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Diverse strategic identities induce dynamical states in evolutionary games
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Evolutionary games provide the theoretical backbone for many aspects of our social life: from cooperation
to crime, from climate inaction to imperfect vaccination and epidemic spreading, from antibiotics overuse to
biodiversity preservation. An important, and so far overlooked, aspect of reality is the diverse strategic identities
of individuals. While applying the same strategy to all interaction partners may be an acceptable assumption
for simpler forms of life, this fails to account for the behavior of more complex living beings. For instance,
we humans act differently around different people. Here we show that allowing individuals to adopt different
strategies with different partners yields a very rich evolutionary dynamics, including time-dependent coexistence
of cooperation and defection, systemwide shifts in the dominant strategy, and maturation in individual choices.
Our results are robust to variations in network type and size, and strategy updating rules. Accounting for diverse
strategic identities thus has far-reaching implications in the mathematical modeling of social games.
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I. INTRODUCTION

Game theory owes its popularity to its ability of describing
social interactions as well as the gist of conflicting situa-
tions in economics and politics [1]. An important paradigm
shift was the introduction of evolutionary games [2], which
focus on the interaction and competition between different
strategies. Today, evolutionary games are the workhorse for
studying frequency dependent selection in biological systems,
and they are used prolifically to investigate cooperation and
competition in economic, social, and technological systems
[3,4]. In general, evolutionary games allow modelers to make
the interactions within a system measurable and interpretable,
which pairs particularly well with network science [5–10].

A frequently used subclass of evolutionary games is that
of social dilemmas, in which what is best for the individual
player conflicts with what is best for the society as a whole
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[11]. Such situations are commonplace in modern human
societies, applying as much to the abuse of power in leader-
ship as to climate inaction and the overexploitation of natural
resources. Much research has been devoted to the resolution
of social dilemmas on networks [9,12–19], with results point-
ing to the fact that the network topology (and its possible
temporal changes) is essential to determine the system’s evo-
lution [20,21]. For instance, hubs in scale-free networks can
act as strong facilitators of cooperation [22], extending the
survival range well past the boundaries of traditional network
reciprocity [23]. Moreover, a solution for weak selection ap-
plicable to any kind of graph has been recently obtained based
on calculating the coalescence times of random walks [18].

So far, studies of evolutionary dynamics in structured pop-
ulations have typically assumed that each individual adopts
a single strategy with all their interaction partners [24]. For
organisms with no or limited self-awareness and intelligence,
this assumption may be indeed reasonable: bacteria, for in-
stance, are not always able to change their genotype based
on their surroundings [25], and similarly a worker bee can
hardly break with the hive and go about exploring alter-
natives. However, the assumption becomes unrealistic for
more complex living beings. Because evolutionary games
are increasingly used to study complex phenomena in hu-
man societies [26–34], the time is ripe—actually the need
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is urgent—for the relaxation of this monotony, and for the
account of the obvious fact that we act differently with certain
people than we do around others [35,36]. And this is of course
likewise true for many other animals.

Moreover, node strategies (i.e., the fact that a node adopts
the same strategy with all its neighbors) lead, in general, to
time stationary network arrangements, implying the setting
(from a given time) of a population of simpletons where the
identity of each unit is that of a permanent cooperator or of a
permanent defector (depending on the stochastic fluctuations).
This is also far from properly representing real interactions in
human or animal societies, wherein members actually alter-
nate cooperation and defection in time. In social systems, for
instance, it has been observed that human propensity to coop-
eration does vary in time, and this has important consequences
for the outcomes in decision conflicts [37], competitive envi-
ronments [38], and long-run cooperation [39]. In biophysical
systems, changes in cooperative behavior are observed over
time due to population feedbacks [40] or to varying resource
availability [41]. Varying cooperation propensities character-
ize, for instance, microbial populations, where microbes are
known for their dualistic roles, i.e., they cooperate with some
strains but defect with others [42].

