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Introduction

This thesis, after introducing the definition of groupoid and its main properties, aims to
discuss the extensions to the groupoid context of two important topics in group representation
theory: Burnside and Mackey theories. In this introduction, after an historical overview about
groupoids, Burnside theory and Mackey theory, we are going to outline the content of this
thesis, chapter by chapter. After this, we are going to enumerate the main results of this
thesis.

Historical overview

Groupoids

Groupoids are natural generalization of groups and they have proved to be useful in different
branches of mathematics. Many surveys have been written about them: see, for example,
|Bro87|, |Car08| and [Wei96| (references therein included). Furthermore, the relevance of
groupoids in category theory and in topology has been made clear in [Hig71] and in [Bro06],
respectively. Actually, using category theory, a groupoid (without further structure, e.g.,
a topological one or a differential one, sometimes also called an abstract groupoid) can be
defined as a small category whose every morphism is an isomorphism. This entail that a
groupoid, as a category, is equivalent to a disjoint union of groups and, thus, that a groupoid
can be considered as a “group with many objects”. In the same way, a group can be seen as
a groupoid with only one object. The problem is that, as explained in [Bro87|, this forces
unnatural choices of base points and obscures the overall structure of the situation. This
becomes especially evident with the fundamental groupoid of a topological space.

As it will be realized from this thesis, even for abstract groupoids, the idea of treating these
objects as a certain bundle of groups, using classical tools, obscures their internal structure
and behaviour. For instance, when treating abstract groupoids, from the classical Burnside
theory point of view by using the classical groupoid-set notions (i.e., functors to the core
category of sets), we will see that this theory discriminate against subgroupoids with several
objects, as this class of subgroupoids becomes absolutely absent. This makes manifest that
the “poset” of subgroupoids of a given abstract groupoid needs new techniques in order for its
study to be approached. We write the word poset between quotation marks because we think
that the set of subgroupoids could have more structure than the poset one.

Moreover structured groupoids, like topological or differential groupoids (see [Mac87]
and [Mac05|), in contrast with abstract groupoids, have “more structure” and are not equivalent,
as as a category, to a disjoint union of topological or differential groups, respectively. Several
mathematicians came to the conclusion (see, for instance, [Bro87| and |[Con94, page 6-7]),
in fact, that extending a certain well known result in the group context to the framework

vii



viii INTRODUCTION

of groupoids is not a trivial research problem and has its own difficulties and challenges to
overcome.

Burnside theory

The Burnside theory is a classical part of the representation theory of finite groups and its first
introduction has been realized by Burnside in [Burll|. Subsequently, further progresses have
been accomplished by Solomon and Dress in [Sol67] and [Dre69|, respectively. Apparently,
there are two interrelated aspects of this theory. The first is the renowned Burnside Theorem,
that codifies some basic combinatorial properties of the lattice of subgroups of a given finite
group, providing, for instance, its table of marks. As we will see here, this lattice can be
viewed as a category whose arrows are equivariant maps between cosets. An entry in the table
of marks coincides with the number of morphisms between two objects in this category. This
approach could be considered innovative, even in the case of groups.

The other aspect is the construction of the Burnside ring over the integers and its extension
algebra over the rational numbers. Years after its discovery, the Burnside ring of a group has
became a very powerful tool in different branches of pure mathematics. For instance, in certain
equivariant stable homotopies (e.g., that of the sphere in dimension zero, see [Seg71]), the
influence of the Burnside ring is conspicuously present so that, in particular, stable equivariant
homotopy groups are modules over the Burnside ring (see [Die79] for further details).

Mackey theory

The classical Mackey formula, which appeared for the first time in [Mac51, Theorem 1], deals
with linear representations of finite groups. To summarize, given a group G, let us consider
two subgroups H and K of G. Roughly speaking (see [Ser77, Proposition 22|), this formula
states that applying first the restriction functor with respect to H and, then, the induction
functor with respect to K, we obtain a representation that is isomorphic, although in a not
canonical way, to a coproduct of a particular set of representations.

As it was explained in [Ser77, Section 7.4], the Mackey formula is a key tool in proving
the Mackey irreducibility criterion, which gives us necessary and sufficient conditions for
the irreducibility of an induced representation, proving to be useful to study the linear
representations of a semidirect product by an abelian group (see [Ser77, Proposition 25]).

