
function of their length T. Note that the significance level for rejecting the null hypothesis
of reversibility has been set to α = 0.01; hence, a 1% error rate is to be expected and does
not imply a bias in the results. Most of the tests behave extremely well, with the exception
of BDS, DFK and MS Trends, which yield a larger than expected number of false positives,
especially for short time series. This also explains the results for the BDS in Figure 2: the
high fraction of short time series detected as irreversible is partly the result of a general
overestimation of the irreversibility, which also produces undesirable false positives.

As a final issue in this section, we tackle yet another aspect that is usually not consid-
ered in the analysis of irreversibility tests, specifically their resilience to the presence of
extreme values. This is achieved by generating time series with all previously described
dynamical systems, both reversible and irreversible, and by adding a fraction of extreme
events, these being defined as random numbers drawn from a U (−10, 10) distribution,
which are then multiplied by the standard deviation of the time series in order to maintain
a constant relative amplitude. Note that this is similar, but not the same as adding noise.
To illustrate, consider a short random time series x, of e.g., 20 observations, with values
drawn fromN (0, σ); if two extreme values x5 = 10 and x15 = 20 are added, these create an
asymmetry in time and hence make the time series irreversible. Results of Figure 8 suggest
some interesting behaviours. On one hand, tests like BDS and Ramsey, that were quite
resilient to random noise, loose their sensitivity even for small fractions of outliers; on the
other hand, DFK and MSTrends yield a high number of false positives. Additionally, we
again see the beneficial effect that this kind of noise has on some tests, e.g., DFK, lCC and
even MSTrends, in the identification of some irreversible dynamical systems.

3.3. Ensemble Testing

Given the previous results, one may ask whether it is possible to define similarities
and complementarities between the different tests; and, in the latter case, whether com-
plementary methods could be combined to create an “ensemble test”, as commonly done
in machine learning [121]. This task is nevertheless not easy, as the performances of tests
are quite heterogeneous, as seen in Figures 5 and 6. As a solution, we here created a set of
104 time series of random type, i.e., each time series if generated from six types of Figure 5
with equal probability; of random length, drawn from a uniform distribution between 50
and 2000; and with a random level of observational noise, drawn uniformly from σ = 0
to σ = 0.5. Each time series is then analysed by the eight considered tests. In short, this
allows us to compare the behaviour of the tests using a set of time series covering a wide
array of types and parameters.

The left panel of Figure 9 firstly reports the fraction of time series detected as ir-
reversible by each algorithm. As may be expected from Figure 5, a great variability is
present, with performances spanning from 0.5 to 0.9. Note that tests like VG and lCC,
which performed well in Figure 5, here suffer from the presence of observational noise-their
sensitivity to noise was depicted in Figure 6. On the other hand, the two best tests seem to
be BDS and MSTrends, with fractions of detected time series of, respectively, 0.88 and 0.86.
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Figure 7. Evolution of the fraction of time series detected as irreversible for series generated by four reversible systems, as a
function of their length. Each point corresponds to the execution of 103 random realisations. See main text for definitions of
the dynamical systems.
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Figure 8. Evolution of the fraction of time series detected as irreversible by the eight tests here considered, as a function of the fraction
of outlier events, and for a fixed length of T = 200. Each point corresponds to the execution of 103 random realisations. Note that the
two leftmost columns correspond to irreversible dynamical systems, while the two on the right to reversible ones.

The use of a common set of heterogeneous time series also allows for two additional
analyses. Firstly, the central panel of Figure 9 reports the log10 of the p-value of a Chi-
square test of independence between the results of pairs of tests. In other words, the larger
the p-value (i.e., the smaller the log10, in absolute value, and the lighter the color of the
corresponding cell), the more independent are the results yielded by the two tests under
analysis. Secondly, the right panel of Figure 9 reports the pairwise redundancy between
tests, i.e., the fraction of time series detected as irreversible by the first test that are also
detected as such by the second one.