We then here abandon the monotonic assumption, and
show that taking instead into explicit account diverse players’
identities induces a very rich dynamical repertoire, which in-
cludes several of such observed phenomena: time-dependent
coexistence of cooperation and defection, systemic shifts
in the network’s dominant strategy, and the maturation of
individual strategic choices. Overall, our results show that
it is crucial for individuals to carefully gauge their strate-
gic vectors for socially optimal evolutionary outcomes, thus
revealing that diverse strategic identities are essential for prop-
erly capturing a vast number of behaviors observed in human
societies.

II. RESULTS

We start by considering a network, G, made of N players
(or units, or nodes), connected according to a symmetric adja-
cency matrix, A = (ai j ), where ai j = 1 if units i and j interact,
and ai j = 0 otherwise. Moreover, ki = ∑N

j=1 ai j is the number
of neighbors of player i, also called node i’s degree. A strategy
matrix, S = (si j ), is introduced such that si j = 1 if player i
cooperates with player j, si j = 2 if player i defects from j,
and si j = 0 if ai j = 0.

Our approach is in line with a stream of recent research
where edges (rather than vertices) are the centers of evolu-
tionary dynamics [43–47]. In particular, Ref. [43] considered
the ability to change the strategy along the least productive
edge (in terms of payoff) as a form of punishment that ul-
timately promotes cooperation, and the result has been later
extended from rings and lattices to well-mixed populations
[44] and eventually to heterogeneous networks [45]. On the
other hand, Ref. [46] assumes that the edge strategy (co-
operation or defection) yielding a higher payoff is likely to
replace strategies producing lower payoffs, and shows that this
mechanism generally supports cooperation. Reference [47]
extends the idea of edges being the centers of evolutionary
dynamics by suggesting that edges may also convey additional

information, such as genetic similarity, geographic proximity,
and social closeness. Moreover, Ref. [48] shows how the
heterogeneity of a group, in terms of skills and strategies,
can have implications at the evolutionary level in the stability
of communities and in their size. Finally, in Ref. [49] the
public goods game is used to solve the traveling salesman
problem, under the hypothesis that agents may play with a
vector of strategies (each one corresponding to a possible so-
lution of the game), and therefore diversification is somehow
taken into account. We here show that allowing individuals
to adopt different strategies with different partners yields a
very rich evolutionary dynamics, including time-dependent
coexistence of cooperation and defection, systemwide shifts
in the dominant strategy, and maturation in individual choices.
Other approaches considered situations where a game with
one person can affect the results of a game with another person
(see, for instance, Ref. [50], where the authors refer to this
phenomenon as crosstalk). An implicit assumption needed
to implement crosstalk is that an individual can distinguish
between other individuals with whom they play, which is
an explicit assumption in our paper. Crosstalk impedes co-
operation and requires more forgiving strategies than, say,
tit-for-tat, for cooperation to flourish.

Each player i is then here associated to a vector of inde-
pendent strategies, the dimension of which is degree ki. In
other words, in a particular instance of a game, players can
simultaneously cooperate with some of their neighbors and
defect with others. One further has ki = kC

i + kD
i , where kC

i =∑
j|si j=1 ai j (kD

i = ∑
j|si j=2 ai j) is the time-dependent number

of neighbors player i is currently cooperating (defecting) with.
In the most representative and widely applicable social

dilemma, the prisoner’s dilemma [51], the interactions be-
tween player pairs are governed by payoff matrix

P =
C D

C b − c −c
D b 0

,

which means that if player i cooperates and player j de-
fects (C ↔ D), then player i incurs cost −c while player j
collects benefit b, and vice versa. On the other hand, when
two players cooperate among themselves (C ↔ C) they both
acquire amount b − c, corresponding to the collected benefit
from cooperation of the other agent minus the paid cost to
cooperate. If two agents mutually defect (D ↔ D), they both
obtain a zero payoff. When b > c > 0, the Nash equilibrium
is mutual defection [52].

