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1 | INTRODUCTION

Structural mass is a very important consideration for aeronautical engineers, as small increases in the mass of an aircraft
can lead to significant increases in fuel consumption and carbon emissions. Alongside mass, manufacturing costs are
also a significant consideration for aeronautical engineers. Reductions in manufacturing costs can enable aircraft man-
ufacturers to divert more resources towards improving safety and reducing the environmental impact of their aircraft.
Reductions in costs could also be passed down to consumers via reduced ticket prices. Reliability-based design optimiza-
tion (RBDO) can often provide designs for structures that are optimized in terms of mass and reliability, but not necessarily
in terms of manufacturing costs, especially for complex structures. This work aims to develop a methodology that couples
the RBDO of aircraft structures with a manufacturing cost estimation approach.

Optimizing a structure for manufacturing cost and reliability involves shape optimization—optimizing the shape of
a structure to minimize manufacturing cost and to maximize reliability. The boundary element method (BEM) can be
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a very effective tool for shape optimization. The BEM only discretizes the outer boundary of a structure, allowing the
outer geometry to be varied without requiring the entire structure to be resmeshed, saving both time and computational
resources. An added benefit of this feature is that it allows the sensitivities of the responses of a BEM model, with respect
to changes in the outer geometry, to be calculated in a very straightforward and computationally efficient manner, making
the BEM a very effective tool for the shape optimization of engineering structures.

Previous work on the topic of shape optimization with the BEM by the research community has mostly considered 2D
structures,!!! and to a lesser-degree 3D structures.!?'® Very few previous works by the research community on the topic
of shape optimization with the BEM have considered plate or shell structures. Where possible, modeling a structure as a
plate or shell structure can have significant benefits over modeling the structure in 2D or 3D. This is because many real-life
engineering structures cannot be accurately modeled as 2D structures, and depending on the engineering structure being
modeled, it can often be more efficient to model a structure as a plate or a shell structure, rather than as a 3D structure,
without a noticeable loss in modeling accuracy. An example of this could be a curved stiffened panel from an aircraft
fuselage, or a wingbox from an aircraft’s wing. To the authors’ knowledge, there is only one previous work by the research
community on the topic of shape optimization with the BEM with plate or shell structures; Babouskos et al.!® optimized
the thickness distribution in a thin plate to regulate the dynamic response of the plate. The thickness distribution of
the plate was approximated via a surrogate model, and the optimal thickness distribution in the plate was calculated
using derivatives of this surrogate model. The derivatives of the BEM formulations for plates were not calculated, and
the remaining geometry of the plate was not optimized. This current work aims to develop an implicit differentiation
method (IDM), which uses the implicit/direct derivatives of the BEM formulations for plates, to enable the full shape
optimization of plate structures with the BEM, involving all of a plate’s geometry. By using the implicit/direct derivatives
of the BEM formulations, shape optimization can be conducted in a much more accurate and efficient manner than with
other methods.

The first steps towards developing an IDM for plate or shell structures with the BEM were conducted by Morse et al. in
Reference 20, in which the exact/implicit derivatives of the BEM plate formulations with respect to geometrical variables
were derived for the first time. These exact derivatives were only applicable to geometrical variables that influence the
nodal coordinates of the BEM plate mesh, such as plate length or width, and so they were not applicable to geometrical
variables that do not influence nodal coordinates, such as plate thickness. Therefore, the full shape optimization of plate
structures, involving all geometrical variables, was not possible. This current work aims to build upon the work presented
in Reference 20 and enable the full shape optimization of plate structures, involving all geometrical variables. This is
achieved by deriving the exact/implicit derivatives of the BEM plate formulations with respect to plate thickness for the
first time.

Previous work by the research community involving exact\implicit derivatives of BEM formulations have focused on
2D structures,’>?1"28 with some work conducted on 3D structures,'®? and one work so far on plate structures.’’ One
notable example is Huang et al. in which the implicit derivatives for the 2D dual boundary element method (DBEM), a
version of BEM effective at modeling cracks, were developed for the first time and used to estimate the reliability of 2D
structures using the First-Order Reliability Method (FORM). Another notable example is Brancati et al.,'* in which the
implicit derivatives of 3D boundary element formulations were used to optimize noise levels in an aircraft cabin.

In summary, the main novelty of this work is that the exact/implicit derivatives of the BEM plate formulations with
respect to plate thickness have been derived for the first time, enabling the full shape optimization of plate structures
with the BEM. These implicit derivatives will be validated against derivatives obtained from the finite difference method
(FDM) and from an analytical solution. To demonstrate the full shape optimization of plates with the BEM, a numerical
example involving RBDO and manufacturing cost optimization is presented.

The methodology behind manufacturing cost estimation is presented in Section 2, followed by the methodology used
for RBDO in Section 3. The implicit derivatives of the BEM plate formulations with respect to plate thickness are pre-
sented in Section 4, alongside the validation of these implicit derivatives. The numerical example involving RBDO and
manufacturing cost estimation is shown in Section 5. The implicit derivatives of the BEM plate fundamental solutions
with respect to plate thickness are presented in detail in the Appendix.

2 | PARAMETRIC APPROACH TO MANUFACTURING COST ESTIMATION

The parametric cost estimation methodology used in this work is based on the parametric cost estimation methodology
described in detail in appendix C of the NASA Cost Estimating Handbook.3°
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A parametric model can be created to estimate the manufacturing cost of a structural component. The parametric
model used in this work is a linear regression of the following form:

Cost = fp + prx1 + p2x2 ... + PrXk, (D)

where Cost is the manufacturing cost of a structural component, and [x;, X, ... Xx] are independent variables that influ-
ence the manufacturing cost, also known as cost drivers. [f1, 2, ... Bx] are regression coefficients. The cost drivers could
be the dimensions of a structural component, such as its length and width. The creation of this parametric model required
the use of a historical database containing the details of similar structural components, and could be created by collect-
ing the details of structural components from a range of similar aircraft models. In this work, this database is an artificial
database created by the authors.

To minimize the effects of multicollinearity, a stepwise regression approach is taken when creating the regression
model seen in Equation (1). The most important cost drivers are identified based on their Pearson correlations coefficient
with respect to the manufacturing cost. The most important cost driver is used as the sole independent variable of the
first iteration of stepwise regression procedure. In the following iterations, the next most important cost drivers are added
to the model. If the addition of a driver noticeably improved the model, it is kept in the model, otherwise it is removed.
This is repeated until all of the important cost drivers have been tried in the model. Therefore, the resulting regression
model will include only the very most important cost drivers, mitigating the effects of multicollinearity and providing an
accurate parametric model for estimating the manufacturing cost of a structure.

3 | RELIABILITY-BASED DESIGN OPTIMIZATION (RBDO)

In the field of reliability analysis, the boundary between succeeding or failing to meet a certain set of criteria can be
represented mathematically by a limit state function (LSF) g(Z). For example, if we are looking at the probability of a
structure failing due to load, the LSF will be:

8(Z) =R - 5(Q), ()

where Z is a vector of random variables (Z € R"r where n, is the number of random variables), and Q is a subset of Z if R
is a random variable, where R is the resistance of the structure to some load S. If S(Q) > R then g(Z) < 0 and the structure
is considered to have failed, while if S(Q) < R then g(Z) > 0 and the structure is considered safe.