Another formulation of the classical Mackey formula, using modules over groups algebras,
was stated in |[CR62, Theorem 44.2]. Successively, in [Mac52, Theorems 7.1 and 12.1], the
Mackey formula was extended to the context of locally compact groups (with opportune hy-
potheses), and used to prove a generalization of the Frobenius Reciprocity Theorem (see [Mach2|
Theorems 8.1, 8.2 and 13.1]). Afterwards, many variants and different formulations of the
Mackey formula have been investigated. For example, in [Tay17|, [Bon00| and |[Bon03|, Taylor
and Bonnafé proved specific versions of this formula for algebraic groups. The importance of
Mackey formula version in this context had already been made clear in [DM91]| and previous
work had been done in [DL76, Theorem 6.8], [LS79, Lemma 2.5] and [DL83, Theorem 7].

Outline of the thesis

Now we are going to summarize the content of this thesis.
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Chapter

We’ll start by giving the basic definitions about groupoids and showing their basic properties,
introducing the notion of groupoid-set, that is, a set with a groupoid action.

After that, we will turn to the concept of groupoid-biset: this notion will be used to
introduce the crucial notion of cosets by subgroupoids in Subsection [[.2.2]

Lastly, we’ll discuss monoidal equivalence between categories of groupoid-sets with respect
to different groupoids. Actually, these categories have two different monoidal structures: one
given by the coproduct, that is, by the disjoint union, and the other given by the fibre product
(a generalization of the cartesian product). The aforementioned equivalences, of course, have
to be monoidal with respect to both monoidal structure, and we’ll call “Laplaza” this kind of
equivalences of categories (see Subsection .

The content of Section has been published in the following preprint: [ES18a].

Chapter

In this chapter we will develop a theory of conjugations for subgroupoids, even with multiple
objects, showing, through multiple examples and counterexamples, many particularities of
this new theory.

Subsequently, we will apply all of this to study how to reproduce the classical Burnside
Theorem (see [BoulOa, Thm. 2.4.5]) in the groupoid context (Theorem [2.2.7). This result, under
reasonable finiteness conditions of the groupoid, provides necessary and sufficient conditions
in order for two groupoid-sets to be isomorphic, and it will be useful later on, in Chapter [ to
study the Burnside ring of a given groupoid.

The content of this chapter has been published in the following preprint: [ES18al.

Chapter

The classical Mackey formula can be applied, in a not trivial way, in many different mathemati-
cal fields. In this direction, motivated by the study of the structure of biset functors over finite
groups (see [BoulOa, Definitions 3.1.1, 3.2.2 | for the pertinent definitions), Serge Bouc proved
in [BoulOa, Lemma 2.3.24] a different version of the classical Mackey formula in the framework
of group-bisets (a set with a left action and a right action that commute with each other).
The gist is that, given two groups H and G and a field F, an (H, G)-biset (of groups) is a left
H-invariant and right G-invariant F-basis of an (F H, FG)-bimodule. Since the classical Mackey
formula on linear representations can be rephrased using bimodules, and bimodules induce
bisets, the classical Mackey formula can be reformulated using an isomorphism of group-bisets
(see the end of [BoulOaj, Section 1.1.5]) which is further on reformulated as [Boul0Oa, Lemma
2.3.24].

We have to mention that, in [BoulOb|, Bouc himself proved an additional version of the
Mackey formula, which is expressed using bimodules and group-bisets.

In this chapter we will generalize the Mackey formula proved by Bouc in [BoulOa, Lemma
2.3.24] to the environment of groupoid-bisets. To achieve this goal we’ll have first to prove a
few technical results, which will be necessary to even state this new formula.

The content of this chapter has been published in [ES18b].
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We notice that the content of this chapter, as well as of Chapter [5| and, probably, also
of Chapter [0 could be investigated also in the context of linear representations of groupoids
(see |EB18|) but this will be the object of future work.

Chapter

We’ll start this chapter explaining how the right translation groupoid induces a functor from
the category of groupoid-sets to the category of groupoids and we will describe its properties.

Next, we will examine another issue. Since groupoids are categories, even if two of them are
not isomorphic, they can be equivalent as categories. After having examined this notion, we
will use it to define a new concept: we will define two groupoid-sets as weakly translationally
equivalent if their translation groupoids are equivalent and we will conclude describing the
properties of this relation.