These results suggest four possible types of ensemble testing:

• Combining all eight tests into a single one (here denoted by Ens:all).
• Combine the two most effective tests, i.e., BDS and MSTrends (Ens:BDS_MSTrends).
• Combine the pairs of tests that yield the most independent results, such that the errors

of one of them could be corrected by the other. These pairs would be Ramsey and
PermP (Ens:Ramsey_PermP), and lCC and MSTrends (Ens:lCC_MSTrends).
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Figure 9. Performance of tests on a set of mixed time series. (Left) Fraction of time series detected as irreversible by each
test. (Centre) log10 of the p-value of a Chi-square test of independence between the results of pairs of tests. (Right) Pairwise
redundancy between tests, measured as the fraction of time series detected as irreversible by the test in the column that are
also detected as such by the test in the row. In the central and right panels, tests are sorted from left to right and from top to
bottom, following the same sequence as in the left panel; the BDS test is thus always located in the bottom left corner, the
MS Trends one in the top right.

In each case, the resulting p-value would be the minimum among the p-values yielded
by the merged methods, multiplied by the number of tests, in order to correct for multiple
testing. When these four ensemble tests are applied to the time series composing the
previously described set, they yield fractions of irreversible time series of 0.88 (Ens:all), 0.97
(Ens:BDS_MSTrends), 0.81 (Ens:Ramsey_PermP), and 0.86 (Ens:lCC_MSTrends). Combining
different tests can thus yield better results, as the shortcomings of one can be countered by
the other ones. Still, the necessary condition is that each test should be good enough, as the
complementarity alone is not sufficient. This is clear in the case of Ens:all: adding many
underperforming tests is not necessarily beneficials, as they do not contribute to the final
result, but instead increase the necessary correction for multiple comparisons.

The performance of the best ensemble test, i.e., combining BDS and MSTrends, is
represented in Figure 10; specifically, the three panels depict the evolution of the fraction of
time series detected as irreversible as a function of their length (left panel), as a function of
the observational noise to them added (center), and the evolution of the fraction of false
positives (right). The resulting test behaves in an excellent way for time series longer than
T = 100, independently on the underlying dynamical system, and also for relatively high
levels of observational noise. The only drawback is a significant number of false positives
when T < 100, region of the parameter space that ought to be avoided.

3.4. Analysing Real-World Data: the Case of Human Electro-Encephalography

If the analysis of synthetic data depicted a complex scenario, things only get more
interesting and complex when moving to real-world data. As a prototypical example, we here
present an irreversibility analysis of human electro-encephalography (EEG) data representing
the brain activity of control subjects and patients suffering from alcoholism [122–124] and
freely available at https://archive.ics.uci.edu/ml/datasets/EEG+Database, accessed on 4
November 2021. Each recording corresponds to the execution of a standard object recognition
task [125], and includes 64 time series (i.e., one for each of the 64 electrodes or channels) of 256
elements (i.e., one second of brain activity recorded at 256 Hz). Note that the assessment of the
irreversibility on this data set is a challenging task, as, firstly, time series are intrinsically noisy
due to the technical limitations of EEG recordings; and secondly, they are short, following
brain non-stationarity [124]. On the other hand, a large number of trials are available in both

https://archive.ics.uci.edu/ml/datasets/EEG+Database
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groups (respectively 2010 and 3467 for control subjects and patients), thus enabling robust
statistical results.
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Figure 10. Performance of the ensemble test Ens:BDS_MSTrends, combining the BDS and MSTrends tests. (Left) Fraction
of time series detected by Ens:BDS_MSTrends as irreversible as a function of their length. (Centre) Fraction of time series
detected as irreversible as a function of the noise level σ, for a fixed length of T = 200. (Right) Fraction of time series
detected as irreversible, as a function of their length, for four dynamical system that are not irreversible-thus representing
the probability of obtaining false positives.

In Figure 11 we report the results obtained with nine irreversibility tests, i.e., the eight
here reviewed, plus the ensemble BDS_MSTrends test proposed above. Each panel is a
scatter plot of the fraction of time series of patients detected as irreversible, as a function
of the fraction for control subjects. Each of the 64 points in each graph corresponds to
one of the EEG channels (or electrodes, or sensors); points are further coloured in red
if a statistically significant difference between the two groups is present (according to a
binomial test and for α = 0.01), and in blue otherwise.