The gain or loss, gi j , along each existing (ai j = 1) link
is calculated using payoff matrix P as gi j = P(si j, s ji ). The
average payoff of player i is therefore

gi = 1

ki

∑

j∈�i

gi j, (1)

where �i is the set of neighbors of i. One can further calculate
each agent’s average payoff from being a cooperator or a
defector separately, according to gC

i = 1
kC

i

∑
j∈�i|si j=1 P(C, s ji )

and gD
i = 1

kD
i

∑
j∈�i|si j=2 P(D, s ji ), respectively. At time t ,

the network state can be tracked at various scales: mi-
croscopically, one monitors each player’s cooperation level

ρi(t ) = kC
i (t )
ki

, while macroscopically one refers to the network
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FIG. 1. Diversity in strategic identities induces time-dependent states. Heatmaps are shown (with color bar on top) of ρ (a, d), σρ (b, e),
and � (c, f) in the parameter space (α, b/c). See text for the definitions of all quantities. Panels (a)–(c) refer to SF networks, whereas panels
(d)–(f) refer to ER graphs. Simulations were performed over Tf = 10 000 time units, while the time averaging of all quantities was made over
the last T = 2000 steps. Each point is obtained by a further ensemble average over ten network realizations with size N = 1000 and average
degree 〈k〉 = 4. Isolines at the values of ρ = 0.5, 0.7, and 0.9 are drawn in panels (a) and (d). The isoline at the value of σρ = 0.03 is reported
in panels (b) and (e). Three different regimes can be identified: (i) a stationary state in which cooperation dominates the network, at sufficiently
large b/c ratios and sufficiently small α values [the red point labeled with C and located at (36,0.03) in panels (a) and (b)]; (ii) the classical
regime for b/c < 〈k〉 where defection becomes dominant and cooperators can no longer survive (the red point labeled with A and located at
(2.5,0.048) in the same panels); and (iii) a novel dynamical state with coexisting cooperators and defectors [the red point labeled with B and
located at (5,0.048)]. The emergence of the new state is a direct consequence of diversity in the players’ strategic identities.

average ρ(t ) =
∑

i ρi (t )
N . Moreover, ρ = 〈ρ(t )〉T and σρ are,

respectively, the time-averaged cooperation density over an
observation time T and the standard deviation of ρ(t ).

Each player i is assumed to imitate the strategy adopted
against it by its neighbor with the highest total payoff.
Namely, at each step of the game, after players have collected
their payoffs according to their current strategies’ vectors,
each player i considers

�gi = gs̃
i − gi

b
, (2)

where gs̃
i = max j∈�i (g j ) is the payoff of the neighbor j = s̃

inside �i who earned the maximum.
Then, the player updates its ki strategies, i.e., it imitates the

strategy (C or D) used against it by its best neighbor along
each one of its ki links with probability

p = 1

1 + e− �gi
α

, (3)

where α is a free parameter playing the role of an effective
temperature in the above Fermi-Dirac function, while �gi is
the payoff balance (in units of the benefit b) given by Eq. (2).
If player i was already adopting the best neighbor’s strategy
along a given link i j, it simply keeps that link unchanged.
According to these definitions, it may also happen that a given

node i imitates, e.g., the C strategy because that is what its
best neighbor (node s̃) played against it even if gC

s̃ < gD
s̃ . Put

alternatively, the player adopts C by imitating its best neighbor
although that neighbor is earning more from D than C.

Note that in our model the strategy taken as reference
for imitation is that played by the neighbor with the largest
accumulated payoff, and therefore the argument of the Fermi-
Dirac function in Eq. (3) is the same for all the nodes in �i.
Although in this scheme agents’ actions are only indirectly
driven by the pairwise comparison with their neighbors, we
have checked (not shown) that similar results are obtained in
the case in which node i imitates its best neighborâ’s strategy
with different probabilities along the links, namely, for each
link i j the Fermi-Dirac function is evaluated using the differ-
ence between the payoffs between node j ∈ �i and node i.
Our choice is therefore dictated by practical reasons: instead
of having the exact information on all payoffs accumulated by
its neighbors, each node i needs only the payoff of the best
performing node in its neighborhood �i and the strategy that
such a node played against it in the previous step.