Chapter

From a categorical point of view, the Burnside ring can be constructed, with the help of
the Grothendieck functor, from any skeletally small category with initial object and finite
coproducts, which possesses a monoidal structure compatible with this coproduct (a structure
we called a Laplaza category). The special case is when this category is a certain category
of representations over a specific object: a group, a groupoid, a 2-group, a 2-groupoid, etc.
The idea is to use this ring in order to analyse the structure of the handled object. This
heavily depends, of course, on the choice of the category of representations and on the chosen
“equivalence relation” between its objects. Precisely, one could use a kind of weak equivalences -
if there is any relation of this type compatible with the tensor product - instead of the obvious
isomorphism relation between objects.

The situation of groupoids corroborates this dependency. More precisely, we will show, in
Chapter 5| that the use of the category of “classical” groupoid-sets, in building up the Burnside
ring, does not reflects the groupoid structure. Namely, this construction treats a groupoid as
if it were a bundle of groups, which is absolutely not the case.

The problem seems to have it origin in the decomposition of a given (right or left) groupoid-
set into its orbit subsets. Indeed, each of these orbits is isomorphic to a set of right cosets
of the groupoid by a subgroupoid with a single object, as proved in Proposition [[.2.10] and
Corollary [I.2.T1} Thus, in this “classical” Burnside theory, most “elements” in the lattice of
subgroupoids just don’t show up: specifically, those subgroupoids with more than one object.

The content of this chapter has been published in the following preprint: [ES18a].

Chapter [6]

In this chapter we will develop a new version of the Burnside ring, named the categorified
Burnside ring, using the idea of categorification. This ring, in a certain sense (see Remark7
extends the classical Burnside ring and provides a finer invariant although, even in this case,
it doesn’t distinguish a bundle of groups from a groupoid.

The concept of categorification has been explained extensively in |[BC04, pag. 495]
and [BLO4]: the idea is to replace the underlying set of an algebraic structure, like a group,
with a category, with the goal of obtaining a new and more complex structure. Moreover, the
old structure maps are replaced by functors. The aim is to explain and include more complex
situations that cannot be explained using the tools of the classical algebraic structure. In the
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case of the category of groups, for example, the categorificaton process produces the notion of
2-group (see |[BL04]), which has been proved to be equivalent to the concept of crossed module
introduced by Whitehead in [Whi46| and [Whi49]. To performe the categorification of a
structure, the notions of internal category, interal functor and internal natural transformation,
introduced in [Ehr63al, [Ehr63b| and [Ehr66|, are crucial and they will be used extensively in
this chapter.

We note that there are, in the literature, other generalizations of the classical Burnside

theory: see [OYO01], [HY07], [DL09| and |[GRR12].

The content of this chapter has been published in the following preprint: [ES18c|. Note that
the entity that we call right categorified G-sets in this thesis has been called a simplicial right
G-set in [ES18c|. In this thesis the terminology has been changed to prevent incomprehensions,

as explained in Remark [6.1.5]

Appendixes

In Appendixes |A| and |B| we will briefly recall the concepts of “rig” (also called semiring) and of
Grothendieck functor, fundamental tools to construct the classical and categorified Burnside
theories in Chapters [f| and [6] respectively. We define a rig as a ring without negative elements,
that is, without the inverses of the addition. The Grothendieck functor enables us to “add”
the additive inverses to a rig to obtain a ring. It’s exactly in this way that the ring of integers
Z is constructed from the natural numbers N, the quintessential example of rig.

In Appendix [C] after recalling some definitions about monoidal categories and monoidal
functors, we will proceed to prove a necessary result for our work (Proposition |[C'.0.9) whose
proof, albeit known, we have been able to find only briefly hinted.

Main results of the thesis

For the convenience of the reader, we will explicitly enumerate all the original results contained
in this thesis.

(a) Theorem
(b) Theorem Proposition and Theorem [2.2.7]
(¢c) Theorem
(d) Corollary
)
)

(e) Proposition Theorem Corollary [5.1.10] and the content of Section
(f) Propositions[6.4.3) and [6.5.11], Theorems [6.6.5] [6.6.7] and [6.6.8] Corollary [6.6.9]
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Chapter 1

Basic notions

1.1 Abstract groupoids: General notions and basic properties

The material of this section, which will be used throughout the rest of the thesis, is somehow
considered folklore and most of its content can be found in [EK17] and |El 18|. However, for
the sake of completeness and for the convenience of the reader, we are going to illustrate the
basic notions, as well as some motivating examples, of the groupoid theory. The exposition is
written in a very elementary way in order to render it accessible to every kind of reader.

1.1.1 Notations, basic notions and examples

Definition 1.1.1. We say that a category C is a small category if its class of arrows is
actually a set.

