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Abstract 

Masonry structures constitute a large part of the building heritage present in Italy. This 

type of structure is particularly vulnerable to seismic action and has been found to be 

the structural type most responsible for the economic losses and social impacts 

following the recent earthquakes in central Italy. The vague and imprecise information 

on the structures, the materials used, the changes that have occurred over the centuries 

and the load conditions etc., make the assessments of their reliability and stability 

uncertain. 

This doctoral thesis presents a methodology for the quantification of uncertainties for 

the structural elements of masonry structures. 

The first part presents the state of the art on quantification of uncertainty by exposing 

the various probabilistic methods and related procedures. In particular, we focus on 

the use of fuzzy methods for quantifying uncertainties as they are more general and 

computationally efficient to describe the various and complex uncertainties that 

characterize existing masonry structures. The state of the art of risk assessment is also 

discussed, examining the aspects concerning the quantification of uncertainties and the 

reliability of existing structures. 

The second part shows the creation of fragility curves for local collapse mechanisms 

considering the out-of-plane response. In particular, a classical procedure is applied 

for the evaluation of the fragility curves for a historical aggregate of the city of Ferrara, 

Italy, starting from the CARTIS database. For the assessment of vulnerability, the 

associated uncertainties are treated both through a classic Monte Carlo procedure and 

through fuzzy methods. Results obtained through linear kinematic analysis and 

dynamic analysis for some of the main local mechanisms are presented and a 

comparison with the results reported non-analytically in the technical literature is 

presented. 

The third part critically exposes the assessment of the structural reliability of a 

masonry column of the cathedral of Saint George the Martyr in Ferrara. The 

uncertainties based on the data relating to the material coming from the experimental 
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tests are considered and the uncertainty on the horizontal thrusts of the arches 

discharged onto it is taken into account and therefore the variability of the pressure 

curve. For this purpose, simplified procedures are developed which allow taking into 

account the incomplete solidarity of the two parts, medieval and baroque, which make 

up the column. 

keywords: uncertainty quantification; fuzzy set theory; stochastic methods; historic 

masonry structures. 
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Sommario 

Le strutture in muratura costituiscono una grande parte del patrimonio edilizio presente 

in Italia. Questo tipo di struttura è particolarmente vulnerabile all’azione sismica ed è 

risultata la tipologia strutturale maggiormente responsabile delle perdite economiche 

e degli impatti sociali a seguito dei recenti eventi sismici nell’Italia centrale. Le infor-

mazioni vaghe ed imprecise sulle strutture, sui materiali utilizzati, le modifiche avve-

nute nei secoli e le condizioni di carico etc., rendono incerte le valutazioni sulla loro 

affidabilità e stabilità. 

In questa tesi di dottorato si presenta una metodologia per la quantificazione delle in-

certezze per gli elementi strutturali delle strutture in muratura. 

Nella prima parte si presenta lo stato dell’arte sulla quantificazione dell’incertezza 

esponendo i vari metodi probabilistici e le relative procedure. In particolare, ci si sof-

ferma in particolare sull’uso di metodi fuzzy per la quantificazione delle incertezze in 

quanto più generali e computazionalmente efficienti per descrivere le diverse e com-

plesse incertezze che caratterizzano le strutture esistenti in muratura. Viene inoltre di-

scusso lo stato dell’arte della valutazione dei rischi, esaminando gli aspetti riguardanti 

la quantificazione delle incertezze e l’affidabilità delle strutture esistenti. 

La seconda parte mostra la creazione di curve di fragilità per meccanismi di collasso 

locale considerando la risposta fuori piano. In particolare, viene applicata una proce-

dura classica per la valutazione delle curve di fragilità per un aggregato storico della 

città di Ferrara, Italia, a partire dalla banca dati CARTIS. Per la valutazione della vul-

nerabilità, le incertezze associate vengono trattate sia attraverso una procedura classica 

alla Monte Carlo che attraverso metodi fuzzy. Vengono presentati risultati ottenuti sia 

attraverso analisi di tipo cinematico lineare e non che di tipo dinamico per alcuni dei 

principali meccanismi locali e viene presentato un confronto con i risultati riportati in 

modo non analitico nella letteratura tecnica. 

La terza parte espone in modo critico la valutazione dell’affidabilità strutturale di una 

colonna in muratura della cattedrale di San Giorgio Martire a Ferrara. Si considerano 

le incertezze basate sui dati relativi al materiale provenienti dalle prove sperimentali e 
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si tiene conto dell’incertezza sulle spinte orizzontali degli archi che si scaricano su di 

essa e quindi della variabilità della curva delle pressioni. A tale scopo si sviluppano 

delle procedure semplificate che consentono di tenere conto della non completa soli-

darietà delle due parti, medievale e barocca, che compongono la colonna. 

parole chiave: quantificazione dell’incertezza; metodi fuzzy; metodi stocastici; strut-

ture storiche in muratura. 



v 

Acknowledgment 

I would like to express my gratitude to my advisors Professor Elena Benvenuti, Pro-

fessor Fabio Minghini and Professor Antonio Tralli for their valuable help, feedback 

and support during this research. In particular, I would like to thank Professor Tralli 

for his guidance in this work throughout the period of this Ph.D. 

I would also like to acknowledge Dr. Andrea Chiozzi for his feedback, his constant 

support of this work. 

I would like to thank Professor Michael Beer for having the opportunity to work and 

investigate these issues as visiting scholar at the Institut für Risiko und Zuverlässigkeit 

- Leibniz Universität Hannover. I also want to express my gratitude to other members 

of his research team Dr. Eng. Matteo Broggi, Professor Marcos Valdebenito and Pro-

fessor Pengfei Wei for introducing me to uncertainty quantification in the presence of 

vague and imprecise information and stochastic methods. 

This thesis was partially funded by the Regional Agency of Civil Protection of Regione 

Emilia – Romagna under research grant no. DGR n.686 del 14/05/2018 and the Uni-

versity of Ferrara. These supports are gratefully appreciated and acknowledged. 





vii 

Contents 

Abstract ........................................................................................................................ i 

Sommario ................................................................................................................... iii 

Acknowledgment ......................................................................................................... v 

Contents .................................................................................................................... vii 

List of Figures ............................................................................................................ xi 

List of Tables ........................................................................................................... xix 

1 Introduction ......................................................................................................... 1 

1.1 Motivation and background .......................................................................... 1 

1.2 Objectives and scope ..................................................................................... 3 

1.3 Organization .................................................................................................. 5 

2 Review of basic probabilistic methods and risk assessment procedures ....... 9 

2.1 Mathematical description of uncertain data .................................................. 9 

2.1.1 Classic probability theory ....................................................................... 9 

2.1.2 Evidence Theory ................................................................................... 11 

2.1.3 Probability boxes .................................................................................. 13 

2.1.4 Fuzzy theories ....................................................................................... 14 

2.1.5 Additional methodologies ..................................................................... 17 

2.1.6 Comparison ........................................................................................... 17 

2.2 Uncertainty’s sources .................................................................................. 20 

2.3 Generalized methods for uncertainty propagation ...................................... 21 

2.3.1 Black-box models ................................................................................. 22 

2.3.2 Classical and advanced method ............................................................ 23 

2.4 Monte Carlo Simulation .............................................................................. 24 

2.4.1 Basic principles ..................................................................................... 24 

2.4.2 Error assessment ................................................................................... 26 

2.4.3 Advanced methods ................................................................................ 27 

2.5 Sensitivity analysis ...................................................................................... 27 



viii | Contents 

2.5.1 Variance-based sensitivity analysis ...................................................... 28 

2.5.2 Sobol’s indices ...................................................................................... 29 

2.6 Risk assessment in engineering ................................................................... 30 

2.6.1 Procedure for risk assessment .............................................................. 30 

2.6.2 Uncertainties in risk analysis ................................................................ 33 

2.7 Structural Reliability in existing structures.................................................. 36 

3 Out of-plane local failure of masonry walls ................................................... 39 

3.1 Overview ...................................................................................................... 39 

3.2 Seismic performance of masonry structures in 2012 Emilia earthquake ..... 43 

3.3 State of art of out-of-plane assessment method ........................................... 46 

3.3.1 Capacity curve ...................................................................................... 47 

3.3.2 Force-based approach ........................................................................... 49 

3.3.3 Displacement-based approach .............................................................. 49 

3.3.4 Dynamic approach ................................................................................ 50 

3.3.5 Comparison between the linear, non-linear kinematic approach and non-

linear dynamic analysis ...................................................................................... 55 

3.4 Description of approach ............................................................................... 57 

3.5 Building Database ........................................................................................ 58 

3.5.1 CARTIS database ................................................................................. 58 

3.5.2 Case study ............................................................................................. 59 

3.6 Evaluation of uncertainties .......................................................................... 68 

3.6.1 Epistemic uncertainties ......................................................................... 69 

3.6.2 Aleatory uncertainties ........................................................................... 71 

3.7 Fragility analysis .......................................................................................... 72 

3.7.1 General approach .................................................................................. 72 

3.7.2 Derivation of fragility curves ............................................................... 73 

3.8 Conclusions .................................................................................................. 84 

4 Uncertainty quantification for local failure mechanisms in existing URM 

buildings in seismic zones ........................................................................................ 87 

4.1 Uncertainty modeling................................................................................... 87 

4.1.1 Material parameters .............................................................................. 88 

4.1.2 Load parameters ................................................................................... 90 



| ix 

4.1.3 Geometric parameters ........................................................................... 92 

4.2 Fragility curves with fuzzy input ................................................................ 93 

4.2.1 Fuzzy fragility analysis based on static approaches ............................. 96 

4.2.2 Fuzzy fragility analysis based on the dynamic approach ................... 102 

4.2.3 Comparison with Monte Carlo simulation .......................................... 104 

4.2.4 Comparison with current state of art ................................................... 105 

4.3 Uncertainty quantification for seismic risk of local collapse mechanisms 108 

4.3.1 Collapse risk metrics ........................................................................... 109 

4.3.2 Fuzzy mean annual frequency of collapse for local mechanism ........ 112 

4.3.3 Safety Verification .............................................................................. 115 

4.4 Sensitivity analysis .................................................................................... 119 

4.4.1 Sensitivity Analysis based on static approaches ................................. 120 

4.4.2 Sensitivity Analysis based on dynamic approach ............................... 122 

5 Reliability assessment of masonry columns of the Cathedral of Saint George 

the Martyr in Ferrara ............................................................................................. 127 

5.1 Heritage masonry building and structural reliability ................................ 127 

5.2 The Cathedral of Saint George the Martyr ................................................ 129 

5.3 The case of the pillars of the Cathedral ..................................................... 132 

5.3.1 Material ............................................................................................... 137 

5.3.2 Load .................................................................................................... 139 

5.3.3 The thrust of the arches ....................................................................... 140 

5.4 Stability of masonry piers ......................................................................... 145 

5.4.1 Analytical method ............................................................................... 146 

5.4.2 International Codes ............................................................................. 150 

5.5 Column modeling ...................................................................................... 154 

5.5.2 The Beam Model proposed ................................................................. 159 

5.5.3 Validation ............................................................................................ 173 

5.5.4 Comparison of numerical models with experimental test values ....... 181 

6 Uncertainty quantification of masonry piers ............................................... 183 

6.1 Modeling of uncertainties ......................................................................... 183 

6.1.1 Uncertainties on the mechanical properties of materials .................... 183 

6.1.2 Uncertainties on loads and their application ....................................... 185 



x | Contents 
 

6.2 UQ-Analyses .............................................................................................. 189 

6.2.1 Computation of mean response .......................................................... 189 

6.2.2 Computation of interval bounds ......................................................... 190 

6.2.3 Performance rating ............................................................................. 202 

7 Conclusions ..................................................................................................... 203 

7.1 Overview .................................................................................................... 203 

7.2 Summary of findings and conclusions ....................................................... 203 

7.2.1 Uncertainty in fragility curve for local mechanism on regional scale 204 

7.2.2 Uncertainty in stability of masonry columns ...................................... 205 

7.3 Limitations and suggestions for future work ............................................. 207 

7.4 Concluding remarks ................................................................................... 207 

List of Symbols ........................................................................................................ 209 

List of Acronyms ..................................................................................................... 211 

Appendix A Experimental tests ............................................................................. 213 

Bibliography ............................................................................................................ 217 

 

 



xi 

List of Figures 

Figure 2.1: example of probability box. .................................................................... 13 

Figure 2.2: fuzzy variable A  with membership function A  (Möller and Beer, 2004).

 ................................................................................................................................... 15 

Figure 2.3: mapping two fuzzy (A1, A2) set into fuzzy set B using the extension 

principle (Möller and Beer, 2004). ............................................................................ 16 

Figure 2.4: fuzzy distribution: a generalization of a p-box (Schöbi, 2017). .............. 17 

Figure 2.5: links between different notions of uncertainty modeling (image from 

Schöbi (2017)). .......................................................................................................... 18 

Figure 2.6: different forms of parameter categories (Bi et al., 2019). ....................... 21 

Figure 2.7: computational cost of the stochastic analysis versus deterministic analysis 

(Patelli, 2017). ............................................................................................................ 22 

Figure 2.8: comparative of classical and advanced uncertainty quantification 

(Rocchetta, 2018). ...................................................................................................... 24 

Figure 2.9: Monte Carlo sampling for stochastic analysis (Schenk and Schuëller, 

2005). ......................................................................................................................... 25 

Figure 2.10: six levels of treatment of uncertainties in risk analysis (Paté-Cornell, 

1996). ......................................................................................................................... 35 

Figure 3.1: the historical aggregate in the center of Ferrara, Italy (aerial view). ...... 43 

Figure 3.2: Shake Maps of the seismic events of May 20th (Mw = 5.8) and May 29th 

(Mw = 5.6) from INGV Shake Map Archive 

(http://shakemap.ingv.it/shake4/archive.html). ......................................................... 44 

Figure 3.3: cross-sections of walls present in Emilia (images from Cattari et al. (2012)).

 ................................................................................................................................... 45 

Figure 3.4: examples of damage to the walls of masonry buildings in the Emilia 

earthquake (images from Ferretti and Tralli (2013)). ................................................ 46 

Figure 3.5: example of out-of-plane wall overturning in unreinforced masonry 

buildings (D’Ayala and Speranza, 2003): a) overturning of a wall at first-floor b) 

partial overturning of the facade, c) total overturning of the facade, d) flexural 



xii | List of Figures 
 

mechanism of a wall, e) flexural mechanism of the façade. ....................................... 47 

Figure 3.6: examples of the acceleration-displacement capacity curve obtained by 

nonlinear kinematic analysis as proposed by Italian standard (Magenes and Penna, 

2011). .......................................................................................................................... 48 

Figure 3.7: a) geometry of a rigid block under the one-sided rocking under ground 

motion, b) normalized moment-rotation relationship (Sorrentino et al., 2016). ........ 52 

Figure 3.8: (a) wall parameters, (b) cracked vertical spanning strip wall parameters, 

(c) displaced configuration and ground acceleration component acting in the mass 

centers of the two bodies. ........................................................................................... 53 

Figure 3.9: Comparison between Italian code (NTC 2018) and non-linear dynamic 

analysis: a) force-based approach for one-sided rocking, b) displacement-based 

approach for one-sided rocking, c) force-based approach for two block mechanism, b) 

displacement-based approach for two block mechanism. .......................................... 56 

Figure 3.10: urban evolution of the city of Ferrara. ................................................... 59 

Figure 3.11: a three-dimensional model of the facades for Porta d’Amore street...... 60 

Figure 3.12: possible combinations of mechanisms for the walls. ............................. 61 

Figure 3.13: example of buildings MUR1 class. ........................................................ 66 

Figure 3.14: example of buildings MUR 2 class. ....................................................... 66 

Figure 3.15: types of clay brick walls in Ferrara for MUR1 and MUR2 class. ......... 68 

Figure 3.16: Out-of-plane collapse mechanisms taking into account connections with 

transversal walls (de Felice and Giannini, 2001). ...................................................... 68 

Figure 3.17: logic-tree for URM buildings in Ferrara of the possible local mechanisms 

with relative weights (green for the MUR 1 typology and blue for MUR2 typology).

 .................................................................................................................................... 69 

Figure 3.18: diagram of the relative weights for each type of collapse mechanism. . 70 

Figure 3.19: different possible combinations of wall with different types of openings.

 .................................................................................................................................... 72 

Figure 3.20: example MSA analysis results; a) analyses causing collapse are plotted at 

a critical angle of greater than 1.0 and are offset from each other to aid in visualizing 

the number of collapses for IM levels. b) Observed fractions of collapse as a function 

of IM, and a fragility function estimated using Eq. (3.23). ........................................ 78 

Figure 3.21: sensitivity of the fragility parameters for vertical bending mechanism: a) 



| xiii 

variation of the position of the hinge (h1/h from 0.5 to 0.8), b) variation of the vertical 

force N as effect of the span of the slab (L from 0 m to 5 m). ................................... 78 

Figure 3.22: fragility curves from CARTIS database (average curve in black, sample 

curves in grey): a) top floor vertical bending, b) overturning of the first floor, c) 

overturning of two floors for MUR1 class, d) overturning of two floors for MUR2 

class, e) overturning of three floors for MUR1 class f) overturning of three floors for 

MUR2 class, g) overturning of four floors for MUR1 class, h) overturning of four 

floors for MUR2 class. ............................................................................................... 81 

Figure 3.23: fragility curves from the survey of the historical aggregate in the center 

of Ferrara (black average curve, grey survey curves): a) vertical bending, b) 

overturning of the first floor, c) overturning of two floors, d) overturning of three 

floors, e) overturning of four floors. .......................................................................... 82 

Figure 3.24: comparison between the average curves obtained from the population 

created from the CARTIS database and the average curves obtained from the survey 

of the historical aggregate: the typological curve MUR1 (blue line), the typological 

curve MUR2 (red line) and the typological survey curve (back line). ...................... 83 

Figure 4.1: fuzzy number for compressive strength of masonry: a) limits from the 

Italian code b) limits from Savoia et al. 2016. ........................................................... 90 

Figure 4.2: fuzzy numbers for describing load uncertainty: a) load fuzzy number, b) 

fuzzy number for the span of the wood slab. ............................................................. 91 

Figure 4.3: fuzzy numbers of the geometric parameters of the walls: a) wall thickness, 

b) wall height. ............................................................................................................ 92 

Figure 4.4: different brick formats present in the Po valley (image from Squassina 

(2011)). ...................................................................................................................... 93 

Figure 4.5: “fuzzy” fragility curve for a structure. .................................................... 95 

Figure 4.6: fuzzy probability distribution for a determinate value of x* variable. .... 96 

Figure 4.7: different angle for different masonry quality for overturning of the wall 

with a part of transversal connection: a) good quality wall with an angle between 30 

and 45 degrees, b) medium quality wall with an angle between 30 and 45 degrees, c) 

poor quality wall with an angle between 30 and 45 degrees (Borri, 2003). .............. 97 

Figure 4.8: triangular fuzzy number *yF and upper *
yF  bounds of fuzzy number, lower 

YLF  and upper YRF  CDFs and general CDF YF  (Ferrari and Savoia, 1998). .............. 100 



xiv | List of Figures 
 

Figure 4.9: fuzzy fragility curves for different collapse mechanisms based on static 

methods (in red the fragility curve with μ = 1, in black with μ= 0): a) simple 

overturning of a single leaf wall, b) simple overturning of double-leaf wall, c) 

overturning of wall and part of connection wall, d) vertical bending of simple-leaf wall, 

e) vertical bending of simple-leaf wall of 2 floor height, f) vertical bending of double-

leaf wall. ................................................................................................................... 101 

Figure 4.10: fuzzy fragility curves for different collapse mechanisms based on 

dynamic methods (in red the fragility curve with μ = 1, in black with μ = 0): a) simple 

overturning of a single leaf wall, b) simple overturning of double-leaf wall, c) 

overturning of wall and part of connection wall, d) vertical bending of simple-leaf wall, 

e) vertical bending of simple-leaf wall of 2-floor height, f) vertical bending od double-

leaf wall. ................................................................................................................... 103 

Figure 4.11: a bundle of the curve from Monte Carlo simulation: a) simple overturning, 

b) vertical bending. ................................................................................................... 104 

Figure 4.12: comparison between fuzzy fragility curves from static approach and curve 

obtained via a static approach from Zuccaro et al. (2017): a)-b) simple overturning for 

two vulnerability classes, c)-d) vertical bending for two vulnerability classes. ....... 106 

Figure 4.13: comparison between fuzzy fragility curves from dynamic approach and 

curve obtained via a static approach from Zuccaro et al. (2017): a)-b) simple 

overturning for two vulnerability classes, c)-d) vertical bending for two vulnerability 

classes. ...................................................................................................................... 107 

Figure 4.14: diagram of λC deaggregation: a) collapse fragility curve, b) slope of 

seismic hazard curve, c) λC deaggregation (Eads et al., 2013). ................................ 111 

Figure 4.15: fuzzy hazard curve for the city of Ferrara. ........................................... 113 

Figure 4.16: fuzzy deaggregation of the probability of collapse, a) simple overturning, 

b) vertical bending. ................................................................................................... 115 

Figure 4.17: fuzzy annual probability of collapse C : a) simple overturning, b) vertical 

bending. .................................................................................................................... 115 

Figure 4.18: safety verification (Möller and Beer, 2004) ......................................... 117 

Figure 4.19: assessment of fuzzy safety level with subsets 𝛽1 and 𝛽2 (Möller and Beer, 

2004). ........................................................................................................................ 118 

Figure 4.20: fuzzy reliability index  : a) simple overturning, b) vertical bending. 119 



| xv 

Figure 4.21: fuzzy sensitivity indices for one-sided rocking (left column) and two 

blocks rocking (right column): a) - b) first-order sensitivities; c)-d) total effect 

sensitivities; e)-f) total effect sensitivities with attention to the load inputs and its 

application. ............................................................................................................... 121 

Figure 4.22: elaboration of Shake Maps for the 20 May (a-c) and 29 May (b-d) 

earthquakes with median PGA (50th percentile) and logarithm standard deviation of 

PGA (image from (Buratti et al., 2017)). ................................................................. 123 

Figure 4.23. seismic microzonation map at level 3 for the city of Ferrara: in red the 

areas susceptible to high risk of liquefaction (IL>5), in yellow the areas at moderate 

risk of liquefaction (2<IL<5) and in gray the areas at low risk of liquefaction (IL<2). 

In orange, the areas susceptible to local amplification (FaPGA = 1.5:1.6) (image from 

(Fioravante and Giretti, 2013)). ............................................................................... 124 

Figure 4.24 first-order sensitivity indices: a) one-sided rocking, b)two-block 

mechanism ............................................................................................................... 125 

Figure 5.1: some examples of the collapse of heritage masonry building: a) the ruin of 

Civic Tower of Pavia in 1989 after the collapse (image from Binda, Anzani, and Saisi 

(2008)), b) a damaged pillar of the Noto Cathedral (image from Saisi et al. (2008)).

 ................................................................................................................................. 128 

Figure 5.2: comparison between the medieval and eighteenth-century cathedral: a) 

longitudinal sections, b) maps c) cross sections (Carbonara, 2015). ....................... 130 

Figure 5.3: cathedral west front and façade. ............................................................ 131 

Figure 5.4: axonometric view of the medieval parts (in red) and the cross-section of 

the pillar. .................................................................................................................. 133 

Figure 5.5: plan and section of the cathedral with column B4 highlighted a) plan of the 

cathedral, b) section C-C, c) section B-B, d) section 7-7. ....................................... 134 

Figure 5.6: a) injuries in the presence of metal elements, b) vertical cracks in the wall 

face, c) lack of clamping of the masonry, d) irregular texture of the wall face. ...... 135 

Figure 5.7: reconstruction of the metal elements presents in the masonry column. 136 

Figure 5.8: details of the wall texture. ..................................................................... 137 

Figure 5.9: example of section and position of the applied loads. ........................... 139 

Figure 5.10: diagram of the loads insisting on pillar B4. ........................................ 140 

Figure 5.11: pressure curve corresponding to the maximum and minimum thrust. 142 



xvi | List of Figures 
 

Figure 5.12: elastic contraction of two symmetrically voussoirs. ............................ 143 

Figure 5.13: extension of the springers due to the thrust drop ΔH. .......................... 143 

Figure 5.14: The pressure curve for the arch of minimum thrust with the indication of 

the position of the internal hinge. ............................................................................. 145 

Figure 5.15: geometry and notation used in the analytical solutions in the case of the 

piers is partially damaged (Gei and Misseroni, 2018). ............................................. 147 

Figure 5.16: load-displacement relation with different load eccentricities (Frisch-Fay, 

1975). ........................................................................................................................ 150 

Figure 5.17: capacity reduction Φ as a function of slenderness λ and coefficient of 

eccentricity m in NTC 2018 (MIT, 2018). ............................................................... 152 

Figure 5.18: capacity reduction Φ as a function of slenderness λ in EC6 (CEN, 2005a).

 .................................................................................................................................. 154 

Figure 5.19: load distribution and mesh in the section used for the FEM model. .... 155 

Figure 5.20: Drucker-Prager and Mohr-Coulomb failure surfaces in Abaqus ......... 156 

Figure 5.21: constitutive law: a) traction and b) compression. ................................ 156 

Figure 5.22: multiplier – displacement relationship for the column. ....................... 158 

Figure 5.23: tension – deformation relationship of the most stressed element. ....... 159 

Figure 5.24: thrust curve along x-axis, y-axis and in axonometric view. ................. 160 

Figure 5.25: masonry constitutive law in the case of uniaxial behavior: (a) model zero, 

(b) model one, (c) model two and d) real constitutive law (Angelillo et al., 2014). 161 

Figure 5.26: interface failure surface. ....................................................................... 161 

Figure 5.27: constitutive law (σ-ε) and deformation energy ϕ. ................................ 163 

Figure 5.28: section of the column. .......................................................................... 164 

Figure 5.29: trend of maximum and minimum deformations (left); trend of the 

maximum and minimum stresses (right) in the various sections of the column. ..... 166 

Figure 5.30: displacement diagram along the x-axis and the y-axis of the column. 166 

Figure 5.31: trend of maximum and minimum deformations (left); trend of the 

maximum and minimum stresses (right) in the various sections of the column. ..... 167 

Figure 5.32: displacement diagram along the x-axis and the y axis of the column.. 167 

Figure 5.33: section of the two connected column: medieval section (clearer), 

eighteenth-century section (lighter). ......................................................................... 168 

Figure 5.34: model proposed by Rosman-Beck (Pozzati, 1977). ............................. 168 



| xvii 

Figure 5.35: trend of the maximum and minimum stresses and the relative 

deformations for the composite column (left, the results of the eighteenth-century 

column, right, the results of the medieval column). ................................................ 171 

Figure 5.36: displacements along x and y for the composite column (above the 

displacements of the eighteenth-century column, under the displacements of the 

medieval column). ................................................................................................... 171 

Figure 5.37: trend of the maximum and minimum stresses and the relative 

deformations for the composite column (left, the results of the eighteenth-century 

column, right, the results of the medieval column). ................................................ 172 

Figure 5.38: displacements along x and y for the composite column (above the 

displacements of the eighteenth-century column, under the displacements of the 

medieval column). ................................................................................................... 172 

Figure 5.39: dimensionless load L P EJ as function of the dimensionless displacement 

 : comparison between analytical solution (blue curve) and numerical solution 

employing numerical model (red curve). ................................................................. 174 

Figure 5.40: view of the pillar and the relative points where the on-site tests were 

carried out. ............................................................................................................... 181 

Figure 6.1: sample (left) and relative fuzzy (right) of mechanical properties: a) – b) 

resistance of brick cubes, c) – d) resistance of medieval mortar, e) – f) resistance of 

the eighteenth-century mortar, g) – h) average resistance of mortar. ...................... 184 

Figure 6.2: fuzzy number of the horizontal component of loads. ............................ 187 

Figure 6.3: fuzzy number of the eccentricity of the vertical loads along the x-axis. 188 

Figure 6.4: fuzzy number of the eccentricity of the vertical loads along the y-axis. 188 

Figure 6.5: eccentricity variation area for vertical loads on the section (i.e., with α = 

0). ............................................................................................................................. 189 

Figure 6.6: column line of thrust column (red line with α = 1, black line with α = 0).

 ................................................................................................................................. 190 

Figure 6.7: fuzzy thrust curve with α = 0 and sections with the relative simplified 

central core of inertia. .............................................................................................. 191 

Figure 6.8: stress distribution of the rectangular cross-section for different load cases 

(Förster, 2018). ........................................................................................................ 192 

Figure 6.9: Cross-sectional quarter to differentiate between cases depending on the 



xviii | List of Figures 
 

eccentricities for linear-elastic material behavior without flexural strength according 

to Enßlin (1941). ....................................................................................................... 193 

Figure 6.10: compressed areas for different cases (Förster, 2018). .......................... 193 

Figure 6.11: fuzzy numbers of the maximum and minimum deformations and tensions 

in the section along the height considering the no-tension material (dotted line with α 

= 0, solid line with α = 1). ........................................................................................ 195 

Figure 6.12: fuzzy numbers of the maximum displacement of the section along the 

height of the column (black line with α = 0, red line with α = 1). ............................ 195 

Figure 6.13: fuzzy numbers of the maximum and minimum deformations and tensions 

in the section along the height considering the no-tension material (dotted line with α 

= 0, solid line with α = 1). ........................................................................................ 196 

Figure 6.14: fuzzy numbers of the maximum displacement of the section along the 

height of the column (black line with α = 0, red line with α = 1). ............................ 196 

Figure 6.15: fuzzy numbers of the maximum and minimum deformations and tensions 

in the coupled sections along the height considering the no-tension material (dotted 

line with α = 0, solid line with α = 1). ...................................................................... 198 

Figure 6.16: fuzzy numbers of the maximum displacement of the section along the 

height of the column (black line with α = 0, red line with α = 1). ............................ 198 

Figure 6.17: fuzzy numbers of the maximum and minimum deformations and tensions 

in the coupled sections along the height considering the no-tension material (dotted 

line with α = 0, solid line with α = 1). ...................................................................... 199 

Figure 6.18: fuzzy numbers of the maximum displacements of the two coupled 

sections along the height of the column (black line with α = 0, red line with α = 1).

 .................................................................................................................................. 199 

Figure 6.19: displacement of the section along the height of the column thought Monte 

Carlo simulation. ...................................................................................................... 201 

Figure 6.20: displacement of the composite section along the height of the column 

through Monte Carlo simulation. ............................................................................. 201 

 

 



xix 

List of Tables 

Table 2.1: comparison of different concepts of uncertainty modeling for a variable X.

 ................................................................................................................................... 19 

Table 2.2: state of art of the risk terminology related to the systems. ....................... 32 

Table 2.3: target reliability index β and failure probabilities PF related to ultimate limit 

states. .......................................................................................................................... 37 

Table 2.4: target reliability index β and failure probabilities PF related to irreversible 

serviceability limit states. .......................................................................................... 37 

Table 3.1: the trilateral moment rotation curves parameters. .................................... 53 

Table 3.2: block used in the analysis, b is the thickness of the wall whereas h is the 

height of the wall. ...................................................................................................... 56 

Table 3.3: safety classification by means of the ρ safety coefficient. ....................... 62 

Table 3.4: buildings parameters from CARTIS Database. ........................................ 67 

Table 3.5: categorization of aleatory variables. ......................................................... 71 

Table 3.6: Italian ground motion records with important recorded PGA and PGV 

(†EC8 classification (CEN, 2004), *Epicentral distance, [I] = ITACA, [E]=ESM). . 74 

Table 3.7: performance criteria for rocking behavior. ............................................... 76 

Table 3.8: lower and upper bound of mean (θ) and standard deviation (β) for fragility 

curves with Monte Carlo Simulation. ........................................................................ 80 

Table 4.1: resistance parameters for solid brick and lime mortar walls: values 

according to code and from experimental campaigns. .............................................. 89 

Table 4.2: fuzzy numbers for the main load parameters. ........................................... 91 

Table 4.3: fuzzy numbers for the main geometric parameters. ................................. 92 

Table 4.4: probability of collapse CP  and reliability index   for simple overturning and 

vertical bending mechanism. ................................................................................... 118 

Table 5.1: results value experimental tests. ............................................................. 138 

Table 5.2: value of loads, heights and distances from the axes of their application. 139 

Table 5.3. coefficient of reduction Φ. ...................................................................... 151 

Table 5.4: parameter for the Concrete Damage Plasticity constitutive model. ....... 157 



xx | List of Tables 
 

Table 5.5: capacity reduction factor for different standard and numerical simulations.

 .................................................................................................................................. 159 

Table 5.6: comparison of the stresses obtained between the FEM model and Beam 

model for a single column. ....................................................................................... 175 

Table 5.7: comparison of the stresses obtained between the FEM model and Beam 

model for the double connected column. ................................................................. 175 

Table 5.8: stress distribution for the various FEM and beam models. ..................... 176 

Table 5.9: stress distribution for the various FEM and beam models. ..................... 177 

Table 5.10: stress distribution for the various FEM and beam models. ................... 178 

Table 5.11: stress distribution for the various FEM and beam models. ................... 179 

Table 5.12: stress distribution for the various FEM and beam models. ................... 180 

Table 5.13: comparison of the stresses obtained between the FEM model and the tests.

 .................................................................................................................................. 181 

Table 5.14: comparison of the stresses obtained between the beam model and the tests.

 .................................................................................................................................. 182 

Table 6.1: fuzzy numbers of the mechanical properties of masonry. ....................... 185 

Table 6.2: range of arc thrust values......................................................................... 186 

Table 0.1: results of compression tests on brick cubes. ........................................... 213 

Table 0.2: double punching tests on eighteenth-century mortar. ............................. 214 

Table 0.3: double punching tests on medieval mortar. ............................................. 215 

 

 



1 
 

1 Introduction 

1.1 Motivation and background 
Recent and past earthquakes (e.g., in Italy: Friuli 1976, Irpinia 1980, Umbria-Marche 

1996, L’Aquila 2009, Emilia 2012 and Central Italy 2016), have shown that unrein-

forced masonry buildings (URM) are prone to damage by seismic actions also causing 

a large number of casualties, injuries and economic loss. 

The seismic assessment of these structures, mainly historical ones, is a very challeng-

ing task since their response may be affected by various aspects, such as masonry me-

chanical behavior, complex structural and geometric arrangement, changes of intended 

use and structural changes that occurred over the centuries. 

A very large number of papers have dealt with this topic over the past fifty years and 

nowadays several methods are available in the literature for the structural assessment 

of existing masonry buildings, from simple analytical methods to more advanced nu-

merical methods such as finite element methods and discrete element methods. Among 

the review articles on this topic are mentioned (D’Altri et al., 2020; ReLUIS, 2020; 

Roca et al., 2010; Tralli et al., 2014). 

The evaluation of the reliability of existing masonry structures is therefore of enor-

mous importance both under the usual vertical operating loads and for resistance to 

any future earthquakes. Strictly speaking, all variables in engineering structures are 

stochastic to a certain degree and structural reliability analysis has to deal with the 

rational treatment of random variables and uncertainties. However, despite some pio-

neering works of Italian researchers (Augusti et al., 1984; Augusti and Ciampoli, 2000; 

Caddemi et al., 2002) on probabilistic limit analysis, only very few applications to 

monuments and masonry structures have been published and generally led only to 

qualitative results. 

The main reason is probably that in the case of existing masonry structures we are 

faced with too great uncertainties on the mechanical and also geometrical parameters 

and too large variability of them. Actually, mainly because masonry is a heterogeneous 



2 | Introduction 
 

material consisting of units of different types, such as bricks, ashlars, adobes, regular 

or irregular stones etc., and joints made of clay, bitumen, chalk, lime or cement-based 

mortar, glue etc. Both units and joints can have completely different mechanical, 

chemical and physical behaviors and the number of their possible combinations, in 

terms of geometry, assembling and characteristics can be sensibly high, to raise some 

doubts about the pertinence of the term “masonry”. Nevertheless, the different types 

of masonry, even though exhibit diverse mechanical behaviors have broadly a very 

low tensile strength as a common feature and this property has always been so im-

portant to influence the shape of ancient constructions. Furthermore, there are many 

challenges in performing advanced mechanical tests in ancient structures because of 

the great variety of masonries, the variability of the masonry itself in a specific struc-

ture and the impossibility of reproducing such variability in just one specimen. 

The structures belonging to the Architectural Heritage, namely, by their very nature 

and history (materials and assembling), provide many very interesting challenges in 

conservation, diagnosis, analysis, monitoring and strengthening. The recently pub-

lished Guidance on Heritage Impact Assessments for Cultural World Heritage Proper-

ties by ICOMOS (International Council on Monuments and Site, 2011) and the Italian 

Guidelines for cultural heritage buildings in seismic zones by MIBAC (Ministero della 

Cultura, 2010) recommends an iterative process between data acquisition and diagno-

sis on one hand and structural behavior and safety on the other. In particular, diagnosis 

and evaluation of structural safety are two sequential and related steps that establish 

the effective need for some interventions and their extent. However, as a matter of fact, 

in the evaluation of the reliability of masonry buildings or structural elements practi-

tioners make use of the regulations in force (CEN, 2005a; MIT, 2018, 2019) that allow 

a deterministic evaluation and the use of safety coefficients that generally require a 

reduction in the compressive strength of the masonry up to a factor of three. 