We begin describing the results by showing in Fig. 1 three
color maps that, from left to right, encode (i) the cooperation
density ρ, (ii) the associated standard deviation σρ , and (iii)
the link strategy index defined by �i = 1 − |kD

i −kC
i |

ki
. This latter

index quantifies the rigidity of the strategy vectors: the index
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FIG. 2. The coexistence of cooperators and defectors is characterized by systemwide shifts in the network dominant strategy. Time
evolution is shown of ρ(t ) (first row) and of the cooperation level ρi(t ) of the 100 larger-degree players in the network (second row, with
color bar at the right). See text for definition of all quantities. Data refer to a single run of the game on a single realization of an SF network
with N = 1000 and 〈k〉 = 4. The game parameters correspond to those marked by red points A (first column), B (second column), and C (third
column) in Fig. 1(a). In panel (a1), defection dominates over cooperation in a steady state, and all the strategies of individual players become
soon constant in time (a2). Conversely, in panel (c1) cooperators ultimately dominate, though temporal fluctuations persist over a relatively
large time scale. The corresponding temporal profile of individual strategies (c2) exhibits fast temporal changes during the early stages of
the game before maturation of the individual strategic choices. In the novel state (b1, b2), the coexistence of cooperators and defectors is
characterized by systemwide shifts in the dominant strategy. The horizontal lines in panel (b1) mark the transitions from periods during which
cooperation is dominant (intervals with label TC) to time lapses during which defection dominates instead (intervals with label TD). Maturity
never takes place here, and players are forever trapped in cycles of individual changes (b2).

vanishes when players have strategy vectors made of all coop-
eration or defection entries, whereas it gets larger and larger
the more diversified the players’ identities are. The color maps
are represented in the parameter plane of the system, which is
made of the cost-to-benefit ratio, b/c, and of temperature α

in the Fermi-Dirac function. Moreover, the upper row shows
the results obtained on scale-free (SF) networks [53], while
the bottom row shows the results obtained on random Erdős-
Rényi (ER) graphs [54]. To make the content of the figure
easily understandable, isolines are drawn in Figs. 1(a), 1(b),
1(d), and 1(e).

In structured populations, natural selection favors coop-
eration if the benefit of the altruistic act b divided by cost
c exceeds the average degree of the network 〈k〉 [12]. In
our case, cooperation can evolve as a consequence of social
viscosity even in the absence of reputation effects or strategic
complexity. The b/c > 〈k〉 rule is therefore a good reference
against which we can compare the impact of diverse strategic
identities on the evolution of cooperation.

Figures 1(a) and 1(d) reveal that cooperation dominates the
entire network for sufficiently large b/c ratios and sufficiently
small α values. This regime is marked with the red point
C. When decreasing b/c, a rather clear transition occurs at
b/c ∼ 〈k〉 toward the classical regime marked with the red
point A in the same panels, where defection becomes dom-
inant and cooperators no longer survive. In between these
two extremes, however, a novel dynamical state emerges. The
new state consists of coexisting cooperators and defectors,
and is maintained by the evolutionary dynamics, yet in a

distinct and time-dependent way. Namely, by looking at the
ensemble mean of the standard deviation and the link strategy
index shown in the middle [Figs. 1(b) and 1(e)] and rightmost
[Figs. 1(c) and 1(f)] panels, respectively, one can observe
that different levels of cooperation are associated with differ-
ent evolutionary dynamics: when cooperators and defectors
coexist, this is characterized by a large standard deviation
and also by larger values of the link strategy index, as indi-
cated by the red point B in Figs. 1(a) and 1(b). Conversely,
when either cooperators or defectors dominate, the standard
deviation is lowest, as is the link strategy index. The new
state, therefore, is a direct consequence of the diversity in the
players’ strategic identities and enhances the richness of the
dynamics in a region of the parameter space where otherwise
time-independent behavior would settle; when diversity is lost
and one recovers the case of a single strategy per player,
only stationary states are observed and for sufficiently large
b/c these are made of all cooperators, or for b/c < 〈k〉 of all
defectors.