Several interesting conclusions can be drawn. First of all, brain dynamics seems to be
highly irreversible, as some tests (BDS and Ens:BDS_MSTrends) can detect irreversibility in
up to 99% of the time series; nevertheless, not all tests agree, with some of them (i.e., Ramsey,
lCC and Ternary Coding) notably yielding the opposite result. Even more interesting is
the behaviour of the permutation patterns test, which detects strong irreversibility only
in some EEG channels-on the contrary, all other tests seem to find homogeneous results
across all channels.

As a second point, a higher sensitivity to irreversibility does not imply a higher
sensitivity to differences across groups, and hence a higher usefulness in the analysis
task. Specifically, it can be noted in Figure 11 that BDS yields the larger fraction of time
series tagged as irreversible; but only a few channels are different between control subjects
and patients in a statistically significant way. On the other extreme one can find the VG
test, with most of the channels being significantly different, but with only ≈4% of time
series being irreversible. To illustrate this, imagine the case of an extremely sensitive
irreversibility test, able to detect irreversibility in all time series, i.e., both of control subjects
and of patients. All EEG recordings would be classified as irreversible, and it would thus
be impossible to discriminate between the two groups.

As a third and final point, the differences between control subjects and patients
manifest in different ways depending on the used test. To illustrate, patients are less
irreversible according to the VG and MS Trends tests; but are more irreversible according
to the permutation patterns one. MS Trends also yields different results depending on
the window length considered, and for w = 200 it detects both increases and decreases of
irreversibility, depending on the EEG channels [99].
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Figure 11. Analysis of human EEG time series. Each panel reports, for a given irreversibility test, the fraction of time series
corresponding to alcoholic patients detected as irreversible, as a function of the fraction corresponding to control subjects.
Each point represents a single EEG channel, with channels having a statistically significant difference between both groups
marked in red.

Obtaining statistically significant results is nevertheless not the final goal of most real-
world analyses; to illustrate, in the case of the data set here considered, a standard problem
would be to create a classification model, able to predict, from an EEG recording, whether
a new subject is healthy or is instead suffering from alcoholism. In order to simulate such
analysis, we have here performed a simple classification task, in which 103 trials of control
subjects and 103 trials of patients are randomly selected; the 64 time series of each trial
are then tested for irreversibility, and the resulting p-values are fed into a Random Forest
machine learning classifier [126] (with a maximum depth of 4 and 2000 estimators, using
the Python implementation included in Scikit-learn [127]). In order to avoid overfitting, a
10-fold cross-validation has been executed; and the whole classification process has been
repeated 20 times, for obtaining an average classification score. The results, represented
in Figure 12, add yet another dimension. Specifically, Ramsey, i.e., a test not standing
out in Figures 9 and 11, here yields results comparable to the best tests; MS Trends, on
the other hand, here yields the worst classification score. It is thus clear that obtaining
statistically significant differences between two groups does not imply yielding a large
quantity of information about such differences. This also highlights that choosing the best
irreversibility test for a given real-world application is far from being a simple problem.
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Figure 12. Classification score obtained in the task of classifying EEG recordings according to the corresponding group
(control subjects vs. patients), by using the output (i.e., the p-value) of each irreversibility test as feature. See main text
for details.

3.5. Computational Cost

One final important aspect to take into account in the real-world application of these
irreversibility tests is their computational cost. Specifically, Figure 13 reports the evolution
of the time to execute these tests in seconds (top panels), and of the allocated memory
(bottom panels), calculated on an Apple iMac with an hex-core Intel Core i5 at 3.3 GHz
and for a single core, as a function of the time series length. It can be appreciated that
some of them scale as a power of the length (note the log-log scale), and specifically that
the worst tests are the Visibility Graph, the local Clustering Coefficient and the BDS tests,
both in terms of computational cost and memory. This is not surprising, as for instance
the VG method requires evaluating the magnitude of each element against all elements
following it, i.e., performing ∝ T2 operations. This creates a large heterogeneity between
methods; for instance, for time series of length 104, the cost goes from 7.12 milliseconds for
TC to 373 seconds for VG. More relevant is the fact that no clear correlation exists between
the computational cost and the effectiveness of each method; to illustrate, while BDS and
MSTrends are the best performing tests according to Figure 9 and are also among the most
computationally expensive ones, VG and lCC clearly underperform with respect to their
cost. In time critical applications, and when long time series have to be analysed, the
method based on permutation patterns seems to be the best compromise.
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Figure 13. Computational cost (top) and memory requirement (bottom) of the eight irreversibility tests as a function of the
length of the analysed time series. Values are averages, in seconds and in MiB, over 50 realisations using an hex-core Intel
Core i5 at 3.3 GHz and a single core; the memory requirement has been measured using the tracemalloc Python library.