An engineering problem has to contend with the level of knowledge available. In gen-

eral, in engineering, its purpose can be divided into two categories: the analysis of the 

behavior of the structure under known conditions and the design of a structure that 

satisfies a minimum safety criterion established by the codes and guidelines. 

These categories have to deal with the data of the structure and the loads that are not 

exactly known but are affected by intrinsic uncertainties. This problem can be solved 
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by reducing uncertainties by increasing knowledge. 

The primary goal of structural engineering is life safety to hazard and collapse preven-

tion. Currently, the possible assessment of the risk of collapse allows us to evaluate 

the safety of a structure thanks to advances in computational power and in the devel-

opment of models that can reproduce the behavior of any structural element of a struc-

ture. These structures, systems and infrastructure require proper measures and ap-

proaches to allow and verify their reliable performance. 

The available and the required information to describe structures and systems is the 

major problem in this context due to their discrepancy. Due to limited, vague and im-

precise information, the reliability and performance analysis of complex structures or 

systems becomes increasingly complicated. It has therefore become a key question 

how to model this uncertainty for quantification despite significant developments in 

generalizing approaches. Certainly, depending on the purpose of the analyzes and the 

information available, the analyst can dispose of a series of developments. It is, there-

fore, necessary to use a probabilistic approach to the problem. In most cases, an expert 

expresses a belief in the form of a subjective probability distribution, which can be 

implemented in a Bayesian approach. Set theoretical descriptors can be used if only 

ranges or limits are available for some parameters. All this leads to non-probabilistic 

approaches which combined with probabilistic information give imprecise probabili-

ties. By aggregating the quantification of generalized uncertainty with developed and 

emerging concepts and techniques from the traditional probabilistic domain, in partic-

ular with advanced stochastic modeling and Monte Carlo simulation, it is now possible 

to obtain reliability assessments for the most complex structural problems. 

The reliability analysis of structural elements in industrial, aerospace and nuclear en-

gineering has evolved in a completely different way in the last decades (Ang and Tang, 

2007; Zio, 2013). Non-deterministic reliability analysis methods classified as proba-

bilistic, for instance, the Monte Carlo simulation (MCS) method, first-order reliability 

method (FORM), and response surface method (RSM) are currently employed to-

gether with possibilistic methods such as interval analysis and fuzzy analysis. 

1.2 Objectives and scope 
This dissertation is focused on developing a methodology to characterize the response 
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of the structures under uncertainty and the implication of collapse for some structural 

elements of historic masonry structures. The research includes some case study appli-

cations of out-of-plane failure of masonry walls of the historic center in Ferrara, Italy, 

and the columns of the Cathedral of Saint George the Martyr in Ferrara, Italy. 

First of all, only one type of masonry is considered consisting of fired clay bricks and 

lime mortar typical of the Po Valley and in particular of the city of Ferrara. Moreover, 

simple structural elements are also considered: load-bearing walls and columns. As for 

the walls, the derivation of fragility functions for local failure mechanisms in unrein-

forced masonry buildings starts from the data processing of the CARTIS database (cre-

ated with an expeditious method). A qualitative description of the building stock and 

associated relevant uncertainties (material, geometrical, loads) are initially considered. 

Epistemic uncertainties are included using logical trees. Mechanical models, the va-

lidity of which is documented in the literature also from results of experimental cam-

paigns, are introduced to analyze the out-of-plane response of masonry walls. A dy-

namic approach is used, adopting a multiple stripe analysis method to derive punctual 

fragilities. Finally, fragility functions are fitted to the computed fragilities, showing 

the moderate quality of the building stock. 

Subsequently, the uncertain quantities are treated as fuzzy sets and the statistical devi-

ations obtained are represented in the same context, even reaching the definition of the 

relative influence of the various uncertain parameters. Then the columns of the cathe-

dral of Ferrara currently undergoing reinforcement and restoration are considered. The 

problem is very complex, the original medieval (of the XII century) columns were 

incorporated into new large columns in the XVIII century, about 2.20 by 4.20 m. The 

quality of the masonry is in both cases fair but the two parts that constitute the column 

are substantially disconnected and the internal texture uncertain and cannot be inves-

tigated with certainty. Finally, the loads transmitted by the heavy vaulted roofs, in 

particular the horizontal thrusts, cannot be accurately determined given the age of the 

structure and the nature of the subsequent interventions. The standard application of 

the technical regulations does not appear satisfactory and is of doubtful applicability, 

for example, the column is subject to variable loads along the heights well as the use 

of finite element techniques given the irregularity of the internal texture. Therefore, 

also to apply statistical procedures such as the Monte Carlo simulation or the fuzzy 
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sets that require a large amount of analysis, appropriate generalizations of the beam 

theory have been developed. 

The main objectives of this research are: 

• to develop a stochastic methodology upon which can be quantified seismic 

structural response in presence of vague and imprecise information using sim-

plified mechanical models; 

• to identify, investigate and evaluate the various uncertainties inherent in struc-

tural elements in masonry structures; 

• to evaluate with a sensitivity analysis, the parameters that influence the struc-

tural response and the collapse of these elements under seismic actions. 

 

1.3 Organization 
This dissertation deals with the uncertainty quantification in structural engineering 

with applications to historic masonry structures, focusing on modeling uncertainty, 

quantification of its impacts on structural response, and implications on collapse safety 

under different load conditions. 

It is organized into seven chapters which are described in the following paragraphs: 

Chapter 2 presents probabilistic methods and procedures for modeling and eval-

uating uncertainties in parameters. The main issues are addressed on the sources of 

uncertainty, the mathematical description of uncertain data, generalized methods for 

the propagation of uncertainty, Monte Carlo simulation and sensitivity analysis. 

Furthermore, we present a summary of risk assessment in engineering. The main issues 

that compose a robust risk assessment are addressed: the role of data knowledge, the 

role of quantifying uncertainty and the reliability of existing structures. 

Chapter 3 presents typological fragility functions for local failure mechanisms 

for Unreinforced Masonry buildings (URM). URM buildings undergoing seismic ac-

tions often exhibit local failure mechanisms which represent a serious life-safety haz-

ard, as recent strong earthquakes have shown. Compared to new buildings, older un-

reinforced masonry buildings are more vulnerable, not only because they have been 

designed without or with limited seismic loading requirements, but also because 
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horizontal structures and connections amid the walls are not always effective. Also, 

Out-Of-Plane (OOP) mechanisms can be caused by the significant slenderness of the 

walls even if connections are effective. 

The purpose of this chapter is to derive typological fragility functions for unreinforced 

masonry walls considering OOP local failure mechanisms. In the case of slender walls 

with good material properties, the OOP response can be modeled concerning an as-

sembly of rigid bodies undergoing rocking motion. In particular, depending on its con-

figuration, a wall is assumed either as a single rigid body undergoing simple one-sided 

rocking or a system of two coupled rigid bodies rocking along their common edge. A 

set of 44 ground motions from earthquake events that occurred from 1972 to 2017 in 

Italy is used in this study. The likelihood of collapse is calculated via Multiple Stripe 

Analysis (MSA) from a given wall undergoing a specific ground motion. Then, the 

single fragility functions are suitably combined to define a typological fragility func-

tion for a class of buildings. The procedure is applied to a historical aggregate in the 

city center of Ferrara (Italy) as a case study. The fragility functions developed in this 

research can be a helpful tool for assessing seismic damage and economic losses in 

unreinforced masonry buildings on a regional scale. 

Chapter 4 presents a method to quantify the effect of the uncertainty with which 

parameters such as geometric data, mechanical characteristics and the entity and posi-

tion of the loads are known on local out-of-plane failure mechanisms in existing unre-

inforced masonry buildings (URM). 

The chapter discusses the modeling of uncertainties by fuzzy methods and references 

is made to good quality masonry made with bricks baked in clay and lime mortar, as 

typical of buildings in the Po Valley, such as those hit by the 2012 earthquake in Emi-

lia. In the frequent case of slender elements with good material properties, the wall 

response can be modeled as an assembly of rigid bodies and linear kinematic limit 

analyses, as defined in Italian standard, or dynamic analyses for studying the rocking 

motion are employed to provide the “fuzzy” fragility curves as a function of peak 

ground acceleration (PGA). A probabilistic evaluation of the collapse loads under seis-

mic actions and a sensitivity analysis are also presented for all these procedures and 

different local collapse mechanisms. 
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Chapter 5 presents a procedure for the safety assessment of the masonry col-

umns of the Cathedral of Saint George the Martyr in Ferrara, Italy. The current state 

of the column is detailed with the relative information on the mechanical properties of 

the materials, the loads and their application. Particular attention is given to the crea-

tion of simplified mechanical models useful to obtain a fair compromise between com-

putational times and the robustness of the results. These simplified models are vali-

dated with analytical solutions and numerical models (i.e., FEM models). 

Chapter 6 presents a procedure for quantifying the uncertainties encountered in 

the structural analysis of masonry pillars of the cathedral of Ferrara. This method is 

applied where the main sources of uncertainties are vague and imprecise information 

such as the characterization of the behavior of the material and the loads and their 

application. The purpose of quantifying uncertainties is to determine adequate safety 

margins. In this chapter, the uncertainties are quantified through fuzzy theories that 

allow deriving the interval bounds and the mean structural response. 

Chapter 7 summarizes the main conclusions of this dissertation. The limitations 

of the studies are presented and provide some suggestions for future work in this field. 
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2 Review of basic probabilistic methods and 

risk assessment procedures 

This chapter introduces very concisely the probabilistic methods and procedures for 

modeling and evaluating uncertainties in data. The main issues are addressed on the 

sources of uncertainty, the mathematical description of uncertain data, generalized 

methods for the propagation of uncertainty, Monte Carlo simulation and sensitivity 

analysis. 

Furthermore, this chapter focuses on risk assessment in engineering. The main issues 

that compose a robust risk assessment are addressed: the role of data knowledge, the 

role of quantifying uncertainty and the reliability of existing structures. 

For these issues, the characteristic terminology and equations are recalled from various 

textbooks present in literature (Ang and Tang, 2007; Benjamin and Cornell, 1970; Zio, 

2007). 

2.1 Mathematical description of uncertain data 
The following paragraphs show the various mathematical models for the stochastic 

description of uncertain data and with greater precision, of the input parameters of the 

model. The purpose of this section is not to give complete coverage of the mathematics 

used but to provide a minimum formalism required below. 

2.1.1 Classic probability theory 

The probability space ( ),,  is defined by the event space Ω (also known as sample

space, universal set, or outcome space) equipped with the σ-algebra  and a proba-

bility measure  0,1 .

2.1.1.1 Axioms 

The foundations of probability theory were formalized by Andrey Kolmogorov in 

1933 and are known as Kolmogorov’s axioms which are: 
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1. the probability of an event is a non-negative real number 

 ( ) 0         (2.1) 

2. the probability that at least one of the elementary events in the entire sample 

space will occur is 1 (unitary) 

 ( ) 1 =  (2.2) 

3. any countable sequence of disjoint sets (synonymous with mutually exclusive 

events)  1 2, , , n     satisfies (σ – additivity) 

 ( )
1 1

i i
i i
 



= =

 
= 

 
  (2.3) 

 

2.1.1.2 Random variable 

A random variable X is defined by a map ( ) : XX     that connects a funda-

mental event   from a value ( )X   to X  which is the support domain of X. A 

cumulative distribution function (CDF) describes the random variable X  denoted by 

a function ( )XF x  that assigns a probability to an event i.e., ( ) ( )XF x X x=  . 

 ( ) ( ) 
b

Xa
a x b f x dx  =   (2.4) 

In the case that X is a continuous function the first derivative of CDF is the probability 

density function (PDF) denote by ( )Xf x , where ( )Xf x  is the non-negative Lebesgue 

integrable function. 

 ( )
( )X

X

dF x
f x

dx
=  (2.5) 

In the presence of data from a random variable X, a useful tool for the estimation of 

the CDF can be the empirical cumulative distribution function (eCDF). 



Mathematical description of uncertain data | 11 

 ( ) ( ) ( )
1

1
i

N
emp

X
i

x
F x x

N =


=   (2.6) 

where  is an indicator factor that is equal to 1 when a true condition is verified oth-

erwise it is equal to 0. The ( )i  is the thi  realization of the random variable X. 

It is useful to exploit the definitions of the first moment of a random variable X which 

is commonly defined as the mean (a.k.a. expected value) and that of the second central 

moment (a.k.a. variance). The mean    and variance  Var  are defined as fol-

lows: 

   ( )

1

1 N
i

iN =

=          ( )  ( )
2

1

1Var
1

i
N

iN =

= −
−
  (2.7) 

where the parameter θ describes a vector that represents the shape of CDF, are ex-

tracted by solving: ( )    = , ( )  2 Var  = . 

2.1.1.3 Limitation 

It is not possible to distinguish between epistemic and aleatory uncertainty and it is not 

possible to precisely identify the sources of uncertainties separately. Above all, in 

cases of lack of data, where the judgment of the expert and/or the information are 

imprecise, the probability depends a lot on the initial assumptions (Rocchetta et al., 

2018). 

2.1.2 Evidence Theory 
The theory of evidence can be seen as a generalization of the classical theory of 

probability also called the Demster-Shafer theory (Dempster, 1967; Shafer, 1976). 

The evidence theory manages to represent both aleatory and epistemic uncertainty with 

a range from plausibility to belief in which probability theory represents only one 

value. 

Two measures are considered in the theory of evidence for every event  in the event 

space Ω: plausibility and belief. To define these two measures is introduced m which 

is defined as the basic probability assignment (BPA): 
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 ( )
0     if 

0        if a nd 
m




= 





 (2.8) 

where  is a subset Ω. 

 ( ) 1m


=  (2.9) 

The ( )m  represents the probability masses that are associated with an event . 

This can be interpreted as a sum of likelihood weights. The maximum amount of 

likelihood that can be associated with an event  is defined as the plausibility measure 

while the minimum amount of likelihood that can be associated with an event  

corresponds to the belief measure. These are defined as follows: 

 ( ) ( )Pls m
 

=   (2.10) 

 ( ) ( )Bel m


=   (2.11) 

From the Eqs. (2.10) and (2.11), it follows that ( ) ( )Bel Bel 1C+  , 

( ) ( )Pls Pls 1C+  , and complementary property ( ) ( )Bel Pls 1C+ = , where C  

is the complementary event . When ( ) ( )Bel Pls=  there is the special case of 

traditional probability. A Demster-Shafer structure (DS) occurs with the construction 

of ( )Bel  , ( )Pls  ,  and ( )m . The theory of evidence has been applied in various 

fields of application and theoretical developments (Helton and Oberkampf, 2004). The 

fields of application vary from optimization and design, decision making, simulation, 

system responses and model predictions and uncertainty quantification. In the fields 

of civil engineering, it has been used for applications including structural reliability 

(McGill and Ayyub, 2008; Oberguggenberger and Fellin, 2008), structural 

optimization (Tonon and Bernardini, 1998) and geotechnical stability investigations 

(Hall et al., 2004). 
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2.1.2.1 Limitation 

The ability to determine bounds for specific events constitutes one of the limitations 

for the trivial application of this theory. In practical applications, the definition of 

bounds is a non-trivial procedure. 

2.1.3 Probability boxes 
A probability box is a robust mathematical instrument commonly deployed to charac-

terize uncertain factors affected by mixed sources of aleatory and epistemic uncer-

tainty. 

Probability boxes (p-boxes) specify the CDF of a variable X by lower and upper 

bounds identified by XF  and XF , each (Beer et al., 2013; Ferson and Ginzburg, 1996). 

 ( ) (( ) ( ) ,  ,X XP p F x P x F x   = −   (2.12) 

the real but unknown CDF is inside these bounds which are defined 

( ) ( ) ( )X X XF x F x F x   for any value Xx . The intermediate area is formed by 

the two boundary curves; it is called by the name: probability-box. Figure 2.1 shows a 

clear example of a p-box. 

 
Figure 2.1: example of probability box. 

In literature, two kinds of p-boxes are considered, specifically free and parametric p-

boxes. Lower and upper bounds on the CDF determine free p-boxes. This means that 

the true CDF can have an arbitrary shape as long as it realizes the feature of a generic 
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CDF and it is attributable to the bounds of the p-box. Free p-boxes are a peculiar case 

of Dempster-Shafer structures when considering the event  X x . Then, the plausi-

bility function ( )Pls X x  is the same to ( )XF x  and the belief function ( )Bel X x  

is the same ( )XF x , for all Xx . 

Parametric p-boxes, also known as distributional p-boxes, are determined as distribu-

tion function groups where the parameters belong to intervals. Parametric p-boxes pro-

vide an explicit division of aleatory and epistemic uncertainties. The epistemic uncer-

tainty is depicted by the intervals in the distribution parameters, although aleatory un-

certainty is reproduced by the distribution function family. Nevertheless, parametric 

p-boxes are more limiting than free p-boxes because they need knowledge of the dis-

tribution family. 

2.1.3.1 Limitation 

While p-boxes may allow dealing with epistemic and aleatory uncertainties one of the 

crucial aspects of this tool for quantifying uncertainty lies in defining the bounds of 

epistemic uncertainty (Bi et al., 2019; Faes et al., 2021). 

2.1.4 Fuzzy theories 
Fuzzy variables are deeply connected to the set theory. In the following, the 

fundamental definitions of sets are introduced here by Möller and Beer (2004). Given 

a fundamental set Ω and x an element of this fundamental set, a fuzzy variable A  is 

defined: 

 ( ) , AA x x=   (2.13) 

where 
A  is the membership function of the fuzzy variable. The membership function 

describes the uncertainty. This function can be continuous or discrete. 

 0A   (2.14) 

When the values of this function belong to the range [0,1], it refers to a normalized 

membership function. Only normalized membership functions will be considered 



Mathematical description of uncertain data | 15 

below.  

 ( )sup 1A
x X

x


  =   (2.15) 

A crisp set is called when the membership function is binary, i.e. {0,1}, otherwise 

when the membership function is not binary is called fuzzy set. Figure 2.2 shows how 

a fuzzy set and crisp set are defined. 

 
Figure 2.2: fuzzy variable A  with membership function A  (Möller and Beer, 2004). 

Fuzzy is a generalization of the epistemic uncertainty modeled by a crisp set (i.e., in-

tervals) and can represent the imprecision in measurements. When α = 0 the relative 

interval A denoted the maximum possible interval for the event with high uncertainty. 

Otherwise, when α = 1 the value of the measurement is very precise. 

2.1.4.1 α-level set (α-cut) 

The α-level interval is defined as: 

 ( ) AA x X x  =    (2.16) 

where  0,1  is the α-cut level. Remark that the α-cuts provide nested intervals. 

Each α-level set is a connect interval ,
k kl rx x 

 
   when the fuzzy set is convex. 

 ( ), min
k l A kx x X x   =     (2.17) 
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( ), max
k r A kx x X x   =     

2.1.4.2 Extension principle 

The extension principle allows you to map the fuzzy set to a result space (Zadeh, 1975). 

The result membership function B  is obtained from those of input fuzzy numbers 

x1,…, xn as 

( )( ) ( ) 1, , ,B nB z z z f x x= =   z   ( )1 1, , n nx x X X   (2.18) 

with membership function 

( ) ( )
( ) ( ) ( )

1
1 1

, ,
sup min , ,      if  , ,

0 otherwise
n

n n
z f x x

B

x x z f x x
z

 
 =

  =  
= 


(2.19) 

Figure 2.3 shows the process of mapping to a new fuzzy output using the extension 

principle. 

Figure 2.3: mapping two fuzzy (A1, A2) set into fuzzy set B using the extension principle (Möller and Beer, 2004). 

2.1.4.3 Fuzzy distributions 

A probability distribution associated with a fuzzy interval for every value Xx  cre-

ates a fuzzy distribution that permits explicit the CDF of this distribution. 

( ) ( ),X XF x x c (2.20) 
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where ( )XF x  is a fuzzy interval, ( ),X x c  represent the membership function for

variable X and CDF value  0,1c . The construction of a fuzzy distribution can be 

seen as a generalization of a free or parametric p-box, as shown in Figure 2.4. The 

associated membership function is shown in red, for a given value (0)x . More, the lower 

and upper bounds of the CDF have been derived analytically for a given level (0) . 

This method can be replicated for every value Xx . 

Figure 2.4: fuzzy distribution: a generalization of a p-box (Schöbi, 2017). 

2.1.5 Additional methodologies 
Other methodologies for modeling uncertainty are available in the literature to model 

uncertainty in addition to the methods presented here (for more details see (Beer et al., 

2013)). These include info-gap theory (Ben-Haim, 2006), credal sets (Karlsson et al., 

2010), lack of knowledge theory (Barthe et al., 2003; Ladevèze et al., 2006) and 

possibility theory (de Cooman et al., 1995; Dubois and Prade, 1988). All these 

methodologies are part of information theory as strictly described in Klir (2006). 

2.1.6 Comparison 
Different concepts exposed in previous sections are connected and visualized in Figure 

2.5. The various concepts are placed inside a rectangular box. The Dempster-Shafer 

(DS) structures and the p-boxes are shown inside a single rectangular box due to due 
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to their equivalence. Starting from the higher level and following the arrows, it is pos-

sible to increase the knowledge of the data to choose the best model of uncertainty. 

The most general uncertainty representations are shown in the highest level, i.e. all 

three aspects of uncertainty models are included. When you pass to a lower level, an 

aspect of uncertainty modeling is removed. For instance, if a fuzzy distribution will 

reduce to a free p-box, the uncertainty model removes fuzziness. Therefore, the free 

p-box decreases to an interval when removing aleatory uncertainty. Lastly, the interval 

eases to a constant when disregarding any epistemic uncertainty. 

Figure 2.5: links between different notions of uncertainty modeling (image from Schöbi (2017)). 



Table 2.1: comparison of different concepts of uncertainty modeling for a variable X. 

Concept Uncertainty model Aleatory uncertainty Epistemic uncertainty 

Interval-valued Fuzzy sets 

Constant x  - - - 

Probability theory ( )XF x  ( )XX F x - - 

Interval  ,x x x -  ,x x x

Dempster-Shafer structure ( )Bel X x , ( )Pls X x  ( )XX F x ( ) ( ) ( )Bel PlsXX x F x X x    - 

P-box ( )XF x , ( )XF x  ( )XX F x ( )X X XF F x F   - 

Fuzzy number ( )X x - Xx  ( )X x

Fuzzy distribution ( ),X x c ( )XX F x ( )X X XF F x F    ( ),X x c
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2.2 Uncertainty’s sources 
Aleatory and epistemic uncertainty are defined as the two principal sources of uncer-

tainty in the literature (Eldred et al., 2011; Ellingwood and Kinali, 2009; Helton et al., 

2004; Helton and Burmaster, 1996; Kiureghian and Ditlevsen, 2009; Oberkampf et al., 

2004). 

Aleatory (“alea” is Latin for “dice”) uncertainty describes the natural/intrinsic varia-

bility of a quantity of interest and is hence non-reducible. It refers to a property of the 

system associated with fluctuations or variability. Aleatory uncertainty is a stochastic 

variation that results from an underlying random experiment and corresponds to the 

traditional frequentist definition of probability theory. 

Epistemic (“επιστημη” is Greek for “knowledge/science”) uncertainty describes the 

lack of knowledge and is potentially reducible by acquiring more data. Epistemic un-

certainty remains as a collection of all problematic cases and does not imply a specific 

mathematical model (Beer et al., 2013).  

Uncertainties in experiment and simulation can be separated into three sources (Bi et 

al., 2019): 

• Uncertainties in parameterization

The input parameters of the numerical model are inaccurately determined, such

as the materials properties, geometry sizes and random boundary conditions

(e.g. winds or earthquakes).

• Uncertainties in modeling

The numerical model always includes simplifications and approximations (e.g.,

linearization of nonlinear behaviors).

• Uncertainties in experiments

The measurements are difficult to control by different random events (e.g.,

measurement system errors or human personal judgments). More insights into

experimental uncertainty can be found in Bi et al. (2018).

The input model parameters can be divided into four categories according to the par-

ticipation of aleatory uncertainty (natural variation) or/and epistemic uncertainty (lack 

of knowledge) (Bi et al., 2019): 
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I) parameters without any uncertainty, appearing as constants;

II) parameters with solely epistemic uncertainty, appearing as unknown-but-

fixed constants, delimited by a specific interval;

III) parameters with only aleatory uncertainty are random variables with com-

pletely delineated probability characteristics (e.g. distribution type, mean,

variance, etc.);

IV) parameters with either aleatory and epistemic uncertainties are imprecise

probability variables with only vaguely uncertain properties.

Figure 2.6 shows the four categories shown above. This classification of parameters 

implies a different treatment and propagation of uncertainties. For more details see Bi 

et al. (2019). 

Category I 

(constant) 

Category II 

(only epistemic uncer-

tainty) 

Category III 

(only aleatory uncer-

tainty) 

Category IV 

(both epistemic and 

aleatory uncertainties) 

Figure 2.6: different forms of parameter categories (Bi et al., 2019). 

2.3 Generalized methods for uncertainty propagation 
Deterministic analyzes are widely used to assess the response of structures under any 

action and condition but provide insufficient information to represent the variability of 

the quantities of interest. It is accepted that stochastic analysis can explicitly take into 

account the effect of uncertainties by evaluating the variability of the parameters of 

interest. This methodology has multiple advantages. Allows you to assess the reliabil-

ity and sensitivity of responses by providing more realistic predictions and information 

for decision analysis. Sensitivity analysis is a tool that provides information on which 

quantities influence the response of a structure (Section 2.5). Figure 2.7 shows a sim-

plified diagram of the difference between deterministic and stochastic analysis. 
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Figure 2.7: computational cost of the stochastic analysis versus deterministic analysis (Patelli, 2017). 

The deterministic analysis presents a map between a single point in the input space 

representing the model parameters and a point in the output space representing the 

system response. The stochastic analysis extends this map to a region of points in both 

the input space and the output space. This is done by repeating the deterministic anal-

ysis many times. At this point, it is crucial to assess how uncertainties propagate. In 

the following paragraphs, we will deal with the machine that carries out the passage 

between the inputs and the outputs called black box and we will briefly explain the 

classes and advanced methods for the evaluation of uncertainties. 

2.3.1 Black-box models 
A computational model M can be identified as a map from an m-dimensional input 

space x to an o-dimensional output space of a multidimensional quantity V. Formally, 

it is written as follows: 

 0: m
XM x M → = V  (2.21) 

where the input and output vectors are ( )1,..., Mx x=x , and ( )1,..., O=V , each. This 
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computational model can be processed as a black box of which only the input and 

output vectors can be seen to perform uncertainty quantification. 

If x is influenced by aleatory uncertainty, this will be characterized by an appropriate 

probability distribution function (and corresponding CDF). Employing the computa-

tional model M  (for instance using the classic Monte Carlo method) which propa-

gates the uncertainties, will distinguish the output in a well-defined CDF. 

In the case where x is influenced by epistemic or mixed aleatory-epistemic uncertainty, 

their characterization will take place using suitable generalized probabilistic tools 

(e.g., p-box). The outputs will have limits on the vulnerability CDF (i.e., p-box) due 

to the propagation of uncertainty. 

2.3.2 Classical and advanced method 
A simple comparison between a classical probabilistic method to an advanced uncer-

tainty quantification (UQ) method is shown in Figure 2.8. Here is an example where 

the vulnerability of a system is measured. The vulnerability model M  adopts the sum 

of the quantities A and B. Input A has an aleatory behavior (it is distributed like a 

normal PDF) while input B is a parameter influenced by a purely epistemic uncertainty 

(e.g. an interval). In particular, it is possible to see how the parameter B does not have 

a stochastic behavior but is rather imprecise. 

If a classic Monte Carlo method is performed, it should be assumed that a PDF char-

acterizes the uncertainty for B. A uniform distribution within the interval is commonly 

assumed, adopting the so-called Laplace indifference principle. 

When the probabilistic model is delineated and the uncertainty is propagated, the out-

put will have a precise probabilistic description (i.e. a crisp CDF in a dashed line). 

This may be incorrect for two main reasons: the assumptions may be difficult to justify 

and may produce erroneous results. Furthermore, analysts will not be capable to dis-

cern between the role of epistemic uncertainty and aleatory uncertainty to the output. 

To surmount this limit, classical probabilistic methods can be coupled with advanced 

uncertainty quantification which allows distinguishing between epistemic and aleatory 

uncertainty in the output without introducing hypotheses (i.e. uniform random behav-

ior of a parameter within a tolerance range) and with weaker or lesser hypotheses than 

the classical equivalent. 
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Figure 2.8: comparative of classical and advanced uncertainty quantification (Rocchetta, 2018). 

The resulting output will be described e.g., ranges or the lower and upper bounds on 

the CDF. 

Those methods are generally higher computational costs (Patelli, 2017; Patelli et al., 

2014) and they have an imprecise probabilistic description of the output (Beer et al., 

2013). Nonetheless, generalized probabilistic frameworks offer a valuable viewpoint 

of the results. Furthermore, they apply to any computational model being non-intrusive 

(Patelli et al., 2018). 

2.4 Monte Carlo Simulation 
The Monte Carlo simulation (MCS) method is a robust technique for the assessment 

of the stochastic response where the input is modeled by a large number of random 

variables (Zio, 2013). 

2.4.1 Basic principles 
The Monte Carlo method exploits the basic principles of sampling and the laws of 

statistics to obtain information on the variability of the response (Figure 2.9). Statisti-

cally independent samples are generated for each input using an appropriate number 

generator following probability distributions for uncertain parameters. 
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Figure 2.9: Monte Carlo sampling for stochastic analysis (Schenk and Schuëller, 2005). 

Wanting to describe the system by an operator L, this is defined by a vector x in an m-

dimensional vector space that represents a set of causal input variables that maps the y 

outputs to an r-dimensional vector space. This is expressed as follows: 

 Lx y=  (2.22) 

However, each sample generated by the input ( )ix  is calculated as the corresponding 

output ( )iy  using Monte Carlo as a simulation. This simple form of Monte Carlo sim-

ulation is often referred to as a direct Monte Carlo simulation. So, a finite number n of 

independent samples ( ) 
1

ni

i
x

=
 is represented according to statistical laws of distribution 

of inputs ( )1 2, , , mf x x x . Each vector for each uncertain parameter represents a de-

terministic value and therefore deterministically defines the response that could be 

represented by the vector 

 ( ) ( )i iy Lx=  (2.23) 

Therefore, in literature to provide the mapping given by Eq. (2.23) traditional deter-

ministic finite element analyzes can be used between input and response (Schenk and 

Schuëller, 2005). 

All uncertainties can be justified as independent in simple cases. Such an assumption 

is proper as far as this assumption does not belie experience and physical properties. 

Each component can be obtained by available random number generators where its 

parameters and distribution must be provided when the components are reputed as 



26 | Review of basic probabilistic methods and risk assessment procedures 
 

independent. In the cases of stochastic processes or random fields, it is necessary to 

consider correlations between random variables. 

2.4.2 Error assessment 
The estimator of the response, that is a random variable, is defined by 

 ( )

1

1 n
i

k k
i

y y
n =

=   (2.24) 

The mean (  kE y ) and the variance (  Var ky ) of the estimator of the response are 

defined as follows: 

 
 

( )

1
k

n
i

k
i

k y

E y
E y

n
=

 
 

= =


 

   ( ) 
2

2
Var ky

k k ky E y E y
n


= − =  

(2.25) 

A basis for the evaluation of error is provided by Chebyshev’s inequality 

   2

211 y
yP y

n


−   −  (2.26) 

where  indicates a tolerance. The minimum sample size can be defined as follows 

considering a confidence level 1 − . 

 
2

min 2

1kyn



  (2.27) 

This condition is valid for any yk probability distribution and any sample size larger 

than necessary. Comparing the statistical error made by estimating the function using 

the MCS method with N trials, and the numerical error derived from a quadrature for-

mula in which the integrand function is calculated in N points, it results in any case, 

analog or biased, that the MC error varies with 1 2N − (Amster and Djomehri, 1976; 

Booth and Amster, 1978):  
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1
2

MC N
−

 (2.28) 

The error in quadrature differs like Δk with Δ equal to the integration interval and k a 

small integer that relies on the numerical method applied in the quadrature formula in 

the case of a regular function. k increases with the complexity of the rule but is at most 

2÷3. 

In the case of a hypercube with n dimensions and side length 1, the number of points 

on one edge is Δ-1 so that the total number of points is N = Δ-n and the numerical 

quadrature error is 

 
k

k n
q N

−

  (2.29) 

The MCS estimate is suitable (εMC ≤ εq), if n≥2k = 6. Therefore, the method is effective 

if it is necessary to evaluate an integral in a domain that should have at least 6-dimen-

sional (Zio, 2013). 

2.4.3 Advanced methods 
A large number of simulations and high computational expenses are required for stand-

ard Monte Carlo Simulations. This problem is particularly important for cases in which 

the model behavior is computationally very intensive, that it is compulsory to recourse 

to approaches for increasing the efficiency of sampling for Monte Carlo methods. 

The use of efficient Monte Carlo-based methods to quantify uncertainty in reliability 

and risk analyzes has led to recent developments with advanced variance reduction 

techniques (Pedroni et al., 2017). In the literature, there are several techniques e.g., 

importance sampling (IS) (de Angelis et al., 2017), subset simulation (SS) (Jia et al., 

2017), and orthogonal plain sampling (OPS)(Wang and Kiureghian, 2017), metamod-

els (e.g., kriging and polynomial expansions) (Schöbi et al., 2017). 

2.5 Sensitivity analysis 

The relative importance of each input of a model can be measured by Sensitivity Anal-

ysis (SA). In literature, a wide variety of SA methods can be found such as reviews of 

various methods in (Helton et al., 2006; Saltelli, 2008; Xu and Gertner, 2008). This 

method can be divided into two main categories: local and global. 
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The local sensitivity analysis focuses on the local impact of the inputs on the model. 

The global sensitivity analysis focuses on the entire variation of the input or a combi-

nation of different input variables. 

2.5.1 Variance-based sensitivity analysis 
A form of global sensitivity analysis is variance-based sensitivity analysis. The proce-

dure for the variance-based sensitivity analysis is briefly reported. For more details see 

Saltelli (2008). Define  ( ) 0,1X i  , as a set 1,2, ,i d=  of model inputs distributed 

in the hypercube unit and Y as an output of a model M (in case of multiple outputs, 

these can be evaluated by several independent sensitivity analyzes) as follows 

 ( ) : ,  M Y M→ → =X X  (2.30) 

The model can be expressed as follows: 

( )( ) ( ) ( )( ) ( )0 , 1,2, , 1 2
1 1

, , , ,
d d

i i j d d
i i

Y f f X i f X i X j f X X X
= =

= + + + +   (2.31) 

where f0 is a constant and fi is a function of Xi, fij is a function of Xi and Xj. The func-

tional decomposition orthogonal can be written as conditional expected values: 

 

 0f Y=  

( )( ) ( ) 0i Y X if fX i   − =  

( ) ( )( ) ( ) ( ) 0, , i jij Y X i Xf X i X j j f f f  − − − =  

(2.32) 

where Mi is the effect of variation X(i) (also described as the main effect of factor i), 

and Mij is the effect of variation X(i) and X(j) together, more to the effect of their single 

variations. This is so-called second-order interaction. Higher-order terms have similar 

notions. The functional decomposition can be traced back to the variance decomposi-

tion equation as follows: 

 ( ) 1,2, ,
1

d d

i ij d
i i j

Var Y V V V
= 

= + + +   (2.33) 

where Vi and Vij are: 
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i ii iXV ar YV X =     

,
ij jij ij X ijiV Va Y X V VXr 


 = − −
 


  

(2.34) 

The notation iX  denotes the group of all variables apart X(i). The variance decompo-

sition displays how the variance of the model output can be decomposed in relation to 

each input and the interaction effects among them. Jointly, all terms grow the total 

variance of the model output. 

2.5.2 Sobol’s indices 
The first order sensitivity coefficient that quantifies the effect of each input factor on 

the model output is defined as follows (Sobol, 1993): 

 
( )

 
i iX

i Y

Y XVar
S

Var

i 
 


=


 (2.35) 

where ( )X i  is the ith uncertain input factor, iX  is the matrix of all uncertain factors, 

i iY X    is the prediction of the model output Y taken over all possible values of 

iX  while removing the ( )X i  uncertainty (i.e. keeping iX  fixed),  
iXVar  is the var-

iance taken over all possible values of ( )X i  and  Var Y  is the total variance of the 

output Y. The indices Si can be used to reveal the importance of the input factor ( )X i  

on the variance of the output and it is a normalized index, that is 1ii
S = . 