The probability that the set of criteria has failed to be met is termed the probability of failure Pr, while the probability
that the set of criteria has been successfully met is termed reliability Pg. In the example outlined above, these probabilities
would correspond to the probabilities of the structure failing or being safe under the load S respectively. Reliability can
be determined by evaluating the following integral:

Pr=1-Pr=P(g2)> 0} = / fu(2)dz. 3

8(Z)>0

where fz(Z) is the joint PDF of Z. Pg, and Pr are obtained by integrating over the failure region (g(Z) < 0) and the safe
region (g(Z) > 0) respectively. All of the design variables are assumed to be mutually independent. The integral seen in
Equation (3) can be difficult to evaluate if there are many variables in X or if the boundary g(Z) = 0is non-linear. Therefore,
several methods have been developed to evaluate the integral in Equation (3). The most widely known are Monte Carlo
Simulations (MCS), the FORM, and the Second-Order Reliability Method. This work will focus on the FORM due to its
efficiency.

The reliability P shown in (3) can be represented in terms of a reliability index g as:

Pr=1-Pp=1-®(-p) = D), “4)

where ® denotes the CDF of the standard normal distribution. A large value for the reliability Pr corresponds to a large
value for the reliability index 8. # can be found by rearranging the above equation to yield:

p =7 (Pr) = ®'(1 - Pp), (5



2192 Wl L EY MORSE ET AL.

where @' is the inverse of the CDF of the standard normal distribution.

RBDO involves optimizing the design of a structure such that the reliability of the structure achieves a certain level of
reliability. There are two main approaches to RBDO, the reliability index approach (RIA) and the performance measure
approach (PMA).

3.1 | Reliability index approach (RIA) to RBDO

In the RIA, the optimization problem is:

Minimize Cost(d)
SUbjeCt to Prorm = ﬂlarget
d<d<d?, deRw, (6)

where d is a vector of ng design variables (d C 4(Q) and ng < n,), frorum is the reliability index from FORM, and Piqrges
is the target reliability index. d* and dY are vectors containing the lower and upper bounds respectively of the design
variables.

For a given vector of random variables Z, the RIA calculates the reliability index f via FORM for each iteration of the
optimization procedure.

3.2 | Performance measure approach (PMA) to RBDO
In the PMA, the optimization problem is:

Minimize Cost(d)
Subjectto  g(Z*) <0
d<d<d?, deRw, 7

where g(Z*) is the value of the limit state function evaluated at the most probable point (MPP) found from the PMA.
The PMA algorithm used in this work is the hybrid mean value (HMV) algorithm,3! due to its enhanced efficiency and
stability.

The PMA can be thought of as the inverse of the RIA. For a given vector of random variables Z, the PMA calculates
the MPP point Z* for which frory = Brarger- This MPP Z* is then used by the next iteration of the optimization procedure.

The PMA requires the derivatives of the constraints, that is, the limit state function g in Equation (7), to be calculated.
In this work, g will be a function of boundary stresses or internal displacements. Therefore, the derivatives of the boundary
stresses and internal displacements need to be derived. Since the BEM is used in this work to calculate boundary stresses
or internal displacements, the derivatives of the BEM formulations for plate structures will need to be derived. These
derivatives have been derived for the first time and are presented in the next section.

4 | RBDO CONSTRAINT DERIVATIVES
To improve the computational efficiency of conducting RBDO for plate structures using the PMA approach, the exact
derivatives of the response of a BEM plate model were derived for the first time.

In this work, Latin letter indexes (e.g., i, j, k) can take values from 1 to 3, while Greek letter indexes (e.g., a, f, p, ¥)
can take values of either 1 or 2.

4.1 | BEM formulations for plates

In this section, the BEM formulations for plates are presented.
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FIGURE 1 Plate geometry

FIGURE 2 Sign convection for displacement, rotations, tractions, and moments for shear deformable plates?

Consider the plate of thickness h shown in Figure 1. The x; — x, plane is the middle surface x; = 0, or membrane,
of the plate where —h/2 < x3 < +h/2. x; can be described in terms of a non-dimensional variable X3, such that x; = x3h,
where —1/2 < X3 < +1/2.

The displacements of the plate are u,, where u; and u, are the displacements in the directions x; and x, respectively.
The rotations of the plate are w,, where w; and w, are the rotations of the plate in the directions x; and x, respectively.
The displacement of the plate in the direction x; is ws. The tractions are denoted as t, and p;. t, are tractions due to
membrane stress resultants N,s. p, are tractions due to bending stress resultants M,4. p; denotes traction due to shear

stress resultants Q,. A diagram explaining the sign convention of these displacements, rotations, and tractions for plate
bending can be seen in Figure 2.

4.1.1 | Boundary integral equations

From Reference 34, the discretized BEM boundary integral equations for plate bending are shown below.
The discretized BEM boundary integral equation for the plate membrane is:

Cm (X )up(x") + ZZP'”””(X Oty

n,=ly=
= ZZQm"y(x"f)t"”, (®)
n,=ly=1
where:
+1
m"y(X ) ][ Ty(X™, X(m)S" (mJ™(n)dn, )]
1

Qe (") = / U (X, x(m)S"™ ()" (n)dn, (10)
1
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where x"%, n. = 1,2, ... ,N. (where N. = N,,) is the collocation node, N,, is the number of nodes, N, is the number of
elements, and M is the number of nodes per element. M = 3 in the case of quadratic elements. Superscript m indicates
that an equation is for the plate membrane. S™? is the shape function of node y of element n,, and J" is the Jacobian of
element 7,. P:;"ey and Q:;""y are fundamental solutions evaluated at node y of element #,. uZ“Y are in-plane displacements
at node y of element n., and t;’” are tractions due to membrane stress resultants N,z at node y of element #,.

The discretized form of the displacement boundary integral equation for bending is:

Chx" wy(x") + ZZP " W 1

n,=ly=1

N, M N,
2 Q&P + g3 ZO?”“(x"c),
=1y=1 =1

where:
+1
P (x%) = ][ THx", X(m)S"! ()™ (m)dn, (12)
-1
+1
Q)" (x") = / Uy (", X(m)S™ ()" (m)dln, 13)
-1
b +1
0;"™(x™) = / B (X, x(m)J"(n)dn, a4
-1
where:
BY(x", x(n)) = V), (X", X(1)a (X(1)) (15)

_ WUl’; (X", X(n))na(X(1)),

where superscript b indicates that an equatlon is for plate bending. Pb o) ﬂ” and O ¢ are fundamental solutions
evaluated at node y of element n,. w j " are the rotations and vertical dlsplacement of the plate (w; and w, are rotations,

and wy is vertical displacement) at node y of element n,. p,* are tractions due to bending stress resultants M,, and p;w
denotes traction due to shear stress resultants Q,, at node y of element n,. g3 is constant uniform loading over the entire
top surface of the plate. v is the Poisson’s ratio, and 4 = \/E /h is the shear factor, where h is the thickness of the plate.