4. Software

As a complement to this review, we make public a Python software library with the
eight tests described in Sections. 2.1 to 2.8, two additional tests drawn from Section 2.9,
plus the ensemble test combining BDS and micro-scale trends described in Section 3.3.
The library is freely available at https://gitlab.com/MZanin/irreversibilitytestslibrary,
accessed on 4 November 2021. These software implementations have been used to obtain
all results included in this review, including the computational costs of Figure 13. Some
additional notes and clarifications are included below:

• Tests are organised in independent modules, whose names are reported in Table 2.
Each test has a main function, always called GetPValue, which returns two results:
the p-value of the test, and the statistic of the test when available. Besides the time
series to be analysed, each test expects a set of parameters, which are also described
in Table 2.

• The library only requires standard Python 3.* libraries, including Numpy and Scipy
[128]. In addition, some modules use Numba to speed up numerical computation [129];
if this library is not available, the corresponding decorator can be safely commented out.

• Some tests include simplifications in their execution; to illustrate, the permutation
patterns algorithm only considers patterns of size 3; and the micro-scale trends one
only linear regressions of the data. The reader should nevertheless note that this
will be a live library, and that such simplifications may disappear in the future. We
therefore recommend to check the online documentation of the project.

• In order to simplify the use of the library, it includes an example program UsageExam-
ple.py, which creates a time series using a logistic map, and sequentially executes all
available tests with different parameters. We recommend the interested reader to start
by checking this program.

https://gitlab.com/MZanin/irreversibilitytestslibrary
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As a final note, all test implementations have been developed in-house, and as such
may contain errors or inefficient code; we welcome readers to send us comments, sugges-
tions and corrections, ideally using the “Issues” feature of GitLab. We also welcome new
contributions, like new metrics and tests, provided they have been peer reviewed and are
already coded in Python.

Table 2. List of tests implemented in the Python software library, with the corresponding parameters and meanings.
∗ designates tests that are described in Section 2.9, but not tested in Section 3.

Module (test) Reference Parameter Meaning

BDS [87,88] none

Ramsey [49] kappa The lag k

DFK [90] n Number of possible symbols
L Word length

PermPatterns [52,84,92,93] none

TernaryCoding [98] segL Length of the segments on which ∆3 is calculated
alpha Threshold for symbolisation

MSTrends [99] wSize Length δ of overlapping windows
wSize2 Length of windows used to calculate higher central moments

VisibilityGraph [99] none

LocalCC [107] none

Pomeau ∗ [5] numRnd Number of random repetitions to extract the p-value
tau Embedding delay

Diks ∗ [108] embD Embedding dimension, or size of each vector
dVar Bandwidth of the analysis

Ens_BDS_MSTrends none

5. Discussion and Conclusions

In this review, we described the main tests designed to detect the irreversible nature
of time series, and evaluated eight of them under different conditions, e.g., for different
time series lengths or in the presence of noise and extreme values. We further proposed
the possibility of creating ensemble methods, i.e., combining multiple tests together to
compensate for individual deficiencies; and made available a Python software library, in
order to facilitate future uses and comparisons. There are essentially two approaches to
time-reversal symmetry: one in which this is seen a geometric property of a process, typi-
cally a stochastic one. The other, in which time-reversal symmetry is related to fundamental
physical properties underlying such a process. We discuss our results in terms of these two
frameworks.

From the former viewpoint, the main message that emerges from this analysis is that,
while the concept of irreversibility is a well-defined physical notion, the same is not true
for metrics and tests measuring irreversibility. In other words, given a dynamical system
defined through e.g., a discrete or continuous map, it is in principle possible to derive
the corresponding entropy production, and hence the irreversibility. On the other hand,
if all we know of that system is a time series representing its observable dynamics in a
potentially noisy and incomplete way, the irreversibility has to be estimated from it, using
one of the metrics and tests here discussed. Yet, the researcher should be careful not to
confound both concepts.