The total effect index 
iTS  is also known as the higher-order Sobol’s effects (second 

and higher-order interactions). All the interactions with other uncertain factors are ac-

counted for by this variance-based measure of the influence of input i. It is defined as 

follows: 

 
   

1i i

i

i i Xi i
T

XXVar
S

Var Y Var Y
Y V Y    

   = =


−
   X X

 (2.36) 



30 | Review of basic probabilistic methods and risk assessment procedures 
 

where 
iTS  report the involvement to the total variance of the output  Var Y when the 

first-order effect iX  is deleted. Instead iS , we have generally 1
iTi

S   as the input 

factor effects are included multiple times because of interactions into the model (

1
iTi

S =  in case of merely additive models). 

2.6 Risk assessment in engineering 

2.6.1 Procedure for risk assessment 
Risk assessment has become a very popular and widely practiced topic in the industry 

in recent years. The National Academy of Science “Red Book” captures the funda-

mental principles of risk assessment where the assessment and decision making are 

maintained separately. Risk assessment is considered as a scientific task restricted by 

the available knowledge and the uncertainty intrinsic in risk, whereas the decision-

making process is treated as a political act, risk assessment being one part of input but 

never the only purpose for decision making (National Research Council, 1983). For 

the decision-maker, quantifying the risk is useful for preventing the risk, implementing 

the mitigation and prevention measures and defining the various priorities. Defining 

levels of acceptability of risk is also important for safety analysis and rational decision-

making. 

The basic idea of this evaluation is to model a system using the information and 

knowledge available and define a threshold for which it is acceptable. If the knowledge 

of the event and of the elements that constitute the response of the system is limited, 

the evaluation will be affected by uncertainty (Zio, 2018). 

Generally, the frameworks describing this uncertainty are based on Bayesian proba-

bility theory where combined information from databases and expert opinions are 

combined to assess risk (Kelly and Smith, 2009, 2011). 

In the literature today, these approaches are commonly referred to as Probabilistic Risk 

Assessment (PRA), albeit Probabilistic Safety Assessment (PSA) and Quantitative 

Risk Assessment (QRA). 

The basics of risk quantification based on probabilistic analysis (Rechard, 1999, 2000) 

have still been applied for more than 35 years since their first application to nuclear 

power plants in the early 1970s (NRC, 1975). 
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These approaches have also been extended to civil engineering and especially to earth-

quake engineering. The applications in the seismic field are connected to the C. Allin 

Cornell and Haresh C. Shah groups of Stanford University, who applied typical prin-

ciples of nuclear risk engineering to civil structures. 

As it is well known, in this field the risk can be defined as the product of the seismic 

hazard A, vulnerability V and exposure E. 

Risk ( , , )A V E=  (2.37) 

The seismic risk was then extended to a probabilistic assessment using the Perfor-

mance-based Earthquake Engineering (PBEE) framework (Deierlein et al., 2003; 

Krawinkler and Miranda, 2004). 

In this thesis, we will focus mainly on the vulnerability component and the related 

uncertainty. In the PBEE, vulnerability is described utilizing the fragility curve. This 

curve, which is mathematically a cumulative probability function, describes the prob-

ability of overcoming an assigned parameter (e.g. limit load, limit displacement, etc.) 

at an intensity measure. 

In recent decades we are trying to expand beyond the concept of risk. In addition to 

the concepts of robustness, safety and reliability already widely present in the litera-

ture, the resilience of a system is also evaluated. Table 2.2 shows the classic terminol-

ogy present in the risk. 

Of course, all of these risk-related concepts are in turn correlated with the role that 

knowledge and robustness of data play. Any analysis that can be done is quite accurate 

the more the uncertainty due to the models and data is reduced. 

Therefore the definition of risk can be expressed as follows (Aven and Renn, 2010): 

( )Risk , , ,= (2.38) 

where  denotes the hazard scenarios that may occur,  indicates the set of conse-

quences,  represents the metrics of uncertainty quantification and  is the 

knowledge of the risk assessment. 

The formulation of risk reported clearly explains the role of knowledge in the output 

variable. This shows the knowledge conditions the risk. The knowledge available can 
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be classified into four categories (Flage and Aven, 2015; Zio, 2018): 

1. Unknown-unknown that identifies those events and scenarios that were un-

known to everyone, at the time of the risk assessment; 

2. Unknown-known indicates those events and scenarios unknown to the risk an-

alysts performing the assessment, but known to someone else; 

3. Known-unknown identifies situations of awareness where the background 

knowledge is weak but there are indications or justified beliefs that a new, un-

known type of event or scenario (new in the context of the activity posing the 

risk) could occur in the future; 

4. Known-known indicates events and scenarios that are known to the analysts 

performing the risk assessment, and for which evidence exists. 

Risk models must evaluate two fundamental aspects with the use of simulation models: 

the identification of the hazardous conditions for the system, i.e., using Eq. (2.38) must 

consider the triplet ( ), , . This triplet represents the critical conditions of the sys-

tem. Finally, it is fundamental to estimate the probability of occurrence of rare critical 

scenarios, i.e., ( ),  in Eq. (2.38). 

Table 2.2: state of art of the risk terminology related to the systems. 

Term Definition 

Hazard an act or phenomenon posing potential harm to some person or thing and its 

potential consequences (Ayyub, 2014). 

Reliability the ability to fulfill its design functions under designated operating or envi-

ronmental conditions for a specified period (Ayyub, 2014) 

Risk the potential of losses and rewards resulting from exposure to a hazard or 

as a result of a risk event (Ayyub, 2014) 

Safety the judgment of risk acceptability for the system (Ayyub, 2014) 

Robustness strength, or the ability of elements, systems, and other measures of analysis 

to withstand a given level of stress or demand without suffering degradation 

or loss of function (Bruneau and Reinhorn, 2007); 

Vulnerability the lack of robustness (Rocchetta, 2018) 

Resilience The ability to withstand high impact-low probability events, rapidly recov-

ering and improving operations and structures to mitigate the impact of sim-

ilar events in the future (Panteli and Mancarella, 2015) 
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Any risk model that is addressed presents several ways to assess that risk. Different 

simulation models are possible. The main ones are: 

• High-dimensional, i.e., with a large number of inputs and/or outputs. 

• Black box without an explicit input and/or output relation. Coded in a computer 

program or using meta-model (e.g., data and artificial intelligence). 

• Dynamic because the system changes in time 

• Computational depending indeed for a single test simulation, as an effect of 

the above specifics of the models and the numerical methods utilized for their 

solution. 

Risk science like reliability engineering is plagued with old problems and new 

challenges: 

• the modeling and the representation of the problem; 

• the quantification of the model; 

• the quantification, propagation and representation of the uncertainty of model 

behavior. 

In particular, this thesis focuses on the quantification, propagation and representation 

of uncertainties. In seismic engineering as well as in structural engineering, attention 

has always been focused on the first two points and the third point has been analyzed 

only concerning the seismic input. In reality, quantifying and describing the uncertain-

ties deriving from a model is the most relevant challenge as their understanding allows 

to improve the models currently in use and allows the decision-maker to be aware of 

the tool he uses. 

2.6.2 Uncertainties in risk analysis 
Management problems that evolve many risks and have limited knowledge of funda-

mental phenomena lead to uncertainties in valuations. Clarifying what is known and 

what is not can only be helped by identifying and quantifying uncertainties. 

Depending on the decision and management rules to be applied, different levels of risk 

assessment can be applied to the entity of the outcomes and their probabilities. 

Six levels are defined for the treatment of uncertainties (Figure 2.10): 
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• Level 0: hazard detection and failure modes identification 

• Level 1: “worst-case” approach 

• Level 2: quasi-worst cases and plausible upper bounds 

• Level 3: best estimates and central values 

• Level 4: probabilistic risk assessment, single risk curve 

• Level 5: probabilistic risk analysis, multiple risk curves 

The various levels of treatment of uncertainty and risk assessment are now briefly de-

scribed. For more details see Paté-Cornell (1996). 

Level 0 involves identifying a potential hazard or possible ways in which a system can 

collapse, without quantitatively assessing the risk. In theory, this approach can support 

rigorous zero-risk decisions, i.e. when costs are low and the decision is clear. 

Level 1 presents the so-called “worst-case” approach. This approach has no notion of 

probability and is based on worst-case assumptions and in theory the maximum loss 

level is obtained. This approach is applicable when the loss is sufficient to support the 

decision. 

Level 2 has “plausible upper bounds” and is also called the “near worst-case” ap-

proach). 

This method is a first attempt to assess risk by considering some uncertainty about the 

worst-case or that is unlikely or rare such that it is meaningless to consider it. We begin 

to think about possible scenarios. 

Level 3 provides a "best estimate" on a central value, e.g. average. We begin to think 

about the distribution of the result through the “best estimates” of the variables con-

sidered. This approach is currently a major direction of the legislator and various gov-

ernment agencies. 

Level 4 includes probabilistic risk analysis (PRA). PRA in its simplest form can be 

performed to obtain a distribution of the probabilities of the different states of the sys-

tem based on the best estimates of the models and the values of the parameters. This 

procedure is widespread in the literature and applied in the last decades in all fields. 
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Figure 2.10: six levels of treatment of uncertainties in risk analysis (Paté-Cornell, 1996). 
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Level 5 represents the most comprehensive level for a risk assessment. This level al-

lows you to expose the uncertainties of various model inputs and their outputs using a 

family of curves. Carrying out a statistical treatment of existing data, which is employ-

ing Bayesian inference, allows a more targeted and congruent risk assessment with the 

data in possession and with the models adopted. 

Therefore, this level represents the best compromise to give the decision-maker all the 

tools and information for the problem posed. This level can be achieved with all the 

techniques described in Chapter 2. 

2.7 Structural Reliability in existing structures 
The evaluation of the probability of a structure having an appropriate performance in 

its useful life can be defined as the reliability of a system. This probability of failure 

allows us to estimate its reliability with generally incomplete information. 

The evaluation phase of an existing building compared to one in the design phase dif-

fers mainly from the information that can be obtained. Therefore, evaluating the relia-

bility of an existing structure must also incorporate the relative uncertainties and the 

relative lack of information. It is quite true that most existing structures do not have 

all the information that a new project requires. 

For this reason, the evaluation of the reliability of a structure that leads to the evalua-

tion of its index should not be considered an absolute number but a nominal value. 

Structures are generally designed to meet some coded security requirements. These 

criteria are codified by the various codes using formal calculation models. All this is 

formalized through a reliability index ( )prior  that must be higher than that specific to 

the code ( )target . 

 prior target   (2.39) 

The same condition must be maintained if the information provided by the data and 

experimental tests is integrated. Therefore, a new a posteriori reliability index is de-

fined which must be higher than the one fixed by the code. 
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 posteriori target   (2.40) 

The reliability index depends a lot on the type of structure considered, the material and 

the actions to which it is subject. For example, structures under seismic action have a 

different reliability index than structures under wind action. 

The reliability of a structure is evaluated based on probabilistic models for loads and 

resistances and can have a limited correlation with the real reliability of the structure. 

This modeling is strongly influenced by the assumptions made a priori and therefore 

this measure. This benchmark is established through best practices. 

What is defined as best practice is defined according to conventions defined by the 

goal set. Normally, reference values are defined for the annual probabilities of exceed-

ing in the range of 10-6 - 10-7. This interval varies according to the structure and mo-

dalities of the limit state considered. Furthermore, these analyzes, to be defined based 

on the objective set and the mode of damage set, consider socio-economic aspects. 

Table 2.3 – 2.4 show the reliability reference values for the ultimate limit state and the 

service limit state defined for the structures by JCSS (2001). Note how the reliability 

indices and the annual probability of collapse vary according to the consequences of 

collapse and the cost of the measures to guarantee its safety. 

Table 2.3: target reliability index β and failure probabilities PF related to ultimate limit states. 

Relative cost of 
safety measure 

Minor consequences 
of failure 

Moderate consequences 
of failure 

Large consequences 
of failure 

High ( )33.1 10FP −=   ( )43.3 5 10FP −=    ( )43.7 10FP −=   

Normal ( )43.7 10FP −=   ( )54.2 10FP −=   ( )54.4 5 10FP −=    

Low ( )54.2 10FP −=   ( )54.4 10FP −=   ( )64.7 10FP −=   

 

Table 2.4: target reliability index β and failure probabilities PF related to irreversible serviceability limit states. 

Relative cost of safety measure Target index 

High ( )11.3 10FP −=   

Normal ( )21.7 5 10FP −=    

Low ( )22.3 10FP −=   
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3 Out of-plane local failure of masonry walls 

The chapter deals with the evaluation of fragility functions for unreinforced masonry 

walls in the presence of local failure mechanisms considering the out-of-plane re-

sponse. This chapter is partially contained in the following publication: 

Nale M., Minghini F., Chiozzi A., Tralli A. (2021) “Fragility functions for local failure 

mechanisms in unreinforced masonry buildings: a typological study in Ferrara, Italy” 

Bullettin Earthquake Engineering. https://doi.org/10.1007/s10518-021-01199-6 

 

3.1 Overview 
Unreinforced Masonry (URM) buildings represent a large part of the Italian building 

stock. Compared to new buildings, existing URM buildings tend to be more vulnerable 

to earthquakes. In Italian historical centers, this is essentially due to the following 

causes: 

1) Old buildings frequently have strong changes over time, often resulting in a 

reduction of cross-section areas of masonry walls, a general weakening of mu-

tual connections between walls and floors, and sometimes a significant in-

crease in the seismic masses. 

2) Materials may be seriously degraded due to weathering, rising damp, and poor 

maintenance. 

3) In some territories, such as a large part of the Po River plain, seismic design 

has become mandatory only since 2005, and most of the buildings have been 

designed in the absence of specific provisions for earthquake resistance. 

Recent seismic events (Decanini et al., 2004; Indirli et al., 2013; Penna et al., 2014; 

Sorrentino et al., 2019) have provided evidence that Out-Of-Plane (OOP) collapse 

mechanisms in URM structures still represent a serious life-safety hazard. 
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In fact, under seismic actions, existing URM buildings are often subjected to local 

collapse mechanisms involving partial or whole OOP failure of façade walls (D’Ayala, 

2005, 2013; D’Ayala and Speranza, 2003; Maio et al., 2016). Both activation and evo-

lution up to the collapse of these mechanisms strictly depend on the stiffness and 

strength of connections between facade walls and other structural elements such as 

partition walls, floors and roofs. 

It is worth observing that, despite the recalled vulnerability of existing URM buildings 

to OOP collapse mechanisms, the European standard (CEN, 2005b) lacks information 

about the procedure to be used to assess the OOP behavior of masonry walls. 

In Italy, the seismic analysis of historical URM buildings based on the assessment of 

collapse mechanisms starts with Giuffré (1996). Linear kinematic analysis is consid-

ered one of the most reliable tools to assess the activation of OOP failure of masonry 

walls and is currently adopted by the Italian building code (MIT, 2018). 

It is based on the use of the kinematic theorem of limit analysis to select, among vari-

ous OOP mechanisms, that lead to the minimum seismic load multiplier (0). This 

multiplier may be rewritten in terms of acceleration capacity (a0). If W = Mg indicates 

the generic gravitational load associated with mass M and gravity g, the activation load 

is given by 0W = a0Mg/g = a0M. Then, for the safety check, acceleration capacity a0 

is compared with acceleration demand aref provided by the building code for the se-

lected limit state. Yet, when the mechanism evolution is of interest, a displacement-

based (nonlinear) approach should be used. 

This approach, usually referred to as kinematic nonlinear analysis, is based on the fol-

lowing steps (MIT, 2018): 

1) imposition, for the selected mechanism, of equilibrium conditions correspond-

ing to a generic, deformed configuration; 

2) evaluation of the capacity curve for the mechanism as a continuous function of 

the horizontal displacement of a control point; 

3) transformation of the capacity curve for the mechanism into the capacity curve 

corresponding to an equivalent Single Degree-Of-Freedom (SDOF) system; 

4) location, on the SDOF curve, of a limiting displacement corresponding to the 

considered limit state and comparison with the displacement demand. 
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This analysis method provides an approximation of the envelope of acceleration-dis-

placement rocking cycles for the mechanism, and results then to be more suitable to 

catch the Ultimate Limit State (ULS) conditions of masonry walls than the linear 

method. It can happen, for example, that the mechanism with the smallest displace-

ment capacity does not coincide with the mechanism with the minimum activation 

acceleration. It can be the case of vertical bending mechanisms of slender walls, which 

usually provide activation loads significantly larger than simple overturning mecha-

nisms, but tend to experience a very low displacement capacity prior to collapse. That 

said, the rocking behavior of rigid blocks is highly influenced by ground motion char-

acteristics, which cannot be taken into due account without a nonlinear time-history 

analysis. Various authors showed the drawbacks related to the use of kinematic anal-

ysis methods, which often underestimate the actual capacity of URM walls (Giresini 

et al., 2015; Shawa et al., 2012; Sorrentino et al., 2016). 

There are several numerical methods that allow to evaluate the structural response 

through nonlinear dynamic analyses. For example they were used FEM with different 

constitutive relationships (e.g., Concrete Damage Plasticity (CDP), Total strain-based 

crack (TSC)), discontinuous methods (e.g., Non-Smooth Contact Dynamics (NSCD), 

Discrete Element Method (DEM)) (Clementi, 2021; Clementi et al., 2019; Ferrante et 

al., 2021) and Discrete Macro-Element Modeling (DMEM) (Chácara et al., 2019). The 

simplest and one of the better performing approaches appears to be the nonlinear dy-

namic analysis of the walls considered as rocking rigid blocks. 

The study of rocking oscillators began with the seminal paper by Housner (1963), that 

derived a SDOF equation of motion for the OOP response of a parapet wall. Following 

that study, the research focused on the description of the dynamic response of rocking 

blocks subjected to either earthquake excitations or pulse (Spanos and Koh, 1984; Yim 

et al., 1980). It has been found that this response may be characterized by dynamic 

instability and strong nonlinearity. Later, other models were adopted introducing 

equivalent SDOF models to govern the dynamic behavior of complex multi-block 

rocking systems (DeJong and Dimitrakopoulos, 2014; Sorrentino et al., 2008). A 

SDOF force-displacement idealization of the rocking behavior of URM walls was pro-

posed by Doherty et al. (2002). 

A unified, probabilistic approach taking account of uncertainties, vulnerability, and 
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risk can provide, with the use of nonlinear dynamic analysis, a better estimate of struc-

tural safety levels. One of the main tools in PEER - PBEE framework (Deierlein et al., 

2003; Krawinkler and Miranda, 2004) is the fragility function. 

For the rocking block, various studies provided fragility functions in terms of different 

intensity measures (Chiozzi et al., 2017; Dimitrakopoulos and Paraskeva, 2015; Lag-

omarsino, 2015). The methods available in the literature to derive fragility functions 

can be divided into four categories (Pitilakis et al., 2014; Silva et al., 2019): analytical, 

empirical, expert judgment, and hybrid. Fragility functions have also been proposed to 

describe the global behavior of masonry structures (Lagomarsino and Giovinazzi, 

2006; Rota et al., 2010; Spillatura et al., 2014). Most of these researches consider only 

the in-plane response of masonry walls (Chiozzi and Miranda, 2017). More recent 

studies propose fragility functions for OOP mechanisms based on kinematic limit anal-

ysis (Zuccaro et al., 2017). Simões et al. (Simões et al., 2019a, 2019b, 2020) developed 

fragility functions for URM buildings combining in- and out-of-plane wall responses. 

In particular, for the OOP response, nonlinear kinematic analyses were used in that 

work. In addition, (Ferreira et al., 2017) developed fragility curves for OOP walls cal-

ibrated with observed damage. 

This chapter presents a procedure to derive fragility functions for OOP mechanisms in 

URM buildings based on nonlinear dynamic analyses adopting a rigid block model. 

Fragility functions are derived considering the uncertainties associated with the pecu-

liarities of masonry structures. These uncertainties are both aleatory and epistemic. 

The aleatory variables involved, such as wall geometry, masonry mass density, loads 

transferred from floors and roof, are treated by the Monte Carlo method (Zio, 2013). 

Epistemic uncertainty is treated through the use of logical trees (Simões et al., 2019b). 

In the end, the individual fragility functions obtained are combined to define a typo-

logical fragility function for a class of masonry buildings. 

The approach adopted for the derivation of fragility functions is described in detail in 

the following sections. The method is then applied to a case study concerning a histor-

ical aggregate in the city center of Ferrara, Italy (Figure 3.1). 

Some preliminary results of this research have been recently presented by Nale et al. 

(2020). 
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Figure 3.1: the historical aggregate in the center of Ferrara, Italy (aerial view). 

 

3.2 Seismic performance of masonry structures in 2012 Emi-

lia earthquake 

In 2012 northern Italy was hit by a seismic sequence in the Emilia area i.e., the prov-

inces of Bologna, Ferrara and Modena and some municipalities of the provinces of 

Mantua and Rovigo. This seismic sequence is characterized by two main shocks, one 

on May 20 and the second on May 29. 

The first event, that of May 20 at 02.03 UTC (04:03 local time), is characterized by a 

local magnitude ML = 5.9. The main damages occurred in San Felice sul Panaro and 

Finale Emilia. 

The second earthquake of May 29th at 07.00 UTC (09.00 local time) was characterized 

by a magnitude of ML = 5.8 at a distance of 12 km from the event of May 20th and 

near Felice sul Panaro. Figure 3.2 shows the relative ShakeMaps in macroseismic in-

tensity (Mercalli Cancani Sieberg scale, MCS) for the two main shocks. For more de-

tails on seismic sequences see Chioccarelli et al. (2012a, 2012b). 

This earthquake is particularly interesting because it hit structures made of fired clay 

brick masonry with lime mortar compared to the earthquakes of the past in Italy that 

had affected structures built with stone masonry (Carocci, 2012; Decanini et al., 2004). 
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Figure 3.2: Shake Maps of the seismic events of May 20th (Mw = 5.8) and May 29th (Mw = 5.6) from INGV Shake 
Map Archive (http://shakemap.ingv.it/shake4/archive.html). 

The seismic sequence caused various damages to the existing and cultural building 

heritage (Cattari et al., 2012; Penna et al., 2014; Valente and Milani, 2018). The 

historical masonry structures constitute an important part of the building stock in the 

area. Existing masonry buildings often show typical defects and lack of adequate 

details which increase their seismic vulnerability since the affected area has only been 

classified as potentially seismic since 2003. 

A common feature of these buildings is the limited thickness of the walls. Due to the 

mechanical resistance properties of brick walls that are usually better than stone ma-

sonry, the use of double-leaf walls (about 25 cm) usually does not create concern in 

the case of residential buildings, where the height of the floor is about 3 m and the 

perpendicular walls are quite close together. In the case of churches, towers and build-

ings where the height between the floors can be significant this can produce high crit-

icalities with an increase of vulnerability. Figure 3.3 shows some examples of wall 

sections. These cross-sections of the walls are characterized by a limited thickness, 

scarce and in some cases with no connection between the leaf walls. 

A further important aspect found in residential and agricultural structures was the 

scarce and ineffective connection between the floor and the walls and between the 

walls and the floor. In particular, a series of local collapses were found in the presence 

of thrust or unstable wooden roofs (Sorrentino et al., 2014). 



Seismic performance of masonry structures in 2012 Emilia earthquake | 45 

 
 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 3.3: cross-sections of walls present in Emilia (images from Cattari et al. (2012)). 

The case of poorly maintained wooden roofs has been found quite widely. These roofs 

have allowed and, in some cases, favored out-of-plane mechanisms on the top of the 

buildings. Figure 3.4 reveals some of the damage, mainly OOP mechanisms, found in 

masonry buildings in Emilia. A particular case of severe and anomalous damage is that 

observed in the municipality of Sant’Agostino (Figure 3.4c). The damages are charac-

terized among other things by the presence of a double volume of about 8 meters with 

an external wall with two heads. 

However, recent masonry buildings should have been designed to prevent the main 

vulnerabilities of old masonry structures. The national design standards encourage 

some basic rules for reducing vulnerability such as regular and robust units, the limi-

tation of the slenderness of the walls, the effectiveness of the connections between 

walls and between floor or roof, a sufficient in-plane stiffness of the floor or roof dia-

phragms and the regularity of the structure. Before the 2003 revision of seismic clas-

sification, most of the modern masonry structures were erected only to resist vertical 

loads. These buildings present an inadequate lateral strength for an insufficient area of 

masonry walls, potential irregularities in plan and elevation and divergence in the com-

pulsory structural details and minimum mechanical properties of units and mortar. In 

most of the cases, the post-earthquake inspections have illustrated a good seismic per-

formance and the absence of considerable damage, in structural and non-structural el-

ements, even in zones near to the epicenters of the seismic events for buildings de-

signed after 2003. 
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a) 

 

b) 

 

c) 

 

d) 

Figure 3.4: examples of damage to the walls of masonry buildings in the Emilia earthquake (images from Ferretti 
and Tralli (2013)). 

 

3.3 State of art of out-of-plane assessment method 

The evaluation of the out-of-plane response of masonry walls represents one of the 

crucial aspects for the evaluation of the vulnerability of existing URM buildings. This 

behavior under dynamic action (e.g., earthquake) under inertial forces is particularly 

complex and difficult to understand, due to the non-homogeneous and discontinuous 

nature of the masonry and the interaction with the building (Priestley, 1985). 

Some international codes and guidelines provide simplified methods for assessing lo-

cal collapse mechanisms (e.g., ASCE / SEI 41-06 2006; NZSEE 2006; AS3700 2011, 

NTC 2018). In particular, in this section, the main procedures codified by the Italian 

standard will be exposed (MIT, 2018), which includes methods based on forces and 

displacements for out-of-plane mechanisms for URM structures.  

For further details see (Lagomarsino and Resemini, 2009; Magenes and Penna, 2011; 

Penna, 2015; Sorrentino et al., 2016). Finally, the dynamic analysis method will be 
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exposed which allows idealizing the walls as rigid blocks (Doherty et al., 2002; Hous-

ner, 1963; Lagomarsino, 2015). Figure 3.5 shows an example of possible out-of-plane 

mechanisms for the walls of masonry buildings. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 3.5: example of out-of-plane wall overturning in unreinforced masonry buildings (D’Ayala and Speranza, 
2003): a) overturning of a wall at first-floor b) partial overturning of the facade, c) total overturning of the facade, 
d) flexural mechanism of a wall, e) flexural mechanism of the façade. 

 

3.3.1 Capacity curve 
Each mechanism is evaluated by means of an incremental kinematic analysis which 

allows to derive a pushover curve. For each configuration, the displacement dk of a 

control point is defined and the collapse load multiplier α is estimated using the Virtual 

Works theorem. 

The pushover curve obtained is characterized by a static horizontal multiplier α0. This 

multiplied is a dimensionless acceleration necessary to activate the mechanism. This 

describes how capacity changes as the mechanism evolves (Figure 3.6). The curve is 

defined until the collapse multiplier value is 0 and gravity instability is reached. 
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Figure 3.6: examples of the acceleration-displacement capacity curve obtained by nonlinear kinematic analysis as 
proposed by Italian standard (Magenes and Penna, 2011). 

The Italian standard suggests for a more refined calculation to consider the compres-

sive strength of the masonry with a recess of the pin inside the contact section and with 

possible frictional stresses due to the interlocking with the transverse structures. 

The capacity curve is obtained from the pushover curve obtained from the kinematic 

incremental analysis. Equivalent displacement d* and equivalent acceleration a* are 

required to describe the relative single degree of freedom (SDOF). The equivalent dis-

placement d* is defined as follows: 
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while equivalent acceleration a* is defined as follows: 
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*
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e
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=  (3.2) 

The aforementioned equations are defined by Wn is the mass of n element 
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(macroblock), δn is the horizontal displacement at the point of application, g is the 

gravity acceleration, α is the load multiplier and e* is the ratio between the modal mass 

and the total mass. 

3.3.2 Force-based approach 
The force-based approach (FBA) verification consists of verifying that the capacity is 

greater than the demand according to the force-based control by satisfying the follow-

ing inequality: 

 *
0

ga S
a

q
  (3.3) 

where ag is the ground acceleration on stiff soil (class A (CEN, 2004)) for the chosen 

limit state, S is the soil coefficient and q is the behavior factor. In this case q = 2.0 

according to Eurocode 8 (CEN, 2004, Table 4.4). This behavior factor is suitable for 

partitions and facades. 

3.3.3 Displacement-based approach 
Force-based approach (FBA) is widely recommended for URM buildings because it is 

perceived as having very limited ductility. However, experimental tests have shown 

that seismically excited walls can sustain accelerations well above their capacity de-

fined by static calculation (ABK, 1981; Doherty et al., 2002). 

The displacement-based approach (DBA) consists of: 

 ( )*
u De Sd S T  (3.4) 

where *
ud  is determined as: 

 ( )* * *min 0.40 ;u o insd d d=  (3.5) 

where *
insd  is the displacement corresponding to any situations that could affect the 

stability of the mechanism and ( )De SS T is the elastic displacement spectrum evaluated 

at the secant period Ts. The secant period Ts of mechanism is defined as: 
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where * *0.4s ud d=   and *
sa  is the relative pseudo-acceleration of the bilinear response 

curve. 

3.3.4 Dynamic approach 
Modeling unreinforced masonry walls, subjected to seismic loads, represents an im-

portant challenge for both engineers and researchers because of its complexity of being 

described with nonlinear dynamic analysis. In this study, a single degree of freedom 

(SDOF) numerical model is used for the analysis of their dynamic behavior under seis-

mic action. 

3.3.4.1 Modeling strategy 

The equation of motion for a rocking block associated with a given local mechanism 

can be derived using Lagrange’s equation (DeJong and Dimitrakopoulos, 2014): 

 
( ) ( ) ( )

( ) ( )
, ,

g

T T Vd B u Q
dt

    
 

  

   
  − + = − +
   
 

 (3.7) 

where   is the lagrangian parameter that describes the motion, T  and V indicate kinetic 

and potential energy, respectively, ( ) gB u−  is the generalized inertial force induced 

by earthquake ground acceleration üg, Q is the generalized force provided by static 

loads and overdot stands, as usual, for time derivative. Equation (3.7) can be rewritten 

in the following form: 

 ( ) ( ) ( ) ( ) ( )2
gI J G B u Q      + + = − +  (3.8) 

where ( )I  , ( )J  , ( )G   and ( )B  are nonlinear functions of  . It is also possible to 

derive from Equation (3.8), for different local mechanisms, the load multiplier that 

activates the rocking motion from a resting position, i.e. from a state with null accel-

eration and velocity ( 0,  0,  0  = = = ): 
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where g is the gravity acceleration. The same load multiplier can be obtained by the 

limit analysis approach. In rocking systems, the energy dissipation is associated with 

the impact of the blocks at the base (Housner, 1963; Spanos and Koh, 1984; Yim et 

al., 1980). The restitution coefficient is defined, indeed, as the ratio of angular velocity 

after and before the nth impact. 

This formulation, reported in Sections 3.3.4.2 and 3.3.4.3, is widely used in the litera-

ture (Liberatore and Spera, 2001; Makris and Konstantinidis, 2003; Sorrentino et al., 

2011). In the adopted models it is assumed that the rigid block is rocking on a rigid 

foundation (this is not completely true). The coefficient strongly depends on the con-

tact interface as shown in experimental tests (ElGawady et al., 2011). If the role of the 

base is considered, a possible shifting rotation point defined based on the interface 

(compressive behavior of interface and accounting of crushing effects) should be con-

sidered (Mehrotra and DeJong, 2018). 

3.3.4.2 One-sided rocking 

A one-sided rocking can be assumed for a wall even though the presence of internal 

constraints such as transverse walls and floor slabs. The governing equation for the 

one-sided rocking of a rigid body can be written similarly to that for two-sided rocking: 

 ( ) ( )0 sin cosb b gI gM R M Ru    + − = − −  (3.10) 

where I0 is the polar moment of inertia with the pivot point 0, Mb is the mass of the 

block and α is the internal angle and R is the length of the half-diagonal. In the case of 

vertical restraint, the rotation ϕ of the system remains positive (Figure 3.7). For one-

sided cases, the experimental evidence shows that energy dissipation depends on the 

interface between the rigid block and its external constraint through the coefficient 

(Sorrentino et al., 2011): 
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 (3.11) 
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For better and more accurate modeling of the seismic behavior of the wall, a tri-linear 

moment-curvature relationship with a finite initial stiffness can be assumed on the ba-

sis of experimental tests (Doherty et al., 2002). 

The tri-linear function takes into account initial imperfections, non-linear material be-

havior, and second-order effects. If this configuration is assumed with the tri-linear 

moment-rotation relationship, the motion equations can be written as follows (Boscato 

et al., 2014): 
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where R is the distance of the center of gravity from the rotation pivot, ki is the initial 

stiffness ( ) 2

1
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 (Table 3.1). The ultimate normalized rotation ( u ) of the SDOF 

system is equal to 1. The ultimate normalized rotation corresponds to the Engineering 

Demand Parameter (EDP, see Section 3.7.2.3). 

 
a) 

 
b) 

Figure 3.7: a) geometry of a rigid block under the one-sided rocking under ground motion, b) normalized moment-
rotation relationship (Sorrentino et al., 2016). 
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Table 3.1: the trilateral moment rotation curves parameters. 

State of degradation ∆1/∆u ∆2/∆u 

New 6 % 28 % 
Moderate 13 % 40 % 
Severe 20 % 50 % 

 

3.3.4.3 Two block mechanism 

The two-block mechanism can be used to describe the dynamic behavior of a wall that 

is characterized by the formation of the classical pivot interface at the wall top, bottom, 

and mid-height. The top and bottom pivot can rotate if they are under a ground motion 

excitation. The mechanism is described by these main parameters: α1 and α2 the de-

scribe the slenderness of the two blocks; I01 and I02 that are the polar moment of inertia 

regarding the relative mass centers Mb1 and Mb2 that are the masses of the bottom and 

the top blocks (Figure 3.8). 

 
Figure 3.8: (a) wall parameters, (b) cracked vertical spanning strip wall parameters, (c) displaced configuration and 
ground acceleration component acting in the mass centers of the two bodies. 

The resulting equation of motion is equivalent to those proposed in the literature 

(DeJong and Dimitrakopoulos, 2014; Mauro et al., 2015; Sorrentino et al., 2008) and 

can be written as follows; 
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with the following system coefficients that are not constant but are functions of rota-

tion  . 
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(3.14) 

The critical rotation and the horizontal load multiplier of the system become: 
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(3.15) 

and the coefficient of restitution ηtb is defined as follows: 
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The coefficient of restitution depends on the slenderness of the wall and the position 

of the hinge. For the stockier wall and lower intermediate hinge, the energy dissipation 

will decrease. For this type of mechanism, the value of the coefficient of restitution is 

between 0.84 and 0.90 from experimental tests (Graziotti et al., 2016). This model 

does neither include progressive damage (Doherty et al., 2002) nor an energy damping 

term (Tomassetti et al., 2019). In this chapter, the analytical formulation (eq. 10) is 

used for the analyzes. The rocking response results are obtained from a MATLAB 

code that numerically solves the nonlinear equations by means of a 4th-5th order Runge-

Kutta integration technique (The Mathworks Inc., 2016). 

3.3.5 Comparison between the linear, non-linear kinematic approach 

and non-linear dynamic analysis 
In this section, a critical review of seismic response assessment techniques for local 

collapse mechanisms in existing masonry structures is discussed. To have statistically 

robust results, three types of walls with the two different configurations of constraints 

are subjected to non-linear dynamic analyses (Table 3.2). 

Each wall was subjected to 44 accelerograms with 2 constraint configurations for 10 

different amplitude scales of ground motion. A total of 1320 non-linear dynamic anal-

yses were performed. The results of the dynamic analysis are expressed by the ratio 

between energy demand (ED) and capacity (EC) (Shawa et al., 2012; Sorrentino et al., 

2016). The energy demand (ED) is calculated as the maximum potential energy during 

the seismic action or as the sum of the potential and kinetic energy at instability. 

The capacity energy (EC) is calculated as the difference in the potential energy of the 

system. 

In Figure 3.9, the results obtained from the non-linear dynamic analyses are compared 

with the methods proposed by the Italian code (MIT, 2018, 2019). In the Italian code, 

the evaluation of local collapse mechanisms is recommended with two approaches: the 

force-based approach and the displacement-based approach. 
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Table 3.2: block used in the analysis, b is the thickness of the wall whereas h is the height of the wall. 

Wall b [m] h [m] boundary conditions 

1 0.25 4 one-sided rocking 

   two-block mechanism  

2 0.25 7.5 one-sided rocking 

   two-block mechanism  

3 0.25 11.2 one-sided rocking 

   two-block mechanism  

 

Non conservative case: 3% 

 
a) 

Non conservative case: 2% 

 
b) 

Non conservative case: 5% 

 
c) 

Non conservative case: 3% 

 
d) 

Figure 3.9: Comparison between Italian code (NTC 2018) and non-linear dynamic analysis: a) force-based ap-
proach for one-sided rocking, b) displacement-based approach for one-sided rocking, c) force-based approach for 
two block mechanism, b) displacement-based approach for two block mechanism. 