In the above equations, Tg, Ui’J’. ,and Vfa are the fundamental solutions for plate bending, while T,z and U, are the
fundamental solutions for the membrane. Expressions for these fundamental solutions can be found in Reference 32.
The integral symbol # represents Cauchy principal value integrals. w; and w, denote rotations in the directions x; and
X, respectively, and w; denotes displacement in the direction x;. u; and u, are the displacements in the directions x; and
X, respectively. py are the bending and shear tractions with p, = Mysns and ps = Quh,. t; and t, are membrane tractions
in the directions x; and x, respectively where ¢, = Nysn;. The integrations are carried out over the boundary S of the
structure’s domain. The terms C;”ﬂ and Cg. are free terms and their values can be directly evaluated from a consideration
of rigid body motion.*?

Since the fundamental solutions shown in the integral Equations (9), (10), (49)—(52) are of the order of In(1/r) or 1/r,
(where r is the distance between the collocation node and the field point) mathematical singularities can occur when
the collocation node lies within the same element as the field point. Weakly singular integrals are defined as integrals
with singularities of the order In(1/r) or 1/r such as those seen in Equations (49)—(52), (9) and (10). In this case, the
transformation of variable technique proposed by Telles® is used. For Equations (49) and (9), rigid body motion is also
applied. For each of the integral equations seen above, when the collocation node is near to the field point, but is not
in the same element as the field point, the integral shows near-singular behavior. In this case, the element subdivision
technique is used. Details on these methods can be found in Reference 32.

The system of equations used in the BEM is of the form Hu = Gt. Where H is a (5N, X 5N,;) matrix, and G is a
(5N, X 5N.M) matrix. uis a (5N, X 1) vector of known and unknown displacements, and tis a (SN.M X 1) vector of known
and unknown tractions. The final system of equations can be written as:

AX=F (16)
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FIGURE 3 Anexample of mesh design for a square plate. Quadratic elements consisting of three nodes are used. White circles indicate
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where A is a (5N,, X 5N,,) usually unsymmetric and dense coefficient matrix composed of parts of Hand G, Xisa (5N, x 1)
vector containing all of the unknown boundary displacements and tractions, and F is a (5N,, X 1) vector containing parts
of G multiplied by known tractions and parts of H multiplied by known displacements. This system of equations, after
applying the boundary conditions, can be solved using LU decomposition.

An example of a BEM mesh for a simple plate structure can be seen in Figure 3.

As seen in Figure 3, the boundary of a structure is discretized using continuous quadratic elements except at the
corners—where due to the non-uniqueness of the normals, semi-discontinuous quadratic elements are used.

4.1.2 | Displacements and rotations at internal points

The displacements and rotations at internal points can be evaluated using the solution X to the system of equations. The

in-plane displacements at some internal point X", n; = 1,2, ... ,N; (where N; is the number of internal points) are:
up(X™) + Z ZP’" " Xru 17)
n,=1y=1
2 ZQ c}’(Xn,-)t"eY’
n,=ly=1
where:
+1
m,n, .
P XM = / ., X XM)S™ (n)J ™ (n)dn, (18)
-1
+1
m,n, .
Qup XM = / wp.p X XM)S™ ()] ™ (n)dn, (19)
-1

The rotations w; and w,, and vertical displacement (out-of-plane displacement) wj, are:

wi(X™) + Z ZP "X W (20)

n,=ly=1

N,
Z ZQb "R + g3 Y, 07" X),

n,=ly=1 n,=1
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where:
+1
P (XM = / X", X()S"™ (™ (n)d. @D
-1
+1
Q" (X") = / UpX™, x(m)S" (n)J™ (m)dn, (22)
-1
+1
o = [ B xndn 23)
-1
and:
BY(X™, x(n)) = V7, (X, X(1))na(X(1)) (24)
— —\/ b n;
Ty e xmnax).
4.1.3 | Boundary stress resultants

In shear deformable plate theory, the normal stress components o,; are assumed to vary linearly through the thickness
of the plate. Therefore:

1 12x3
=Nop + =My, 25
yNap + =5~ Map (25)

Ogp =

where N, are the membrane stress resultants, M, are the bending stress resultants, and —h/2 < x3 < +h/2 (see Figure 1).
In this work, an indirect approach is used to evaluate boundary stresses. The boundary stresses are evaluated from
boundary tractions and tangential strains. More detail on this method can be found in Reference 32. A brief description
of this method is outlined below.
A local coordinate system can be defined on a boundary element n, such that e‘;’;(n) (Where é;’;(n) = nZe(n), p=1,2)
is a unit vector in the normal direction to the boundary element, and é;;(n) is a unit vector in the tangential direction to
the boundary element. Therefore, the local coordinates of node y of element . are:

SNV gel MY gMel MY
X =6 60X, (26)

where éZ"’ﬂy = éZ;(ny), and xZ"’y are the global coordinates of node y of element n,. Therefore, the rotation matrix é,4 for

node y of element n, can be written as:
pUng 5Me? ey ey
é"cY — ell 812 — nl n2 (27)
af éney éncy n,y nney .
21 22

This local coordinate system can be seen in Figure 4.

If ﬁ;ey, éz;y, szﬂy, and ?Z“y are the displacements, strains, stresses, and tractions for node y of element n, in local

coordinates X; then the normal component of the local stress:

Ny =1 (28)

FIGURE 4 Local coordinate system for boundary stress calculation
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The tangential component of the local stress is:

e 1 [ Bh oy |
N22’=m[ g”’+vt§”], (29)

where £)¢" = 00" /0%, and is given by:

&l U dN"er(
ALY 2a n,p n) >
gl = e (00 . (30)
2 = Juy) 2 < < i ),

p=1

The local boundary stresses can now be calculated using Equations (28) and (29). The global stresses N:;y can be

calculated from the local stresses N Z;y via:

A A e
N:Zy = CpalypN 5 . (31)

Using the relationships in Equation (27), the global membrane stress resultants can be obtained:

n,y N,y \2 e N7 \2 Crlte? n,y . Ny ¥
Ni;" =) Nyp +(n)")°Nyy —2n,n," Npj (32)
n,y n,y . Ny ,orle? N1
N =n"n"(Ny; =Ny )
n,y\2 n,y\21 Kp'te?
+ [(n})? = (Y s
n

ey __ ey \2 Kyt 1Y \2 RtV My  NeY Kylte
N =, )Ny + (" )°Nyy +2nn, " Nyy

The out-of-plane stress resultants can be calculated in a similar manner as the in-plane stress resultants.
The normal components of the tractions at node y of element n, are:

ANy _ MY MY MY MY

by =np +n p) (33)
The tangential component of tractions are:

AR MY MY MY MY

Py =-ny by +nyp,y (34)

The tangential component of the rotations are:

w;’e}’ — _n;e}’w;ley + n;’«YWZe}’. (35)
The local tangential strain is:
sy M
)?ne}’ — eZa 2 Wne/’ < dNn"p(r/) > (36)
e | ———— .
22 Jre(n,) = dn -
The local moments and shear stresses are:
M =By (37)
AN, AN,
Mlzy = p; y7 (38)
N N v
My =iy + D -V 2h + (%, (39)
S =y, (40)

M
any D1 - V)/12 A1,y 1 n,p dNnep(”)
el — e e _ . 41
Sy > Wy + ) Z w, dn - (41)

p=1
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The global moment stress resultants for node y of element #, are:

M (n"”)ZM"” +(nSY MLy = 2n) n) R (42)
nyy _ e ne nyy ey
Mlzy - ! y(Mll _M22 )
[(n e}’)Z (n e}') ] > " 7
el e e e e 124
My = (nS M + (n} y)ZMzz + 21 n) N

The global shear stress resultants for node y of element n, are:

SI = nl S — )8 (43)
Sy =ny" Si + ni Sy (44)
4.2 | Derivatives of BEM formulations for plates with respect to plate thickness h

In this section, the BEM formulations for plates with respect to plate thickness & are presented.