Furthermore, comparing the two rows in Fig. 1 indicates
that, while our observations are equally valid for SF and ER
networks and are thus robust against variations in topology,
temporal fluctuations are stronger in heterogeneous wirings.
This is relevant because interactions in human societies are
indeed characterized by nontrivial, yet heterogeneous, con-
nectivity patterns [30,55–59].

Figure 2 reveals the details behind the dynamics emerging
at the three points marked by letters A, B, and C in Fig. 1(a).
Looking at case A, one can observe an almost fully steady
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time course of both strategy densities [Fig. 2(a1)]. Eventually,
defection dominates over cooperation, and the strategies of the
individual player do not change in time [Fig. 2(a2), containing
the identity of the 100 most connected nodes in the network].

Case C, in which cooperators dominate after a transitory
dynamics, exhibits a somewhat different evolution from case
A. Already early in the evolutionary process cooperators seem
destined for dominance, but residual fluctuations persist over
a relatively large time scale, before eventually the popula-
tion reaches the absorbing steady state [Fig. 2(c1)]. This is
corroborated by the temporal profile of individual strategies
[Fig. 2(c2)], which exhibits fast temporal changes during
the early stages of the evolutionary process before defection
recedes completely. One here observes a maturation in the
strategic choices of individuals across their whole vector of
strategies.

Case B is of particular interest as it is characterized by
the largest ensemble mean of the standard deviation. Here,
the coexistence of cooperators and defectors is characterized
by systemwide shifts in the dominant strategy [Fig. 2(b1)].
At odds with case C, maturity never takes place, and play-
ers are forever trapped in a cycle of individual changes that
allows time-dependent cooperation, but never full dominance
[Fig. 2(b2)]. In this case, diverse strategic identities are thus a
successful vehicle for maintaining the survival of cooperation
even at strongly unfavorable b/c ratios, but not for assuring
the elimination of defectors.

We have checked that regime C (full cooperation) and
regime A (full defection) are always (i.e., regardless of the
specific network realization) attained by the system as long as
the initial number of cooperating ties is, respectively, above
and below 10%. As for point B, we have verified that temporal
fluctuations are really persistent in the system, as they were
supported over time scales of the order of 1 × 106 iterations
of the game. From a statistical mechanics point of view, pre-
liminary findings indicate that the transition between these
two points is a second-order phase transition whereby a stable
defecting equilibrium destabilizes, while a new stable equilib-
rium forms between full defection and full cooperation. This
equilibrium slowly drifts with increasing b/c until ρ = 1. The
nature of this transition is indeed an interesting issue already
considered in detail in the literature for regular ensembles
[60,61] but its study in structured complex networks is a
delicate subject that needs specific research which is beyond
the scope of the present paper. It has to be noticed, at this
stage, that the dynamical scenario reported in Figs. 1 and 2 is
obtained under the assumption that the strategy a given node
i is selecting at each step against each one of its neighbors in
�i depends only indirectly on the payoffs collected by those
nodes in the previous step. Indeed, while the strategy taken as
reference for imitation is that played by the neighbor with the
largest accumulated payoff (and therefore its determination
includes a comparison among all payoffs of the neighbors of
node i), the argument of the Fermi-Dirac function in Eq. (3)
is equal for all the nodes in �i. However, we have verified
that exactly the same scenario (with only suitable rearrange-
ments of the parameters α and b/c) occurs also in the case in
which node i, once it has adopted the same reference strategy
as that used against it by its best neighbor, imitates such a
strategy with different probabilities in different links, namely,

by calculating in each link i j the Fermi-Dirac function with
reference to the difference between the payoff of node j ∈ �i

and the payoff of node i. Our choice is therefore dictated by
practical reasons: instead of having to have the exact informa-
tion on all payoffs accumulated by its neighbors, we suppose
that each node i needs only to know the payoff of the best
performing node in its neighborhood �i and the strategy that
such a node played against it in the previous step.