The force-based approach defines the acceleration capacity (a0*). The acceleration de-

mand is defined as the peak ground acceleration (PGA) divided by behavior factor q 

= 2.0. The ratio between demand acceleration (PGA at the base of the block) and ca-

pacity acceleration is used to compare the force-based approach to the ratio of energy 
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demands and capacity from dynamic approach that are presented in Figure 3.9a-c. 

The displacement-based approach, on the other hand, defines a displacement capacity 

(du*). The corresponding demand displacement is evaluated using the spectral dis-

placement (SDe(TS)) at the secant period (TS) of the local mechanism. The ratio between 

displacement demand and capacity is used to compare the displacement-based ap-

proach to the ratio of energy demands and capacity from the dynamic approach that 

are presented in Figure 3.9b-d. 

As it can be observed in Figure 3.9, the number of non-conservative cases is less for 

the one-sided mechanism, while it increases in the case of the two-blocks mechanism. 

Furthermore, it is possible to see how a displacement-based approach can reduce the 

number of non-conservative cases. Both code approaches confirm that they are in some 

cases non-conservative. 

3.4 Description of approach 
Under seismic actions, the local response is related to the activation of out-of-plane 

collapse mechanisms of parts of the buildings insufficiently connected to the rest of 

the structure (Figure 3.5). Furthermore, fragility curves were used to describe the local 

response in a probabilistic context. These curves are useful for defining related vul-

nerability models. 

The intensity measure (IM) adopted in this work is the peak ground acceleration (PGA) 

as required by the Italian building code (MIT, 2018) and which represents a common 

choice in the case of URM buildings. 

Epistemic uncertainty was treated using a logic tree approach that allows describing 

the vulnerability of each mechanism (Section 3.6.1). The aleatory uncertainty of each 

mechanism deriving from the properties of the materials, the geometry of the elements, 

and the loads applied on the mechanism have been treated with the Monte Carlo 

method (Section 3.6.2). 

The input parameters for a given mechanism were treated as one of the possible com-

binations of existing walls. To create a group of walls representative of the type of 

structures considered, a number of 1000 walls have been created. Such walls are the 

final result of all the uncertainties considered deriving from the epistemic and aleatory 

ones. 
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To create the topological fragility curves, we proceeded as follows: 

i) identification of all possible configurations of the collapse mechanisms and 

relative weights (Section 3.6.1); 

ii) extrapolation of the main collapse mechanisms from the logic tree (Section 

3.6.1); 

iii) generation of walls for the various mechanisms (Section 3.6.2); 

iv) multiple stripe analysis and creation of fragility curves (Section 3.7.2.4); 

v) typological fragility curves by combining the weights of mechanisms (Section 

3.7.2.5). 

 

3.5 Building Database 

3.5.1 CARTIS database 
The structural-Typological and Seismic ChARacterization database, referred to in the 

following as CARTIS (Zuccaro et al., 2016), is an inventory of building typologies 

funded by the Italian National Civil Protection Department and implemented by the 

Italian University Network of Seismic Engineering Laboratories (ReLUIS) with the 

purpose of a seismic vulnerability assessment at a territorial scale. To date, the data-

base collects information on 506 municipalities. For any given municipality involved, 

the data collection is mainly based on an interview to municipality technicians in-

formed on historical events of city planning. This generally allows subdividing the 

urban center into homogeneous building compartments and filling out a form with data 

(i.e., age of structures, types of vertical structures, floor slabs and roofs, geometrical 

data) on the various structural typologies contained into them. To validate the datasets, 

several buildings for each structural typology are also accurately surveyed on site. 

The resulting information is more detailed than that provided by available standard 

methods (ISTAT data, Census Database) and can more effectively support the creation 

of vulnerability models. In this chapter, the CARTIS database is used to develop typo-

logical fragility functions for local failure mechanisms in URM structures. 
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3.5.2 Case study 

3.5.2.1 The historic center of Ferrara 

The historic center of Ferrara is made up of 92% masonry buildings and the remainder 

is made up of reinforced concrete and mixed structures. The structures are of less than 

3 stories for 83%, albeit unevenly distributed concerning the construction periods of 

the city from the 14th to the 19th century (Dolce et al., 2015). 

The historical-urban development of the historic center of the city can be traced back 

to three main additions (Figure 3.10). 

 
Figure 3.10: urban evolution of the city of Ferrara. 
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The historic center consists of the first medieval nucleus up to the 12th century. In that 

period the cathedral was built and the first network of streets running perpendicular to 

the Po di Ferrara with the current streets of Porta Reno, Vignatagliata and San Romano, 

represented by the green area. 

Subsequently, there was the addition of Borso d’Este (1450) in the southern part of the 

city (Figure 3.10, red area). The last and most important addition was the one desired 

by Duke Ercole I d’Este made by the architect Biagio Rossetti in 1492. This addition 

is known as Addizione Erculea. This affects the northern part of the city with a new 

Renaissance structure (Figure 3.10, blue area). 

The area under study focuses on an area south of the city, which includes the medieval 

core and the addition of Borso d’Este. For the aggregate considered, we conduct accu-

rate analyzes for each structural unit belonging to the pathway, relating to the first 

mode most significant mechanisms. In addition, an accurate visual analysis was carried 

out for each case study in order to characterize the individual facades and highlight the 

main critical issues. In this study, all private buildings were considered, excluding his-

toric buildings and churches. Buildings made of reinforced concrete were also ex-

cluded. To highlight the prominence that local overturns can take on in the central area 

of the city, we briefly report the results of linear kinematic analyses performed for the 

facades in one street of the area, via Porta d’Amore. 

A three-dimensional model of the facade of all the masonry structural units identified 

in the street under study was created, for each model various simulations were then 

performed according to the global and local kinematics whose study was considered 

significant (Figure 3.11). 

 

Figure 3.11: a three-dimensional model of the facades for Porta d’Amore street. 
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Figure 3.12: possible combinations of mechanisms for the walls. 

The first mode mechanisms that have been studied are simple global overturning, 

global compound overturning (only for sidewalls that showed an adequate degree of 

clamping), simple overturning and vertical bending (Figure 3.12). 

For each wall, the safety coefficient ρ was calculated as the ratio between the maxi-

mum acceleration expected on the ground in the SLVa  life-saving limit state condition 

and the collapse acceleration of the kinematics a0*: 

 *
0

SLVa
a

 =  (3.17) 

where SLVa  is defined as Eq. (3.3). 

The safety factor ρ when it is between 0 and 1 indicates a safety situation as the max-

imum expected acceleration is lower than that necessary for the activation of the kin-

ematics itself. If it is greater than 1, the danger of the kinematics is greater and there-

fore unsafe. In fact, the kinematics will be able to activate with a much lower acceler-

ation than the maximum expected on the ground. 

To define the degree of danger we divided the coefficient ρ into intervals, in order to 

represent the results obtained with a chromatic scale and to be able to analyze them in 

a more intuitive way (Table 3.3). 
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Table 3.3: safety classification by means of the ρ safety coefficient. 

Range coefficient ρ degree of safety Color tag 

ρ < 1 safe green 

1 ≤ ρ < 2 low unsafe yellow 

2 ≤ ρ < 4 medium unsafe blue 

ρ ≥ 4 high unsafe red 

The most critical issues concern the simple global overturning of the walls. This con-

dition is particularly burdensome, especially for aggregate buildings. The presence of 

clamping with the sidewalls can be considered reliable in most cases; obviously, it 

involves a considerable decrease in the risk of overturning. 

The local overturning checks, carried out for the various floors, do not generally pre-

sent high criticalities. Verification of vertical bending are satisfied almost everywhere. 

The distribution of the capacity factors is therefore quite homogenous and no buildings 

have been identified in particular situations of isolated criticality compared to others. 
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3.5.2.2 A historical aggregate in the center of Ferrara 

We decided to survey a historical aggregate of buildings in the center of Ferrara (via 

Carlo Mayer) to improve the knowledge of masonry buildings with respect to the data 

provided by CARTIS database. For the selected compartment, there are two typologies 

of masonry buildings in the city center of Ferrara (MUR 1 and MUR 2) (Figure 3.1). 

The MUR1 typology refers to buildings from two to four stories, belonging to the old-

est part of the historic center (medieval area) but also to the Renaissance area up to the 

1800s and early 1900s (Figure 3.13). 

The MUR2 typology is more recent (from 1920 to 1945) and has a variable percentage 

of tie rods, even though it also has wooden floors and a wooden roof. The buildings of 

these types are for residential, commercial, tourist-accommodation, and office use 

(Figure 3.14). 

 
a) 

 
b) 

Figure 3.13: example of buildings MUR1 class. 

 
a) 

 
b) 

Figure 3.14: example of buildings MUR 2 class. 
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Table 3.4: buildings parameters from CARTIS Database. 

Parameters MUR 1 MUR 2 
number of floors 2 - 4 2 - 4 
average floor height [m] 2.5 – 3-5 2.5 – 3.5 
average ground floor height [m] 3.5 – 5.0 2.5 – 3.5 
average floor area [m2] 100 – 230 70 – 170 

age of building before 1860 
1861 – 1919 1919 - 1945 

type of masonry Clay brick wall Clay brick wall 
transversal connections No information No information 
with tie rods or tie beams 70% 60% 
average thickness of ground floor walls [cm] 30 30 
average distance between walls parallel to the fa-
cade [m] 5.5 4.5 

type of slab wood wood 
type of roof Wooden - not pushing Wooden - not pushing 

 

Table 3.4 shows the main parameters of the buildings in the historic center of Ferrara 

from CARTIS Database. 

The parameter that most differentiates the two typologies are the age of construction, 

the average height of the ground floor and the different percentage of tie-rods. 

The latter, understood as the percentage of buildings with chains compared to the total 

number of buildings, is useful information for defining the logic tree of possible col-

lapse mechanisms and assigning a percentage for the fragility curves associated. 

In fact, the presence of tie-rods at the level of all floors favors the occurrence of the 

expulsion mechanism and excludes overturning. 

The structural behavior of URM buildings is directly dependent on the materials and 

constructive details and indirectly dependent on the usage and state of conservation. 

One of the main challenges when assessing existing buildings is the definition of the 

mechanical properties of the materials (e.g. quality of clay brick walls, see Figure 

3.15). 

In general, the weakest points of URM buildings are poor connections (between walls 

or between walls and floors or roof) and the limited stiffness of timber floors (Figure 

3.16). 
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a) 

 
b) 

 
c) 

 
d) 

Figure 3.15: types of clay brick walls in Ferrara for MUR1 and MUR2 class. 

 

 

Figure 3.16: Out-of-plane collapse mechanisms taking into account connections with transversal walls (de Felice 
and Giannini, 2001). 

For the aggregate considered, we conduct accurate analyzes for each structural unit 

belonging to the pathway, relating to the first mode most significant mechanisms. 

In addition, an accurate visual analysis was carried out for each case study in order to 

characterize the individual facades and highlight the main critical issues. 

In this study, all private buildings were considered, excluding historic buildings and 

churches. Buildings made of reinforced concrete were also excluded. 

3.6 Evaluation of uncertainties 
To assess the seismic behavior of buildings, the epistemic and aleatory uncertainties 

are briefly defined in the next sections to account for the possible variations within a 

given class of buildings. The geometry of the building is not considered an uncertainty 
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as the layout of the buildings is similar. Aleatory uncertainty is classified as irreducible 

uncertainty and refers to a property of the system associated with variability, whereas 

epistemic uncertainty can be reduced and is associated with a lack of knowledge by 

the analyst (Beer et al., 2013). 

3.6.1 Epistemic uncertainties 
The epistemic uncertainties for the analysis of the local behavior are related to the 

incomplete knowledge about the structure of the buildings. These features are treated 

by the logic-tree approach (Simões et al. 2020). 

Figure 3.17 presents the logic tree for the URM buildings in Ferrara for different cat-

egories of buildings (MUR1 and MUR2). Each branch of the tree is given a weight 

based on expert judgment 

 
Figure 3.17: logic-tree for URM buildings in Ferrara of the possible local mechanisms with relative weights (green 
for the MUR 1 typology and blue for MUR2 typology). 
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Figure 3.18: diagram of the relative weights for each type of collapse mechanism. 

The end of a branch of the tree represents a class of possible mechanisms with specific 

features and the final weights. 

The weight attributed to the class of mechanisms is determined by multiplying the 

weight of all the component branches of the tree. More in detail, from the first logic 

tree it is possible to obtain for the two main classes of masonry buildings with the 

relative associated weights for the various types of collapse mechanisms (Figure 3.18). 

The main mechanisms obtain from the logic tree are: overturning 1 floor, overturning 

2 floor, overturning 3 floor, overturning 4 floor and vertical bending. With the expres-

sion overturning n floor, we mean a one-sided rocking with a height of the block cor-

responding to n floors. The relative mechanism is obtained for the sum of the weights 

that contain that mechanism. Only for the two-block mechanism, we consider a mech-

anism at the top floor of the building. The vertical bending in the lower floors have 

been exclude because the walls are more loaded than the top floor. 

URM buildings in 
Ferrara

MUR 1

overturning 1 floor

0.36

overturning 2 floors

0.18

overturning 3 floors

0.08

overturning 4 floors

0.03

vertical bending

0.35

MUR 2

overturning 1 floor

0.36

overturning 2 floors

0.21

overturning 3 floors

0.09

overturning 4 floors

0.04

vertical bending

0.30
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This increases the stability of the wall (Mauro et al. 2015). These weights will be used 

to create the typological curve for out-of-plane mechanisms. 

3.6.2 Aleatory uncertainties 
Aleatory uncertainties are related to the randomness of a certain phenomenon. For the 

analysis of the global behavior, the aleatory variables account for variations on the 

mechanical properties of masonry and geometrical properties of the wall. It is proposed 

to treat these aleatory variables by the Monte Carlo Method (Zio 2013) to define, in a 

random way, the properties to be assigned to the numerical models. 

The parameter ranges were chosen using the ranges extrapolated from the CARTIS 

database and possible mechanisms. The random generation of the parameters was done 

considering an interval set described by a lower and higher value. 

Generation occurs assuming a uniform distribution. This choice was made due to the 

fact that the information about the parameters was vague. The possible choice of a 

normal or lognormal probability distribution was not compliant because there were not 

enough tests for the relative parameters. The specific weight of the masonry is assumed 

constant to 18 kN/m3. The facade walls vary with a height between 2.5 m and 12.50 m 

and a thickness between 0.28 and 0.43 m. The thickness was also defined considering 

causal values compatible with the possible combination of the bricks (i.e. single-leaf 

wall). Table 3.5 shows all parameters that are used to generate the samples. 

A total of 1000 simulations are assumed to have a sufficient number of results to reach 

a good convergence in the estimation. In the random generation of the walls, the vari-

ability of the loads, the percentages of openings in the walls (Figure 3.19) and the 

presence of transverse connections were considered. 

Openings in the walls are included as a variation of the center of mass for simple over-

turning. On the other hand, for vertical bending it is considered as a variation of the 

position of the hinge. 

Table 3.5: categorization of aleatory variables. 

Parameter Lower bound Upper bound 
Number of floors 1 4 
Inter-story height [m] 2.5 3.5 
Ground – floor height [m] 2.5 (MUR 2) – 3.5 (MUR 1) 3.5 (MUR 2) - 5.0 (MUR 1) 
Wall thickness [m] 0.28 0.43 
Floor Span [m] 0 4.5 (MUR 1) - 5.5 (MUR -2) 
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Figure 3.19: different possible combinations of wall with different types of openings. 

 

3.7 Fragility analysis 

3.7.1 General approach 
A fragility function is defined as a lognormal cumulative distribution function: 

 ( )
( )ln x

P C IM x




 
= =  

 
 (3.18) 

where ( )P C IM x=  is the probability that a ground motion with IM x=  will cause 

the collapse of the wall, Φ( ) is the standard normal cumulative distribution function 

(CDF), θ is the mean of the fragility function and β is the standard deviation of ln IM
. To create a fragility curve, it is necessary to estimate the parameters that describe the 

curve, in particular the mean value and the standard deviation for a lognormal cumu-

lative distribution function. 

The parameters of the fragility curves can be estimated by various methods. The two 

most common are the incremental dynamic analysis (IDA) and multiple stripe analysis 

(MSA). 

The first method consists in performing analyzes from a series of ground motions that 

are repeatedly incremented to find the IM causing the collapse (Vamvatsikos and Cor-

nell, 2002). 

The second method entails performing analyzes for each of the levels of IM from a 

ground motion set (Jalayer, 2003). A multi-stripe analysis (MSA) is used in this work. 
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3.7.2 Derivation of fragility curves 

3.7.2.1 Selection of ground motions 

In this chapter, we used ground motion records from the ESM and ITACA databases 

(Bindi et al., 2011). The 46 ground motion records used for this study have been de-

rived from 22 different events, recorded in different regions of the Italian territory 

between 1972 and 2017 (Table 3.6). These ground motions are within a specified 

range: magnitude Mw between 5.0 and 7.0, Joyner-Boore distance Rjb between 0 and 

30 km, EC8 soil classification from B to E, and strike-slip, reverse or reverse-oblique 

faults. The number of ground motions is in accordance with NEHRP Guidelines (Whit-

taker et al., 2011). The ground motions are mainly obtained by the Italian accelero-

metric network (Rete Accelerometrica Nazionale, RAN) managed by the Italian Civil 

Protection Department (DPC) and the national seismic network managed by Istituto 

Nazionale di Geofisica e Vulcanologia (INGV). The selected ground motions take into 

account a wide range of PGA as well as PGV (Suzuki and Iervolino, 2017). 

3.7.2.2 Intensity Measure (IM) 

The intensity measure is a parameter that quantifies the intensity of ground motion and 

serves as a connection between probabilistic seismic hazard analysis and probabilistic 

structural response analysis. The choice of this parameter has significant effects on 

structural response. In the Italian Building code (MIT, 2018), the use of Peak Ground 

Acceleration (PGA) is recommended for safety checks of mechanisms related with 

walls supported on ground. For mechanisms located at higher floors, Peak Spectral 

Acceleration (PSA) is more appropriate. It is well known that the use of PGA may lead 

to some inconsistencies (Housner, 1965). Other intensity measures such as Peak 

Ground Velocity (PGV) may sometimes result in more reliable fragility curves (Dimi-

trakopoulos and Paraskeva, 2015). However, PGA is the most used intensity measure 

in post-quake damage surveys, because its records are less sensitive than PSA to the 

scarcity of operating seismic stations. As a consequence, several empirical fragility 

functions are based on PGA (Buratti et al., 2017). Moreover, the use of PGA turns out 

to be useful when the global behavior of low-rise masonry buildings is of interest (Lag-

omarsino and Giovinazzi, 2006). For these reasons, the PGA is adopted as an intensity 

measure in this study.  



Table 3.6: Italian ground motion records with important recorded PGA and PGV (†EC8 classification (CEN, 2004), *Epicentral distance, [I] = ITACA, [E]=ESM). 

Year Event Event id 
Station 

(Station code, Soil 
class†) 

Focal mechanism Magnitude 
Mw (ML) 

Distance* 
[km] 

PGA 
[g] 

PGV 
[cm/s] Source 

1972 Ancona IT-1972-0005 Ancona, Rocca 
(ANR,B) Unknown (4,7) 7.7 0.55 9.9 [I] 

1976 Friuli 1st 
shock IT-1976-0002 Tolmezzo Centrale 

(TLM1,B) Thrust 6.4 27.7 0.35 30.2 [I] 

1976 Friuli after-
shock IT-1976-0027 Gemona (GMN, B) Thrust 5.9 6.2 0.63 68.4 [I] 

1976 Friuli 3rd 
shock IT-1976-0030 Folgaria Cornino (FRC, 

B) Thrust 6.0 16.2 0.34 23.7 [I] 

1976 Friuli 3rd 
shock IT-1976-0030 Gemona (GMN, B) Thrust 6.0 4.0 0.25 30.5 [I] 

1979 Norcia IT-1979-0009 Cascia (CSC, B) Normal 5.8 9.3 0.21 14.5 [I] 

1980 Irpinia IT-1980-0012 Sturno (STR, B) Normal 6.9 33.3 0.32 70.4 [I] 

1984 Lazio-
Abruzzo IT-1984-0004 Cassino-Sant'Elia 

(SCN0, C) Normal 5.9 19.7 0.14 11.2 [I] 

1990 Potenza IT-1990-0001 Brienza (BRN, B) Strike-slip 5.8 29 0.10 6.8 [I] 

1997 Umbria Mar-
che 2nd shock IT-1997-0006 Nocera (NCR. E) Normal 6.0 10.1 0.49 32.6 [I] 

2002 Molise 1st 
shock IT-2002-0045 S. Severo (SSV, B) Strike-slip 5.7 38.1 0.57 2.1 [I] 

2009 L'Aquila IT-2009-0009 L'Aquila - Valterno - 
Centro Valle (AQV, B)  

Normal 6.1 4.9 0.64 42.7 [I] 

2009 L'Aquila IT-2009-0010 L'Aquila - Valterno - 
Colle Grilli (AQG, B) Normal 6.1 5 0.48 35.8 [I] 

2009 L'Aquila IT-2009-0011 L'Aquila - Valterno - F. 
Aterno (AQA, B) Normal 6.1 5 0.43 31.9 [I] 

2009 L'Aquila IT-2009-0012 
L'Aquila - Valterno - 

Aquil Park Ing. (AQK, 
B) 

Normal 6.1 1.8 0.35 35.8 [I] 



2009 L'Aquila after-
shock IT-2009-0102 S. Eusanio Forconese 

(MI05, B) Normal 5.5 3.6 0.65 23.6 [I] 

2012 Emilia 1st 
shock IT-2012-0008 Mirandola (MRN, C) Thrust 6.1 16.1 0.26 46.3 [I] 

2012 Emilia 2nd 
shock IT-2012-0011 Carpi (T0814, C) Thrust 6.0 9.3 0.49 23.6 [I] 

2012 Emilia 2nd 
shock IT-2012-0011 Medolla (MIR01, C) Thrust 6.0 0.5 0.41 52.4 [I] 

2016 Central Italy EMSC-
20160824_0000006 Amatrice (AMT, B) Normal 6.0 8.5 0.85 43.5 [ESM] 

2016 Central Italy EMSC-
20160824_0000006 Nocera (NRC, B) Normal 6.0 15.3 0.36 29.8 [ESM] 

2016 Central Italy EMSC-
20161030_0000029 Rocchetta (MZ24, C) Normal 6.5 24.5 1.00 14.3 [ESM] 
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3.7.2.3 Engineering Demand Parameter (EDP) 

For the correct evaluation of the fragility curve, an appropriate engineering demand 

parameter (EDP) is necessary for association with the damage state. In this chapter, 

the damage state considered is the collapse damage state that corresponds to the com-

plete overturn of the block. 

The absolute peak rocking rotation max  divided with the slenderness α is the EDP: 

 maxEDP



=  (3.19) 

The choice of this dimensionless EDP is physically explained: the large value of EDP 

implies that the block starts rocking (EDP >0), high values (e.g. EDP > 1.0) show 

overturning as a consequence of rocking (Table 3.7). The parameter α for the vertical 

bending is assumed equal to the slenderness α1 of lower block (Sorrentino et al., 2008). 

The collapse is considered with a EDP = 1.0 (Figure 3.20a). This choice is conven-

tional. In fact, this value occurs when there is static instability. It is possible that the 

block-rocking without overturning with EDP>1 because the problem is strongly non-

linear (Dimitrakopoulos and Paraskeva, 2015). 

Table 3.7: performance criteria for rocking behavior. 

EDP Damage state Structural behavior Mechanism 
max / 1.0  =  Collapse Overturning One-sided rocking 
max 1/ 1.0  =  Collapse Overturning Two-block mechanism 

 

3.7.2.4 Multiple Stripe Analysis (MSA) 

The parameter estimators were obtained using the maximum likelihood method 

(Baker, 2015). This method is widely used in literature as an alternative to the moments 

method to estimate the parameters because the estimators are asymptotically unbiased 

and efficient (Benjamin and Cornell, 1970). This method is briefly described herein-

after. The rocking analyses are performed for a level of intensity IM = xj which will 

give a number of collapses over the total number of the ground motions set. The prob-

ability of having zj collapses in nj ground motion per fixed intensity level is expressed 

as follows: 
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where the collapse of the block can be caused with a probability pj for a certain level 

of intensity IM = xj. The observations of non-collapse and collapse can be assumed as 

ground motion independent of each other. 

The purpose of deriving the various collapse probabilities for different intensity levels 

is to derive a function with the highest probability from the collapse data observed by 

the rocking analysis. This is possible due to the likelihood method. 

The likelihood for the entire set of data obtained from multiple levels of IM is ex-

pressed by the product of the binomial probabilities (Eq. (3.20) and is described as 

follows. 

 ( )
1

Likelihood 1 j jj
m n zj z

j j
jj

n
p p

z
−

=

 
= − 

 
  (3.21) 

where П indicates the product of all m level of IM. The probability function is made 

explicit by substituting Eq. (3.21) for pj 
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Maximizing the likelihood function, it is possible to obtain the estimator parameters 

of the fragility curve that can be written: 

 
( )

( )
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, 1

ln lnˆ ˆ, argmax ln ln ln 1
m

j ji
j j j
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x xn
z n z
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  (3.23) 

Figure 3.20 shows an example of a fragility curve obtained from the approach just 

described. 
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a) 

 
b) 

Figure 3.20: example MSA analysis results; a) analyses causing collapse are plotted at a critical angle of greater 
than 1.0 and are offset from each other to aid in visualizing the number of collapses for IM levels. b) Observed 
fractions of collapse as a function of IM, and a fragility function estimated using Eq. (3.23). 

 

3.7.2.5 Proposed typology fragility curves 

The creation of typological fragility curves allows to include all uncertainties and de-

scribe a general behavior of the structure or element. Figure 3.21 shows the sensitivity 

analysis made for the mechanism of vertical bending. The parameters considered are 

the position of the formation of the hinge (Figure 3.21a) and the influence of the ver-

tical force N (Figure 3.21b). In our case, we consider a wall 0.3 3.0 m. 

The position of the hinge has been changed considering the 1 /h h  ratio which varies 

from 0.5 to 0.8 (ABK, 1981; Graziotti et al., 2016), which constitutes an input param-

eter for the nonlinear dynamic analyzes. This parameter has little influence on the var-

iation of the fragility curve. 

 
a) 

 
b) 

Figure 3.21: sensitivity of the fragility parameters for vertical bending mechanism: a) variation of the position of 
the hinge (h1/h from 0.5 to 0.8), b) variation of the vertical force N as effect of the span of the slab (L from 0 m to 
5 m). 
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Instead, the vertical force affects the vulnerability of the wall. The vertical force was 

considered as the effect of the load due to the span of the slab. This force was applied 

in the center of the wall thickness. The type of floor chosen is a wooden slab at the 

roof of the structure (load of 2.5 kN/m2). The span of the slab varies from 1.0 to 5.0 

m, as found in Ferrara masonry structures (Table 3.4). 

In Figure 3.21b, the span of the floor L varies from 0.0 m (where the floor does not 

discharge on the wall) to 5.0 m. It can be seen that the vertical force at the top is a 

stabilizing component for the wall and, therefore, lowers the vulnerability. This can 

also be seen with static and dynamic analyses (Mauro et al., 2015). 

Subsequently, the fragility curves for the various mechanisms were created by varying 

the parameters. Each fragility curve was obtained by carrying out 44 nonlinear dy-

namic analyses for 9 different levels of intensity. For each curve, 396 nonlinear dy-

namic analyses were carried out for each wall considered. From the data extrapolated 

from CARTIS, we obtained intervals of parameters that were used as input for the 

analysis. The distributions could not be extrapolated due to the lack of information on 

the individual buildings. The database allows us to provide general data on a group of 

buildings. For each mechanism identified, a population of walls was created with ran-

domly generated geometric parameters (Table 3.5). 

This choice is the most reasonable given the availability of data. For the mechanisms, 

a Monte Carlo method was applied with a population of 1000 walls. The population is 

subdivided according to the various weights associated with the mechanisms (Figure 

3.18) from which it is possible to obtain the relative fragility curves (Figure 3.22). 

Figure 3.22 shows the curves of the various mechanisms obtained from the population 

(gray curves) and their relative average curves (black curves). The fragility curves for 

the overturning mechanism of the first floor and the vertical bending mechanism are 

the same for both the MUR1 and MUR2 classes because the range of geometric pa-

rameters is the same. The curves are distinguished by a great variability of mean values 

and dispersions (Table 3.8). This is appreciable for simple overturning mechanisms 

(Figure 3.22c-h). In fact, the presence of loads, openings and wedges (it has been as-

sumed 25% of the population with wedges), influences fragility curves. In particular, 

the position of the center of gravity changes and loads and wedges tend to make the 

block more stable, so that greater accelerations are required to induce collapse. 
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Table 3.8: lower and upper bound of mean (θ) and standard deviation (β) for fragility curves with Monte Carlo 
Simulation. 

Mechanism 
Lower bound Upper bound 

θ [g] β [-] θ [g] β [-] 
Top floor vertical bending 0.9728 0.8313 1.1343 0.6397 
Overturning of the first floor 0.0688 1.3131 0.2731 1.0420 
Overturning of two floors for MUR1 class 0.1717 1.2589 0.9166 0.8818 
Overturning of two floors for MUR2 class 0.1717 1.2589 0.668 0.9120 
Overturning of three floors for MUR1 class 0.4545 0.2353 2.0131 0.9131 
Overturning of three floors for MUR2 class 0.4655 0.9252 2.0241 0.9131 
Overturning of four floors for MUR1 class 0.4788 0.9086 2.0241 0.9131 
Overturning of four floors for MUR2 class 0.4658 0.9076 2.0132 0.9221 

 

The fragility curves for the mechanisms present in the survey (Figure 3.23) have been 

obtained from 98 possible mechanisms for the aggregate. Figure 3.23 shows the curves 

of the various mechanisms obtained from the population (gray curves) and their rela-

tive average curves (black curves). The average curves for the single mechanism are 

generated using the arithmetic mean of the means and variances of the single curve. 

The overall global typological curves for out-of-plane mechanisms are shown in Fig-

ure 3.24. All the curves are obtained by weighted arithmetic mean of the mean values 

and variances of fragility curves previously obtained from the individual class of 

mechanisms. 

The curves of each class of mechanism are the mean curves of the mechanisms (Figure 

3.23). These weights are obtained from the logical trees created from the possible col-

lapse configurations (Figure 3.18). Each class of mechanism (e.g. vertical bending) is 

summarized by a mean fragility curve. This fragility curve is defined by two parame-

ters: the mean value and the standard deviation. Each class of mechanism is also asso-

ciated with its weight (e.g. 0.36 for vertical bending (Figure 3.18)). These parameters 

are obtained for all the mechanism classes and are aggregated to create the overall 

global typological curve using the weighted arithmetic mean. 

The most significant comparison is between the average curve obtained from the pop-

ulation of the MUR1 class (this category constitutes 90% of the total of the buildings 

surveyed) with the curve obtained from the survey of the compartment. For complete-

ness, the comparison between the curves of the MUR2 population is also reported. The 

typological fragility curves MUR1 and MUR2 are very similar despite the different 

age of construction which has little influence on the likelihood of overturning. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 3.22: fragility curves from CARTIS database (average curve in black, sample curves in grey): a) top floor 
vertical bending, b) overturning of the first floor, c) overturning of two floors for MUR1 class, d) overturning of 

two floors for MUR2 class, e) overturning of three floors for MUR1 class f) overturning of three floors for MUR2 
class, g) overturning of four floors for MUR1 class, h) overturning of four floors for MUR2 class. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 3.23: fragility curves from the survey of the historical aggregate in the center of Ferrara (black average 
curve, grey survey curves): a) vertical bending, b) overturning of the first floor, c) overturning of two floors, d) 
overturning of three floors, e) overturning of four floors. 
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Figure 3.24: comparison between the average curves obtained from the population created from the CARTIS data-
base and the average curves obtained from the survey of the historical aggregate: the typological curve MUR1 (blue 
line), the typological curve MUR2 (red line) and the typological survey curve (back line). 

The quality of the connections, slenderness and mass of the walls, load and span of the 

floors influences the fragility curves. The variation of the parameters between the class 

MUR 1 and MUR 2 is small (Figure 3.24) therefore the obtained fragility curves are 

close. Also, the buildings have good masonry qualities and textures (Figure 3.15), good 

transversal connections, and the presence of tie rods or tie beams. Some indications on 

the masonry quality are reported in the CARTIS manual for the MUR1 and MUR2 

typologies. Furthermore, supplementary assessments were made by evaluating the ma-

sonry quality in a qualitative way (e.g. visual inspection, expert judgement) through 

the survey. It is possible to say in general that under seismic action, buildings from 

different historical periods do not show great differences in our case study. It can be 

seen how the average population curves are more conservative than that obtained from 

the survey. This evidence is due to the greater number of walls analyzed for the various 

mechanisms obtained by the population than the number of walls obtained from the 

survey. 

The difference between the obtained curves is due to the level of knowledge of the 

walls. The survey increases the level of knowledge about the walls therefore the curve 

reduces the uncertainty associated with the geometry of the wall and provides a more 

detailed description of the walls for the historic aggregate. Moreover, the curves ob-

tained from the survey consider the good masonry quality of the walls and the connec-

tion with the transverse walls. The MUR1 and MUR2 classes obtained from CARTIS 
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have within themselves the variability of an entire type of building, while the aggregate 

has more homogeneous characteristics and less dispersed geometric and mechanical 

properties (e.g. buildings built in a specific period, similar masonry quality). 

In this case, the most significant parameter is the connection of the wall with orthogo-

nal walls. Indeed, transversal connections help to greater stability of the wall compared 

to its absence. 

The transversal connections between walls detected in the survey are good in most of 

the buildings of the aggregate. Instead, these are present in lower rate in the building 

typologies provided by the CARTIS database. The higher data quality allows us to 

have curves more representative than the curves from CARTIS. Having a detailed de-

scription of the buildings provides more data on the geometry and loads applied on the 

walls. The approach used also shows how with less detailed information (CARTIS), it 

is possible to obtain good appreciable results in terms of probabilistic evaluation of the 

vulnerability of the typologies of masonry walls typical of the Po valley. 

3.8 Conclusions 
This chapter presents a procedure for the derivation of typological fragility functions 

for OOP local failure mechanisms in unreinforced masonry buildings. The proposed 

method starts with the data processing of the CARTIS database. A qualitative descrip-

tion of the building stock and associated relevant uncertainties (material, geometrical, 

loads) are initially considered. Epistemic uncertainties are included through the use of 

logical trees. Mechanical models, the validity of which is documented in the literature 

also from results of experimental campaigns, are introduced to analyze the OOP re-

sponse of masonry walls. A dynamic approach is used, adopting a multiple stripe anal-

ysis method to derive fragility curves estimators. Finally, fragility functions are fitted 

to the computed fragilities. 

The method is applied to historical aggregates of URM buildings. For the selected 

compartment in the city center of Ferrara, two building typologies (MUR 1 and MUR 

2) are identified. MUR1 typology refers to buildings belonging to the oldest part of the 

historic center (medieval area) but also to the Renaissance area up to the 1800s and 

early 1900s, whereas MUR2 typology is more recent (from 1920 to 1945) and has a 

different percentage of tie rods on the total of the buildings. 
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The final fragility functions provide an overall assessment of the seismic vulnerability 

for these classes of buildings. The fragility curves for the MUR1 and MUR2 classes 

are not very different from each other although the buildings are of different construc-

tion periods. What distinguishes the two types is the presence of tie rods or tie beams 

and connections. The masonry quality is good for both classes. The fragility curves 

obtained by the two classes are different from the survey. The survey increases the 

level of knowledge about the walls therefore the curve reduces the uncertainty associ-

ated with the geometry of the wall and provides a more detailed description of the 

walls for the historic aggregate. 

The results show the moderate quality of the building stock and the important role of 

the connections in the vulnerability of the aggregates of masonry buildings. Indeed, 

the introduction of effective tie rods, modifying the OOP failure mechanisms from 

rocking to vertical bending, can dramatically reduce the vulnerability of aggregates, 

keeping the streets of historic centers operational even after strong earthquakes. The 

proposed approach, due to its computational efficiency, may be useful for identifying 

the seismically most fragile typologies of the urban context. Therefore, it is a tool ca-

pable of orienting targeted retrofit strategies. 

Typological fragility curves for these local mechanisms then provide a first step for 

the evaluation of damages and the assessment of economic losses on an urban scale. 

This can help to identify possible scenarios for civil protection. 