4.2.1 | Boundary integral equations

The derivatives of the Boundary integral equations seen in Section 4.1 with respect to plate thickness & are presented here.
The derivative of the discretized BEM boundary integral equation for the plate membrane (Equation 8) with respect
to plate thickness h is:

h(X" Jup(x) + Cp(x" )uﬂh(x ) (45)
+ ZZPZ’;W" g+ ZZP Oy
n,=ly=1 n,=1y=1
N,
- 3 e 3 3w
=1y=1 n,=ly=1
where:
P (x) ][ T X XN ()T (n)dn, (46)
QU (x") = / U™, (K", X()N" ()" (), 47)
-1
where x"%, n. = 1,2, ... ,N. (where N. = N,,) is the collocation node, N,, is the number of nodes, N, is the number of

elements, and M is the number of nodes per element. M = 3 in the case of quadratic elements.
The derivative of the discretized BEM boundary integral equation for bending (Equation 11) with respect to plate
thickness h is:

c h(x"c)w,(x"c) + c?’.(x”c Wj (X" (48)
N,
DL ALSTEES ) VA
n,=ly n,=ly=1
N, M
22‘1 Q) (x")p] ”+212;Q " ()l
= o g o

+4 Z 07 (x")
n,=1
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where:
yzfy(x %) ][ T} X" X()N™ (I (n)dn, (49)
b +1
Q" (") = / Uy o &, X(DN" ()" (n)d, (50)
-1
b +1
Mo on n n
O (X7 =/ B?h(x <, X(m)J" (n)dn, (51)
-1
where:
B2, (X", X(n)) = V7, (X", X))o (X()
1%
Ty Vien & XD (X))
2\//1,;, boon
RISy U, (X", x(n)na(X(1)). (52)
In the above equations, T'j i h, and V” , are the derivatives of the fundamental solutions for plate bending, while

Topn and U,p ), are the derivatives of the fundamental solutions for the membrane. The expressions for these fundamental
solutions have been derived for the first time in this work and can be found in the Appendix. The terms C”‘ﬂ and Cb
are the derivatives of the free terms seen in Equations (8) and (11) respectively and their values can be directly evaluated
from a consideration of rigid body motion.

In BEM-based IDM the system of equationsis H ,u + Hu, = G ,t + Gt ,, where H, G, u, and t are the same as defined
in Section 4.1, and H,, G ,, uwj, and t, are their derivatives. This system of equations can be rewritten as:

AX; = [Fr—ArX], (53)

where A and X can be obtained from Equation (16). Since the right-hand side of Equation (53) is known, LU decompo-
sition can be used to obtain the unknown derivatives of boundary displacements and tractions X ;.

4.2.2 | Displacements and rotations at internal points

The derivatives of the displacements and rotations at internal points seen in Section 4.1.2 with respect to plate thickness
h are presented here.

The derivatives of the in-plane displacements at some internal point X", n; = 1,2, ... , N; (Where N; is the number of
internal points) are:

uppn(X™)
N, M
Z :’ﬂ’;y(xn )u ner Zszn Y(Xn )uny
n,=1y=1 1=l
N, M
- 3y + 3 Y o
=17=1 n=1y=1
where:
+1
an(Xn) _ / T:;,’h(xn‘}X(”I))Nney(”l)fne(n)dn, (55)
-1
+1
Qs X" = / Uz WX XN ()™ (n)dy. (56)
-1

The derivatives of the rotations w; and w,, and vertical displacement (out-of-plane displacement) ws, with respect to
plate thickness h are:
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th(Xni)
N, M
+ Z ZPb e OUSEIDY Aele Iy
n=1y=1 n,=1y=1 o
N,
Z ZQljhz}’(Xn )p n.y + Z ZQb" Y(Xn )p
=1y=1 n,=ly=1
+qs Zo XM, (57)
where:
+1
i h”(X" )= / Tf]’-,h(X"i, X(m)N"e (n)J" (n)dn, (58)
-1
+1
QZ’,Z”(X"") = / Ul-l]’-,h(X"*',X(n))N " (" (m)dn, (59)
-1
b +1
0.e(X") = / BY, (X", x(m)J "™ (n)dn, (60)
-1
and:
B, (X", x(n)) = V), (K™, X(m)ne(X(m),
— —\/ b n;
TEYE U n X" X()1a (X))
AN -
mUia(X . X(m)ne(x(n)). (61)
4.2.3 | Boundary stress resultants

The derivative of the through thickness stress in a plate (Equation 25) with respect to plate thickness is:

1y
Caph = 2 Ny + hNaﬁ,h
12(hx3 ), — 3x3) 12x
e Mat h_;M”‘ﬂ’h
1 1 24x 12x
== 5 Nep + 1 Naph = =72 Map + —Mapys (62)

where N,g, is the derivative of the membrane stress resultants, M,z is the derivative of the bending stress resultants,
and x; j, is the derivative of x; where —h/2 < x3 < +h/2 (see Figure 1). As mentioned in Section 4.1, x; can be described
in terms of a non-dimensional variable X3, such that x; = X3k, where —1/2 < X3 < +1/2. Therefore, X3, = Xs.

The derivative of the normal component of the local stress is:

n,y ALY
Nla h — ta h* (63)

The derivative of the tangential component of the local stress is:

N4
N22J’l = —1 .y & + th h (64)

1 E &rer Eh ALY ALY
14+v 2 14y 22n

where £ 522 , 1s given by:

/‘ney M

6, AN"eP
e = =2y uy <—(")) ~ (65)
Iy S\ ),
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The derivatives of the global membrane stresses NZ;yh can be calculated via:
L N 4
Naﬂ,h = CpalyppN ;4 - (66)
The derivatives of the global membrane stress resultants are:

¥ 2R M7 \2 % "
11h =(n )N11h+(n )szh—Zn N12h
Ny Ny My e
Npp=m"n, (Nuh_ 22h)
+ [~ T N

ReY\2 K Ny 2% ney n,,,y n,y
22h = (n, )Nuh"‘(" )N22h+2n N12h (67)

The derivatives of the out-of-plane stress resultants can be calculated in a similar manner as the in-plane stress
resultants.
The derivative of the normal components of the tractions at node y of element #, are:

Ane}’ ny ne}’ n}/ ny
Py =M Py 0Dy (68)

The derivative of the tangential component of tractions is:

Py = =1y sy +m Dl (69)

The derivative of the tangential component of the rotations is:

w;i -n, crwne}' + n" VW:;[/ (70)
The local tangential strain is:
ey M
e AN"P
)?:;yh _ _2a 2 Wnc;l; < (’7)> ' 71)
Jre (’77) =1 @ d?’] n=n,