We also tested the robustness of the results against changes
in network size and connectivity density. We show in Fig. 3
the same set of color maps as in Fig. 1, but reporting here the
results obtained with SF networks with a larger average degree
[Figs. 3(a)–3(c), N = 1000, 〈k〉 = 8], and with a larger size
[Figs. 3(d)–3(f), N = 5000, 〈k〉 = 8]. Contrasting the top row
of Fig. 1 with Fig. 3, one realizes that the most fascinating
features are all maintained. The data are slightly shifted to
higher b/c ratios, but not as much as they should have been if
they would have strictly followed the b/c > 〈k〉 rule. This is
not surprising given that the derivation of the rule was made in
Ref. [12] for regular networks, and in the limit of very sparse
graphs (N � 〈k〉), and therefore it has to be considered as a
necessary but not sufficient condition for the transition to full
cooperation.

Examining the details of Fig. 3, one also realizes that the
main effect of a larger 〈k〉 is that of enhancing the fluctuations
in the time-dependent state [Fig. 3(b)]. We also performed
simulations (not shown here) at lower (〈k〉 = 2) and higher
(〈k〉 = 12) values of the average degree, which confirm the
enhancement of fluctuations with increasing 〈k〉. The network
size has instead the effect of slightly reducing the size of fluc-
tuations, yet it has virtually no impact on the overall scenario
or on the diversity of strategic identities. Our results are then
validated not just in terms of variation in network topology,
but also in terms of network size and average degree. We have
also tested our results on smaller size networks (with only
N = 100 players), and we observed identical outcomes. In
terms of social models, diverse strategic identities thus yield
consistently similar results for networks composed of just tens
or thousands of individuals, and are therefore applicable for
small groups and communities, upwards to big societies.

Notice that we performed simulations also in the limit of
weak selection (α > 1), which confirmed (up to α > 10) the
general scenario of a transition between a fully defective (at
low values of b/c) and a fully cooperative (at high values of
b/c) state mediated by a time-dependent configuration where
neither of the two strategies is fixed and persistent fluctuations
characterize instead the dynamics of the system.

To further test our results’ robustness, we also consider that
the players can make errors when imitating the best neighbor’s
strategy. In this scenario, for those links selected to change
along with probability p [Eq. (3)], the best strategy is correctly
replicated with probability 1 − ε, or randomly changed with
probability ε. The averaged results for ρ, σρ , and � for several
values of ε are shown in Fig. 4, for N = 1000 SF networks
with 〈k〉 = 4 and Tf = 10 000 time units. We fix α = 0.048,
therefore the curves are to be compared to the upper row
panels in Fig. 1 at the level of points A and B. We include
the perfect imitation case ε = 0 for reference. It can be seen
that the result is highly robust to errors: up to 10% copy error
the cooperation level ρ and its dispersion σρ barely change, in
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FIG. 3. Increasing the connectivity density enhances time fluctuations, and the overall scenario is preserved with changing network size.
Heatmaps are shown (color bars on top) of ρ (a, d), σρ (b, e), and � (c, f) in the parameter space (α, b/c). As compared with Fig. 1, data here
refer to SF networks with a larger average degree (top row, N = 1000, 〈k〉 = 8), and with a larger size (bottom row, N = 5000, 〈k〉 = 8). Each
point is furthermore obtained by an ensemble average over ten different network realizations. For a better visualization, isolines are drawn in
panels (a), (b), (d), and (e). The main effect of a larger 〈k〉 is that of enhancing the fluctuations in the time-dependent state, as it is visible in
panel (b). On the other hand, the network size has the effect of slightly reducing the size of fluctuations (e), yet it has virtually no impact on
the overall scenario (a, d), or on the diversity of strategic identities (c, f).

the same way that could be expected from a small increase in
the system temperature α.

Finally, we show that time-dependent states are observ-
able even in more realistic situations. Indeed, the assumption
that players tend to imitate the strategy played with them by
their best neighbors is only reasonable if such best neighbors
are actually overperforming in terms of the payoff. But why
should a player who accumulated a payoff better than its best
neighbor actually imitate that neighbor’s strategy?

To include this possibility, we enriched our model by
considering that a given percentage p of randomly selected
players does not follow the imitation rule, but rather follows a
second introspective rule which only accounts for the balance
between the payoffs accumulated being a cooperator or a de-
fector in the previous step of the game: �ingi = (gC

i − gD
i )/b.