In future researches, we would like to analyze other aggregates present in Italy, includ-

ing building typologies similar to those of the Po Valley. This will also have to con-

sider the uncertainties relating to the geometry of macro-elements and loads. The in-

fluence of the interaction between the floor effect of masonry structures and the local 

collapse mechanisms can be a further aspect to be explored. Finally, we will hopefully 

integrate these results into a comprehensive assessment method including the global 

behavior of masonry structures. 
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4 Uncertainty quantification for local failure 

mechanisms in existing URM buildings in seis-

mic zones 

This chapter aims to quantify the effect of the uncertainty of the parameters such as 

geometric data, mechanical characteristics and the entity and position of the loads for 

out-of-plane failure mechanisms in unreinforced masonry buildings (URM) in the city 

of Ferrara. 

The chapter discusses the modeling of uncertainties by fuzzy methods for masonry 

walls. These walls are made of good quality masonry with fired clay bricks and lime 

mortar, as typical for the buildings in the Po Valley, such as those hit by the 2012 

Emilia earthquake. In the frequent case of slender elements with good material prop-

erties, the wall response can be modeled as an assembly of rigid bodies and linear 

kinematic limit analyses, as defined in Italian code, or dynamic analyses for studying 

the rocking motion are utilized. These techniques are employed to provide the “fuzzy” 

fragility curves as a function of peak ground acceleration (PGA). 

This is the first step for a probabilistic evaluation of the collapse loads under seismic 

actions, taking into account the actual variability of seismic input, and sensitivity anal-

ysis is also presented for the described procedures and different local collapse mecha-

nisms. 

4.1 Uncertainty modeling 
The uncertain characteristics of the structural parameters can be modeled by fuzzy 

techniques. The most important aspect in the description of uncertain parameters is to 

specify the membership function according to the available information. 

The data used have different origins: data from the CARTIS database, experimental 

data from technical literature (Bracchi et al., 2016; Savoia et al., 2016; Squassina, 

2011), data collected directly by the authors and data obtained from experimental 
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laboratories of the city (i.e. Life s.r.l.) as we specify for each group of parameters. 

Therefore, it is not easy to define belonging to a single class of information as 

described in Möller and Beer, (2004). Generally, this information which in our case 

are the structural parameters can be divided into four categories: 

• information type I: a small number of elements contained in a sample; 

• information type II: a linguistic assessment; 

• information type III: the result of a single uncertainty measurement; 

• information type IV: knowledge based on experience. 

The creation of the membership function represents a subjective evaluation of the un-

certainty that is generated from the basis of the information available. A simple mem-

bership function such as a linear or polygonal function is recommended, unlike more 

complicated descriptions which can be less robust with complicated models (Möller 

and Beer, 2004). 

4.1.1 Material parameters 
The mechanical parameters were deduced from the summary report with technical and 

operational indications drawn up by CIRI (Centro Interdipartimentale per la Ricerca 

Industriale) for the Emilia Romagna region. These indications are based on an 

experimental campaign in situ on the walls of masonry buildings affected by the 2012 

earthquake. This experimental campaign was conducted on buildings in the Po valley 

between the provinces of Reggio Emilia, Modena and Ferrara. 

These results give a good knowledge of the mechanical characteristics of the masonry 

characterized by fired clay bricks and poor quality of the mortars. The parameter used 

in these analyses is mainly the compressive strength of the masonry. Table 4.1 shows 

the average values proposed by the report with those required by the current code for 

compressive strength (fk) and shear strength (τ0). 

Two cases are considered that can be found: masonry buildings made of solid bricks 

and lime mortar characterized by mortars of poor characteristics, joints that are not 

particularly thin and facing or badly connected, unconsolidated masonry and perfect 

wall texture and masonry buildings with effective transversal connections. The unit 

weight of the masonry was assumed to be 18 kN/m3 without considering it uncertain. 
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This parameter is not sufficiently variable when considering a restricted study area (i.e. 

the lower Emilia area). As noted by the authors of the experimental campaign, the 

results are to be considered with extreme caution in particular for the compressive 

strength. In fact, in buildings with tests with double flat jacks, the resistance calculated 

with the Eurocode 6 appears significantly overestimated (formula 3.1 at §3.6.1 (CEN, 

2005a)). 

A further contribution to a better understanding of the estimate of the mechanical 

parameters of the masonry can be the masonry quality index (MQI) (Borri et al., 2015, 

2020). This index provides the order of magnitude of the mechanical parameters based 

on a qualitative criteria evaluation that considers many factors such as the shape of the 

blocks, the volumetric ratios between the components and the masonry texture and 

finally the compressive and shear strength of the mortar and blocks. 

But in this case, we are dealing with a class of information type II (Möller and Beer, 

2004) that represents more a linguistic assessment than a set of experimental data. 

 Finally, a large series of experimental data collected through tests with pairs of flat 

jacks from a private laboratory in the city of Ferrara was taken into account (i.e. Life 

s.r.l.). 

In the analyzes, the fuzzy number relating to the properties of the wall material was 

created considering the minimum defined value of the tests as the lower extreme, the 

highly plausible value equal to the average value and the upper value of the tests as 

the upper extreme. This is shown in Table 4.1, where also the values suggested by the 

current Italian building code are presented (MIT, 2018). 

Table 4.1: resistance parameters for solid brick and lime mortar walls: values according to code and from 
experimental campaigns. 

Type of masonry  fk [N/cm2] τ0 [N/cm2] 

MIT (2018) Savoia et al. (2016) MIT (2018) Savoia et al. (2016) 

solid brick masonry 
and lime mortar  

lower bound 240 346 6.0 4.5 
mean value 320 396 7.6 9.8 
upper bound 400 439 9.2 10.9 

solid brick and lime 
mortar masonry with 
transverse connec-
tion1 

lower bound 312 450 7.8 5.8 
mean value 416 515 9.9 12.7 
upper bound 520 571 12.0 14.2 

1 parameters improved using coefficient 1.3, as per Table C8A.2.2 of the Italian code (MIT, 2018). 
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a) b) 

Figure 4.1: fuzzy number for compressive strength of masonry: a) limits from the Italian code b) limits from Savoia 
et al. 2016. 

This can be summarized in this form: 

 min mean max
, ,c c c c   =   (4.1) 

where 
minc is the minimum value of masonry compressive strength, 

meanc is the mean 

value of masonry compressive strength and 
maxc  maximum value of masonry com-

pressive strength. 

Figure 4.1 reports the fuzzy numbers for masonry compressive strength with the limit 

of Italian code and the limits reported in Savoia et al., 2016. 

The compressive strength of the masonry allows evaluating the response of the wall 

considering the material despite the hypothesis of rigid blocks. This can be done by 

retreating the pivot point defined based on the compression behavior of the interface 

and considering the crushing effects (Mehrotra and DeJong, 2018). There is also an 

alternative way to take into account the finished width of the support area through the 

cracks by introducing a thickness reduction factor (ratio between actual thickness and 

gross thickness) as a function of the compressive strength of the masonry (Vaculik and 

Griffith, 2017). 

4.1.2 Load parameters 
The loads and their application represent the uncertainty that at first sight is difficult 

to represent unlike the geometric parameters of the wall. The quantification of loads 

requires a level of knowledge that the Censis database does not capture. For this 
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reason, the CARTIS database is used (Zuccaro et al., 2016). Thanks to the compilation 

of sheets, the database can provide higher quality data on the building stock for a city 

(e.g. Ferrara). It provides information on the type of building, heights, dimensions of 

the walls and above all types of floors and their spans. It also gives information on the 

presence of curbs, cross-connections and chains. Having these data, it is possible to 

estimate loads of the floor and the span of the floor combined with the geometric and 

typological data of the floor. For a more detailed description see the previous chapter 

and Nale et al. (2021). 

Figure 4.2 shows some of the fuzzy numbers considered to determine the uncertainty 

of the loads. The span of the floor is a datum obtained from CARTIS, while the load 

of the floor and the position of the unloading of this load is determined by integrating 

the information obtained from on-site inspections after the 2012 Emilia earthquake and 

from the survey carried out for the compartment analyzed in Chapter 3. Table 4.2 is 

summarized these data by fuzzy numbers 

 
a) 

 
b) 

Figure 4.2: fuzzy numbers for describing load uncertainty: a) load fuzzy number, b) fuzzy number for the span of 
the wood slab. 

 
Table 4.2: fuzzy numbers for the main load parameters. 

Parameter Fuzzy number 

average distance between walls parallel to the facade [m] <4.5, 5.0, 5.5> 

floor load gk [kN·m2] <2.5, 3.5, 4.0> 

position of load application on the wall [m] <0t, 0.3t, 0.50t> 
1 t is the thickness of the wall. 
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4.1.3 Geometric parameters 
The essential geometric parameters that regulate the out-of-plane collapse and the 

related local mechanisms are the thickness of the wall (which in the case of walls with 

not well-connected facings must be considered distinctly between the internal wall on 

which the loads weigh on and the external) and the wall height. These two fuzzy 

numbers in Figure 4.3 define the slenderness of the wall. 

 
a) 

 
b) 

Figure 4.3: fuzzy numbers of the geometric parameters of the walls: a) wall thickness, b) wall height. 

Also in this case CARTIS data are used. For a more complete description, see the 

previous chapter (Table 3.4). Table 4.3 shows the main geometric parameters used for 

the creation of the fragility curves. 

Table 4.3: fuzzy numbers for the main geometric parameters. 

Parameter Fuzzy number 

average floor height [m] <2.5, 3.0, 3.5> 

average ground floor height [m] <2.5, 3.5, 5.0> 

average thickness of ground floor walls [m] <0.25, 0.30, 0.40> 

To compare the results with those shown in Zuccaro et al. (2016), the analysis was 

extended to data for walls of the same quality but obtained in other cities of the Po 

Valley, Venice (Squassina, 2011) and Pavia (Bracchi et al., 2016) as shown in Figure 

4.3 and Table 4.3. As regards the thickness of the walls, large variability of thicknesses 

was found due to the different brick formats in the walls of the city. This is partly due 

to the lack of quality standards in the different construction periods and subsequent 

interventions in certain buildings. Figure 4.4 shows an example of different brick 

formats present in Venice in the period between the XII-XV centuries. 
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Figure 4.4: different brick formats present in the Po valley (image from Squassina (2011)). 

 

4.2 Fragility curves with fuzzy input 
In the last 20 years, the fragility curves are the most used tool for the assessment of 

seismic risk for structures. A lot of fragility curves from static and dynamic methods 

are available in the literature (Silva et al., 2019), see also the previous chapter and Nale 

et al. (2021). Given the inherent variability in the various structural parameters of the 

walls, we want to include the associated uncertainty using fuzzy techniques. 

In this paragraph, we propose a method to create analytical fragility curves for local 

collapse mechanisms by incorporating the uncertainty (i.e. fuzziness) that is consistent 

and time-invariant. The approach is based on those present in the literature and adapted 

to the problem analyzed, see also (Colangelo, 2012, 2013). 

The probability of exceeding a certain state of damage (i.e. collapse) conditioned to a 

certain level of intensity of a ground motion is described by the fragility curve (Cornell 

and Krawinkler 2000). The conditioned probability Pij be represented as follows: 

  ij i i iP R S G g=  =  (4.2) 

where Si is the demand of the structure for a given intensity G = gi and Ri the capacity 

of the structure for the damage state i. Capacity is generally considered deterministic 

(it is calculated using computational models) and demand is considered a random 

variable. If instead the capacity is considered a random variable with uncertain 

parameters for the damage state i, the probability must be considered as a random 
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fuzzy event, (Zadeh, 1968), that can be described as follows: 

  ij i i i iP R S G g =  =  (4.3) 

wherein this case the measure of the intensity of the ground motion not only conditions 

the probability but is also conditioned by the membership function µ. When the value 

of µ is equal to 1, the fragility curve is brought back to that predicted by the classical 

theory of probability. Usually, this curve is described by a log-normal function: 

 
( )ln

i

g
P





 
=  

 

 (4.4) 

in which Φ is the standard normal distribution function and the parameters θ and β 

which are the mean and the standard deviation for the relative damage state i. They are 

estimated using fitting techniques which can be the least-squares method and the 

maximum likelihood method (Baker, 2015). 

By applying fuzzies in the creation of the fragility curves, we will obtain a bundle of 

fragility curves characterized by two extremes corresponding to µ = 0 and an internal 

curve corresponding to µ = 1. In the following, as regards the dynamic approach, the 

procedure for calculating these curves is based on applying multiple stripe analysis 

(MSA) with the integration of fuzzy numbers. The MSA procedure was described in 

the previous chapter. What we do is create the fuzzy number for each nonlinear 

dynamic analysis of the block. Having a fuzzy number of output it is possible to 

evaluate if the block is overturned or not for the extremes and the most probable values. 

Having n simulations for the determined IM, in our case the peak ground acceleration, 

conditioned by the relative value of the membership function, it is possible to obtain 

the probability of overcoming for a given damage state. 

Having the relative probability, it is possible to subsequently obtain the relative 

fragility curve using the principle of maximum likelihood for that given value of the 

membership function (Figure 4.5). To verify the robustness of the curves, the 

Kolmogorov-Smirnov test (Kolmogorov 1941, Smirnov 1939) and Chebyshev's 

inequality are applied (Papoulis 1991). 

In the following, we present “fuzzy” fragility curves obtained as described for the 

mechanisms: single-leaf overturning wall, double-leaf overturning wall, overturning 
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of wall and part of the transversal connection, vertical bending of simple and double-

leaf walls. The equation of the dynamic motion is reported in the previous chapter and 

Nale et al. (2021). 

 
Figure 4.5: “fuzzy” fragility curve for a structure. 

These fuzzy distribution curves can provide insight into some aspects of the uncer-

tainty. They can be interpreted in two ways: 

1) At a given fixed exceedance probability provide the fuzzy interval (Figure 4.5). 

Fixed for example a probability of 50% of the overcoming of a state of damage 

(e.g. collapse), it is possible to determine the fuzzy interval and the average value 

of the intensity measurement. 

2) Evaluate the variation in the probability of exceeding fixed a measure of inten-

sity and a level of the membership function αk (Figure 4.6). Thus, it is possible 

to evaluate the probability intervals for which, given an intensity measure, the 

overcoming of the damage state occurs (e.g. collapse). 
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Figure 4.6: fuzzy probability distribution for a determinate value of x* variable. 

4.2.1 Fuzzy fragility analysis based on static approaches 
The force-based approach is one of the most widely used techniques for the assessment 

of collapse in the technical literature (MIT, 2018; Sorrentino et al., 2016). For a 

complete description of the equations used see Section 3.3.2. In this paragraph, we 

propose fragility curves with fuzzy input using static analysis as a model for creating 

curves. 

4.2.1.1 Local collapse mechanisms 

Several local collapse mechanisms are used in this chapter for the derivation of fragil-

ity curves: 

• single-leaf overturning wall:

the mechanism consists of a rigid rotation for entire facades or portions of walls

with respect to axes at the base of the wall. The wall structure is loaded by

actions outside the plane. The overturning affects only the highest floor of the

building or portions of the wall below the roof as a special case.

• double-leaf overturning wall:

The mechanism consists of the rigid rotation of the external curtain of walls

with disconnected facings, or even sack, with respect to mainly horizontal axes

at the base. In such cases, the two geometric parameters can have almost inde-

pendent behavior, as in the extreme case of the sack walls, or, in presence of

connecting hangings, interact along the common surface. Under seismic action,

it is possible that the internal facing transfers part of its inertia onto the external
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one. The evaluation of the deformability that allows the transfer of horizontal 

actions across the contact surface between the two vestments, which would 

involve, among other things, the removal of the rigid block hypothesis, is prob-

lematic. In the following we assume the interaction between they are limited 

to the top of the wall only and consider a kinematics that affects both faces. 

 

• overturning of wall and part of transversal connection: 

The mechanism consists of a rigid rotation of entire facades or portions of walls 

with respect to axes in prevalence horizontal accompanied by the dragging of 

parts of the masonry structures belonging to the bracing walls. The size of the 

triangular part that remains connected to the wall depends on the quality of the 

masonry (Borri et al., 2015) and its uncertainty is evaluated with the fuzzy 

shown in Figure 4.7. 

 

  
 

a) b) c) 

Figure 4.7: different angle for different masonry quality for overturning of the wall with a part of trans-
versal connection: a) good quality wall with an angle between 30 and 45 degrees, b) medium quality wall 
with an angle between 30 and 45 degrees, c) poor quality wall with an angle between 30 and 45 degrees 
(Borri, 2003). 

 

• vertical bending of single-leaf wall: 

the vertical bending mechanism consists of the formation of a horizontal cylin-

drical hinge that divides the wall structure into two rigid blocks. The combina-

tion of the vertical and horizontal actions on the wall determines the establish-

ment of a sort of vertical arc effect whereby the horizontal forces are dis-

charged on the constraints at the ends of the wall. However, if the latter exceeds 

a certain value, the vertical actions are no longer sufficient to counteract the 

stabilizing effect of the bending moment and this establishes the kinematics. 
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• vertical bending of single leaf wall with a height of 2 floors: 

the mechanism provides a formation of a horizontal cylindrical hinge that di-

vides the wall between two blocks and it is described by the reciprocal rotation 

of the same around this axis for actions outside the plan. It is frequent in build-

ings with supported floors and a tie beam on the roof. 

 

• vertical bending of double-leaf wall: 

the mechanism presents a formation of a horizontal cylindrical hinge that di-

vides the external curtain of a wall between into two blocks and it is described 

by the reciprocal rotation of the same around this axis for out-of-plane actions. 

In the case examined, the interaction between the two faces is considered, as-

suming the possibility that a small percentage of horizontal forces acting on the 

internal face, can be transmitted to the external one in relation to its stiffness 

characteristics and the connection methods on the common surface. A simpli-

fied heuristic evaluation is reported in Beolchini et al. (2005) where he suggests 

a corrective coefficient equal to 1.2 for the mass of the external facing. 

4.2.1.2 An alternative method for generating “fuzzy” fragility curves 

In this paragraph, the fuzzy fragility curves are estimated starting from a fuzzy number 

obtained from the linear or non-linear kinematic analyses following the Italian norms 

(MIT, 2018, 2019). By exploiting the theory of evidence, it is possible to obtain a 

distribution characterized by lower and upper bounds with uncertain data (Figure 4.8). 

This method has particular advantages on any computational applications where there 

is little information (Savoia, 2002). 

Each input considered by us is represented by a variable defined by a fuzzy number 

iX . Each fuzzy number is associated with a membership function ( )i ix  which 

represents the distribution of possibilities that is compatible with a probability 

according to the available information. It is possible to show that the membership 

function of a fuzzy number represents the distribution of possibilities that correspond 

to probability distributions compatible with the given information (Ferrari and Savoia, 

1998). For the relative fuzzy algebra between fuzzy numbers, we remand to Dubois et 

al. (1994) and Kaufmann and Gupta (1991). 
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Starting from the definition of the various membership functions, it is possible, using 

the theory of evidence, to define the upper and lower bounds of the pdf (piL, piR) as a 

function of the number of inputs (i = 1, 2) described as follows: 
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(4.5) 

Based on the rules between binary operations and exploiting the extension principle is 

the combined probability of the two fuzzy numbers: 

( ) ( ) ( )1 1 2 2YH J Kp y p x p x= (4.6) 

By integrating the previous equation it is possible to define the lower and upper CDFs 

of the output variable Y. 

( ) ( )dy
L

y

YH YHy
F y p y=  (4.7) 

So these curves have the following property: 

ix ( ) ( ) ( )iR i i iL iF x F x F x       y   ( ) ( ) ( )YR Y YLF y F y F y  (4.8) 

By exploiting binary operations it is possible to define asymptotic expressions for the 

CDFs as follows: 
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(4.9) 

Figure 4.8 presents the comparison of the lower and upper range of CDFs (FYL, FYR) 

from probability theory (solid line). It is also possible to see the lower and upper limits 

of the probability ( *yF , *
yF ) obtained as an extended fuzzy operation (dashed line). 
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Finally, the same figure shows the most probable curve FY obtained as two compatible 

pdfs for the fuzzy number iX . 

 
Figure 4.8: triangular fuzzy number *yF and upper *

yF  bounds of fuzzy number, lower YLF  and upper YRF  CDFs 

and general CDF YF  (Ferrari and Savoia, 1998). 

4.2.1.3 General considerations 

From the fragility curves, it is possible to derive some general considerations on the 

behavior of local collapse mechanisms. Double-leaf walls mechanisms are extremely 

vulnerable to seismic action. 

In Figure 4.9, it is possible to see how collapse can occur for very low PGA values. In 

the case examined, the interaction between the two faces is neglected, assuming the 

possibility that a small percentage of horizontal forces acting on the internal face can 

be transmitted to the external one in relation to its stiffness characteristics and the 

connection methods on the common surface as previously discussed. 

Moreover, for single leaf walls, the most vulnerable mechanism appears the simple 

overturning mechanism compared to the vertical bending one. 

This confirms when it is already widely known in the literature. One significant aspect 

is how uncertainty varies in the various mechanisms. Uncertainty is greater for vertical 

bending mechanisms. This is mainly due to the role of the stabilizing effect of the 

normal force at the summit. This is visible in Section 4.4.1 where the sensitivity 

analysis will be carried out.  
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a) 

 
b) 

 

 
c) 

 

 
d) 

 

 
e) 

 

 
f) 

Figure 4.9: fuzzy fragility curves for different collapse mechanisms based on static methods (in red the fragility 
curve with μ = 1, in black with μ= 0): a) simple overturning of a single leaf wall, b) simple overturning of double-
leaf wall, c) overturning of wall and part of connection wall, d) vertical bending of simple-leaf wall, e) vertical 
bending of simple-leaf wall of 2 floor height, f) vertical bending of double-leaf wall. 

  



102 | Uncertainty quantification for local failure mechanisms in existing URM buildings 
in seismic zones 

4.2.2 Fuzzy fragility analysis based on the dynamic approach 
By applying the procedure described in Section 2.1.4, the fragility curves are obtained 

using fuzzy. As well known non-linear dynamic analyses of the wall were carried out 

assuming walls as rigid blocks. A ground motion set equal to the one used for the 

creation of the fragility curves in the previous chapter has been considered. 

Figure 4.10 show fragility curves obtained assuming different local collapse 

mechanisms: 

• single-leaf overturning wall (Figure 4.10a);

• double-leaf overturning wall (Figure 4.10b);

• overturning of wall and part of transversal connection (Figure 4.10c);

• vertical bending of single-leaf wall (Figure 4.10d-c);

• vertical bending of single leaf wall with height two floors and vertical bending

of double-leaf wall (Figure 4.10f).

From the fragility curves, it is possible to derive some general considerations on the 

behavior of local collapse mechanisms. The vulnerability of local mechanisms is 

described by a fuzzy approach that develops cumulative distribution functions (CDF). 

In the dynamic field, many of the considerations made in the static field are confirmed. 

In this case, the curves are more vulnerable than the static method, i.e. with the same 

intensity (PGA), there are lower probabilities of overcoming (e.g. collapse) than the 

static approach. In fact, the rocking of the walls does not necessarily occur when 

became statically unstable (|θmax| = 1) because of its highly nonlinear nature but the 

overturning occurs when the wall becomes dynamically unstable. In this case the 

structure exhibit higher rotation than 𝛼. For this reason, the curve of fragility calculated 

with non-linear dynamic analysis is more vulnerable. An interesting aspect is the 

position of the curve with α = 1 (most plausible curve) within the bundle. In the various 

cases discussed, this curve is never the average curve of the bundle of curves that are 

created. Indeed in some cases, the curve is close to the lower extremes (Figure 4.10d-

f) in other cases it is close to the upper extreme (Figure 4.10b-e). This shows how 

uncertainty propagates in varying the input parameters and how the phenomenon that 

is strongly non-linear conditions the response. The vertical bending curve with a 

double-leaf wall (Figure 4.10f), shows as the uncertainties are such that to make a 

more vulnerable fragility curve plausible. 
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c) d) 

e) f) 

Figure 4.10: fuzzy fragility curves for different collapse mechanisms based on dynamic methods (in red the fragility 
curve with μ = 1, in black with μ = 0): a) simple overturning of a single leaf wall, b) simple overturning of double-
leaf wall, c) overturning of wall and part of connection wall, d) vertical bending of simple-leaf wall, e) vertical 
bending of simple-leaf wall of 2-floor height, f) vertical bending of double-leaf wall. 
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4.2.3 Comparison with Monte Carlo simulation 
The fragility curves obtained by fuzzy set theory were validated with a Monte Carlo 

simulation. The Monte Carlo simulation randomly generated input parameters that al-

low the calculation of the fragility curve. 

This method presents some critical issues when increasing the inputs generated ran-

domly. In fact, with an increase of inputs, it is also necessary to increase the number 

of samples. Therefore, if you want to analyze rare events (e.g. earthquakes, floods, 

explosions) characterized by n inputs, it is necessary to significantly increase the num-

ber of samples (e.g. for 6 inputs it is advisable to perform 106 samples). This is because 

we want to grasp the probability distribution without creating layers that can affect the 

response. By doing so, it is obvious that the computational time increases significantly. 

Adopting fuzzy set theories, it is possible to reduce the computational time by adopting 

simplified distributions that allow a more limited sampling than the general one envis-

aged by Monte Carlo simulations. 

Figure 4.11 shows the Monte Carlo simulation results for the simple overturning and 

vertical bending mechanisms. The black lines represent the Monte Carlo simulations, 

while the red ones represent the most plausible value of the fuzzy fragility curve ob-

tained from the previous analyzes. What we can see is that despite the randomness of 

the sampling the curves are within a confidence interval of the red curve. This shows 

the correctness of the method. 

Application of fuzzy theories for these problems seems therefore acceptable to have a 

quantitative and rapid response of the vulnerabilities of the structural element. 

a) b) 
Figure 4.11: a bundle of the curve from Monte Carlo simulation: a) simple overturning, b) vertical bending. 
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4.2.4 Comparison with current state of art 
The fragility curves clearly show the reliability of a given structure as the intensity of 

the earthquake varies, generally represented by the PGA for masonry buildings. The 

fragility curve, if evaluated through numerical models, even the most correct and 

sophisticated, provides values relating to the single case where all the mechanical and 

geometric parameters are known with precision. In the case of existing masonry 

buildings, in particular, the ancient ones that represent a large part of our architectural 

heritage, the data are necessarily uncertain for the single building and are even more 

uncertain if estimates reliability and resilience on a territorial scale are desired, for 

example of a neighborhood or sector, if not even larger as is the aim of the CARTIS 

project. The purpose of this paragraph is whether the quantitative estimates of the 

uncertainties introduced by assuming the different parameters as fuzzies allow us to 

obtain “fuzzy” fragility curves that can be used in real cases and are reliable. As shown 

previously in this chapter, the fragility curves calculated using fuzzy intervals allow 

us to see how the vulnerability of a local collapse mechanism varies considering the 

uncertainties related to the parameters that affect a given collapse mechanism. 

The “fuzzy” fragility curves are delimited by curves with µ = 0 which represents the 

least plausible values and a curve with µ = 1 which represents the most plausible value. 

We compare them with the fragility curves present in the technical literature (Zuccaro 

et al., 2017) in order to validate them and evaluate the sensibility to the uncertainties. 

The curves used for the comparison are based on a study on a regional scale of the 

local collapse mechanisms of 250000 buildings present on the national territory. 

The data of 250000 buildings are generated randomly as a collection of different 

mechanical models where each case is described by the mechanical properties 

pertinent to the typological class provided by Zuccaro and Cacace (2012) for the 

vulnerability assessment. These curves are divided according to different collapse 

mechanisms and structural typologies that characterize masonry buildings in Italy. 

These curves are calculated using linear kinematic analysis with intensity measure the 

peak ground acceleration (PGA). 

The procedure permits to compute of the failure probability of these mechanisms with 

their seismic response expressed through vulnerability curves for each typological 

class. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 4.12: comparison between fuzzy fragility curves from static approach and curve obtained via a static ap-
proach from Zuccaro et al. (2017): a)-b) simple overturning for two vulnerability classes, c)-d) vertical bending for 
two vulnerability classes. 

The vulnerability classification of buildings is based on the SAVE method (Zuccaro 

and Cacace, 2015) which groups four classes of vulnerability: A, B, C, D. The 

mechanisms instead are classified using the MEDEA methodology (Zuccaro and Papa, 

2004). In the territory of the municipality of Ferrara, there are buildings with 

vulnerability classes C and D whose fragility curves will be compared with those 

obtained from fuzzy intervals. 

In Figure 4.12a - b we compare the fragility curves obtained by fuzzy input, 

considering the uncertainties relative to masonry buildings of Ferrara, applying a static 

approach for the simple overturning mechanisms. The curves appear quite different 

from those contained in Zuccaro et al. (2017). The latter appears inside the bundle of 

the “fuzzy” curves for very low values of the PGA. The lower ability to withstand 

earthquakes with a higher PGA of the reference curves seems to be due to the great 

slenderness of the walls in Ferrara in comparison with the Zuccaro data. As we will 

see later the slenderness is the parameter to which the collapse is most sensitive in the 
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case of overturning. The curves are shown in Figure 4.12c - d, relative to vertical 

bending, are almost everywhere contained in the bundle of fuzzy curves. The 

discrepancy that in this case occurs for low values of the PGA is probably related to 

the fact that the minimum thickness of brick in Ferrara is 12 cm, while in other parts 

of the Po Valley there is a minimum thickness of 9 cm because they have a different 

format in the different locations. 

It is worth noting that the fragility curves obtained by fuzzy input applying a dynamic 

approach give different results depending on the mechanism. For the simple 

overturning mechanism it is possible to see how the bundle of curves manages to 

contain the curve in the literature considering both buildings with vulnerability class 

C and D (Figure 4.13a-b). The case is different for the vertical bending mechanism for 

low PGA. In addition to the difference in the transversal thicknesses, this could be 

because the approach in the literature is more conservative than the dynamic one. 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 4.13: comparison between fuzzy fragility curves from dynamic approach and curve obtained via a static 
approach from Zuccaro et al. (2017): a)-b) simple overturning for two vulnerability classes, c)-d) vertical bending 
for two vulnerability classes. 



108 | Uncertainty quantification for local failure mechanisms in existing URM buildings 
in seismic zones 

 

Indeed, the linear kinematic analysis considers the collapse when the block starts 

rocking (the stabilizing moment is not balanced). 

On the other hand, when considering the problem in dynamics, the block flips when 

the center of gravity leaves the block. This definition is purely conventional (static 

instability). In literature, it is possible to see that some blocks that reach this limit do 

not overturn but it happens only when an impulse collapses the block (dynamic 

instability). In fact, rocking is strongly influenced by the frequency content of the 

seismic and non-seismic input (e.g. in pulse or explosion). 

From the fragility curves, it is possible to derive some general considerations on the 

behavior of local collapse mechanisms. The vulnerability of local mechanisms is 

described by a fuzzy approach that develops cumulative distribution functions (CDF). 

In the dynamic field, many of the considerations made in the static field are confirmed. 

In this case, the curves are less vulnerable than the static method, i.e. with the same 

intensity (PGA), there are lower probabilities of overturning (e.g. collapse) than the 

static approach. In fact, the rocking of the walls does not necessarily occur when 

became statically unstable (|θmax| = 1) because of its highly nonlinear nature but the 

overturning occurs when the wall becomes dynamically unstable. In this case the 

structure exhibit higher rotation than α. For this reason, the curve of fragility calculated 

with non-linear dynamic analysis is less vulnerable. An interesting aspect is the 

position of the curve with α = 1 (most plausible curve) within the bundle. In the various 

cases discussed, this curve is never the average curve of the bundle of curves that are 

created. Indeed in some cases, the curve is close to the lower extremes (Figure 4.10d-

f) in other cases it results close to the upper extreme (Figure 4.10b-e). This shows how 

uncertainty propagates in varying the input parameters and how the phenomenon that 

is strongly non-linear conditions the response. 

4.3 Uncertainty quantification for seismic risk of local col-

lapse mechanisms 
The evaluation of the safety of a structure is one of the main objectives of earthquake 

engineering. The quantification of the collapse depends on several factors such as the 

seismic hazard of the site and the vulnerability of the structure. The quantification of 

the risk of collapse has become a robust procedure with the advent of performance-
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based earthquake engineering (PBEE) which allows to include the uncertainties of 

seismic hazard and structural response with an excellent level of reliability (Deierlein 

et al., 2003; Krawinkler and Miranda, 2004). 

4.3.1 Collapse risk metrics 
The fragility curves represent the conditional probability of collapse of a structure in 

the function of the ground motion intensity P(C|IM), that is, it represents a measure of 

the vulnerability of the structure regardless of the seismic hazard of the site. However, 

as is well known, the risk must nevertheless take into account not only the vulnerability 

but also the hazard defined as a product of seismicity and site effects. This paragraph 

discusses some recent proposals to define the risk of collapse in structural elements, 

generally defined in the literature as “risk metrics”. 

4.3.1.1 Probability of collapse at a specific ground motion intensity 

Even assuming the PGA as seismic intensity (IM) according to the definition of Italian 

code, many problems remain about which IM to assume since it depends not only on 

the site but on the return time to be taken. In Haselton and Deierlein (2007), it is 

proposed, for reinforced concrete structures, to assume a conventional IM associated 

with a 2% probability of excess over 50 years. This partially combines the site hazard 

information (hazard level) with vulnerability (fragility curve), but this only provides 

the intensity measure of a single ground motion. This method does not incorporate the 

change in the probability of collapse with the inherent change of ground motion. This 

implies that the risk of collapse depends on the location of the structure and therefore 

there is no uniform risk parameter for the structures (Luco and Cornell, 2007). 

Therefore in the USA, recent regulations for instance the ASCE 7-10 (ASCE, 2010, 

Commentary C1), use a risk-targeted spectral ordinate instead of a hazard-targeted 

spectral ordinate in order to have a more uniform description of collapse risk between 

the structures. Recently, this method has been proposed also in Italy through the 

RINTC project (Iervolino et al., 2018; Iervolino and Dolce, 2018). The RINTC (The 

Implicit Seismic Risk of Code-Conforming Structures) project was funded by the Ital-

ian Civil Protection with the goal to apply the risk-targeted ground motion to evaluate 

the seismic structural reliability. Different structural typologies are evaluated includ-

ing unreinforced masonry structures (Cattari et al., 2018; Manzini et al., 2018). The 
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unreinforced masonry (URM) buildings designed in accordance with the Italian build-

ing code provided very different levels of safety and it is linear static analysis largely 

over-conservative with respect to the nonlinear static approach. Lastly, the assessment 

made with advanced models and nonlinear dynamic analyses show that the vulnera-

bility of modern URM buildings resemble to be overestimated their real behavior 

(Rosin et al., 2018). 

4.3.1.2 Median collapse intensity 

The median collapse intensity is a collapse metric that identifies the ground motion 

intensity when the probability of collapse is 50%. This metric is mainly used when you 

want to roughly estimate the risk of collapse for different structures, with similar dis-

persions, with the same intensity measure, but in the same site. 

4.3.1.3 Mean annual frequency of collapse 

One of the best metrics to evaluate the risk of collapse is the mean annual frequency 

of collapse. This method has as its main features a greater accuracy and less 

computational effort (Eads, 2013; Eads et al., 2013). To calculate the mean annual 

frequency of collapse, two components are needed which are the hazard curve and the 

fragility curve. The hazard curve describes the annual probability of exceeding an 

intensity measure obtained from a ground motion for a given site. The curves are 

obtained through the probabilistic seismic hazard analysis (PSHA) (Cornell, 1968; 

McGuire, 2004). As mentioned several times, the intensity measure adopted in this 

study is the peak ground acceleration (PGA). This value varies for each site and is 

defined for the Italian territory by Istituto Nazionale di Geofisica e Vulcanologia (Stuc-

chi et al., 2011). The hazard estimates are freely available online (http://esse1-

gis.mi.ingv.it/). The second component used is the fragility curve. In this way the 

vulnerability is described by a lognormal distribution that for a given earthquake with 

intensity measure im a relative probability of exceeding a damage state (e.g. collapse). 
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where P(C|IM) is the collapse fragility curve and dλIM(im)/d(im) is the numerical 

derivative of the seismic hazard curve at the site. The equation (4.10) is solved by 
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numerical integration as there is no closed-form solution. Then the equation is solved 

as follows: 
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where δim is the increment of IM, P(C|imi) is the probability of collapse at IM and the 

dλIM(im)/d(im) is the slope of the seismic hazard curve at discrete IMs. All this adding 

for all IMs. 

 

Figure 4.14: diagram of λC deaggregation: a) collapse fragility curve, b) slope of seismic hazard curve, c) λC deag-
gregation (Eads et al., 2013). 

The probability of collapse provides general information on the reliability (this is 

closely related to the probability of collapse) and the risk of the wall under seismic 

action. This parameter does not provide any information on which intensities 

contribute most to the collapse. A useful tool to get more information is the 

deaggregation of the collapse (Figure 4.14). This tool is similar to what occurs when 

we want to understand in the probabilistic hazard analysis (PSHA) which seismic 

source contributes most to the hazard (Bazzurro and Cornell, 1999). In the figure, it is 

possible to see how the greatest contribution to the probability of collapse is provided 
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by the ground motion intensities which have the highest ordinates of the deaggregation 

curve. 