The derivatives of the local moments and shear stresses are:

My, = B (72)

M?th f’;;f (73)

My, = VM, + D1 = v 25 (74)
+ D —v?) Azzh 2/1’:33‘/,

S;llyh - p3 h’ (75)

Ay
S =
22.h 2

M
1 np ((AN""(n) > ]
" Tre(ny) ;; <W3 < dn ’7:’1;/>

N D1 —v)A? [w””

(1 = VYD A% + 2D Ay A) [ ny
J— er

2 2,h

< dN"* (i)
me;( < dn %%]' (76)
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The global moment stress resultants for node y of element #, are:

ey _ 2n e}’nn }’M n,y

MY, =(n ey)zMu nt (”n y)zMzzh 121

llh
ney Moy oY Aney
M7, =n‘n, (Mnh )

12,h 22 h
[(nley)2 (I’l 27)2] 12 h
M22 L =(n ”)ZMH L+ (n ”)ZMZZ , +2ny ””Mlgyh. (77)

The global shear stress resultants for node y of element n, are:

el _ el QMel et QMY
Sl,h Suh n, Szzh’ (78)

n n n
S =n, o7 Se¥

ny ohey
2h 1 TSy (79)

4.3 | Validation

To validate the derived BEM formulations, results were compared with an analytical solution for a square simply sup-
ported plate subjected to uniform constant pressure presented in Reference 36. The square plate has edges of length a
and thickness A, it is subjected to a uniform pressure g;. All four edges of the plate are simply supported such that w; = 0
along the edges. The plate can be seen in Figure 5, and details of the plate are shown in Table 1.

The maximum vertical deflection w3 will occur in the center of the plate. The solution given in Reference 36 for the
square plate is:

a
WX = 0, 00406‘13— (80)
where D is the flexural stiffness:
_ ER 81)
120 -3’

a

FIGURE 5 A square plate with edge length a and thickness h subjected to uniform constant pressure gs. All four edges are simply
supported such that w; = 0 along the edges

TABLE 1 Properties of the plate used for validation

Property Description Value

a Plate edge length 1

h Plate thickness Variable
E Young’s modulus 1

v Poisson’s ratio 0.3

q3 Uniform pressure 1
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TABLE 2 Percentage differences (%) between the IDM and the exact solution, and percentage differences between the FDM and
the exact solution, when calculating w*

h/a FDM(1E-1) FDM(1E-2) FDM(1E-3) FDM(1E-4) FDM(1E-5) IDM
1/10 30.90 9.65 7.66 7.46 7.45 7.44
1/20 25.78 5.57 3.68 3.49 3.47 3.47
1/30 24.28 4.37 2.50 231 2.30 2.29
1/40 23.56 3.78 1.93 1.74 1.73 1.73
1/50 23.13 3.43 1.59 1.41 1.39 1.39
1/100 22.30 2.77 0.94 0.76 0.74 0.74

Note: The stepsize used with the FDM is shown in brackets.

The derivative of Equation (80) with respect to the thickness h is:

4
) q:a*Dy,
Wi = —0.00406 o (82)

where D, = 3D/h. Equation (82) is the exact solution for Wiy -

The derivative meX was also calculated via IDM and the FDM for a range of stepsizes, and at different values
for h. The percentage differences between the exact solution for wm;:x and the values of wi* obtained from the IDM
and the FDM can be seen in Table 2. For both the FDM and the IDM, a BEM model was created of the square
plate consisting of 32 quadratic elements. It can be seen that the stepsize used with the FDM has a significant
impact on the difference between the FDM and the exact solution for wg“;*x Higher stepsizes cause greater instabil-
ity, while lower stepsizes provide greater accuracy. The IDM results are in excellent agreement with the analytical
solution.

In conclusion, the IDM has been successfully validated against an exact solution, and against the FDM. The
IDM was shown to be more accurate than the FDM for most of the stepsizes tested. Furthermore, unlike the
FDM, its accuracy was not dependent on the value of stepsizes, indicating the IDM is more robust and stable than
the FDM.

5 | NUMERICAL EXAMPLE

Section 4.3 demonstrated the high accuracy and robustness of the newly developed IDM. To now demonstrate its effi-
ciency, the IDM is employed as part of a numerical example featuring the plate structure seen in Figure 6. In this
numerical example, the geometrical design of this plate will be optimized in terms of its manufacturing cost and its
reliability. The optimization procedures used in this numerical example require the calculation of constraint deriva-
tives, which can be calculated using either the IDM or the FDM. To determine the efficiency of the IDM, a comparison
is made between the time required by IDM and the FDM to complete the optimization at the end of this numerical
example.

The plate is simply supported around its outer edge such that the vertical deflection of the plate is zero on its
outer edge, and it is subjected to boundary tension and bending moments along this outer edge. It is composed of Alu-
minum 6061-T6, an aluminium alloy commonly found in aircraft structures due to its high strength and low weight.
It has a Young’s modulus E of 68.9 GPa, a Poisson’s ratio of 0.33, and a tensile yield strength of 276 MPa. Material
properties of Aluminum 6061-T6 can be found in Reference 37. The geometry of the plate is described by the geomet-
rical variables: W1, L1, Ry, W3, Ly, Ry, and h. These geometrical variables, along with the boundary tractions, boundary
bending moments, and yield strength, are treated as random variables in the optimization procedure. Details of the
random variables can be seen in Table 3. A total of 112 quadratic elements were used in the BEM mesh of this plate
structure.

The manufacturing cost of the plate is estimated using the approach outlined in Section 2. To use this approach, a
database was created that contains the details of 100 plates with a geometry similar to the plate shown in Figure 6. Details
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FIGURE 6 A plate structure subjected to tension and bending moments

TABLE 3 Details of the random variables, including their units, mean, and coefficient of variation (CoV)

Variable Description Units Mean CoV
wi Outer width m [0.8,1.2] 0.01
L, Outer length m [0.8,1.2] 0.01
R, Outer radius m [0.08, 0.12] 0.01
W, Inner width m [0.4,0.6] 0.01
L, Inner length m [0.2,0.3] 0.01
R, Inner radius m [0.04, 0.06] 0.01
h Thickness m [0.04, 0.06] 0.01
t Boundary traction MN/m 0.9 0.10
P Boundary moment MN 0.01 0.10
oy Tensile yield stress MPa 276 0.10

of this database can be seen in Table 4. By using this database with the approach outlined in Section 2, the following
formula for the manufacturing cost of the plate can be obtained:

Cost = 278.51 + 59.42 In(W;) + 49.421n(L;)
+18.571In(Ry) — 12.04 In(W>)
— 7.441n(L) + 64.43In(h). (83)

When run with the database, this formula demonstrated a high coefficient of determination of R?> = 0.82 and Rugj =
0.81, indicating the high level of accuracy associated with this formula. By using this formula, the optimization of the
plate structure can now be conducted with respect to manufacturing cost.

To investigate the impact of optimizing the plate with respect to reliability, two different approaches are investigated
for the optimization of the plate structure:

« Approach 1: Both the manufacturing cost and the reliability of the plate are considered during the optimization
procedure.