Our results also indicate that the metrics and tests here described form a complex
landscape. Due to the general nature of the definition of irreversibility, i.e., any statistical
difference between the forward and time-reversed versions of the time series, tests have
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been designed to detect heterogeneous, and in many case not overlapping patterns. As a
result, no metric is strictly better than all the other ones; the computational cost is not pro-
portional to the performance; and some tests even benefit from the presence of noise. This
last point further exemplifies the distance between “theoretical” and “applied” irreversibil-
ity: the theory guarantees that the presence of observational noise implies a reduction of
irreversibility [7,8], in spite of what observed by some tests. This also exemplifies the need
of a more complete and comprehensive evaluation of any new irreversibility test - in other
words, testing using a handful of dynamical systems is not enough.

Many tests include one or more parameters that strongly affect the results. In spite
of their importance, there are no guidelines or rules about which values they should take;
as a result, the researcher has to test multiple values, with the consequent increase in
computational cost-not to mention the risks associated with multiple testing. To illustrate,
the Ramsey test has previously been executed with k = (2, 3, 4); nevertheless, using
higher values of k improves the result for some types of time series (see Figure 14), as
longer correlations can be detected. This is also strongly related to the topic of multi-scale
irreversibility, i.e., the fact that time irreversibility may appear only at some specific time
scales; while not discussed here, and only seldom considered in real-world studies, this
aspect of irreversibility ought to be taken into account in the future.

As a further point, we have seen that real-world analyses may be (and possibly
always are) more complex than synthetic case studies. As seen in Figure 11, higher
sensitivity is not necessarily a desirable feature when analysing real-world data, especially
when the objective is to discriminate between two groups. As well known in machine
learning, the objective becomes identifying patterns able to detect differences and enable a
classification; whether these patterns correspond or not with a true irreversibility becomes
a secondary issue.

What lessons can be drawn from the results here presented? The main one, supporting
both optimistic and pessimistic views on the future of time series irreversibility analysis,
is that the field has still a long research road ahead. Irreversibility tests are far from
being perfect, and most of the tests that have been developed in the last decade are either
small modifications of existing ones (see Section 2.9), or do not clearly outperform the
first test introduced in 1988 [87,88]. Much additional work is thus needed; yet, what
principles should guide this work? We here argue that some guidelines can be obtained by
comparing irreversibility analysis with another well-developed type of time series analysis:
chaotic tests.

The first difference between time irreversibility and chaoticity testing can be found
on the time series used to evaluate the tests. Chaotic maps have a long history, with
many of them being proposed and analysed in the last few decades-to illustrate, one may
start by checking the long list available in Wikipedia at https://en.wikipedia.org/wiki/
List_of_chaotic_maps, accessed on 4 November 2021. This responds to both a theoretical
and applied interest, as chaotic maps have found applications in e.g., cryptography [130].
On the other hand, almost no models have been proposed to generate time series with
a known time irreversibility, and tests are usually evaluated on time series generated by
other systems-most of the time, as in this review, chaotic ones. Two exceptions can be
found: Burykin et al. proposed the use of an asymmetric Weierstrass function [131], with
a parameter controlling the amount of time irreversibility; and the GARCH model [85],
whose parameter α explicitly controls time irreversibility. Yet, we here argue that these
models are “too simply irreversible” processes, as the irreversibility can be observed by
naked eye, and thus poorly represent real-world scenarios.

The second difference directly stems from the previous point, and can be synthesised
in a lack of hard benchmarks for irreversibility tests. To illustrate, chaos tests are usually
checked against known chaotic time series [96], with some of them (most notably the linear
congruential generator) producing time series essentially identical to complete randomness-
the linear congruential generator being indeed the algorithm of choice for generating
pseudo-random numbers. Having a benchmark system against which most tests fail may

https://en.wikipedia.org/wiki/List_of_chaotic_maps
https://en.wikipedia.org/wiki/List_of_chaotic_maps
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generate frustration in researchers; but also offers an excellent way of comparing tests,
and more importantly, a reason to keep looking for better solutions. The equivalent of this
generator for time irreversibility, i.e., a very challenging generator of time series of known
irreversibility, has yet to be proposed-unless, of course, one resorts to the trivial solution of
using any irreversible time series and add an extreme amount of observational noise.