The probability of collapse is the area under the deaggregation curve. A further 

indication provided by the curve is that most of the contribution to the collapse is 

provided by the low intensities of the ground motion. In these intensities, the slope of 

the seismic hazard curve is typically more important in these intensities than in the 

upper part of the fragility curve. Therefore, most of the collapse contribution 

necessarily does not come from higher ground motion intensities but in the lower part 

of the fragility curve. 

4.3.1.4 Probability of collapse for a given time period 

The mean annual frequency of collapse is described by λC. If the occurrence of 

earthquakes is assumed as a Poisson process (a frequent hypothesis in earthquake 

engineering following Cornell (1968)) the probability of one collapse 
CP  over t  years 

can be written as follows: 

( ) ( )in  years 1 expC CP t t= − − (4.12) 

The probability of collapse in one year can be approximated as the average annual 

frequency of collapse as follows: 

( )in  yearsC CP t  (4.13) 

In general, designers and stakeholders are interested in understanding the probability 

of collapse of structures over a 50-year period (nominal life span). ASCE 7-10 (ASCE, 

2010) target the probability of collapse for a structure to be less than 1% in 50 years 

which corresponds to the probability of collapse λc of 42.0 10− . 

4.3.2 Fuzzy mean annual frequency of collapse for local mechanism 
The procedure described above provides the mean annual frequency for a structure or 

a structural element where all the data are described by the classical theory of 

probability. The aim of the present section is to show as is possible to take into account 

the uncertainties presents on mechanical parameters, geometry and so on. The 

uncertainties are described by fuzzy variables as previously shown in Section 4.1. 
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These analyses allow determining a probability of collapse defined as a fuzzy number. 

The procedure for the evaluation of the collapse fuzzy number consists of: 

1.fuzzy description of the site seismic hazard curve (Section 4.3.2.1)

2.fragility curve with fuzzy input (Section 4.2);

3.application of the α-level optimization for the evaluation of the fuzzy

probability of collapse (Section 4.3.2.2);

4.3.2.1 Seismic hazard curve with fuzzy 

The possibility of a potential earthquake occurring in a certain location is described by 

the seismic hazard curve using the Probabilistic Seismic Hazard Analysis (PSHA) 

(McGuire, 2004). An example of a hazard curve is shown in Ferrara, Italy (Figure 

4.15). 

Figure 4.15: fuzzy hazard curve for the city of Ferrara. 

These curves are characterized by aleatory and epistemic uncertainties. Generally, 

PSHA takes into account aleatory and epistemic uncertainty using logic trees (Abra-

hamson and Bommer, 2005). 
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In the case under study, the epistemic uncertainty was considered using a different 

approach than that conventionally defined using fuzzy sets. The choice to approach 

fuzzy is dictated by the development of the fragility curves using fuzzy and by the 

desire to standardize the methodology for calculating the probability of collapse. The 

site hazard curves used in this section are taken from the database of Istituto Nazionale 

di Geofisica e Vulcanologia (Stucchi et al., 2011). They are defined by three curves: 

the mean curve and the curve that corresponds to the 16th and 84th percentile 

respectively. The fuzzy transformation of this curve consists in considering the average 

curve as the vertex of a fuzzy number with a membership function that seems to be 1 

(μ = 1). The remaining two curves (that of the 16th and 84th percentile) are defined as 

the extremes of the range of the fuzzy number with the value of the membership 

function μ = 0.32 (Buratti et al., 2012). 

4.3.2.2 Fuzzy probability of collapse 

Having defined the hazard curve in fuzzy numbers as well as the fragility curve, it is 

possible to evaluate the probability of collapse of the wall by considering the relative 

procedures described in Sections 2.1.4.1 and 4.3.1.3. 

In particular, the α-cut consists in calculating for each defined value of the membership 

function the relative output value considering the relative input data for the considered 

α-value. This is combined by creating n samples with the formula for calculating the 

probability of collapse. In doing so, it is possible to construct the relative fuzzy number 

corresponding to the probability of collapse. 

In Figure 4.16 it is possible to see how in the simple overturning mechanism the 

greatest contribution in terms of annual probability of collapse is given by earthquakes 

with PGA between 0.01g and 0.3g. These accelerations are easily found in Italian 

earthquakes. The interesting thing is to see what happens when a curb or chain is 

inserted into a wall. In this case, the simple overturning mechanism becomes a vertical 

bending mechanism. For this mechanism, it is possible to see that the greatest 

contribution in terms of annual probability of collapse is provided by earthquakes with 

PGA between 0.3g and 0.7g (Figure 4.16). This shows how this mechanism is less 

vulnerable than simple overturning. This is also confirmed by the lower probability of 

collapse of vertical bending compared to simple overturning. Table 4.4 shows the 

values of the fuzzy number of the annual probability of collapse. 
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Figure 4.17 illustrates the relative fuzzy numbers for simple overturning and vertical 

bending mechanism. For this area, the simple overturning mechanism is more 

vulnerable than vertical bending. 

a) b) 
Figure 4.16: fuzzy deaggregation of the probability of collapse, a) simple overturning, b) vertical bending. 

a) b) 

Figure 4.17: fuzzy annual probability of collapse C : a) simple overturning, b) vertical bending.

4.3.3 Safety Verification 
The aim of this section is to quantify the reliability of a possible local mechanism in 

function of the seismic risk through the mean annual frequency of collapse taking also 

account the uncertainties on mechanical and geometrical parameters and vertical loads. 

According to Cornell (1969), the probability of failure (Pf) can be evaluated by use of 

the normal distribution function Φ as a function of the reliability index β. 
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( )fP = − (4.14) 

To define the safety of the structures it is necessary to compare the reliability index 

(β) or the probability of collapse (Pf) with the prescribed values allowed or required. 

Figure 4.17 presents the fuzzy number of the mean annual frequency of collapse (λc) 

that corresponds to the probability of failure (Pf). In this figure, two main mechanisms 

of collapse are used as a test: simple overturning and vertical bending. 

The existing safety level in a fuzzy probabilistic safety assessment is described by a 

fuzzy probability of collapse value fP  and a fuzzy reliability index value  . 

permf fP P  (4.15) 

req   (4.16) 

Having defined the probability of collapse and the reliability index as a fuzzy number, 

the inequalities cannot be defined as completely satisfied or not, but it will be 

necessary to divide into three main cases: 

1. the verification is satisfied if all the elements of the fuzzy ( ) are greater than

the value of the required reliability index ( req ) 

0,l req =   (4.17) 

2. the verification is not satisfied if all the elements of the fuzzy (  ) are smaller

than the value of the required reliability index ( req ) 

0,r req =   (4.18) 

3. the verification is not fully satisfied when the required reliability index value (

req ) is an element of the fuzzy (  )

0,req l req   =   (4.19) 
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Figure 4.18: safety verification (Möller and Beer, 2004) 

If the verification is partially satisfied, the fuzzy set is divided by two subsets 1  and 

2  with a straight line req . The first subset 1  is defined as follows: 

( )( ) 1 , ; req       =    (4.20) 

whose right part of the fuzzy set is verified while a second fuzzy subset 2  is defined 

( )( ) 2 , ; req       =    (4.21) 

where the left part of the fuzzy set is the unverified part. The degree to which the values 

of β1 and β2 belong to the membership function µ(β) are evaluated by applying the 

maximum operator. The maximum value of the membership function is defined as 

follows (Möller et al., 2003): 

( )
1

1 sup
 

  


=     (4.22) 

( )
2

2 sup
 

  


=     (4.23) 

The safety check is satisfied when it is evaluated by the µ1 value while the safety check 

will not be satisfied by the µ2 value. These values of the membership function can be 

interpreted as the degree of possibility that the verification is verified or not, 

respectively. With a value of µ2 = 0, the verification is not fully satisfied, while with 

µ1 = 0 the safety verification is fully satisfied. 
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Figure 4.19: assessment of fuzzy safety level with subsets 𝛽̃1 and 𝛽̃2 (Möller and Beer, 2004). 

The procedure described above has been applied for two recurrent local collapse 

mechanisms: simple overturning and vertical bending. The simple overturning is, as 

known, triggered by extremely low horizontal actions, and it is enough for example to 

insert a chain at the head of the wall to trigger the second mechanism which however 

requires a horizontal action about four times greater. Table 4.4 shows the value of the 

probability of collapse and the reliability index for masonry walls for the two 

mechanisms for the set of mechanical parameters reliable in the territory of the 

municipality of Ferrara. Figure 4.20 shows that for simple overturning, the check is 

not completely satisfied for typical values of masonry buildings and the hazard curve 

in Ferrara. It should be noted that in this case the wall is of good quality from the 

masonry point of view but has no transversal connection with the other walls. If we 

consider the role of the connections or the presence of chains (vertical bending), the 

reliability indexes increase and the probability of collapse decrease. If the walls were 

on upper floors or parapets at the top of the buildings these would be less safe given 

an increased probability of collapse due to the amplification effect of the structure on 

the site hazard curve. 
Table 4.4: probability of collapse CP  and reliability index   for simple overturning and vertical bending 
mechanism. 

Mechanism 

simple overturning vertical bending 

CP 3 3 41.73 10 ,2.90 10 ,9.90 10− − −     5 5 41.73 10 ,5.94 10 ,2.01 10− − −    

  2.33,2.76,3.58   3.54,3.99,4.14   
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a) b) 

Figure 4.20: fuzzy reliability index : a) simple overturning, b) vertical bending. 

Let us remark that there is no commonly accepted definition of the values for reliability 

indices both in the technical literature and in the various technical standards. In the 

examples, we have reported what is defined by ASCE 7-10 (ASCE, 2010) that sets the 

probability of collapse for a structure at 1% in 50 years. 

4.4 Sensitivity analysis 

The sensitivity analysis allows you to evaluate in the presence of several uncertain 

parameters which ones have the most significant effect on the structural system or to 

quantify the influence of input uncertainties on the output parameters. The sensitivity 

index reported in this chapter has two components like a fuzzy number. These values 

correspond to their degree of plausibility. The first value is the result of the stochastic 

nature of the input parameter while the second derives from the degree of plausibility 

of the input. These sensitivity indices are between 0 and 1 and show the minimum and 

maximum impact that the input parameters have on the output variable. The degree of 

plausibility of the sensitivity index depends on the membership function. The fuzzy 

approach allows you to provide important information to encourage an informed 

decision-making process. This methodology is necessarily limited due to the high 

computational cost for non-linear analyzes combined with stochastic methods. This is 

partly an obstacle for practical applications. Computational times can be reduced by 

using sophisticated Monte Carlo simulations that allow for a significant reduction (Du-

bourg and Sudret, 2014; Lu et al., 2008; Wei et al., 2014; Zio, 2013).In this chapter, 

the High Dimensional Model Representations technique (HDMR) (Li et al., 2001) is 
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used for the evaluation of the indices and this allowed a considerable reduction in 

calculation times. Naturally, through advanced machine learning techniques, it is 

possible to further reduce these calculation times (Dubourg and Sudret, 2014; Wang 

et al., 2013; Wu, 1994). The formulation of even faster sensitivity analyzes is still 

being researched. 

4.4.1 Sensitivity Analysis based on static approaches 
Static analysis is the most widely used method for verifying the stability of the wall 

under seismic action (MIT, 2018, 2019). The linear kinematic limit analysis method 

consists in solving a simple equation between the stabilizing moment and the 

overturning moment which allows to derive the collapse load multiplier. 

The purpose of the stability analysis, which includes the uncertainties of the structural 

parameters, is to understand which input parameters influence the collapse load 

multiplier which is the output variable. Understanding which input parameters affect 

simple mechanisms is relatively easy for most mechanisms. This Section aims to 

propose a robust and general method to evaluate the sensitivity of the parameters. For 

this purpose, the Sobol indices were used to evaluate the sensitivity to the parameters. 

Both the first order and the global index were used. A brief discussion from the 

mathematical point of view is treated in Section 2.5 as the relative bibliographic 

references. 

Two different mechanisms were considered for the sensitivity analysis: single-leaf 

wall overturning, single-leaf wall vertical bending. The input parameters considered 

are: 

• the compressive strength of the masonry (σc); 

• geometric parameters of the wall such as base (B), height (H), depth (L); 

• load parameters like floor load (gk), floor span (ls); 

• position of the application of the load onto wall (d). 

Figure 4.21 shows the results of the sensitivity analysis for the two mechanisms 

analyzed. As you can see, the parameters that most influence the structural response 

of the mechanisms are the geometric properties, in particular, the base and the height 

and the depth of the wall. 



Sensitivity analysis | 121 

 
 

 

 

 

a) 

 

 

b) 

 

c) 

 

 

d) 

 

e) 

 

 

f) 

Figure 4.21: fuzzy sensitivity indices for one-sided rocking (left column) and two blocks rocking (right column): 
a) - b) first-order sensitivities; c)-d) total effect sensitivities; e)-f) total effect sensitivities with attention to the load 
inputs and its application. 
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Another parameter that influences the structural response is the point of application of 

the force obtained as a floor relief. 

Indeed, if you investigate the role of loads on the collapse load multiplier, you can see 

how the application plays an important role with respect to the span and load of the 

floor. These results are well known in the literature and extensively investigated (see 

Chapter 3). An innovative aspect is that starting from the CARTIS data with the 

relative uncertainties associated with the parameters, it is possible to quantify which 

parameters influence the response in a robust mathematically and relatively quickly 

without detecting the aggregates in detail. In fact, this information can provide 

confidence intervals for the fragility curves in order to clarify the possible vulnerability 

intervals of the structures to the decision-maker. 

4.4.2 Sensitivity Analysis based on dynamic approach 
In this section, we carry out the sensitivity analysis for the local collapse mechanisms 

of simple overturning and vertical bending employing dynamic non-linear analysis. 

There are two aspects that we want to consider. First of all, as in the previous 

paragraph, quantify which uncertain parameters influence the output the most. 

Furthermore, we want to quantify how sensitive the result is to varying the seismic 

intensity or the PGA of the site. 

4.4.2.1 Sensitivity Analysis in presence of local variation of PGA 

The certainty of the seismic input is a phenomenon that has always characterized 

seismology. In fact, the uncertainty in the recording of the input (the precision is of the 

order of 0.01g) and the local effects present in the affected area make the parameters 

that can be calculated uncertain (e.g. PGA, pseudo-acceleration). This affects not only 

the non-linear dynamic analysis that takes place but also the fragility curves (Di Lu-

dovico et al., 2020). The 2012 earthquake that hit Emilia was for instance characterized 

by local amplification and liquefaction phenomena (Fioravante et al., 2013; Lai et al., 

2015; Papathanassiou et al., 2015). In addition, a relevant uncertainty has occurred on 

the PGA of the Shake Maps. 

As you can see in Figure 4.22, the uncertainty of the PGA is different for the two 

events. In fact, between the first and the second shock, additional temporary stations 

were installed for the recording of the ground motons which greatly reduced the 
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uncertainty of the PGA. For further information on this topic see (Cultrera et al., 2014). 

Moreover, in the historical center sector of the city of Ferrara, it is possible to see how 

there are local phenomena (Figure 4.23). Indeed, there are areas where the liquefaction 

risk index is higher (IL>5) others where it is medium (2<IL<5). There are also 

phenomena of local amplification. 

When a seismic event occurs in the presence of local effects, three situations can occur: 

absence of liquefaction and liquefaction in different steps. In fact, damage to structures 

can occur both in the absence of liquefaction and when liquefaction is present with 

lower PGA. In the absence of liquefaction, local mechanisms or diagonal in-plane 

cracks occur. In the presence of liquefaction, the damage caused by inertial forces is 

mostly absent because liquefaction works as a natural insulator. 

The main damages that can be encountered are rigid rotations of buildings with 

significant loss of functionality of the structure, such as diagonal cracks due to the 

subsidence of the foundation. Damage from the combined effects of inertial forces and 

liquefaction-induced damage can also occur. The main difficulty is to predict when 

liquefaction occurs due to the characteristics of the soil. 

 

 
Figure 4.22: elaboration of Shake Maps for the 20 May (a-c) and 29 May (b-d) earthquakes with median PGA (50th 
percentile) and logarithm standard deviation of PGA (image from (Buratti et al., 2017)). 
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Figure 4.23. seismic microzonation map at level 3 for the city of Ferrara: in red the areas susceptible to high risk 
of liquefaction (IL>5), in yellow the areas at moderate risk of liquefaction (2<IL<5) and in gray the areas at low 
risk of liquefaction (IL<2). In orange, the areas susceptible to local amplification (FaPGA = 1.5:1.6) (image from 
(Fioravante and Giretti, 2013)). 

Considering these phenomena, a sensitivity analysis was carried out for the simple 

overturning and vertical bending mechanisms. The input parameters considered in the 

analyses are: 

• geometric parameters of the wall such as base (B), height (H), depth (L);

• position of plastic hinge (µ) only for vertical bending;

• load parameters like floor load (gk), floor span (ls);

• position of the application of the load onto wall (d);

• peak ground acceleration (PGA).

By introducing the intensity of the earthquake due to instrumental errors or local 

effects as an uncertain parameter, it is possible to see in Figure 4.24 how this 

uncertainty plays a decisive role in the structural response of the wall. It has greater 

relevance in the case of the simple overturning mechanism than in the vertical bending. 

The result is qualitatively intuitive because the fragility curves in the case of 

overturning are steeper (the sensibility represents in a certain sense the derivative of 

the output with respect to a parameter) and more dense. However, it seems the first 

time that this sensitivity has been quantitatively evaluated. In general, what emerged 

in the other sensitivity analyzes is highlighted: the geometric parameters play an 
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important role in the structural response. As regards the loads and their application, it 

is possible to see how the span of the floor influences the response more with respect 

to the point of application of the floor load on the wall and of the load itself. 

 

a) 

 

b) 

Figure 4.24 first-order sensitivity indices: a) one-sided rocking, b)two-block mechanism 
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5 Reliability assessment of masonry columns of 

the Cathedral of Saint George the Martyr in 

Ferrara 

This chapter focuses on the safety assessment of the masonry columns of the Cathedral 

of Saint George the Martyr in Ferrara, Italy. The current state of the column is detailed 

with the relative information on the mechanical properties of the materials, on the loads 

taking into account the variability of the intensity and the application points. 

Particular attention is given to the creation of simplified mechanical models useful to 

obtain a fair compromise between computational times and the robustness of the re-

sults. These simplified models are validated with analytical solutions and numerical 

models usually applied (i.e., FEM models). 

5.1 Heritage masonry building and structural reliability 
As discussed in the first chapter the reliability assessment of existing structures re-

quires appropriate assumptions and good levels of knowledge therefore, the evaluation 

process results always uncertain.  

Obviously, when studying old buildings with important historical and/or artistic value 

(heritage buildings), the uncertainties increase (Augusti and Ciampoli, 2000). How-

ever, reliability analyzes for masonry structures constitute a research area that appears 

not yet fully investigated. This is due to the uncertainty not only associated with the 

material but also with loads and its boundary conditions. Several studies have been 

carried out analyzing the uncertainty of the masonry material (Asteris et al., 2019; 

Casciati and Faravelli, 2008; Ellingwood, 1981; Saloustros et al., 2019) but these pa-

pers do not achieve a suitable definition of the reliability index. 

However, a first significant attempt is a work of Baratta (1991). The Author, without 

significant applications, proposes an estimate of a reliability index assuming masonry 
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as no-tension material and making the reliability index conditional on the age and frac-

ture speed of the material. 

Finally remember that in historic structures, long-term effects such as creep and mate-

rial degradation play a fundamental role in the safety of the structures as shown with 

extensive experimental research by the collapse of the Civic Tower in Pavia (Figure 

5.1a) (Binda, Anzani, and Saisi, 2008). Papa and Taliercio (2005) presented a numer-

ical model for taking into account the action of cyclic and persistent loads on masonry, 

while Binda, Anzani, and Garavaglia (2008) proposed a probabilistic model for the 

study of the long-term behavior of masonry specimens subjected in laboratory to creep 

and pseudo-creep. 

The failure of the Noto Cathedral (Figure 5.1b) serves as a warning of the interplay 

between weight and geometry, furthermore highlights that the no-tension assumption 

can provide a reliable behavior for masonry structures. In his book, Como (2013) pro-

vides a distinction between structures intrinsically stable and intrinsically unstable. 

This distinction helps to simplify an extremely complex problem such as that of mon-

umental masonry structures. 

By intrinsically stable structure we mean a structure that under given geometry and 

load distribution within the assumptions of no-tension behavior, satisfies equilibrium 

and admissibility of compression stresses. By intrinsically unstable structure we mean 

that the structure is not capable to sustain given loads under the no-tension material 

assumption. 

  
Figure 5.1: some examples of the collapse of heritage masonry building: a) the ruin of Civic Tower of Pavia in 
1989 after the collapse (image from Binda, Anzani, and Saisi (2008)), b) a damaged pillar of the Noto Cathedral 
(image from Saisi et al. (2008)). 
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Finally, let us remark that, given the complexity of the monumental structures, the 

verification of their safety must be done by integrating as much as possible all the 

information that can be obtained from the experimental tests in situ, from the numeri-

cal models and from the monitoring of the structures. 

5.2 The Cathedral of Saint George the Martyr 
The Cathedral of Saint George the Martyr is the seat of the Archbishop of Ferrara and 

it is dedicated to Saint George the patron saint of Ferrara and its construction repre-

sented the new role of the city of Ferrara. Namely, Ferrara is no longer a secondary 

center, but a city of increasing commercial and political importance in the 12th cen-

tury. 

In 1132, Pope Innocent II signed the breve (litterae apostolicae) for the concession of 

construction for the new cathedral. On the initiative of bishop Landolfo and Guglielmo 

degli Adelardi, de facto ruler of the city, the works began immediately when the city 

was being extended towards the left bank of the Po River. Certainly, 1135 constitutes 

a reference point in the dating of the first structure because this is engraved in the Latin 

inscription placed in the lunette of the main portal of the Cathedral and Pope Alexander 

III consecrated the main altar in 1177. 

The current state of the cathedral is the result of a series of additions, modifications 

and restorations over the centuries that have changed its external appearance and com-

pletely changed its layout. Overall, the most significant changes were in the fifteenth 

century due to the intervention of Biagio Rossetti in the apse area and in the seven-

teenth century, made by Luca Danesi, in the transept. Finally, the total restructuring in 

baroque style was carried out by Francesco Mazzarelli on order of the archbishop car-

dinal Dal Verme in 1712-1728. These works completely changed the static structure 

which was transformed from a five naves structure with a wooden roof with a light 

weight, to a three naves structure with a complex system of vaulted masonry roofs that 

are very heavy (Figure 5.2). 

The façade of the Cathedral is a clear example of a Romanesque style façade (Figure 

5.3). Above the central door, you can see Saint George and the scenes from the New 

Testament by the sculptor Nicholaus (1135). 
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a) 

 
b) 

 
c) 

Figure 5.2: comparison between the medieval and eighteenth-century cathedral: a) longitudinal sections, b) maps 
c) cross sections (Carbonara, 2015). 
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Figure 5.3: cathedral west front and façade. 

A few decades later, the upper part was built in the Gothic style, it presents an extraor-

dinary Last Judgment by an unknown sculptor above the central loggia. Two galleries 

and columns of various shapes decorate the side facing of the building. The Loggia dei 

Mercanti located on the ground floor has been occupied by shops since the Middle 

Ages. In the middle of the south side, it is possible to see what remains of the Porta 

dei Mesi, which takes its name from the magnificent carved panels depicting the 

months, demolished in the 18th century but some sculptures are still visible in the Ca-

thedral Museum. Near the cathedral is the imposing Renaissance bell tower, in pink 

and white marble, an unfinished work attributed to Leon Battista Alberti. The brick 

apse, decorated with terracotta arches and marble capitals, is the work of the greatest 

Renaissance architect and urban planner of Ferrara, Biagio Rossetti. 

As mentioned above, the interior of the cathedral was completely renovated in the 18th 

century in a grandiose Baroque style. To support the weight of the roof, Mazzarelli 

introduced new large masonry pillars (about 2.30 m by 4.20m) between the two lateral 

naves and the central one, with a greater span, which partially incorporate the previous 

medieval pillars. The eighteenth-century column does not appear to be perfectly con-

nected to the medieval one. Moreover, inside the columns, there are sometimes iron 

rings. In fact, these pillars were the subject of restoration work in the 1930s by the 

Superintendence for Architectural Heritage of Bologna and then the diocesan chancery 
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intervened. 

The pillars are cracked and the plasters seriously damaged, also due to the poor quality 

of the plasters and mortars used in those restorations, so much so that a new interven-

tion is necessary. Following the seismic events of May 2012, the commissioner for the 

reconstruction of the Emilia-Romagna Region decided to finance new restorations. 

5.3 The case of the pillars of the Cathedral 
The pillars of the cathedral have been the subject of interventions and investigations 

since the phases immediately following the renovation works of the 30s of the last 

century due to the crack pattern and the detachment of portions of plaster. A main 

problem encountered is the capillary rise of the typical humidity of the Ferrara area. 

For the humidity, remedies of dubious efficacy were adopted (Nunziante, 2021). 

On geometry, it seems relatively easy to identify, working on the current relief and 

bearing in mind Mazzarelli’s drawing in Figure 5.2, the axes of the major pillars and 

minor of the secondary aisles. Instead, it is necessary to reflect carefully on Maz-

zarelli’s plan to obtain the exact position of the medieval pillars on these axes. 

The old medieval pillars are in an eccentric position, that is to say more moved towards 

the great nave, as shown by the essays carried out and only covered, on the front that 

looks at it, from a light wall lining, sufficient to are outline the classical forms of the 

orders that today characterize the great baroque pillars. Two columns can therefore be 

seen side by side: a medieval one, which is incorporated into the eighteenth-century 

one (Figure 5.4). 

We assume pillar B4 as a reference for the investigation (Figure 5.5). For this pillar, 

analyzes were carried out for the mechanical characterization of the masonry by means 

of laboratory tests on the components i.e., compression tests on brick cubes and double 

punching on the mortars, taking appropriate samples of eighteenth-century and medi-

eval mortars. Tests were carried out with single flat jacks, aimed at an indicative veri-

fication of the entity of the average stresses. 

From the wall texture, it is possible to distinguish the eighteenth-century masonry from 

the medieval one (Figure 5.6). The thickness of the brick block is the simplest param-

eter from which it is possible to distinguish the two wall textures. In fact, the thickness 

of the medieval brick block is 65 mm while the eighteenth-century one is 55 mm. 
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Figure 5.4: axonometric view of the medieval parts (in red) and the cross-section of the pillar. 

However, the various alterations that took place over the centuries are such that on a 

superficial level the medieval part has been reconstructed for some sections. This con-

dition is evident for the portion next to the base of the column where it is entirely 

rebuilt with bricks similar to those of the eighteenth century. 

The structural critical issues of the pillars emerged in the 1930s and already with the 

local interventions of the 1800s. In the 1930s the first interventions were carried out 

aimed at reducing the structural criticalities that emerged from the cracking pattern 

carried out at the time. The intervention plan carried out at the time was performed 

without a uniform approach. Figure 5.7 shows a reconstruction of the metal interven-

tions carried out in the 1930s. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 5.5: plan and section of the cathedral with column B4 highlighted a) plan of the cathedral, b) section C-C, 
c) section B-B, d) section 7-7.  
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a) 

 
b) 

 
c) 

 
d) 

Figure 5.6: a) injuries in the presence of metal elements, b) vertical cracks in the wall face, c) lack of clamping of 
the masonry, d) irregular texture of the wall face. 
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Figure 5.7: reconstruction of the metal elements presents in the masonry column. 

From the tests and analyzes carried out, numerical evaluations reported below could 

be affected by errors due to the numerous unknowns and calculation limitations. The 

test with the flat jack for measuring the operating pressures can be considered a rough 

reference of the state of average stress, when suitably validated, as an error linked to 

edge effects, to local conditions of the masonry of both state of conservation and weav-

ing, to tolerances instrumental. 

The theoretical analysis of the stress distribution cannot take into account the load 

history of the structure, which remains uncertain. In fact, the succession of construc-

tion phases should be considered, the conservation of part of the medieval structures, 

including a portion of the ancient column could have retained a relevant load share. 

Furthermore, being non-contemporary structures, differential settlements may have 

occurred that cannot be quantified but such as to influence the distribution of stresses. 

In addition to the column, in the eighteenth-century reorganization of the cathedral a 

part of the clerestory of the medieval church was conserved, with annexed structures, 

including large unloading arches that are still visible today. One hypothesis is that 

these structures are still pushing. 

The first simplifying hypothesis on the column behavior is to assume that medieval 

and baroque can be considered made of, eventually distinct, homogeneous masonry 

material. Investigations show a weak level of clamping, moreover the distribution of 

the metal insertions cannot be considered such as to guarantee collaboration between 
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the two portions of the masonry volume. 

5.3.1 Material 
The stripping of the B4 pillar made it possible to evaluate the masonry texture and 

mechanically characterize the material by means of on-site tests. 

The simple jack test allowed the measurement of the operating pressures. These values 

are indicative of the average stress state. Although for the case study, this methodology 

can be considered reliable i.e. the loads are high; the stress measures are however af-

fected by an intrinsic error due to edge effects, local conditions of both loading and 

weaving and also instrumental tolerances. From the mechanical characterization of the 

mortar and brick blocks, it emerged that medieval mortars are on average better than 

those of the eighteenth century. Figure 5.8 shows the wall textures present in the ca-

thedral. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.8: details of the wall texture. 

5.3.1.1 Characteristic compressive strength of masonry 

The characteristic compressive strength of masonry fk, can be determined from results 

of tests on masonry specimens using the formula reported in Eurocode 6 (CEN, 

2005a): 

where: 

• fk is the characteristic compressive strength of the masonry, in N/mm2; 

• K is a constant and, where relevant, modified according to 3.6.1.2(3) and or 

 k b mf K f f =    (5.1) 
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3.6.1.2(6); 

• α, β are constants; 

• fb is the normalized mean compressive strength of the units, in the direction of 

the applied action effect, in N/mm2; 

• fm is the compressive strength of the mortar, in N/mm2. 

Applying the formula for eighteenth-century masonry, the compressive strength of the 

masonry is equal to 4.34 MPa. The compressive strength of medieval masonry is in-

stead equal to 4.76 MPa. These results are based on 20 compression tests on brick 

cubes to determine the compressive strength for the blocks, while for the determination 

of the compressive strength of the mortars they are determined by 10 tests for medieval 

mortars and 30 tests for eighteenth-century mortars. The results of all tests are availa-

ble in Appendix A. Table 5.1 shows the average values and the relative standard devi-

ations. 

Table 5.1: results value experimental tests. 

Parameter Mean value μ [MPa] Standard deviation σ 
fb 17.61 5.64 
fm1000 2.98 0.72 
fm1700 4.06 0.56 

 

5.3.1.2 Modulus of elasticity 

In the absence of a value determined by tests in accordance with EN 1052-1, the short-

term secant modulus of elasticity of masonry E, for the use in structural analysis, may 

be taken: 

where KE is equal to 1000 and fk is the compressive strength of the masonry. 

The long-term modulus Elong term is reduced to allow for creep effects such that: 

 1000E k kE K f f= =   (5.2) 

 
long term 1

EE


=
+

 (5.3) 
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In our case, a value of the creep coefficient ϕ∞ equal to 1.0 has been assumed. There-

fore, the value of the elastic modulus in the long term corresponds to half of the elastic 

modulus in the short term. 

5.3.2 Load 
Table 5.2 and Figure 5.9 show the value of the actions transferred to the pillar by the 

individual arches and which are included in a single assessment and added to the hor-

izontal and vertical loads, which for simplicity we consider applied at the barycenter 

of the arch sections. 

 
Figure 5.9: example of section and position of the applied loads. 

Table 5.2: value of loads, heights and distances from the axes of their application. 

Load [kN] Z [m] Ey [m] Ex [m] Note 

A 150 17 1.4861 0.5238 weight vault 

B 320 17 1.3477 0.8192 weight dome and plumes 

C 87.12 17 1.3477 0.8096 weight vault 

D 92.5 9 1.4861 0.8436 weight vault 

F1 horizontal 159 9   from arch 

F1 vertical 304 9 0 0.8436 from arch 

F2 horizontal 927 11.5   from arch 

F2 vertical 1375 11.5 1 0.8721 from arch 

F3 horizontal 511 17   from arch 

F3 vertical 1217 17 1.3477 0 from arch 

F4 horizontal 500 9   from arch 

F4 vertical 920 9 1.4861 0 from arch 

F5 horizontal 511 17   from arch 

F5 vertical 1217 17 0.8336 0.8192 from arch 
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Figure 5.10: diagram of the loads insisting on pillar B4. 

The evaluation of the thrust of the circular (o round) arches is obtained by identifying 

the curve of the arch pressure. The loads estimated through the volumes at the bary-

centric curve and by calculating the thrust curve. Figure 5.10 report the overall picture 

of the forces acting on the column and their application. 

In the following paragraph, the horizontal stresses acting on the pillar by the arches 

and the weights that the domes always exert on it are critically discussed. 

5.3.3 The thrust of the arches 
The values reported in the previous paragraph are evaluated considering the elastic 

material with secant modulus and fixed constraints. However, the horizontal thrust of 

the arches and more generally of all curved masonry structures changes in the centuries 
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due to the viscosity of the material (humidity, and other eventual damages of the ma-

terial) and possible subsidence of the impost over time. This topic is dealt with exten-

sively in Como (2013). The possible variations of the horizontal thrust are presented 

below. 

For instance, an arch or a dome is inserted into a more complex structural system on 

which they unload their thrust. The impost of the arch or the supporting drum of the 

dome, under the actions transmitted to them and undergoing a small deformation, are 

sufficient to determine the slight yield to imposts. 

In the columns of historic masonry buildings and generally in complex buildings we 

are in the presence of uncertain conditions on the loads that can influence our judgment 

on the stability of the column even more than the uncertainty on the mechanical pa-

rameters of the masonry. Therefore, it is important to quantify the possible variation 

in the extent of the horizontal thrust and to estimate the possible variation of the points 

of application of the loads. 

In his book, Como (2013) indicates how, due to the effect of viscous deformations and 

the relaxation of the constraints, the value at the limit state of the horizontal thrust 

tends to a minimum value. The main aspects of the Como treatment justify the follow-

ing reliability analysis of column B4 are presented in a concise manner below. 

5.3.3.1 The limits of the arch thrust: minimum and maximum 

The thrust exerted by the masonry arch under assigned distributions of forces is an 

essential feature of the arch mechanics. If the arch reaches a state of admissible equi-

librium, there will certainly be at least one pressure curve placed inside the arch and 

funicular of the loads acting. 

In general, the position of the pressure curve is uniquely defined as soon as three points 

are set through which the curve must pass: two at the imposts and one in the keystone 

of the arch. In general, there are infinite curves of possible pressures. Among all these 

curves there is the pressure curve that corresponds to the minimum thrust of the arc 

and that corresponds to the maximum. 

For the arch in Figure 5.11, the dotted curve is the minimum thrust one, the continuous 

line is the maximum thrust one. Here, it is noted that the pressure curve relating to the 

minimum thrust creates an axis curve inside the bow that has the minimum light and 

the maximum deflection, while the axis curve relating to the maximum thrust has 
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maximum light and minimum deflection. All these possible thrusts include the thrust 

actually exerted by the bow. 

The evaluation of this thrust constitutes a complex problem with no simple solution. 

On the other hand, this evaluation is necessary, as it allows to verify the structures on 

which this thrust is unloaded. In general, according to Como (2013), it is the minimum 

thrust that, as a rule, can best approximate the thrust actually present. 

 
Figure 5.11: pressure curve corresponding to the maximum and minimum thrust. 

 

5.3.3.2 Possible causes of the variation of the thrust 

5.3.3.2.1 The effect of elastic deformation on the thrust of the arch 

Various aspects affect the thrust of the masonry arch and it may be useful to examine 

the evolution of stress during the construction process. The arch is first built on the rib. 

At the end of construction, before dismantling, the bow is unloaded, as all the weight 

of the bow rests on the rib. When the bow is disarmed, the arch goes into compression 

and pushes against the springers. Immediately after dismantling, the arch is subject to 

uniform compression: the funicular of the loads coincides with the axis of the arch. 

The corresponding thrust exerted by the bow is then simply evaluated. In fact, if L is 

the arc span measured on its axis, f is the corresponding arrow and Mc indicates the 

bending moment at the middle section of the corresponding supported beam, with the 

same span of the arch and the same distribution of loads, the thrust 𝐻 of the arch is: 

 CMH
f

=  (5.4) 
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Figure 5.12: elastic contraction of two symmetrically voussoirs. 