« Approach 2: Only the manufacturing cost of the plate is considered during the optimization procedure.
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TABLE 4 Details of the database containing 100 plates with a geometry similar to the plate shown in Figure 6

Variable Minimum value Mean value Maximum value
W, (m) 0.85 1.00 1.15

L, (m) 0.85 0.99 1.15

R, (m) 0.085 0.099 0.115

W, (m) 0.425 0.493 0.574

L, (m) 0.213 0.252 0.287

R, (m) 0.0426 0.0494 0.0574

h (m) 0.0426 0.0507 0.0574
Manufacturing cost (€) 42.55 60.77 92.02

Note: The minimum, mean, and maximum values of each cost driver in the database are shown.

Both approaches investigated in the following sections. It is expected that the optimal designs obtained from
Approaches 1 and 2 will be significantly different.

5.1 | Manufacturing cost optimization and RBDO

In this section, both the manufacturing cost and the reliability of the plate are considered during the optimization
procedure. In this case, the optimization problem is:

Minimize Cost(d)
Subjectto  g(Z*) <0
d<d<d?, deRw, (84)

where d = [Wi,L1,R;,W5,L,, R, h] is the vector of design variables, and ng =7 is the number of design
variables. The initial design of the plate is d,=[1,1,0.1,0.5,0.25,0.05,0.05]. The lower and upper
bounds of the design variables are: d*=0.8xd, and dY =1.2xd,, respectively. The limit state function

g(2)is:
8(Z) = omax(Q) — oy, (85)

where Z = [Wy, L1, R, W5, Ly, Ry, h, t,p, 0,] is a vector of the random variables from Table 3 that influence g, and Q =
[W1,L1,Ry, W5, Ly, Ry, b, t,p] is a vector of the random variables from Table 3 that influence the maximum Von-Mises
stress omax in the plate structure (Q is identical to Z, except Q lacks oy).

The IDM, with the PMA outlined in Section 3.2, is used to solve the optimization problem seen in Equation (84).
Similar to the previous section, the optimization was conducted using Matlab® with the nonlinear multivariable opti-
mization routine “fmincon.” The optimal plate designs from “fmincon” for a range of target reliability indices fiqrger
can be seen in Table 5, and diagrams of these optimal designs can be seen in Figure 7. It can be seen from Table 5
and Figure 7 that the plate becomes thicker and wider as fiqrg: increases, which makes sense given that the maximum
stress is expected to occur at the corners of the central hole. To verify that these optimal designs achieve the desired
reliabilities, the reliability index from the FORM pfrogry Was calculated for each of the optimal designs and are pre-
sented in Table 5. It can be seen that frorm and i are in very good agreement; the difference between them is less
than 0.1%.

The target reliability indices fiqge: and the corresponding target probabilities of failure P 44 for each of the optimal
designs can be seen in Figure 8. It can be seen that the probability of failure drops by a magnitude of 8 as the reliability
index increases; the probability of failure corresponding to a reliability index of 2 is 2.3%, while for a reliability index of 6
it is 9.9 x 1078%. The cost on the other hand, increases from 24.92 € for a reliability index of 2, to 81.75 € for a reliability
index of 6, a percentage increase of 236%.
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TABLE 5 Optimization results from the IDM for a range of target reliability indices

Brarget W, (m) L, (m) R; (m) W, (m) L, (m) R; (m) h (m) Cost (€) Brorm
2 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0409 24.29 2.000
3 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0455 31.24 3.000
4 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0514 39.13 4.000
5 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0594 48.37 5.000
6 0.910 1.141 0.1200 0.400 0.200 0.0600 0.0600 81.75 6.000

(A) ﬁrarget =2 (B) ,Btarget =3

\\./

(C) ﬁtarget =4 (D) ﬁtarget =5

S

\./

(E) ﬁtarget =6

FIGURE 7 Optimal plate designs when both the manufacturing cost and the reliability of the plate are considered during the
optimization procedure. The optimal designs are a range of target reliability indices g is shown. The designs are to scale
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FIGURE 9 Optimization history from the IDM for a range of target reliability indices S ger

The optimization history from the IDM for a range of target reliability indices can be seen in Figure 9. It can be seen
that the significantly more iterations were required to obtain convergence for the case with fiqr: = 6. This can partly be
explained by the fact that the jump in the probability of failure between fiarger = 5 t0 Prarger = 6 Was by a magnitude of
3, while previous jumps in the probability of failure were only by a magnitude of 2 or 1. Therefore, significantly more
alterations were required to the geometry of the design, increasing the number of iterations needed.

Up until this point, only the optimization results with the IDM have been presented. This is because Section 4.3
demonstrated the high accuracy and robustness of the IDM, and its excellent agreement with the FDM when calculating
the constraint derivatives required by the optimization procedure. To demonstrate the efficiency of the IDM, the CPU time
required by the IDM to optimize the plate structure was compared to the CPU time required by the FDM. The average
CPU time required by the IDM and the FDM to complete one optimization iteration was calculated by averaging over
100 optimization iterations. The results are shown in Table 6. It was found that the IDM was, on average, 19% faster than
the FDM. For a single iteration or for a simple structure, this increase in efficiency may not be significant, but it could be
very useful for a more complex structure that requires many iterations. In this case, the IDM could significantly reduce
the total optimization time.

A flowchart for designing the optimization code used in this section can be seen in Figure 10.
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TABLE 6 Mean CPU time to complete one optimization
iteration when using the FDM or the IDM

Method titeration (S)
FDM 98.72
IDM 79.78
Choose a target ; P
Choose an initial design d ] O Obtain a historical database
Define your 15K ¢ ] % reliability £ target [ fora Qtructural component

8(Z) = 0max(Q) — 0,
Define the “ncemm[ies Create a parametric model
for the variables in Z for calculating Cost(d), as
‘ described in section 2
Define the optimisation problem:
Create a BEM model for calculating Minimise Cost(d)
Omax (Q) and its derivatives Subject to x,(7 )<0
d <d’, deR™

[ Run the Matlab optimisation function finincon ]

!

[When finished, finincon will determine the optimal design]

d°P* that achieves f;4r.4e; While minimising Cost(d)

FIGURE 10 A flowchart for designing the optimization code used in Section 5.1

TABLE 7 Optimal plate design when only the manufacturing cost of the plate is considered during the optimization procedure

W1 (m) L, (m) Ry (m) W, (m) L, (m) R; (m) h (m) Cost (€)
0.800 0.800 0.0800 0.600 0.300 0.0500 0.0400 15.06
5.2 | Manufacturing cost optimization

In this section, only the manufacturing cost of the plate is considered during the optimization procedure. In this case, the
optimization problem is:

Minimize Cost(d)
Subjectto  d*<d<dY, deRw, (86)

where d = [W1, L1, Ry, W5, Ly, R,, h] is the vector of design variables, and n; = 7 is the number of design variables. The
initial design of the plate dy, as well as the lower and upper bounds of the design variables, d“ and d", are the same as in
the previous section.