Given functions f: A— D and g: B — D, we will use the notation:
AixgB={(a,b)e AxB| f(a)=g(b)}. (1.1.1)

This set is well known as the fiber product (or fibre product) of f and g and it is the
pullback of the maps f and ¢ in the category of sets. This notation can be also adopted
in a categorical setting replacing sets with small categories and functions with functors (see

equation [6.1.1]).

Definition 1.1.2. A groupoid is a (small) category such that all its morphisms are invertible.
Given a groupoid G, we will denote by Gy its set of objects and by G its set of morphisms, which
are also called arrows. Given a morphism f: a — b in G, we will use the notations a = s (f)
and b =t (f) where s stands for “source” and t stands for “target”. Given an object a of G,
we will denote by ¢, the identity morphism at a. Moreover, the set { g€ G1 | t(g) =s(g) =a}
is obviously a group, is denoted by G, is called the isotropy group of G at a and its elements
are called loops.

As a consequence a groupoid is a pair of two sets G = (G1,Gp) endowed with the following
functions:

S

TN

( ),1Cg1 L Go and G1sxtG1 — G1,
t
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where ¢ assigns to each object its identity arrow, the multiplication (i.e. the second map in the
previous equation) is associative and unital and ( )~! associates to each arrow g: a —> b its
inverse g~1': b — a. Note that ¢ is an injective map thus Gy can be identified with a subset of
G1. To summarize, a groupoid is a small category with more structure, namely the map that
sends any arrow to its inverse. We implicitly identify a groupoid with its underlying category.
Interchanging the source and the target will lead to the opposite groupoid which we denote
by G°P.

Given a groupoid G, consider two objects x,y € Gy: we denote by G(z,y) the set of all
arrows with source = and target y (in particular we have G* = G(z, x)).

Remark 1.1.3. Let G be a groupoid such that the composition is commutative that is, for
each g, h € G; such that s(g) = t(h), we have s(h) = t(g) and gh = hg. In this case we obtain
s(h) =t(g) = t(h) and t(g) = s(h) = s(g). Therefore every arrow of the groupoid G is a loop
and G is merely a disjoint union of abelian groups.

Clearly each of the sets G(x,y) is, by the groupoid multiplication, a left GY-set and right
G®-set. In fact, each of the G(z,y) sets is a (GY,G")-biset, in the sense of [BoulOa]. Two
objects z, ' € Gy are said to be equivalent if and only if there is an arrow connecting them.
This in fact defines an equivalence relation whose quotient set is the set of all connected
components of G, which we denote by 7y(G) := Gy/G and we call orbit set of the groupoid

G. Alternatively, this equivalence relation can be described as follows: given an object x € Gy,
define

O, = t(sfl({x})) = {y € Go| 3g € Gy such that s(g) =z, t(g) = y}, (1.1.2)

which is equal to the set s(t™!({z})). This is a not empty set, since z € &,. Two objects
x, 2 € Gy are said to be equivalent if and only if &, = €,,. We will also use the notation
Orbg(z) to denote &, and we will call it the orbit of z.

Given a set I and a family of groupoids {G (i)}ie 1, the coproduct groupoid is a groupoid
denoted by G = [[,.; 6™ and defined by

G (z,y), if 34 €I such that z,y € g(()i)

, otherwise.

6 - P Gy - {

iel

Definition 1.1.4. A groupoid G is said transitive (or connected) if for every (y,z) €
Go % Go, there is g € G; such that t(g) = y and s(g) = x. Equivalently, G is transitive if the
map (s,t): G1 —> Gp x Gy is surjective.

Remark 1.1.5. In general, any groupoid can be seen as a coproduct of transitive groupoids:
namely, its connected components. Note that, with this definition, the empty groupoid is
transitive.

Definition 1.1.6. Given two groupoids H and G, we say that H is a subgroupoid of G if H
is a subcategory of G which is stable under the inverse map, that is, for every h € Hy, also
hle Hi.

For instance, any connected component of G is a subgroupoid. On the other hand, a
subgroup H of an isotropy group G*, for an object x € Gy, can be considered as a subgroupoid
with only one object of G. Conversely, any subgroupoid of G with one object is of this form.
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Definition 1.1.7. Given two groupoids H and G, a morphism of groupoids ¢p: G — H
is a functor between the underlying categories.

Groupoids and their morphisms form a category denoted by Grpd.