In particular, if the load p is constant and the arch is parabolic, it can: 

Since the arch goes into compression, all its segments undergo elastic shortening of all 

voussoirs (Figure 5.12). There is therefore an immediate drop in thrust and the pressure 

curve rises in the key section. The calculation of this thrust drop can be carried out by 

referring to the elastic diagram of the arch. Due to the magnitude of the stresses in-

volved, the occurrence of the thrust fall ΔH does not determine the state of traction in 

the sections. The thrust fall ΔH is then determined by imposing that it must be such as 

to produce an elastic distance between the springers of the arch equal and opposite to 

the approach that occurs between them due to the elastic shortening of the arch under 

the loads acting on the disarming, as shown in Figure 5.13. 

 
Figure 5.13: extension of the springers due to the thrust drop ΔH. 

 2

8
pLH

f
=  (5.5) 
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The presence of mortar joints, also due to their viscous deformability, produces over 

time a further shortening of the arch axis, greater than would occur in the absence of 

joints, due to the elastic deformability of the segments in stone. The presence of mortar 

joints therefore produces a greater drop in thrust and ultimately a more reduced thrust 

at the springers. 

5.3.3.2.2 Cracking of the arch 

A masonry arch usually has a presence of a crack characterized by the presence of a 

lesion on the intrados, near the key section. This behavior will be defined as physio-

logical. A more accurate inspection shows the presence of similar lesions on the extra-

dos, near the haunches. This cracking can be motivated by the thrust drop that occurs 

in the arch when it is disarmed. The assessment carried out of the extent of this drop 

in thrust, however, makes it possible to exclude that this is responsible for this crack-

ing. 

It is almost inevitable in a masonry arch, and particularly in a historical arch, to find 

lesions in the intrados between the joints, near the key section. If this happens, unless 

the arch does not have initial construction defects, it must be assumed that a springer 

failure has actually occurred due to the thrust of the arch. The case of the arch that is 

grafted between two piers or between two side walls is still very frequent. In this case, 

a very slight rotation of the foundation of the piers involves a slight widening of the 

springers of the arch or of the vault responsible for the crack in key. In an arch of a 

historic building, therefore, if a slight crack appears in the intrados in the key, it is 

almost certain that small subsidence has occurred with consequent slight enlargement 

of the springers. 

5.3.3.3 Interpretation of the minimum thrust within the limit analysis of arches in no-

tension material 

The development of slight subsidence in the imposts of an arch is a practically certain 

event during the time. In this case, the masonry arch follows the subsidence that occurs 

at the imposts and it deforms according to a mechanism, adapting its pressure curve to 

the kinematics. This involves the development of a hinging on the extrados in keystone 

and two symmetrical hinges on the intrados depending on the geometry of the arch 

itself. The pressure curve is then arranged according to the precise geometry regulated 
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by the condition of the minimum thrust. The behavior of the arch in the presence of 

subsidence can be interpreted in the context of the rigid masonry model that does not 

react to traction. In these conditions, the thrust of the arch is the minimum among all 

those statically admissible. The determination of the minimum arc thrust can therefore 

develop according to the static method. The kinematic method can be used to obtain 

summary information both on the location of the hinges on the intrados and on the 

extent of the thrust. In the case of a parabolic arch (Figure 5.12), the minimum thrust 

is obtained with a mechanism characterized by the presence of hinges to the imposts 

on the intrados. The procedure described in the following is developed in Como (2013) 

and is apparently more precise, however let us remark that the arches of the cathedral 

of Saint George appear far from a collapse incipient. 

Figure 5.14 describes the pressure curve in conditions of minimum thrust of the semi-

circular round arch subject to its own weight. In the right half of the arc the curve of 

pressures is drawn. The angle   identifies the position of the hinge of the failure 

mechanism. 

 
Figure 5.14: The pressure curve for the arch of minimum thrust with the indication of the position of the internal 
hinge. 

5.4 Stability of masonry piers 
The stability of the piers has been extensively studied starting with Leonhard Euler in 

1744. In the last thirty years, the stability of the masonry pillars under the effect of the 

load eccentricity has been analyzed. The masonry material consists of brick and mor-

tar, which has a certain tensile strength. This property is a key element in evaluating 

the load-bearing capacity. One of the frequent assumptions for this material is that the 
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solid does not resist tensile strength therefore assuming a no-tension material. This 

assumption for masonry rectangular columns is widespread in structural mechanics 

and is taken up by the pioneering works of Sahlin (1971), Yokel (1971) and Frisch-

Fay (1975), which analyzes the stability of masonry pillars with a single eccentric load. 

A beam model is assumed for the column and the Authors consider the constitutive 

model to determine the axis displacement using a second-order differential equation. 

Subsequently, the problem was analyzed considering a limited compressive strength 

(De Falco and Lucchesi, 2002, 2003) and extended to circular columns (Broseghini et 

al., 2018; Gurel, 2016). The effects of viscosity on the stability of the columns is pre-

sented in Cecchi and Tralli (2012) 

Helpful design tips are also provided through correlations for the ultimate load and 

initial eccentricity for rectangular and circular sections. These models have also been 

extended to non-linear constitutive models (La Mendola, 1997; Romano et al., 1993). 

Finally, models with discretization of the elements with algebraic formulations have 

also been proposed (La Mendola and Papia, 1993). These models have also been ex-

tended to non-linear constitutive models. Finally, models with discretization of the 

elements with algebraic formulations have also been proposed. An experimental cam-

paign was recently conducted which compared the analytical results for eccentrically 

loaded dry-stone rectangular pillars (polymethylmethacrylate brickwork pillars) (Gei 

and Misseroni, 2018). The instability of the pillars and masonry walls due to eccen-

tricity of the load have been extensively investigated also through experimental cam-

paigns (Adam et al., 2010; Brencich and de Felice, 2009; Cavaleri et al., 2005; Drys-

dale and Hamid, 1983; Hatzinikolas et al., 1980; Sandoval et al., 2011). 

5.4.1 Analytical method 
This paragraph reports for completeness the analytical treatment for masonry pillars 

subject to an eccentricity of the load. The main passages useful for dealing with the 

problem are reported. A more detailed exposition is reported in Como (2013). 

The analytical study is linked to what happens with the cracking where the effective 

depth D of the section decreases while the cracked length of the column increases with 

the deformations. For this reason, the column can appear as a bar with variable moment 

of inertia with the significant condition that the variation in inertia is unknown and that 

it is not symmetrically arranged around the material axis. When the column has zero 



Stability of masonry piers | 147 

 
 

tensile strength, cracks will occur at the slightest tendency for traction, the relative 

stress distributions are trapezoidal in the non-traced area and triangular in the cracked 

portion. 

On the other hand, when the column has a small amount of tensile strength, this will 

accumulate on the convex face in some sections of the untracked zone, but once the 

tensile limit has been exceeded and the crack crosses the cross section, it is assumed 

that the stress concentration will exclude all shapes except the triangular stress distri-

bution (Figure 5.15). 

In Figure 5.15, an example of a beam subject to eccentric load is shown. The cross 

section is sketched on the right-hand side where b is and D are the width and depth of 

the cross section, e is the eccentricity of load applied P, n indicates the neutral axis, 

( )3 0 2w =  the height of the compressed part of the cross section at x = 0, x the 

coordinate taken along the axis of pillar, y is the coordinate taken from the neutral axis, 

v(x) the displacement function of the longitudinal axis and γ the vertical displacement 

of the load P. 

 
Figure 5.15: geometry and notation used in the analytical solutions in the case of the piers is partially damaged (Gei 
and Misseroni, 2018). 



148 | Reliability assessment of masonry columns of the Cathedral of Saint George the 
Martyr in Ferrara 

 

The parameters that govern the displacement load relations are now reported. 

This phenomenon is governed by various parameters, the main ones of which are: the 

eccentricity of the load, the dimensions of the section, the load and finally the tensile 

strength of the masonry. 

The instability problem of the masonry pillar can be solved as follows: 

A. the load-displacement ( )P   of the pillar when it is compressed everywhere can 

be expressed as follows: 

B. the load-displacement ( )P   of the pillar when each cross section of the structure 

is partially damaged can be written as follows 

where 3 3 2 2q =  and 

the following formula represents the deformed shape: 

that the space of points in the plane (x,w) correspondent to the neutral axes that 

can be identified analytically as 
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C. the pillar is fully compressed in the top part along the longitudinal axis and 

cracked in the remaining. 

 
( ) ( ) ( )1 6; ; 1 2 ;PL S S e q T e

EJ
   = − + −  (5.12) 

where 
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 (5.13) 

The deformed shape of the axis in the cracked part of the pillar can be represented 

implicitly as 
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while in the undamaged part, it is 
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and the interface is located at 
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In the damaged part, the place of neutral axes is 

 
( )

( )( )
( )

1 2;
;

T w
x w L

T e




−
=  (5.11) 



150 | Reliability assessment of masonry columns of the Cathedral of Saint George the 
Martyr in Ferrara 

 

 
( )

( )( )

( ) ( ) ( )

1 2 1 2;

1 6; ; 1 2 1 6;

q T w
x w L

S S e q T

 

   

− −
=

− + −
 (5.17) 

Figure 5.16 shows how the displacement load curve varies as a function of eccentricity 

by means of incremental analysis. As it is possible to observe, an increase in the ec-

centricity of the load leads to a lowering of the peak of the critical load, resulting in 

instability of the masonry pillar. 

 
Figure 5.16: load-displacement relation with different load eccentricities (Frisch-Fay, 1975). 

5.4.2 International Codes 
In addition to the various analytical methods described in the previous paragraph, it is 

interesting to analyze what is proposed by international standards. In particular, in this 

paragraph, the Italian and European standards are examined. These methods use a re-

duction coefficient. This coefficient reduces the load bearing capacity of the wall 

strictly depends on the geometric parameters, the eccentricity of the load at the top and 
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the properties of the materials. Furthermore, the coefficient wants to take into account 

the non-linearity of the material, conditioned mainly by the low tension of the masonry 

and the geometric non-linearity caused by the lateral deviation of the wall. These ap-

proaches are widely used to evaluate the bearing capacity of walls and present some 

limits for the columns. 

5.4.2.1 Italian building construction code (NTC 2018) 

The Italian standard provides a compressive and bending stress check for the stability 

of masonry walls in the case of the Ultimate Limit States (ULS) through a simplified 

method (§ 4.5.6.2, MIT, 2018). This is allowed in the hypothesis of articulation. 

The reduced design unit strength (fd,rid) for the structural member is defined as follows: 

 
,d rid df f=    (5.18) 

where Φ is the coefficient of reduction obtained using Table 5.3 and fd is the design 

resistance obtained as the ratio between the characteristic compressive strength of the 

masonry fk and the partial safety factor γM. In the case of existing buildings, the partial 

safety factor (γM = 3) must be multiplied by the knowledge factor FC (MIT, 2019). 

 ( )d k Mf f FC=   (5.19) 

The reduction coefficient Φ is a function of the conventional slenderness λ and the 

eccentricity coefficient m. The latter coefficient is defined as a function of the eccen-

tricity of the load e and the thickness of the wall t. Linear interpolation is used for 

values not present in Table 5.3. 

Table 5.3. coefficient of reduction Φ. 

Slenderness λ 
Coefficient of eccentricity m = 6 e/t 

0 0.5 1.0 1.5 2.0 
0 1.00 0.74 0.59 0.44 0.27 

5 0.97 0.71 0.55 0.39 0.27 

10 0.86 0.61 0.45 0.27 0.16 

15 0.69 0.48 0.32 0.17  

20 0.53 0.36 0.23   
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Figure 5.17: capacity reduction Φ as a function of slenderness λ and coefficient of eccentricity m in NTC 2018 
(MIT, 2018). 

Figure 5.3 shows the trend of the reduction coefficient as a function of slenderness and 

eccentricity. With an increase in slenderness, it is possible to see a decrease in the 

reduction factor. Similarly, the same thing is found when the coefficient of eccentricity 

increases. 

The same relations developed for the stability of walls are commonly also used to 

verify the stability of the columns. However, NTC2018 makes reference for the stabil-

ity of the columns only for the compressive strength of the masonry, that it is drasti-

cally reduced. Furthermore, it assumes a rectangular geometry, constraint and load 

conditions that are not realistic for the problem at hand. 

However, the code suggests in this situation to refer to more accurate analyses and 

standards of proven validity, which are consistent with the principles that are the basis 

of the Italian standard. 

5.4.2.2 European code (EC6) 

The EC6 presents a more detailed approach for evaluate the load capacity bearing of 

masonry elements. The same considerations regarding geometry, load conditions and 



Stability of masonry piers | 153 

 
 

constraints of NTC2018 are valid for the Eurocodes as well. These conditions turn out 

to be unrealistic for piers. 

 
,d rid df f=    (5.20) 

where Φ is the capacity reduction coefficient and fd is the compressive strength of 

masonry. The Eurocode 6 provides a formula for the calculation of the reduction co-

efficient which is: 

 2

21 2
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where e is the eccentricity of applied load and t is the thickness of wall and u a numer-

ical factor described as follows: 

 
u e

t
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 

−
=

−
 (5.22) 

with α, β, ρ are 0.0063, 0.73 and 1.17 respectively. The parameter is defined as 

kfh
t E

 = , where, h is the height of the element, t is the thickness of the element, E 

is the elastic modulus and fk is the characteristic compressive strength of masonry. 

Figure 5.18 shows how the reduction coefficient varies as a function of slenderness 

and as a function of the eccentricity of the load. It is possible to see how an increase 

in slenderness results in a reduction in the coefficient. The same thing is visible as the 

eccentricity of the load increases. 

In recent works (Sandoval et al., 2011), the parameters that characterize the previous 

formulation are modified to obtain a better approximation of the experimental results 

reported in the technical literature, without substantially modifying the formulation. 

De Falco and Lucchesi (2003) always under the hypothesis of rectangular geometry, 

constant load and eccentricity, present solutions in the closed form assuming the ma-

sonry is not resistant to traction, with perfectly plastic behavior and deformation lim-

ited compression. In presence of modest eccentricities, the results coincide with EC6. 
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Figure 5.18: capacity reduction Φ as a function of slenderness λ in EC6 (CEN, 2005a). 

 

5.5 Column modeling 
The application of both NTC2018 and EC6 appear unrealistic. The column under study 

has a complex geometry compared to those observed in the literature (Gurel, 2016). 

Furthermore, in the present case, the cross-section is composed of two elements from 

different historical periods (medieval and baroque) which are subjected to different 

loads at different heights. To verify this element and take into account the presence of 

several different loads and with different eccentricities, irregular geometry and discon-

tinuity of the walls, the only solution would seem to be to resort to 3D modeling of the 

column using computational techniques such as Finite Element Method (FEM) or Dis-

crete Element Method (DEM). In the case of large and irregularly shaped columns, the 

analysis in the non-linear field requires a high computational burden; thousands of 

degrees of freedom are required, compared to a not simple interpretation of the results 

and an only apparent quality given the uncertainties on the internal conformation of 

the column and the loads applied. 
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Therefore, this chapter proposes a verification method that is certainly approximate 

but able to take into account in a simple, easy to interpret and computationally inex-

pensive way of the specific characteristics of the columns under examination. 

5.5.1.1 Finite Element Method Model 

Fort the case study of a masonry column, a finite element model of the column was 

developed in which the design loads provided by the designers were applied. 

The numerical model of the column and the mechanical analysis were performed using 

the ABAQUS FEM package (SIMULIA, 2006). 

 
a) 

 
b) 

Figure 5.19: load distribution and mesh in the section used for the FEM model. 

5.5.1.2 Constitutive law 

The stress-strain relationship of masonry in compression is non-linear and may be 

taken as linear, parabolic, parabolic rectangular or as rectangular, for the purposes of 

designing a masonry section. This is proposed by EC6 (CEN, 2005a). 

The nonlinear behavior of the material is examined through the Concrete Damage 

Plasticity (CDP) constitutive model. This model is extensively employed to describe 

the nonlinear properties of masonry and concrete structures. This model was first sug-

gested for the analysis of reinforced concrete (RC) structures (Alfarah et al., 2017; 

Lubliner et al., 1989). CDP is described by a multi-dimensional elastoplastic yield sur-

face, where its change depends on the uniaxial damage failure model under tension 

and compression. The failure surface coincides with the Drucker-Prager yield 
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function, which can be switched to Mohr-Coulomb criteria through a parameter Kc 

(Figure 5.20). 

 
Figure 5.20: Drucker-Prager and Mohr-Coulomb failure surfaces in Abaqus 

A parameter called “eccentricity” regularizes the surface to avoid numerical instabili-

ties. The different behavior under compression and tension is provided by a parabolic 

softening in compression and an exponential or linear softening in tension (Figure 

5.21). 

 
a) 

 
b) 

Figure 5.21: constitutive law: a) traction and b) compression. 

The corresponding degradation of the elastic stiffness is regulated by two parameters 

dt and dc, which are correlated with the plastic strain. The damage variables range in 

the interval from 0.0 to 1.0 which corresponds to an undamaged material to a total loss 

of strength. This approach permits a linear softening in tension and it is used in these 

analyses. (Figure 5.21). 

The parameter of viscosity is usually assumed in a range of 0.0001–0.0005. In these 

analyses, a value of 0.0003 is assumed in order to obtain a fair compromise to ensure 

reliable results and to have a good convergence. The values used in the analyses to 

define the yield surface are reported in Table 5.4. 
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Table 5.4: parameter for the Concrete Damage Plasticity constitutive model. 

Parameter Value 

dilatation angle ψ 10° 

flow potential eccentricity e 0.1 

Ke 0.667 

viscosity parameter  0.0003 

 

5.5.1.3 Limitations 

The FEM gives results that are compatible with the analytical and numerical model. 

Given the complexity of the fem model adopted, the use of this model in the stochastic 

analysis is complicated and burdensome from a computational point of view. The use 

of emf in stochastic areas does not always manage to correctly grasp and characterize 

the uncertainties due to the large number of variables involved. In fact, as shown in 

Babuška and Motamed (2016) for composite materials, stochastic multiscale models 

such as stationary random fields, which are based on precise probability theory, are 

not capable of correctly characterizing uncertainty in fiber composites. 

Advanced stochastic models based on imprecise uncertainty theory and used by fuzzy 

stochastic models would be able to accurately describe this problem. In the case of 

masonry, given the complexity of the constitutive laws, the robustness of the method 

is difficult to control as careful calibration is required. It is precisely for this reason 

that the simplification adopted of the beam model allows having an easily controllable 

model combined with an acceptable computational time. 

5.5.1.4 Comparison of FEM model with Italian and European standard 

The masonry material is considered a module for long-term loads based on the short-

term secant module (E = 1000fk), reduced by a coefficient that takes into account the 

creep effects as provided by Eurocode 6 (CEN, 2005b; § 3.7.2). 

 
1long term

EE


−



=
+

 (5.23) 

Where φ∞ = 1 is the final creep coefficient and Elong-term = 500fk is the long-term mod-

ulus. In literature for masonry columns and walls, the long-term behavior has been 

analyzed considering the creep phenomena under high levels of stress (Como, 2013; 
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Verstrynge, Schueremans, and Van Gemert, 2011; Verstrynge, Schueremans, Van Ge-

mert, et al., 2011). 

Many models developed to analyze the long-term behavior of masonry were consid-

ered by calibrating the models with empirical and semi-empirical methods (Choi et al., 

2007). These models have as a critical aspect the lack of generality that derives from 

specific situations (Papa and Taliercio, 2005; Saisi et al., 2008). Some works try to 

give a rigorous model for the behavior of masonry walls over time by means of visco-

elastic models. Cecchi and Tralli (2012) develop a viscoelastic model in analytical 

form for the masonry walls together with homogenization procedures. 

In order to evaluate the stability of the masonry column, it was decided to carry out an 

incremental analysis of the column considering the actual section. The mechanical 

properties of the masonry have been reduced by their safety factor. In this way, by 

increasing the loads, the multiply found corresponds to the reduction coefficient de-

fined by the various codes. 

In Figure 5.22 it is possible to see the trend of the displacement multiplier curve. The 

multiplied result at break is equal to 0.89 for the column under study. In carrying out 

the analyzes, a non-linear constitutive law for the material was assumed and the geo-

metric non-linearity was considered. The non-linear nature of the material can be 

grasped by evaluating the relative deformations and tension for the various increments 

as shown in Figure 5.23. 

 
Figure 5.22: multiplier – displacement relationship for the column. 
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Figure 5.23: tension – deformation relationship of the most stressed element. 

The formula suggested by Italian and European legislation considers only a load at the 

top for a masonry wall, However, the actual case of S. George pillars appears quite 

different. 

Table 5.5 shows the results obtained considering the different codes (NTC 2018, EC6, 

CTS Toscana Region Advice). For the sake of completeness, the CTS is the regional 

technical-scientific committee on seismic risk. The purpose of this committee is to 

provide advisory advice on legislation and design. It is possible to see how the Italian 

legislation for the case under study is the most conservative of the methods adopted. 

Table 5.5: capacity reduction factor for different standard and numerical simulations. 

 NTC 2018 EC6 CTS Advice FEM Results 

Φ 0.82 0.87 0.87 0.89 

 

5.5.2 The Beam Model proposed 
In this section, we propose a simplified model to evaluate the structural response of 

the column. The choice of this model is driven by reducing computational times for 

analyzes in the stochastic context. 

5.5.2.1 Approximation of the thrust curve 

It is assumed that the masonry columns have load and restraint conditions such that 

the characteristics of the stress due to the external vertical and horizontal loads and to 

their own weight are known in all sections. In other words, the thrust curve is assigned, 
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which, in the absence of distributed loads, will be straight and in the presence of dis-

tributed actions, will be curvilinear (Figure 5.24). 

  

Figure 5.24: thrust curve along x-axis, y-axis and in axonometric view. 

N control sections are introduced to check the admissibility of the stress state, these 

sections contain all the sections where concentrated actions are applied, both vertical 

and horizontal, due to the discharges of the arches and vaults that weigh on the column. 

Flexural moments (i.e. vertical loads and eccentricities) are assumed constant between 

two successive control sections so only normal vertical stresses are considered. Obvi-

ously, as N increases the pressure curve thus approximated converges to the exact one. 

5.5.2.2 Masonry constitutive law 

Given the simplicity of the model, the assumption of no tension behavior for the ma-

sonry can be easily introduced. This simplification is compatible with the small and 

often difficult value to estimate tensile strength. 

The uniaxial behavior of masonry can be idealized with three simplified models (An-

gelillo et al., 2014): zero, one and two. The definition of these models comes from the 
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number of parameters used to define them (Figure 5.25). 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 5.25: masonry constitutive law in the case of uniaxial behavior: (a) model zero, (b) model one, (c) model 
two and d) real constitutive law (Angelillo et al., 2014). 

Model one assumes a linear ratio between stress and strain in compression. This con-

stitutive law needs only one parameter: the elastic modulus E. Model two assumes an 

elastic perfectly plastic law with limited strength σc in compression. 

These models appear quite rudimentary and very simple, however, according to 

(Como, 2013; Heyman, 1995; Huerta, 2006), this option represents a correct choice 

for old masonry structures given the difficulty of defining some parameters of the 

structure due to the uncertainties associated with loads, constraint conditions and ma-

terial properties. 

In our case in question, having to do a stochastic analysis of the column, the most 

efficient computational strategy to evaluate the reliability of the column is through this 

simplified constitutive model. In the structural beam model, linear elastic model and 

elastic perfectly plastic model were used. The simplest solution is to consider the Hey-

man hypothesis of infinite shear strength valid, that is to verify only at normal stresses. 

However, it seems possible, once the tangential tensions are known, to assume, for the 

crisis function, a crisis function with the associated flow as shown in Figure 5.26. 

 
Figure 5.26: interface failure surface. 
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5.5.2.3 Hypothesis on the stress state 

In analogy with the classic hypotheses of de Saint Venant theory, only the following 

components of the stress tensor are assumed to be different from zero: σz, σxz, σyz. 

Based on the assumption in Section 5.5.2.1, which approximates the thrust curve with 

bending moments constant in each interval, in the N-1 sections only the normal stresses 

σz assumed to be non-positive will be different from zero. 

5.5.2.4 Conservation of the cross-sections 

The hypothesis of conservation of flat sections is usually accepted for one-dimensional 

elements even in the presence of non-linear behavior of the material, e.g. the fiber 

model used for columns in reinforced concrete (Frangopol et al., 1996; Lee and 

Mosalam, 2004). With reference to Figure 5.19 denoted by w the axial component of 

the displacement, w° its value at the arbitrary origin of the axes and ϕx and ϕy the rota-

tions around the coordinate axes (generic as long as orthogonal) we have: 

 ( ) ( ) ( ) ( )0
x yw z w z z y z x = + −  (5.24) 

By virtue of the assumption of Section 5.5.2.1, the axial displacement varies linearly 

in each of the N-1 or 

 ( )0 0'w z w z= , ( ) ( )'
x xz z = , ( ) ( )'

y yz z =  (5.25) 

Therefore, also the deformations εz in each section are linear in x and y, that is, they 

lie in a plane 

 0' ' '
z x yw y x  = + −  (5.26) 

In the elastic field also the σz is linear in x and y, while for no tension or elastic-plastic 

material this assumption is not consistent. 

5.5.2.5 Principle of stationary Potential Energy 

In the presence of uniaxial problems, it is possible to obtain in the case defined in 

Section 5.5.2.2 the state function of deformation energy ϕ(ε) represented in the case of 

no-tension and elastic-perfectly plastic material in compression. 
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a) 

 
 

b) 
Figure 5.27: constitutive law (σ-ε) and deformation energy ϕ. 

The potential energy for the generic trait n of height hn can be written as follows: 

 
( ) ( )0 0'

0

, , ( ) ' '
bh

x y z x x y yA A
w dA Nw M M dA      = − + +    (5.27) 

The stationarity of Π, Π=0, gives the three equations of equivalence between the stress 

characteristics N, Mx, My and the normal stresses (σz). 
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 (5.28) 

In the case of linear elastic material, the three equations are linear and their solution, 

in the case of a barycentric and principal reference system, provides the classic Navier 

formula. 

5.5.2.6 Single beam model 

In this paragraph, the model of the single beam is shown. This model describes the 

behavior of the column under the action of loads. This approach can be extended to 

any type of column section. Figure 5.28 shows the section of the column present in the 

cathedral. 

The calculation of the stress state can be traced back to the solution of N (or N+1) 

systems of 3 algebraic equations, generally non-linear 5, in the 3 unknowns w'°, ϕx', 

ϕy', and in the calculation of σz, therefore in the stress calculation directly from the 

relations σz (εz). 
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Figure 5.28: section of the column. 

The section can then be written as follows: 
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 (5.29) 

where A is the area of the section, Sx is the first moment of area in the x-direction, Sy 

is the first moment of area in the direction y, Ix denotes the moment of inertia around 

the x-axis, Iy denotes the moment of inertia around the y-axis, Ixy is the moment of 

inertia around the y-axis when the objects are rotated around the x-axis, N is axial force, 

Mx is the bending moment along x, My is the bending moment along y. 

Given the system, it is possible to subsequently calculate the quantities useful for eval-

uating the behavior under the loads of the column. 

A. Stresses and strains 

The solution is sought according to the following scheme: 

1. Checking the position of the pressure center and entering the values of N, Mx 

and My. 

2. Solution in the hypothesis of linear elastic material. It is about calculating the 

Area, the static moments and the moments of inertia of a figure generally 

known as a polygon. 

3. The εz calculated in the previous iteration can be greater than 0, and the 
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intersection line with the initial figure can be expressed by the area A0, which 

identified the area with zero stresses. A new area is identified in which the 

inertial areas and quantities will be calculated in order to solve the system. 

4. Calculate the εz and σz and fix a convergence check. If it is violated you go back 

to Step 2. 

In the case of the non-linear behavior of the masonry that includes an elastic-plastic 

section, the relative area is identified and the necessary quantities are recalculated. 

B. Displacement 

Starting from the base of the column where null displacements are assumed for each 

section, w is known that varies linearly and the constant curvatures ϕ’ in a fixed refer-

ence. Neglecting the contribution to the displacement due to the Poisson's ratio, we 

calculate for each segment a displacement u, according to x, and v, according to y, 

piecewise parabolic. It is trivial to proceed by successive sections to reconstruct the 

displacement in z. (It will be a continuous function with discontinuous second deriva-

tives or even more brutally a broken one if we start from rotations) 

C. Nonlinear geometric effects 

Once the deformation is known, the position of the vertical loads and their eccentrici-

ties are updated and a second-order analysis is carried out with the above procedure 

and then recalculating the displacements. Obviously, a convergence parameter is in-

troduced and if necessary, it is repeated. 

The following paragraphs report the results of the analyzes defined by a linear elastic 

constitutive law and with a no tension material. 

5.5.2.6.1 Linear elastic material 

The trend of deformations and tensions in the column is shown in Figure 5.35, assum-

ing a linear elastic material. In this figure, it is possible to see the maximum and min-

imum values in the various sections along the height. A part of the column is in traction 

in particular between 4 and 11 meters. As far as the displacements are concerned, they 

are compatible with those obtained for the FEM analyzes. In particular, the displace-

ments in the y-direction are more relevant than the x-axis (Figure 5.30). 
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LINEAR ELASTIC 

 

Figure 5.29: trend of maximum and minimum deformations (left); trend of the maximum and minimum stresses 
(right) in the various sections of the column. 

 

Figure 5.30: displacement diagram along the x-axis and the y-axis of the column. 



Column modeling | 167 

 
 

ELASTIC NO-TENSION 

 

Figure 5.31: trend of maximum and minimum deformations (left); trend of the maximum and minimum stresses 
(right) in the various sections of the column. 

 

Figure 5.32: displacement diagram along the x-axis and the y axis of the column. 
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5.5.2.6.2 Elastic no-tension constitutive law 

A further next step is to analyze the behavior of the structure considering a no-tension 

law for the masonry material. Figure 5.31 shows the trend of the maximum and mini-

mum deformations along the height of the column. 

The significant thing is the part where the tensile stresses are zeroed thanks to the 

constitutive model adopted. In particular, this occurs between 4 and 11 meters. 

5.5.2.7 Two beams model 

For taking into account that the medieval and baroque columns do not appear con-

nected a second model is used. This adopted structural scheme has some similarities 

with what is proposed for braced frames (Pozzati, 1977). In particular with the walls 

that are connected to each other by means of uprights (Chitty, 1947). 

 

Figure 5.33: section of the two connected column: medieval section (clearer), eighteenth-century section (lighter). 

 

a) 

 

b) 

Figure 5.34: model proposed by Rosman-Beck (Pozzati, 1977). 
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If the columns are completely distinct, the three equilibrium equations for each column 

Eq. (5.29) are written separately and there are 6 equations with 6 variables. 

Since the horizontal displacements (v1 and v2) are equal along z i.e., the deformation 

of the axis lines is affine, the two columns have the same curvatures '
x  and '

y . The 

equilibrium equations from 6 are reduced to 4. The equilibrium equations for rotation 

are reduced to 2, the integrals are extended to the entire compound section and the 

moments Mx and My are the overall external ones. There are 2 distinct equations to the 

translation in z, where the integrals are extended to a column as the known term rep-

resents the normal stress applied to the medieval or eighteenth-century column. 

Figure 5.34 shows the comparison between the case of the integral section and the one 

under examination where, being the rotation and the curvature of 1 and 2 equal, the 

displacement diagrams and the deformation diagrams have the same inclination. 

The system of equations that allows you to evaluate the variables is shown below: 
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 (5.30) 

where subscript 1 indicates the eighteenth-century section while subscript 2 indicates 

the medieval section. 1A  and 2A  are the area of sections, 
1xS  and 

2xS  are the first 

moment of area in the x-direction, 
1yS  and 

2yS  are the first moment of area in the 

direction y, 
1x

I  and 
2xI  denote the moment of inertia around the x-axis, 

1yI  and 
2yI  

denote the moment of inertia around the y-axis, 
1xyI  and 

2xyI  are the moment of inertia 

around the y-axis when the objects are rotated around the x-axis, 1N and 2N  are axial 

force, 
1xM  are 

2xM  the bending moment along x, 
1yM  and 

2yM  is the bending moment 

along y. 

These axial forces and bending moments are distributed according to the areas and 

moments of inertia of the sections (Pozzati, 1977). They are defined as follows: 
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(5.31) 

where N, Mx and My are quantities already calculated for the single beam. 

The following paragraphs report the results of the analyzes defined by a linear elastic 

constitutive law and with a no tension material. 

5.5.2.7.1 Linear elastic material 

Figure 5.35 shows the maximum and minimum trend of stresses and strains for the 

composite column. The section of the eighteenth-century column between 6 and 11 

meters is in traction while the medieval section is in traction only between 9 and 11 

meters. Therefore, when the hypothesis of no-tension is considered, these areas will 

have a partialization of the sections. 

Figure 5.36 shows the displacements for the columns made up of the medieval one and 

the eighteenth-century one. The same shape can be seen in both deformations in both 

x and y directions. Of course, given the nature of the loads, the displacements are 

greater along the y-direction. 

5.5.2.7.2 Elastic no-tension constitutive behavior 

Once the elastic analysis was carried out, the case with the no tension elastic material 

was analyzed. As in the previous analysis, the column is made up of two columns to 

which the curvatures in their directions are considered equal. 

As for the elastic case, the maximum and minimum values of the deformations are 

equal. The tensions change, especially the traction ones due to the different constitu-

tive law. In fact, in this case the tensile stresses are zeroed (Figure 5.37). Having cal-

culated the deformations, it is possible to obtain the displacements relative to the two 

sections. 
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LINEAR ELASTIC 

 

Figure 5.35: trend of the maximum and minimum stresses and the relative deformations for the composite column 
(left, the results of the eighteenth-century column, right, the results of the medieval column). 

 

Figure 5.36: displacements along x and y for the composite column (above the displacements of the eighteenth-
century column, under the displacements of the medieval column). 
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ELASTIC NO TENSION 

 

Figure 5.37: trend of the maximum and minimum stresses and the relative deformations for the composite column 
(left, the results of the eighteenth-century column, right, the results of the medieval column). 

 

Figure 5.38: displacements along x and y for the composite column (above the displacements of the eighteenth-
century column, under the displacements of the medieval column). 
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As can be seen in Figure 5.38, the deformed columns (i.e. medieval and eighteenth 

century) have the same shape. This is related to the model adopted. The displacements 

along y, that is, along the short side of the section, prove to be more important than 

those in the x-axis. Compared to the model with the single section, the shape of the 

deformation is different. 

5.5.3 Validation 
This section reports the validation for the beam model previously introduced. The 

beam model is, namely, adopted as a numerical model to be used in subsequent ana-

lyzes in the stochastic field (Chapter 6). This model compared to the FEM model has 

a considerable advantage in terms of computational burdens both with linear analyzes 

and especially when non-linear analyzes are performed. In the following the beam 

model provides well approximate results comparing the model with the analytical for-

mulations proposed by Frisch-Fay (1975), under the assumption of no tension material 

and taking into account nonlinear geometric effects. Analogously the beam model well 

approximates FEM results, these comparisons performed in the linear field are useful 

to evaluate the effect of the complex geometry of the section and of the lack of con-

nection between medieval and baroque columns. 

5.5.3.1 Comparison of beam model with analytical solution 

The comparison with the analytical solution was made by considering a homogeneous 

rectangular section with a section having dimensions of 3.97 x 2.24 m and a height of 

17.00 m. Section analyzes were performed at 0.2 m pitch for a total of 85 sections. 

The response of the displacement of the column was evaluated with an incremental 

analysis. The dimensionless force ( L P EJ ) has been increased with a step of 0.01. 

A no-tension constitutive law was considered for the material. In general, each section 

analyzed that has its part in tension is subjected to 10 iterations with a tolerance of 

0.001 MPa. 

Figure 5.39 displays the incremental analysis with the force-displacement relationship. 

The force and displacement relationship has been dimensionless. In the figure, we 

compare the results obtained from the numerical beam model previously described 

with the analytical solution (see Section 5.4.1). It is possible to see how the beam 

model captures the results of the analytical solution well. 
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Figure 5.39 LPEJ: dimensionless load as function of the dimensionless displacement : comparison between 

analytical solution (blue curve) and numerical solution employing numerical model (red curve). 

The results are practically coincident with the first part of the curve where we have a 

linear behavior. When the behavior is non-linear, the first discrepancies, due to dis-

cretization and approximation effects, appear but the numerical curve is always very 

close to the analytic one. The good approximation of the force-displacement relation-

ship allows us to say that the beam model represents well the structural behavior under 

loads. 

5.5.3.2 Comparison between the beam model and the FEM model 

In this paragraph, the comparison between the FEM model and the beam model is 

presented. This comparison is important because the results obtained justify the use of 

the beam model for subsequent stochastic analyzes. The results summarized in Table 

5.6 - 5.7 and the following pages (Table 5.8 – 5.12) show how the results obtained 

with the beam model approximate in a satisfactory way those obtained with the finite 

element program (i.e. Abaqus). 