The optimization problem in Equation (86) was conducted using Matlab® with the nonlinear multivariable optimiza-
tion routine “fmincon.” The optimal plate design from “fmincon” can be seen in Table 7, and a diagram of this optimal
design can be seen in Figure 11. It can be seen that the values of the design variables are equal to their lower or upper
bounds, except for R, which stayed at its initial value since it is not included in the regression model seen in Equation (83).
The manufacturing cost was reduced from 61.40 € for the initial design, to only 15.06 € for the optimal design; this repre-
sents a significant reduction in cost. However, when evaluating the reliability of this design using the limit state function
shown in Equation (85), a probability of failure of Pr = 99.6% is obtained. This probability of failure is significantly higher
than that the highest obtained from the previous section, which was only 2.3%. Such a high probability is unacceptable,
and highlights the importance of taking into account both manufacturing costs and reliability when optimizing the design
of a structure.
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FIGURE 11 The optimal plate design when only the manufacturing cost of the plate is considered during the optimization procedure

[ Choose an initial design d,, ] Obtain a historical database
| for a structural component

A\ 4

-
Create a parametric model

for calculating Cost(d), as
described in section 2

Define the optimisation problem:

Minimise Cost(d)
Subjectto  df<d<d’, deRr™

A\ 4

[ Run the Matlab optimisation function finincon ]

A 4

[ When finished, finincon will determine the ]

optimal design d°P* that minimises Cost(d)

FIGURE 12 A flowchart for designing the optimization code used in Section 5.2

A flowchart for designing the optimization code used in this section can be seen in Figure 12.

6 | CONCLUSIONS

In conclusion, this article presented a novel methodology for the manufacturing cost and reliability-based optimization
of plate structures with the BEM, with the aim of improving the accuracy, robustness, and efficiency of the optimiza-
tion of plate structures. The derivatives of the BEM plate formulations, with respect to plate thickness, were derived
for the first time and used as part of an IDM, enabling the full shape optimization of plate structures with the BEM.
These implicit derivatives were validated against derivatives obtained from the FDM and from an analytical solution. The
IDM was found to be in excellent agreement with the analytical solution, and more robust and accurate than the FDM
for most of the step-sizes investigated. To demonstrate the efficiency of the newly developed IDM, it was employed as
part of a numerical example involving the RBDO and manufacturing cost optimization of a plate structure. The design
parameters in the optimization included all the geometric parameters describing the shape of the structure. Results
indicate that the IDM is 19% faster, on average, in terms of CPU time than the FDM when performing this optimiza-
tion. Such results represent a significant reduction in the computation time associated with the optimization of complex
structures.



2210 Wl LEY MORSE ET AL.

ACKNOWLEDGMENTS

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No. 864154 Project
MASCOT. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and
the Clean Sky 2 JU members other than the Union.

CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable
request.

ORCID
Llewellyn Morse (2 https://orcid.org/0000-0001-9593-7012
Vincenzo Mallardo (2 https://orcid.org/0000-0002-1915-3758

REFERENCES

1. Tafreshi A. Shape optimization of two-dimensional anisotropic structures using the boundary element method. J Strain Anal Eng Des.
2003;38(3):219-232.
2. AbeK, Kazama S, Koro K. A boundary element approach for topology optimization problem using the level set method. Commun Numer
Methods Eng. 2006;23(5):405-416.
3. Sfantos GK, Aliabadi MH. A boundary element sensitivity formulation for contact problems using the implicit differentiation method.
Eng Anal Bound Elem. 2006;30(1):22-30.
4. Canelas A, Herskovits J, Telles JCF. Shape optimization using the boundary element method and a sand interior point algorithm for
constrained optimization. Comput Struct. 2008;86(13-14):1517-1526.
5. Ullah B, Trevelyan J. Correlation between hole insertion criteria in a boundary element and level set based topology optimisation method.
Eng Anal Bound Elem. 2013;37(11):1457-1470.
6. Chang Y, Cheng H, Chiu M, Chien Y. Shape optimisation of multi-chamber acoustical plenums using BEM, neural networks, and GA
method. Arch Acoust. 2016;41(1):43-53.
7. Ullah B, Trevelyan J. A boundary element and level set based topology optimisation using sensitivity analysis. Eng Anal Bound Elem.
2016;70:80-98.
8. Liu C, Chen L, Zhao W, Chen H. Shape optimization of sound barrier using an isogeometric fast multipole boundary element method in
two dimensions. Eng Anal Bound Elem. 2017;85:142-157.
9. Ullah B, Trevelyan J, Islam S. A boundary element and level set based bi-directional evolutionary structural optimisation with a volume
constraint. Eng Anal Bound Elem. 2017;80:152-161.
10. Takahashi T, Yamamoto T, Shimba Y, Isakari H, Matsumoto T. A framework of shape optimisation based on the isogeometric boundary
element method toward designing thin-silicon photovoltaic devices. Eng Comput. 2018;35(2):423-449.
11. Matsushima K, Isakari H, Takahashi T, Matsumoto T. A topology optimisation of composite elastic metamaterial slabs based on the
manipulation of far-field behaviours. Struct Multidiscip Optim. 2020;63(1):231-243.
12. Maduramuthu P, Fenner RT. Three-dimensional shape design optimization of holes and cavities using the boundary element method.
J Strain Anal Eng Des. 2004;39(1):87-98.
13. Brancati A, Aliabadi MH, Mallardo V. A bem sensitivity formulation for three-dimensional active noise control. Int J Numer Methods Eng.
2012;90(9):1183-1206.
14. BandaraK, Cirak F, Of G, Steinbach O, Zapletal J. Boundary element based multiresolution shape optimisation in electrostatics. J Comput
Phys. 2015;297:584-598.
15. Ullah B, Trevelyan J, Ivrissimtzis I. A three-dimensional implementation of the boundary element and level set based structural
optimisation. Eng Anal Bound Elem. 2015;58:176-194.
16. Chen LL, Lian H, Liu Z, Chen HB, Atroshchenko E, Bordas SPA. Structural shape optimization of three dimensional acoustic problems
with isogeometric boundary element methods. Comput Methods Appl Mech Eng. 2019;355:926-951.
17. Gaggero S, Vernengo G, Villa D, Bonfiglio L. A reduced order approach for optimal design of efficient marine propellers. Ships Offshore
Struct. 2019;15(2):200-214.
18. LiS, Trevelyan J, Wu Z, Lian H, Wang D, Zhang W. An adaptive SVD-Krylov reduced order model for surrogate based structural shape
optimization through isogeometric boundary element method. Comput Methods Appl Mech Eng. 2019;349:312-338.
19. Babouskos NG, Katsikadelis JT. Optimum design of thin plates via frequency optimization using bem. Arch Appl Mech.
2014;85(9-10):1175-1190.
20. Morse L, Sharif Khodaei Z, Aliabadi MH. A dual boundary element based implicit differentiation method for determining stress intensity
factor sensitivities for plate bending problems. Eng Anal Bound Elem. 2019;106:412-426.


https://orcid.org/0000-0001-9593-7012
https://orcid.org/0000-0001-9593-7012
https://orcid.org/0000-0002-1915-3758
https://orcid.org/0000-0002-1915-3758

MORSE ET AL. Wl LEY 2211

21. Mellings S, Aliabadi MH. Dual boundary element formulation for inverse potential problems in crack identification. Eng Anal Bound
Elem. 1993;12(4):275-281.