In a more explicit way, a morphism of groupoids ¢: H — G can be characterized as a
pair of functions

<¢1I'H1—>g1, @02H0—>QO)

such that the following diagrams commute:

H — G H —— G Ho ———— Gy
| o [ |
Ho ————— Go, Ho ————— Go, H— G

and

P1Xe1
Hisxt Hi————G1sx:G1

| |

Hi 2 Gi.

Of course, a morphism of groupoids ¢: H — G induces homomorphisms of groups ¢*: H* —
G#0(9) hetween the isotropy groups for every a € Ho. The homomorphisms of groups

(Soa: He o, ggao(a)>

aceHo

are refereed to as the isotropy maps of ¢. Clearly any subgroupoid H of G induces a
morphism 7 : ‘H — G of groupoids whose both maps 79 and 7 are injective. In order to
illustrate the foregoing notions, we quote here some standard examples of groupoids and their
morphisms.

Ezample 1.1.8 (Trivial groupoid). Given a set X, the pair (X, X) is a small discrete category,
that is, a category with only identities as arrows. This is known as the trivial groupoid.
Note that, with this definition, the empty groupoid is the trivial groupoid (&, &) which, by
convention, is also considered as a transitive groupoid.

Ezample 1.1.9 (Product of groupoids). Given two groupoids G and H, the product groupoid
G x H is the direct product of their underlying categories. This means that (G x H); = G1 x H1
and (G x H), = Go x Ho. Moreover, the multiplication, inverse and unit arrow are canonically
given as follows:

(9, 1) (glah/) = (ggl’hh/)’ (gah)il = (971’h71)7 Yzyu) = (tas tu)-

Ezample 1.1.10 (Action groupoid). Any group G can be considered as a groupoid by taking
G1 = G and Gy = {*} (a set with one element). Now if X is a right G-set with action
p: X x G — X, it is possible to define the action groupoid G, whose set of objects is
Gy = X and whose set of arrows is G; = X x @; the source and the target maps are,
respectively, s = p and t = pr; and, lastly, the identity map sends x to (z,e) = i, where e
is the identity element of G. The multiplication is given by (z,g)(2',¢') = (x, gg’), whenever
rg = 2/, and the inverse is defined by (z,9)”' = (zg,g7!). Clearly the pair of maps
(pry, #): G = (G1,Go) — (G, {#}) defines a morphism of groupoids. For a given z € X, the
isotropy group G¥ is obviously identified with Stabg(x) = {g € G| gz = x}, the stabilizer
subgroup of x in G (see subsection [1.1.3]).
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Ezample 1.1.11 (Equivalence relation groupoid). Here is a standard class of examples of
groupoids, ordered by inclusion.

(1) One can associated to a given set X the so called the groupoid of pairs (called fine
groupoid in |Bro87| and simplicial groupoid in [Hig71]) whose set of arrows is X x X
and whose set of objects is X. The source and the target are s = pr, and t = pry, the
second and the first projections, and the map of identity arrows ¢ is the diagonal map
x +— (x,z). The multiplication and the inverse maps are given by

(z,2") (/,2") = (x,2"), and (z,2/)7' = (2/,2).

(2) Given a function v: X — Y, we define a groupoid with X as set of objects, the fiber
product X ,x , X as set of arrows, s = pry, t = pr; and the diagonal map as the map of
identity arrows ¢. The multiplication and the inverse map are defined as for the groupoid
of pairs.

(3) Assume that R € X x X is an equivalence relation on the set X. It is possible to
construct a groupoid, as before in (2), but with set of arrows R. This is an important
class of groupoids known as the groupoid of equivalence relation (or equivalence
relation groupoid). Obviously the inclusion (R, X) — (X x X, X) is a morphism of
groupoid and (R, X) is a subgroupoid of (X x X, X) (see for instance |[DG70, Example
1.4, page 301]).

Notice, that in all these examples each of the isotropy groups is the trivial group.

Ezample 1.1.12 (Induced groupoid). Let G = (G1,Go) be a groupoid and ¢: X — Gy a map.
Consider the following pair of sets:

(G°); == Xxt G ngXI{(x,g,w’)eXxgl x X

m/; = t(g; } @)= X,

Then G° = (G°1,G%)) is a groupoid, with source, target and identity maps as follow: s =
prg, t = pry and t; = (¢(), te(z),S(x)), for each x € X. The multiplication is defined by
(z,9,9)(2',¢",y") = (x,99',y'), whenever y = 2/, and the inverse is given by (z,g,7)"! =
(y,g~ !, x). The groupoid G¢ is known as the induced groupoid of G by the map ¢, (or the
pullback groupoid of G along ¢, see |Hig71| for dual notion). Clearly, there is a canonical
morphism ¢° := (pry,<): G© —> G of groupoids.