In other words, we tested the robustness of our results against
variations in the strategy updating rule, replacing in a fraction
p of the population the commonly used imitation of the fittest
with what sometimes is referred to as myopic strategy updat-
ing [62].

Each introspective player i updates its strategies with all
its ki neighbors, taking as a reference either the strategy D, if
�ingi � 0, or C, if �ingi > 0. If player i is already adopting
along a given link the reference strategy, the link stays
unchanged, but otherwise one has the transition probabilities
f (C → D) = 1/[1 + exp(�ingi/α)] and f (D → C) =
1/[1 + exp(−�ingi/α)].

Introspective players are destined to assume monotonic
identities, as diversity is impossible for them in their asymp-
totic state. Therefore, it is very relevant to assess how far,
in terms of fraction p, diversity in the system can survive,
and to what extent its effects are resilient. The results are
reported in Fig. 5, and they attest to the fact that the out-
comes reported above remain intact to a large extent of
heterogeneity in strategy rules. Namely, the overall scenario
remains almost unchanged for p = 0.05 [Fig. 5(b)] and p =
0.1 [Fig. 5(c)]: systemwide shifts in the dominant strategy
and time-dependent cooperation are always observed. As the
fraction p of introspective players increases up to p = 0.5
[Fig. 5(d)], one can notice a shrinkage and the eventual dis-
appearance of the full C phase, yet the coexistence of both
strategies and thus at least the survival of cooperation remains
feasible. Taken together, this rounds up the evidence in favor
of the remarkable robustness of the presented results, and
it corroborates diverse strategic identities as applicable in a
broad plethora of different modeling scenarios.

III. DISCUSSION

In summary, we have introduced and studied diverse strate-
gic identities, with a focus on their impact on the resulting
evolutionary dynamics. Unlike bacteria and other relatively
simple forms of life which use the same strategy for all their
interactions, humans and many animals do not. It is indeed
straightforward to come up with many examples in support of
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FIG. 4. Robustness to failures in the imitation rule. In this case,
links selected to change strategy correctly replicate the best strategy
with probability 1 − ε, or randomly change with probability ε. The
panels show averaged ρ, σρ , and � for several values of ε. Each
point is obtained as an average over ten different realizations for SF
networks with N = 1000 and 〈k〉 = 4. The temperature is fixed to
α=0.048 (as in points A and B in Fig. 1). The result assures a high
robustness to imitation errors.

this claim. From the psychological point of view, differences
in personality, lack of confidence, and simply growing up
and maturing as an individual are most commonly named as
reasons for acting differently around different people [35,36].
When studying evolutionary games on networks, it is thus

fitting to replace a single strategy of an individual with a
strategy vector, such that it is possible for that individual to
use different strategies in all its interactions.

We have focused on social dilemmas, and the prisoner’s
dilemma game in particular, as the most important and
frequently used subclass of evolutionary games [51], and
we have considered SF and ER networks of different sizes
and with different average degrees and tested the robustness
against failures in the imitation rule. We have also considered
part of the network population using an introspective strategy
adoption rule besides the more commonly used imitation of
the fittest [62]. We have shown that, largely regardless of
the particularities of the implementation, diverse strategic
identities give rise to evolutionary dynamics that is unseen
in the monotonic case. Our results include sudden systemic
shifts and oscillations of dominant strategies in the network.
These sometimes support cooperation where it would
otherwise perish, but sometimes also support defection where
otherwise cooperators would dominate. Furthermore, we
have observed time-dependent cooperation and maturation in
individual strategic choices, where players initially change
their strategies frequently and use different strategies with
different neighbors, only to eventually converge to an
essentially monotonic strategy in time. However, without the
ability to use different strategies with different neighbors, the
global evolutionary outcome would have been altogether very
different.