One interesting challenge for the scientific community would be to develop a determin-
istic dynamical system, able to generate time series with tuneable degrees of irreversibility,
and whose irreversibility is i) provable, ii) not based on observational noise, and iii) not
detected by any of the tests here reviewed.

The complementary approach on time reversal symmetry may provide the conceptual
starting point for such an endeavour. From the point of view of the physics underlying an
observed process, time-reversal asymmetry is a manifestation of the breaking of detailed
balance which characterises various living and physical systems as they operate away from
equilibrium. Irreversibility places thermodynamic constraints on important properties
of these systems, such as their precision [42], rate [44], speed of change [45], sensing and
signalling [132] and predictability [133]. Quantifying the extent to which these systems
deviate from equilibrium and produce entropy is therefore key to their characterisation.
However, are the existing time-reversal symmetry methods capable of faithfully charac-
terising these properties? Addressing this question involves understanding the limits
of time-reversal symmetry methods, in particular when and why these can fail, and the
interpretation that one can safely attribute to the results that they yield.

The experimental estimate of time-reversal symmetry is affected by various aspects
of available data, viz. the variables used to describe the underlying system, how coarse-
grained they are, and the temporal and spatial resolution of the observation. However, for
fluctuation theorems relating thermodynamic quantities to hold, all relevant mesostates
need to be accessible. Likewise, to assess the entropy production in a stationary process, it
is necessary to measure all the currents in the system and their conjugated thermodynamic
forces. However, in a typical experimental situation, only partial information about a
system is available [41]. Furthermore, defining the degrees of freedom best documenting
the non-equilibrium nature of a complex many-body system is in general a non-trivial
task [10]. Currently available entropy production estimates from single time series may
be inaccurate when only a small set of observables is experimentally accessible. With
partial information, distinguishing between forward and backward processes becomes
harder. This is because the Kullback-Leibler distance between the forward and backward
distributions ρ and ρ̃ decreases when only partial information of the system is used with
respect to the distance between ρ and ρ̃ associated with full information [12,18].

Moreover, experimental studies typically analyse coarse-grained versions of the micro-
scopic scales of the system. The identification of thermodynamic quantities at the level of
single dynamical trajectories of the stochastic thermodynamic approach relies on time-scale
separation between slow degrees of freedom on the one hand, and external time-dependent
forces or hidden degrees of freedom on the other hand [40,41,134,135]. When microstates
within mesostates, i.e., states in which multiple microstates are lumped together, rapidly
thermalise, the entire microscopic structure is recovered at mesoscales. This is not the case
when these microstates remain out of equilibrium, as for instance in living systems, leading
to additional contributions to the entropy balance [136]. However, while any data with no
fine control on microscopic scales miss parts of the genuine physical entropy production of
the underlying system, time-reversal symmetry quantifiers may in principle be thought to
give a lower bound of the system’s true one in the presence of fast microscopic thermal-
ization [137]. A further aspect that should be taken into account is that, for some systems
driven out of equilibrium, broken detailed balance may not be apparent at coarse-grained
scales, and irreversibility may sometimes be masked by fluctuations [138,139]. Forward and
reverse trajectories may not be asymmetric and currents may vanish even if the underlying
system is out of equilibrium [139]. In fact, at large scales, driven systems may even recover
thermodynamic equilibrium and obey detailed balance [140]. This aspect makes multiscale
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measures a necessary tool when analysing complex multiscale systems [62,110]. Overall,
while time-reversal symmetry measures can in principle reveal fundamental aspects of
the underlying system in a non-invasive way, i.e., without requiring perturbations as is
for instance the case with methods assessing the breakdown of fluctuation-dissipation
relations, care should be taken not to over-interpret results whether they indicate symmetry
or symmetry breaking. Perhaps more direct ways to unveil a system’s thermodynamics
will come from methods finding other relations between dynamical and thermodynamical
system properties [141–145], possibly resorting to symmetries other than the time-reversal
one [44].
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Figure 14. Performance of higher order Ramsey tests. Each panel reports the evolution of the fraction of time series detected
as irreversible, as a function of their length, for four maximum values of k-see Section 2.2 for definitions.
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