22. Mellings S, Aliabadi MH. Flaw identification using the boundary element method. Int J Numer Methods Eng. 1995;38(3):399-419.

23. Mallardo V, Aliabadi MH. A BEM sensitivity and shape identification analysis for acoustic scattering in fluid-solid problems. Int J Numer
Methods Eng. 1998;41(8):1527-1541.

24. Alessandri C, Mallardo V. Crack identification in two-dimensional unilateral contact mechanics with the boundary element method.
Comput Mech. 1999;24:100-1009.

25. Mallardo V, Alessandri C. Inverse problems in the presence of inclusions and unilateral constraints a boundary element approach. Comput
Mech. 2000;26:571-581.

26. Huang X, Aliabadi MH. Probabilistic fracture mechanics by the boundary element method. Int J Fract. 2011;171(1):51-64.

27. HuangX, Aliabadi MH. A Boundary Element Method for Structural Reliability. Key Engineering Materials. Vol 627. Trans Tech Publications
Ltd; 2015.

28. Morse L, Sharif Khodaei Z, Aliabadi MH. A multi-fidelity boundary element method for structural reliability analysis with higher-order
sensitivities. Eng Anal Bound Elem. 2019;104:183-196.

29. Mellings S, Aliabadi MH. Three-dimensional flaw identification using inverse analysis. Int J Eng Sci. 1996;34(4):453-469.

30. NASA. Nasa cost estimating handbook version 4.0 - appendix C: cost estimating methodologies report; 2015.

31. Youn BD, Choi KK, Park YH. Hybrid analysis method for reliability-based design optimization. J Mech Des. 2003;125(2):221-232.

32. Aliabadi MH. The Boundary Element Method: Applications in Solids and Structures. Vol 2. John Wiley and Sons; 2002.

33. Di Pisa C, Aliabadi MH. Boundary Element Analysis for Multi-Layered Panels and Structures. Report. Queen Mary University of London;
2005.

34. Dirgantara T, Aliabadi MH. Crack growth analysis of plates loaded by bending and tension using dual boundary element method. Int
J Fract. 1999;105(1):27-47.

35. TellesJCF. A self adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer
Methods Eng. 1987;24(5):959-973.

36. Timoshenko S. Theory of Plates and Shells. McGraw Hill; 1959.

37. MatWeb. Aluminum 6061-T6; 2021 [Online]. Accessed May 25, 2021. http://www.matweb.com/search/datasheet_print.aspx?matguid=
1b8c06d0ca7c456694c7777d9e10beS5b

How to cite this article: Morse L, Mallardo V, Aliabadi FMH. Manufacturing cost and reliability-based shape
optimization of plate structures. Int J Numer Methods Eng. 2022;123(10):2189-2213. doi: 10.1002/nme.6931

APPENDIX A. FORMULATIONS FOR THE BEM-BASED IDM

The fundamental solutions for the membrane and for plate bending can be found in Reference 32. The derivatives of
these fundamental solutions with respect to plate thickness h have been derived for the first time in this work and are
presented in this Appendix.

A.1 Useful definitions
The following relationships are used in the fundamental solutions derived in this work.

Yo = Xg — X, (A1)
r=A\/ra=4\/r+r3, (A2)
Fo=2 (A3)

r
3—’: =Tp=Nglqg =NI + nar . (A4)

Derivatives with respect to direction x,:

o) _ AW or _A®) (A5)
0Xy or 0x, or
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Fap =" (8ap —Falp) . (A6)
1
(rn)a = v (na - r,ar,n) . (A7)
Useful definitions for plate bending:
V10
A==, A8
. (a8)
z=Ar, (A9)
Eh
B= " Al0
-2 (A10)
Eh?
= , All
12(1 — v2) (ALD)
_ 2
C= u’ (A12)

where 4 is the shear factor, & is plate thickness, and B, D, and C represent the tension stiffness, bending stiffness, and
shear stiffness of the plate respectively.
Their derivatives with respect to plate thickness h are:

V10 A
Ap=— =_2 Al3
h P A (A13)
Ar z
Zh = Anr W A (A14)
E B
B, = = -, Al5
ey i » (A15)
3Eh? 3D
=—=—, Al6
"T12a-v)  h (A16)
(1 =v)DpA>+2DipA) DA -v)A2 C
= - - = =—. Al7
Ca 2 2h h (AL7)
We also have:
2 1
AR) = Ko(z) + o [KI(Z) - E] , (A18)
1 1
B(z) = Ko(z) + . [Kl(Z) - E] , (A19)
where Ky(z) and K;(z) are modified Bessel functions of the second kind.
2AnrK;(Z 2K3 h(z 41
A4@) = Kop() - 22R0@ | K@) | AAar (A20)
Ve Z <
AnrKi(z)  Kin(z 2Apr
B0 = Ko@) — 22@ | Kun@) 2r, (A21)
z Z z
where Ko »(z) and K; y(z) are:
Kon() = —AnrKi(2), (A22)
K
Kipn(@) = —Apr <Ko(z) + IZ(Z)> . (A23)
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A.2 Membrane fundamental solution derivatives
The derivatives of the membrane fundamental solutions with respect to plate thickness h are:

Uaﬂ,h = -

1+v

47ER*(1 — v)

[rarp — (3 =4v)In(r)s,) .

Taﬂ,h =0.

A.3 Plate bending fundamental solution derivatives
The derivatives of the plate bending fundamental solutions with respect to plate thickness h are:

For U? :

ij,h”
b _
Uaﬂ,h -
b .
For le W
T
b .
For Vl "
b _ _
Va,ﬁh -

af.h ==

Dy

a 87D%(1 —v

1

+ —_—
8xD(1 —v)

b

3Bh

1

4zr

b 2/1/1 244n
2

a3h T

D,h 7‘2

1287 D?
_— DyA+24,D
T 1287D%(1 — v)A3

3,6h

1
647D(1 — v) A2

)

b

a3,h = 871'

b
U3a h

DA+ 244D
87(1 — v)D2A3
1

+ —
87(1 — v)DA2

1 Zn

(21nz —Drrg+ —=—1r7y,,

4rD z

b
Ua3,h’

[(1—v)z’(Inz —1) - 81ng]

{[8B(z) — (1 = v)(2Inz — 1)] 8ap — [BA(R) + 2(1 = V)] Tal }

{ [SB,h(@ ~2(1- v)%h Bup — [8BARR) +2(1 — V)] r,ar,,;} :

(1-v)2Inz - zpz - 8%’“] .

— 4 (4A () + 2,K1(2) + 2K1 4(2)) r,ar,/sr,n] ,

b

3a,h ==

Tb

[

33,h

(1+V)Z;h
r  zZ

as

=0.

2 (2A (@) + 2hK1(2) + ZK14(2)) (8uptin + 1 pha) + 4A R (D)7 al1g

[B@)ne — AR ar 1] M— [Br@)Ne = An@raral

r Zh
D ? [50,/; + 2}"“}"’/;] s
s [322Inz—1) —2°(1 — v)(4lnz - 5)|

Z
T 3% _ zZnZ(1 —v)(4Inz - 3)|.
Z

(A24)

(A25)

(A26)
(A27)
(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)