Given the high and robust degree to which diverse strategic
identities affect the evolutionary dynamics on networks,
and given the ubiquity of mathematical models based on
evolutionary games in mitigating adverse climate change
[27,28], improving imperfect vaccination outcomes [31,34],
containing epidemic spreading [30], educating against the
overuse of antibiotics [33], and preserving biodiversity [29],
we argue that truly applicable models of the future should
relax the one strategy for all limitation and embrace the
freedom and complexity of more realistic diverse strategic
identities. As our research shows, this allows individuals
to carefully gauge their strategic vectors, which can lead
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FIG. 5. Diversity and time-dependent states are observable also for more realistic, heterogeneous, strategy rules. Heatmaps are shown
(color bar on the right) of the cooperation density ρ in the parameter space (α, b/c). Here, the network is partitioned in two communities: a
fraction p of randomly selected players adopts an introspective strategy updating (see text for details), whereas the remaining fraction 1 − p of
players adopt the usual imitation rule. Panels (a)–(d) correspond, respectively, to p = 0, 0.05, 0.1, and 0.5. As in Fig. 1, each point is obtained
by an ensemble average over ten different realizations of SF networks with N = 1000 and 〈k〉 = 4. Isolines at ρ = 0.5, 0.7, and 0.9 are drawn.
Other stipulations are as in the caption of Fig. 1. The results point to a remarkable robustness of the observed scenario also in the presence of
heterogeneity in the strategic updating rules, and therefore corroborate the fact that diverse strategic identities can be observed in a plethora of
practical cases.
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to socially optimal outcomes that would otherwise remain
hidden or completely unattainable.
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[54] P. Erdős and A. Rényi, On random graphs. I, Publ. Math.
Debrecen 6, 290 (1959).

[55] D. J. Watts and S. H. Strogatz, Collective dynamics of “small-
world” networks, Nature (London) 393, 440 (1998).

[56] D. J. Watts, Small Worlds: The Dynamics of Networks Between
Order and Randomness (Princeton University, Princeton, NJ,
1999).

[57] M. E. Newman, The structure of scientific collaboration net-
works, Proc. Natl. Acad. Sci. USA 98, 404 (2001).

[58] L. K. Gallos, F. Q. Potiguar, J. S. J. Andrade, and H. A. Makse,
IMDB network revisited: Unveiling fractal and modular proper-
ties from a typical small-world network, PLoS ONE 8, e66443
(2013).

[59] A. D. Broido and A. Clauset, Scale-free networks are rare, Nat.
Commun. 10, 1017 (2019).

[60] A. Szolnoki and M. Perc, Correlation of Positive and Negative
Reciprocity Fails to Confer an Evolutionary Advantage: Phase
Transitions to Elementary Strategies, Phys. Rev. X 3, 041021
(2013).

[61] A. Szolnoki and M. Perc, Second-Order Free-Riding on An-
tisocial Punishment Restores the Effectiveness of Prosocial
Punishment, Phys. Rev. X 7, 041027 (2017).

[62] M. A. Amaral and M. A. Javarone, Heterogeneous update
mechanisms in evolutionary games: Mixing innovative and im-
itative dynamics, Phys. Rev. E 97, 042305 (2018).

043168-9

https://doi.org/10.1037/xge0000107
https://doi.org/10.1371/journal.pone.0115756
https://doi.org/10.1038/ncomms13800
https://doi.org/10.1371/journal.pbio.1001547
https://doi.org/10.1371/journal.pbio.1002540
https://doi.org/10.1016/j.tcb.2012.08.010
https://doi.org/10.1209/0295-5075/86/38001
https://doi.org/10.1103/PhysRevE.81.036115
https://doi.org/10.1088/1751-8113/44/34/345101
https://doi.org/10.1088/1367-2630/18/10/103007
https://doi.org/10.1371/journal.pcbi.1006947
https://doi.org/10.1371/journal.pone.0187960
https://doi.org/10.1140/epjb/e2017-80346-6
https://doi.org/10.1038/s41467-017-02721-8
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/30918
https://doi.org/10.1073/pnas.98.2.404
https://doi.org/10.1371/journal.pone.0066443
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.1103/PhysRevX.3.041021
https://doi.org/10.1103/PhysRevX.7.041027
https://doi.org/10.1103/PhysRevE.97.042305