In our case study, the choice of a beam model rather than a FEM model is dictated by 

the desire to significantly reduce computational times and costs and on the other hand 

to have a simple model to verify the column. In fact, considering the large number of 

elements and the related problems of brick elements, it is difficult to manage any 
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anomalies due to the elements in a stochastic environment. The beam model with a 

few degrees of freedom allows for greater control. Finally, it is worth noting to under-

line as the use FEM for the problem at hand is questionable given the non-regularity 

of the texture of the masonry inside the column. 

In the following figures (Table 5.8 – 5.12) it is possible to see how the tensions trend 

in the various sections is very similar. Only for the distribution of tensions at 7.50 m 

can be found a slight difference. 

Table 5.6: comparison of the stresses obtained between the FEM model and Beam model for a single column. 

Height 
[cm] 

 Minimum stress value 
FEM model 

[MPa] 

Minimum stress value 
Beam Model 

[MPa] 
142 -1.82 -1.85 
372 -1.27 -1.30 
490 -0.61 -0.63 
520 -1.26 -1.30 
750 -0.99 -0.95 

 

 
Table 5.7: comparison of the stresses obtained between the FEM model and Beam model for the double connected 
column. 

Height 
[cm] 

Minimum stress value 
FEM model1 

[MPa] 

Minimum stress value 
double beam section model 

[MPa] 
142 -1.9640 -1.90 
372 -1.0293 -1.05 
490 -0.8015 -0.84 
520 -1.6503 -1.61 
750 -1.0319 -1.01 

1 sections connected with rigid links 

 



Section at 149 cm 

Table 5.8: stress distribution for the various FEM and beam models. 

Single section Composite section 
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Section at 372 cm 

Table 5.9: stress distribution for the various FEM and beam models. 

Single section Composite section 
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Section at 490 cm 

Table 5.10: stress distribution for the various FEM and beam models. 

Single section Composite section 
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Section at 520 cm 

Table 5.11: stress distribution for the various FEM and beam models. 

Single section Composite section 

FE
M

 M
od

el
 

σz [MPa] σz [MPa] 

B
ea

m
 M

od
el

 

σz [MPa] σz [MPa] 



Section at 750 cm 

Table 5.12: stress distribution for the various FEM and beam models. 

Single section Composite section 
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5.5.4 Comparison of numerical models with experimental test values 

The results reported in this section show how the FEM and the beam model are able 

to capture the stresses in points of the cross-sections identified by the experimental 

tests rather accurately. Furthermore, the model connected with rigid connections is 

able to capture the structural behavior of the column considering the complexity of the 

element. In fact, the connection of the medieval and eighteenth-century sections was 

one of the unknown factors of the problem. 

Figure 5.40 shows the points where the tensions are analyzed in the column by means 

of experimental tests. In particular, tests were carried out with a simple jack and tests 

with a double jack for the column. 

a) b) 
Figure 5.40: view of the pillar and the relative points where the on-site tests were carried out. 

Table 5.13: comparison of the stresses obtained between the FEM model and the tests. 

Height 
[cm] 

Tension tests 
[MPa] 

Single section tension 
[MPa] 

Tension connected sections 
with rigid links [MPa] 

142 -1.94 -1.82 -1.9640 
372 -1.50 -1.27 -1.0293 
490 -1.05 -0.61 -0.8015 
520 -1.85 -1.26 -1.6503 
750 -0.75 -0.99 -1.0319 
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Table 5.14: comparison of the stresses obtained between the beam model and the tests. 

Height 
[cm] 

Tension tests 
[MPa] 

Single section tension 
[MPa] 

Tension connected sections 
[MPa] 

142 -1.94 -1.85 -1.90 
372 -1.50 -1.30 -1.05 
490 -1.05 -0.63 -0.84 
520 -1.85 -1.30 -1.61 
750 -0.75 -0.95 -1.01 

Both FEM and beam models approximate the experimental results in an acceptable 

way even simply by assuming an elastic linear behavior for the masonry and as a load 

condition hypothesized by the designers and reported previously in Table 5.13 and 

Table 5.14. 
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6 Uncertainty quantification of masonry piers 

This chapter presents a procedure for quantifying the uncertainties encountered in the 

structural analysis of masonry pillars of the cathedral of Ferrara. This method can be 

applied where the main sources of uncertainties are vague and imprecise information 

such as the characterization of the material; both the size and location of the loads are 

not precisely known. 

The purpose of quantifying uncertainties is to evaluate the presence of adequate safety 

margins. In this chapter, the uncertainties are quantified through fuzzy theories that 

allow deriving the interval bounds and the mean structural response. 

6.1 Modeling of uncertainties 
The cathedral columns represent a case where the uncertainties of the material, loads 

and their location influence the structural response. 

The quantification of uncertainties is difficult with standard techniques i.e., classical 

probability analysis. Indeed, if you want to apply this approach, you need a robust set 

of data that in this case, it is not available. Therefore, a rigorous assessment of the 

uncertainty of the material cannot be applied in this case (Sun et al., 2020). A Bayesian 

type update cannot be applied due to the small number of experimental tests per-

formed. Based on the available data, the most robust approach that can be applied 

appears fuzzy set theory. These theories are also functional to better describe the pos-

sible variation of the actions transmitted by the arcs that push on the column and their 

eccentricity. 

6.1.1 Uncertainties on the mechanical properties of materials 
The modeling of the uncertainties of the materials was done by processing the data of 

the experimental tests. Experimental tests such as compression tests on brick and dou-

ble punching tests on mortar made it possible to obtain the characteristic value of the 

compressive strength of the masonry. For more details on the material of the columns 

see Section 5.3.1 and Appendix A. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 6.1: sample (left) and relative fuzzy (right) of mechanical properties: a) – b) resistance of brick cubes, c) – 
d) resistance of medieval mortar, e) – f) resistance of the eighteenth-century mortar, g) – h) average resistance of 
mortar. 
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Table 6.1: fuzzy numbers of the mechanical properties of masonry. 

Parameter Value [MPa] 

Compressive strength of brick (fb) <15.1,17.6,21.3> 

Compressive strength of medieval mortar (fm1000) <3.67,4.1 4.6> 

Compressive strength of eighteenth-century mortar (fm1700) <2.69,2.98,3.3> 

Compressive strength of mortar (fm) <2.69,4.06,4.58> 

Compressive strength of medieval masonry (fc1000) <4.14,4.77,5.64> 

Compressive strength of eighteenth-century masonry (fc1700) <3.77,4.34,5.14> 

Compressive strength of masonry (fc) <3.89,4.48,5.30> 

Secant modulus of elasticity for medieval masonry (Em1000) <4137,4767,5641> 

Secant modulus of elasticity for eighteenth-century masonry (Em1700) <3771,4345,5137> 

Secant modulus of elasticity for masonry (Em) <3888,4479,5298> 

 

The experimental campaign showed how the average resistance of eighteenth-century 

mortar has lower values than the medieval one. This is due to the different mineralog-

ical compositions. 

Figure 6.1c-e shows the values of the compressive strength due to double punching of 

the mortars according to a histogram. In Figure 6.1g the compressive strength of the 

block is always shown with a histogram. Each histogram is associated with the relative 

fuzzy numbers (Table 6.1). 

The compressive strength values of the masonry were obtained by following the for-

mula in Eurocode 6 (CEN, 2005a) (Section 5.3.1.1). 

A triangular shape was chosen for the fuzzy. This choice is due to the fact that allows 

to evaluate the fuzzy successes and respond quickly and expeditiously (Möller and 

Beer, 2004). Furthermore, the form is compatible with the form of the lognormal dis-

tribution hypothesized by Savoia et al. (2016). 

6.1.2 Uncertainties on loads and their application 
The modeling of loads and their application play a key role in the structural response 

and also in their reliability in probabilistic terms. The magnitude of most loads changes 

as a function of time and their application. This can be due to natural phenomena (e.g., 

wind, earthquake) or human-induced effects (e.g., dead loads, live loads). 

Furthermore, there are time-induced phenomena such as the deterioration of materials 

or their viscosity. This means that loads have to be represented as stochastic processes. 
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However, the assessment of their reliability is not so trivial. 

Very often, indeed, it is not possible to create perfect probabilistic models for loads 

and their application due to insufficient data and imprecision in their evaluation. 

Therefore, the creation of probabilistic models for loads and their application is one of 

the most uncertain factors in reliability analyzes. 

Over the past 35 years, the Joint Committee on Structural Safety (JCSS) has estab-

lished through guidelines the basic principles for assessing the risk and reliability of 

structures (JCSS, 2001). This standardized procedure cannot be applied in the present 

case. Actually, analysis with classical probability methods is not strictly applicable for 

monumental structures due to the impossibility of comparing with other similar build-

ings. For this reason, a non-frequentist approach to probability is fundamental in order 

to be able to cross-reference the available information. Fuzzy theories appear useful 

for our case. 

As explained in Section 5.3.3, the arch thrust varies over time due to viscous effects 

as actually happens in the present case: the horizontal force is considered uncertain by 

making it vary while the vertical can be assumed constant. Figure 6.2 shows the vari-

ation of the horizontal forces as a function of the maximum and minimum thrust of the 

arch. To define the fuzzy number, the minimum and maximum values of the arch thrust 

are considered as extremes of the number, while the vertex of the fuzzy number cor-

responding to the most plausible value was considered that defined by the designers 

(Table 6.2). 

 

Table 6.2: range of arc thrust values. 

Arch Force Minimum thrust 

[kN] 

Maximum thrust 

[kN] 

Thrust by the designer 

[kN] 

F1 127 167 159 

F2 529 973 927 

F3 488 537 511 

F4 331 525 500 

F5 488 537 511 
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Figure 6.2: fuzzy number of the horizontal component of loads. 

In addition to this variation, the position of the vertical forces with an eccentricity of 

0.10 m from the most probable value was considered uncertain. The variation of all 

the eccentricities allows representing the unknown loading position. This uncertainty 

is a very important variable in the variation of deformations and displacements. Natu-

rally, the assumption made was assumed considering a plausible range with the dimen-

sions of the arch. This evaluation from experimental tests and structural identification 

is extremely complex. 

Figure 6.3 shows the relative fuzzy numbers for the various eccentricities of the forces 

along the x-axis. Figure 6.4 shows the relative fuzzy numbers for the various eccentri-

cities of the forces along the y-axis. The values of the eccentricities are defined con-

sidering the distance from the center of gravity of the section. 

Figure 6.5 shows the areas for the membership function equal to zero of the various 

points of application of the forces. As it is easy to guess, a variation of the point of 

application of these forces involves a variation of the relative pressure curve and there-

fore of the relative distribution of the stresses and deformations inside the column. Of 

course, this also implies a variation of the displacement. 
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Figure 6.3: fuzzy number of the eccentricity of the vertical loads along the x-axis. 

 

 
Figure 6.4: fuzzy number of the eccentricity of the vertical loads along the y-axis. 
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Figure 6.5: eccentricity variation area for vertical loads on the section (i.e., with α = 0). 

 

6.2 UQ-Analyses 
The analysis for quantifying uncertainties for column B4 considered consists of two 

parts (see Section 5.3): 

• the computation of interval bounds; 

• the computation of the mean performance. 

These two indicators provide evidences on the uncertainty of the structural response 

and how the input parameters propagate their uncertainties in the response. 

6.2.1 Computation of mean response 
The calculation of the mean value of the interval corresponds to the interval of the 

fuzzy number whose membership function is equal to 1 (α = 1). This average value 

can be an interval if the response fuzzy is a trapezoidal fuzzy. In the case in which we 

are in the presence of a fuzzy triangular number, this interval corresponds to a value. 

In the following figures, the average value is represented by the red curve. 
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6.2.2 Computation of interval bounds 
The computation of interval bounds corresponds to the extremes of the fuzzy. These 

represent the values of the membership function equal to 0 (α = 0). In the following 

figures, this interval is represented by black curves. The calculation of the interval 

bounds is done by applying the α-set optimization. For more details on the procedure 

see Section 2.1.4.1 and Möller et al. (2000).  

A brief description of the results obtained using the beam model is now reported. We 

considered both cases where the column is modeled as a single beam and two coupled 

beams. Figure 6.6 shows the fuzzy number relative to the thrust curve for the column. 

It is possible to see how the variation of the thrust curves is not so significant for the 

uncertainties considered. Both curves remain within the section indicating that the sta-

bility of the column is possible. 

Starting from the top of the column it is possible to see how the thrust curve is outside 

the core of inertia. This indicates how, if the material is linearly elastic, the sections 

are partially in traction. 

 
Figure 6.6: column line of thrust column (red line with α = 1, black line with α = 0). 
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Moreover, as the height decreases, the fuzzy pressure curves fall almost completely 

within the core of inertia. In this case, the section is completely compressed. This bun-

dle shift of the thrust curves is obviously due to the stabilizing effect of the column’s 

dead load. 

Figure 6.7 shows how the contour of the thrust curves (membership function value 

with α = 0) are outside the core of inertia calculated in an approximate way considering 

an equivalent rectangular section. 

The variation of the forces does not imply a repositioning of the neutral axis but an 

increase in the tensions. The repositioning of the neutral axis occurs following the 

variation of the eccentricity. In fact, the whole section can remain in compression as 

much as remains inside the core, while when it comes out of the core a part of the 

section goes into traction. When considering an elastic material this does not involve 

important considerations in the mechanical field except when it reaches the breaking 

stress. If, on the other hand, we consider a no-tension material, as in our case masonry, 

when the material is in traction, cracks are created in the part that was in traction in 

the elastic range. 

 
Figure 6.7: fuzzy thrust curve with α = 0 and sections with the relative simplified central core of inertia. 
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CASE I 

 
CASE II 

 
CASE III 

 
CASE IV 

 
CASE V 

Figure 6.8: stress distribution of the rectangular cross-section for different load cases (Förster, 2018). 

Figure 6.8 shows the different tension distribution in the simple case of rectangular 

sections. 

Figure 6.9 shows the areas in which we can have a significant variation of the neutral 

axis and of the tensile stresses that lead to cracking of the material. Enßlin (1941) 

divides the variation in the distribution of tensions into five cases. 
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Figure 6.9: Cross-sectional quarter to differentiate between cases depending on the eccentricities for linear-elastic 
material behavior without flexural strength according to Enßlin (1941). 

Finally, Figure 6.10 shows the various areas as they vary depending on a variation in 

eccentricity; for simplicity, everything is depicted for a rectangular section. The con-

siderations can be extended to the actual section of the column. Along with the height 

of the column, the section remains mainly in compression (case I) and some cases in 

traction. For cases in traction, it is possible to see how the pressure curve is slightly 

outside the core of inertia. This implies that for our case study the distribution of 

stresses falls into case II. 

uncracked cracked 

CASE I CASE II CASE III 

CASE IV 
CASE V 

Figure 6.10: compressed areas for different cases (Förster, 2018). 
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6.2.2.1 Single beam model 

This section shows the fuzzy structural analysis results for the column modeled as a 

single beam. For more details about this structural model, see Section 5.5.2.6. 

6.2.2.1.1 Linear elastic material 

As a first case study, the structural response of the column is analyzed, assuming that 

the masonry has a linear elastic constitutive behavior. This assumption is made in the 

first instance to validate the stochastic model with Monte Carlo simulation. The com-

parison results are reported in Section 6.2.2.3. The fuzzy structural analysis allows 

obtaining useful information on the uncertainty of the material and the load. 

Traction stresses are present at the top of the column (Figure 6.11) in particular from 

6 to 11 meters and from 15 to 17 meters. Naturally, the tractions decrease with the 

stabilizing contribution due to the own weight. From 11 to 17 meters, you can see how 

the uncertainties in the tensions are not so important. In fact, the relative fuzzy is very 

narrow compared to what can be extrapolated from zero to 11 meters. This is due to a 

greater role of horizontal forces and their eccentricity. A significant aspect of this anal-

ysis is that it shows how uncertain inputs can influence the response making the section 

in some cases completely compressed or in other cases partially in traction. 

Figure 6.12 shows the displacements along X and Y of the column by means of fuzzy 

numbers. The interval bounds are in black and the average value is in red. 

6.2.2.1.2 Elastic no-tension constitutive behavior 

As seen in Section 5.5.1.2 and widely discussed in the literature, the no-tension con-

stitutive model is particularly suitable for evaluating the structural response of ma-

sonry elements. As discussed above, indeed, the pillar is composed of a Medieval col-

umn incorporated into the Baroque column, made of different bricks and mortar. In 

addition, the masonry is uneven and variable inside the pillar (Figure 5.6). The tensile 

strength is low and very uncertain while experimental tests show that the compressive 

strength is discrete. The fuzzy structural analysis allows obtaining useful information 

on the uncertainty of the material and the load. 

Figure 6.13 shows the values of the maximum and minimum deformations of the var-

ious sections of the column. Furthermore, the maximum and minimum normal stress 

in the various sections of the column are shown. 
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LINEAR ELASTIC 

 

Figure 6.11: fuzzy numbers of the maximum and minimum deformations and tensions in the section along the 
height considering the no-tension material (dotted line with α = 0, solid line with α = 1). 

 

Figure 6.12: fuzzy numbers of the maximum displacement of the section along the height of the column (black line 
with α = 0, red line with α = 1). 
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ELASTIC NO-TENSION 

Figure 6.13: fuzzy numbers of the maximum and minimum deformations and tensions in the section along the 
height considering the no-tension material (dotted line with α = 0, solid line with α = 1). 

Figure 6.14: fuzzy numbers of the maximum displacement of the section along the height of the column (black line 
with α = 0, red line with α = 1). 
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Because the tensile stresses are not present the variability induced by the fuzzy varia-

bles is strongly reduced in correspondence with those sections where the linear elastic 

model gives consistent traction. 

Figure 6.14 shows the displacements along x and y of the column by fuzzy for each 

section. The displacement fuzzies numbers are characterized by the most probable 

value not centered between the extremes of the fuzzy. This shows the propagation of 

uncertainties. 

6.2.2.2 Two beam model 

This section shows the fuzzy structural analysis results for the column modeled as two 

sections having the same horizontal displacements but different vertical ones; the so-

called two-beam model. For more details see Section 5.5.2.7. 

6.2.2.2.1 Linear Elastic material 

As a first case study, the structural response of the column, assuming that the masonry 

has a linear elastic constitutive behavior, equal to all pillars, is presented. This assump-

tion is made in the first instance to validate the stochastic model with Monte Carlo 

simulation (see Section 6.2.2.3). 

This model allows obtaining the deformations and tensions of the two columns (the 

medieval and eighteenth-century ones) by distributing the moments and axial forces 

appropriately. 

Having connected the two sections with connecting links, these allow an equal dis-

placement having both curvatures equal. 

The fuzzy structural analysis allows obtaining interesting information on the uncer-

tainty of the material and the load. 

From the results of the elastic analyzes, it emerged that in both sections from 6 to 12 

meters they are partially in traction (Figure 6.15). It also emerges that the eighteenth-

century section has greater tensions than the medieval one. 

Figure 6.16 shows the displacements of the two columns. As you can see, the defor-

mations are the same in terms of curvature. This is in accordance with the adopted 

model. 
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LINEAR ELASTIC 

Figure 6.15: fuzzy numbers of the maximum and minimum deformations and tensions in the coupled sections along 
the height considering the no-tension material (dotted line with α = 0, solid line with α = 1). 

Figure 6.16: fuzzy numbers of the maximum displacement of the section along the height of the column (black line 
with α = 0, red line with α = 1). 
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ELASTIC NO-TENSION 

Figure 6.17: fuzzy numbers of the maximum and minimum deformations and tensions in the coupled sections along 
the height considering the no-tension material (dotted line with α = 0, solid line with α = 1). 

Figure 6.18: fuzzy numbers of the maximum displacements of the two coupled sections along the height of the 
column (black line with α = 0, red line with α = 1). 
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6.2.2.2.2 Elastic no-tension constitutive behavior 

After having validated the model with the linear elastic constitutive bond, a second 

structural model is adopted considering a no-tension elastic constitutive relationship 

constant in all the pillar. 

The fuzzy structural analysis allows obtaining interesting information on the uncer-

tainty of the material and the loads. 

Figure 6.17 shows the values of the maximum and minimum deformations of the var-

ious sections of the column. Furthermore, the maximum and minimum tensions of the 

various sections of the column are shown. 

Because the tensile stresses are not present the variability induced by the fuzzy varia-

bles is strongly reduced in correspondence with those sections where the linear elastic 

model gives consistent traction. 

Figure 6.18 shows the displacements along x and y of the column by fuzzy for each 

section. The displacement fuzzies created are characterized by the most probable value 

not centered between the extremes of the fuzzy. This shows the propagation of uncer-

tainties. 

6.2.2.3 Validation with Monte Carlo simulation 

As known, fuzzy numbers are used to define an equivalence class of probability dis-

tributions compatible with the available data. 

Starting from the description with the fuzzy number of the uncertainties involved, it is 

possible to evaluate the structural response for certain fractiles (small or large) com-

pared to the Monte Carlo simulation that is widely used in literature. Response varia-

bles estimated by fuzzy numbers are generally more conservative than classical prob-

ability (Savoia, 2002). 

Results tend towards classical probability when the number of tests is large enough to 

stabilize the mean value. In fact, to assess the probability of failure in rare events, it is 

necessary to increase the number of samples significantly to capture such events. 

Figure 6.19 – 6.20 shows the result of the Monte Carlo simulation for the evaluation 

of the membership function with α = 0 using α-cut (for more details see Section 

2.1.4.1) for the two-beam models considered. We see how the variability of the various 

inputs creates different responses in terms of structural response. 
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Figure 6.19: displacement of the section along the height of the column thought Monte Carlo simulation. 

Figure 6.20: displacement of the composite section along the height of the column through Monte Carlo simulation. 
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For the test, MATLAB on a computer with Intel(R) Core(TM) i5-6200U CPU @ 

2.30GHz and 8 GB of RAM was used. The times for a model beam were 290.81s for 

Monte Carlo Simulation while 154.62s for the fuzzy approach. Both algorithms used 

for the analyzes were parallelized to reduce computational times. Furthermore, to ob-

tain good results in terms of convergence, Monte Carlo simulations have higher sample 

numbers than those of fuzzy ones (e.g. nMSC = 1000, nFuzzy = 100). 

This is due to the fact of a large number of variables present and the desire to minimize 

the criticalities of the MCS method which, in the presence of insufficiently large tests, 

can create bias. 

It is worth noting that calculating the response using the classic Monte Carlo simula-

tion would be more expensive from a computational point of view. 

6.2.3 Performance rating 
From the results shown it emerges that the uncertainty of the loads and their relative 

application significantly affects, for the problem at hand, the structural response com-

pared to the uncertainty of the material alone. In fact, the uncertainty of the horizontal 

thrusts of the arches and the point of application of the resultant of vertical loads affects 

the pressure curve and subsequently the stresses and strains distribution. The uncer-

tainty of the material, which is more widely considered in literature, appears less sig-

nificant and affects above all and only the deformations. 

This aspect is not secondary if we consider complex structures whose exact definition 

of the loads is not certain. In most cases, the average value corresponds to the value 

normally assumed in deterministic analyzes, therefore the most plausible value. 

An important aspect of uncertainty analysis is the interval bounds. The values of the 

interval bounds show how introducing an uncertainty changes the structural response. 

Quantifying uncertainties aims to be a tool in the evaluation phase of the structural 

response of a component and not to be used in the design phase. In fact, anyone we 

must deal not only with the average value that generally a structural analysis reports 

but also with the intervals bounds in order to make a correct decision. The correct 

interpretation of this interval also allows eventually being able to integrate the infor-

mation with further data provided by experimental tests. 

Therefore, the level of knowledge appears important in a structural analysis of monu-

mental buildings. 
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7 Conclusions 

7.1 Overview 
The prevention of collapse and damage to structures is one of the most important ob-

jectives of earthquake engineering. Advances in computational power and more accu-

rate models allow today to predict structural behavior, making risk assessment possi-

ble. 

The risk assessment should nowadays be accompanied by the quantification of the 

uncertainty of the parameters. This allows the analyst to provide, in addition to the 

quantitative risk assessment, also the margins of the assessment by providing the de-

gree of knowledge of the decisions that will then be made based on the information 

available. 

Various aspects of the uncertainty quantification for unreinforced masonry building 

were discussed in this dissertation. The thesis aims to achieve the following main ob-

jectives: 

1. to develop a stochastic methodology upon which can be quantified seismic

structural response in presence of vague and imprecise information using sim-

plified mechanical models;

2. to identify, investigate and evaluate the various uncertainties in structural ma-

sonry elements in existing and historic structures;

3. to evaluate through sensitivity analysis, the parameters that influence the struc-

tural response and the collapse of these elements under seismic actions.

7.2 Summary of findings and conclusions 
The present section summarizes the main conclusions of this work and is organized by 

topic. Some limitations and suggestions for future work associated with specific find-

ings are discussed in the next section. 



204 | Conclusions 

7.2.1 Uncertainty in fragility curve for local mechanism on regional 

scale 

In recent years, the evaluation of structures on a regional scale has generated signifi-

cant attention from researchers and stakeholders. Simplified models have been devel-

oped for the assessment of the seismic risk of structures in urban areas in order to 

provide assessments for economic losses of an urban area. This dissertation analyzes 

the local collapse mechanisms of masonry structures in the territorial context by basing 

its data on the CARTIS database. The choice of evaluating the local mechanisms is 

centered on evaluating those masonry structures present in the territory of the city of 

Ferrara which, due to the lack of connections, are vulnerable and do not have a global 

behavior. 

Chapter 3 presents a methodology for the evaluation of fragility curves for local col-

lapse mechanisms, i.e. simple overturning and vertical bending, for a compartment of 

the historic center of Ferrara. These mechanisms, which are the most common, are 

evaluated by including aleatory and epistemic uncertainty. Fragility curves were cre-

ated for the various mechanisms and finally summarized in a typological curve. The 

final fragility functions provide an overall assessment of the seismic vulnerability for 

these classes of buildings. The fragility curves for the MUR1 and MUR2 classes are 

not very different from each other although the buildings are of different construction 

periods. What distinguishes the two types is the presence of tie rods or tie beams and 

connections. The masonry quality is good for both classes. The fragility curves ob-

tained by the two classes are different from the survey. The survey increases the level 

of knowledge about the walls therefore the curve reduces the uncertainty associated 

with the geometry of the wall and provides a more detailed description of the walls for 

the historic aggregate. 

The results show the moderate quality of the building stock and the important role of 

the connections in the vulnerability of the aggregates of masonry buildings. Indeed, 

the introduction of effective tie rods, modifying the OOP failure mechanisms from 

rocking to vertical bending, can dramatically reduce the vulnerability of aggregates, 

keeping the streets of historic centers operational even after strong earthquakes. The 

proposed approach, due to its computational efficiency, may be useful for identifying 
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the seismically most fragile typologies of the urban context. Therefore, it is a tool ca-

pable of orienting targeted retrofit strategies. 

The second part of the study instead investigates the quantification of uncertainties in 

a rigorous way using the fuzzy set theory (Chapter 4). This approach allows thanks to 

the available information to provide a probabilistic assessment of the vulnerability of 

the mechanisms including not only the uncertainty associated with the earthquake but 

above all the uncertainty associated with geometric data, materials and loads for out-

of-plane failure mechanisms in unreinforced masonry buildings (URM) in the city of 

Ferrara. In particular, we focus on the modeling of uncertainties by fuzzy methods for 

masonry walls. These walls are made of good quality masonry with fired clay bricks 

and lime mortar, as typical for the buildings in the Po Valley, such as those hit by the 

2012 Emilia earthquake. In the frequent case of slender elements with good material 

properties, the wall response can be modeled as an assembly of rigid bodies and linear 

kinematic limit analyses, as defined in NTC2018, or dynamic analyses for studying 

the rocking motion are utilized. These techniques are employed to provide the “fuzzy” 

fragility curves as a function of peak ground acceleration (PGA). This is the first step 

for a probabilistic evaluation of the collapse loads under seismic actions, taking into 

account the actual variability of seismic input, and sensitivity analysis allows to un-

derstand which parameters influence the structural response. As has been shown, seis-

mic input and acting loads play an important role in the behavior of the walls. In gen-

eral, typological fragility curves for these local mechanisms then provide a first step 

for the evaluation of damages and the assessment of economic losses on an urban scale. 

This can help to identify possible scenarios for civil protection. 

7.2.2 Uncertainty in stability of masonry columns 
The second part of the thesis analyzes the stability and safety of masonry columns. 

These structural elements are particularly common in historic and monumental build-

ings. In Chapters 5-6 the masonry columns of the Cathedral of Saint George the Martyr 

in Ferrara are analyzed. 

Chapter 5 is evaluated the current state of column B4 with the relative information on 

the mechanical properties of the materials, on the loads taking into account the varia-

bility of the intensity and of the application points. Particular attention is given to the 

creation of simplified mechanical models useful to obtain a fair compromise between 
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computational times and the robustness of the results. These simplified models are 

validated with analytical solutions and numerical models usually applied (i.e., FEM 

models). The simplified models created have shown that with a reduced computational 

effort it is possible to have results similar to those obtained with FEM techniques in 

terms of strains and stresses. It also shows how the formulas provided for by the codes 

(NTC 2018, EC6) are conservative with respect to the numerical methods adopted. 

The reliability of these structural elements is also analyzed considering the role of me-

chanical properties, loads and their application modes through a Monte Carlo Simula-

tion. 

Finally, Chapter 6 presents a procedure for quantifying the uncertainties encountered 

in the structural analysis of masonry pillars of the cathedral of Ferrara. This method 

can be applied where the main sources of uncertainties are vague and imprecise infor-

mation such as the characterization of the material, the loads, and their location. The 

purpose of quantifying uncertainties is to evaluate the presence of adequate safety mar-

gins. These uncertainties are quantified through the fuzzy set theory that allows deriv-

ing the interval bounds and the mean structural response. 

The results show that the uncertainty of the loads and their relative application signif-

icantly affects the structural response compared to the uncertainty of the material 

alone. In fact, the uncertainty of the horizontal thrusts of the arches and the point of 

application of the resultant of vertical loads affects the pressure curve and subsequently 

the stresses and strains distribution. The uncertainty of the material, which is more 

widely considered in literature, appears less significant and affects the deformations. 

This aspect is not secondary if we consider complex structures whose exact definition 

of the loads is not certain. In most cases, the average value corresponds to the value 

normally assumed in deterministic analyzes, therefore the most plausible value. 

An important aspect of uncertainty analysis is the interval bounds. The values of the 

interval bounds show how introducing an uncertainty changes the structural response. 

Quantifying uncertainties aims to be a tool in the evaluation phase of the structural 

response of a component and not to be used in the design phase. Indeed, it is necessary 

to deal not only with the average value that generally a structural analysis reports but 

also with the intervals bounds in order to make a correct decision. The correct inter-

pretation of this interval also allows eventually being able to integrate the information 



Limitations and suggestions for future work | 207 

with further data provided by experimental tests. Therefore, the level of knowledge 

appears really important in a structural analysis of monumental buildings. 

7.3 Limitations and suggestions for future work 
This dissertation has limitations that require future research developments. 

Regarding the local collapse mechanisms for masonry walls, future works will analyze 

the uncertainty of the various masonry typologies using recent numerical techniques 

that would be very useful (e.g. p-box, Bayesian updating). In future research, we would 

like to analyze other aggregates present in Italy, including building typologies similar 

to those of the Po Valley. This will also have to consider the uncertainties relating to 

the geometry of macro-elements and loads. The influence of the interaction between 

the floor effect of masonry structures and the local collapse mechanisms can be a fur-

ther aspect to be explored. Finally, we will hopefully integrate these results into a com-

prehensive assessment method including the global behavior of masonry structures. 

The study conducted on the columns of the cathedral represents a first step in assessing 

the safety of the structural elements in a quantitative manner. This was done using the 

fuzzy set theory which allows a first evaluation of the structural behavior based on the 

available information. Future research would like to extend the investigation of the 

quantification of uncertainties by means of sensitivity analyzes that would allow de-

fining in greater detail which parameters influence the structural behavior. A further 

step would be to define a safety index correlated to the reliability index for this type 

of structure which is difficult to investigate as a whole due to the considerable varia-

bility of the data. 

The extension of this methodology would then allow, if properly calibrated, to be ap-

plied to monitoring problems of the structures. In fact, by collecting data from exper-

imental tests and simulations, it could be possible to have a more defined picture of 

the problems and criticalities of the analyzed structures. 

7.4 Concluding remarks 
This dissertation contributes to improve the role of uncertainties in assessing the reli-

ability and vulnerability of masonry structures by proposing a methodology that eval-

uates the uncertainty with a probabilistic model based on fuzzy set theory. 



208 | Conclusions 

The results of this thesis should be interpreted considering the limitation of the studies. 

It is the hope that assessing the safety of the structural elements in a quantitative man-

ner will be used by researchers and stakeholders to understand the uncertainty to which 

the risk analysis is subjected and therefore the consequent decision-making process. 
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List of Symbols 

The next list describes several symbols that will be later used within the body of the 

document. 

Probabilistic Methods and procedures 

Symbol Description 

~ Fuzziness 

α Membership function value and basis of α-cuts 

  Vector of epistemic parameters 

( )  Membership function of a fuzzy variable 

( )  Cumulative distribution function (CDF) of a standard normal variable 

  Event space 

  Elementary event 

Symbol Description 

( )Bel  Belief function 

Domain 

Event, subset of   
C Complementary event to 

Collection of events in   ( )algebra −

F Lower bound of a p-box, belief 

F Upper bound of a p-box, plausibility 

Event subset of   

( ) Expected value operator 
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( ) Indicator function 

m Probability mass, basic probability assignment 

MCSn number of samples in Montecarlo Simulation 

( ) Probability measure 

Space of real numbers 

iS First order of Sobol ’indices 

iTS Total order of Sobol ’indices 

( )Pls   Plausibility function

( )Var   Variance
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List of Acronyms 

The next list describes several acronyms that will be later used within the body of the 

document. 

Probabilistic models 

BPA Basic probability assignment 

CDF Cumulative distribution function 

DS Dempster-Shafer 

eCDF Empirical cumulative distribution function 

FORM First order reliability method 

MC Monte Carlo 

MCS Monte Carlo Simulation 

PDF Probability density function 

SA Sensitivity Analysis 

UP Uncertainty propagation 

UQ Uncertainty quantification 

Risk assessment 

JCSS Joint Committee on Structural Safety 

PRA Probabilistic Risk Assessment 

PSA Probabilistic Safety Assessment 

QRA Quantitative Risk Assessment 

Other acronyms 

CDP Concrete Damage Plasticity 

DEM Discrete Element Method 

DMEM Discrete Macro-Element Modeling 

FEM Finite Element Method 

IM Intensity measure 

MAF Mean Annual Frequency 
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MQI Masonry Quality Index 

MSA Multiple Stripe Analysis 

MUR 1 Masonry type 1 

MUR 2 Masonry type 2 

NSCD Non-Smooth Contact dynamics 

OOP Out-of-plane 

PBEE Probabilistic based earthquake engineering 

PEER Pacific Earthquake Engineering Research 

PGA Peak ground acceleration 

PSHA Probabilistic seismic hazard analysis 

SDOF Single degree of freedom 

TSC Total strain-based crack 

ULS Ultimate Limit State 

URM Unreinforced masonry 
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Appendix A Experimental tests 

The average values of the tests on brick-and-mortar samples carried out by the LIFE 

s.r.l. laboratory is shown below for the masonry of the cathedral of Ferrara, considering 

the first and second investigation campaigns. We thank the engineers of the cathedral’s 

intervention works for the data provided (Mezzadringegneria s.r.l.). 

Table 0.1: results of compression tests on brick cubes. 

Period ID TEST Strength [MPa] 

2015-2017 

1 14.2 

2 14.6 

3 14.2 

4 12.9 

5 12.9 

6 13.9 

7 11.5 

8 13.5 

9 11.1 

2019 

10 27.86 

11 26.65 

12 25.53 

13 23.95 

14 24.56 

15 25.58 

16 18.13 

17 17.62 

18 19.61 

19 14.48 

20 14.20 

21 12.82 
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Table 0.2: double punching tests on eighteenth-century mortar. 

Period ID TEST Strength [MPa] 

2015-2017 

1 4.2 

2 2.8 

3 4.2 

4 3.44 

5 3.57 

6 3.5 

7 3.57 

8 3.5 

9 2.8 

10 4.2 

11 2.39 

12 1.94 

13 2.32 

14 2.07 

15 2.17 

16 2.1 

17 2.23 

18 2.17 

19 2.17 

20 2.1 

2019 

21 3.57 

22 3.31 

23 3.06 

24 4.20 

25 2.93 

26 2.80 

27 3.06 

28 3.44 

29 2.93 

30 2.67 
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Table 0.3: double punching tests on medieval mortar. 

Period ID TEST Strength [MPa] 

2015-2017 

1 5.22 

2 4.58 

3 4.2 

4 3.57 

5 4.07 

6 3.95 

7 3.69 

8 3.18 

9 4.2 

10 3.95 
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Results of double jack test 
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