Remark 1.1.13. A particular instance of an induced groupoid is when G = G has a single
object. Thus for any group G it is possible to consider the Cartesian product X x G x X as a
groupoid with set of objects X. This groupoid, denoted by Gg x, is clearly transitive with
G as isotropy group type. It is noteworthy to mention that the class of groupoids given in
Example characterizes, in fact, transitive groupoids. More precisely, every transitive
groupoid is isomorphic, although in a not canonical way, to a groupoid of the form Gg x with
admissible choices X = Gy and G = G® for any x € Gp.

Furthermore, given groups G and H and sets S and T, it is easily shown that the following
statements are equivalent:

(1) The groupoids Gg,s and Gy 1 are isomorphic.

(2) There is a bijection S ~ T" and an isomorphism of groups G =~ H.
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1.1.2 Groupoid actions and equivariant maps

The following crucial definition, which we reproduce here from [EK17| and [El 18], is a natural
generalization to the context of groupoids of the usual notion of group-set (see, for instance,
[BoulOa]). This is an abstract formulation of that given in [Mac05| Definition 1.6.1] for Lie
groupoids, and it’s essentially the same definition based on the Sets-bundles notion given in
|[Ren80, Definition 1.11].

Definition 1.1.14. Given a groupoid G, a set X and a map ¢: X — Gy, we say that (X,¢)
is a right G-set, with a structure map ¢, if there is a right action p: X (x{ G — X,
sending (x, g) to zg, and satisfying the following conditions:

(1) for each x € X and g € G; such that ¢ (z) = t(g), we have s (g) = ¢ (zg);
(2) for each z € X, we have zi.(,) = 7;

(3) for each x € X and g,h € Gy such that ¢(x) = t(g) and s(g) = t(h), we have
(zg) h =z (gh).

In order to simplify the notation, the action map of a given right G-set (X,¢) will be

omitted and, by abuse of notation, we will simply refer to a right G-set X without even

mentioning the structure map. A left action is analogously defined by interchanging the source
with the target map.

Definition 1.1.15. Given a groupoid G, a set X and a map ¢: X — Gy, we say that (X,¢)
is a left G-set, with a ¢, if there is a left action p: Gy ¢x. X — X, sending (g,2) — gz,
and satisfying the following conditions:

(1) for each x € X and g € G; such that ¢ (z) = s(g) we have t(g) = ¢ (gx);
(2) for each z € X, we have i,z = ;

(3) for each x € X and h, g € G; such that s(g) = ¢ (z) and s(h) = t(g) we have h (gx) =
(hg) .

In general a set X with a (right or left) groupoid action is just called a groupoid-set but
we will also employ the terminology: a set X with a left (or right) G-action.

Obviously, any groupoid G acts over itself on both sides by using the regular action, that

is, the multiplication Gy ¢x+ Gi —> Gj. This means that (Gi,s) is a right G-set and (Gj,t) is a

left G-set with this action. It is also clear that (Go,Idg,) is a right G-set endowed with the
action given by

Go 1dg, Xt 91 — Yo

(a,9) — ag = s(g) (19)

Given a groupoid G, let (X, <) be a right G-set with action map p. Then the pair of sets
XTNQ:z(ngt%JX> (1.1.4)
is a groupoid with structure maps s = p, t* = pry and ¢’ = (7, 1)) for each x € X. The

multiplication and the inverse maps are defined as follows: For each (z,g), (y,h) € Xcx, G
such that t*(y, h) = s*(z, g) the multiplication is given by

(a:,g)(y, h) = (%,gh)
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That is, for any pairs of elements in X x, G; as before, we have

s(z) =t(g),  s*(=,9) =p(x,9) =29, t"(x,9) =pri(2,9) =7,

S(z) ¢ ——<(zg)

and
s(y) =t(h),  s*(y,h) =p(y,h) =yh,  t*(y,h) =pri(y,h) =y,
S(y) ——"——s(yh).

Consequently, the multiplication is explicitly given by

y= tx(ya h) = Sx(x,g) =g,
S(@) L c(xg) = <(y) ¢+—L——<(yh) = <(zgh)

gh
and schematically can be presented by

(z,9) (y,h)

x xg = y——— yh = zgh.
w

For each (z,9) € X x, Gy the inverse arrow is defined by (z,9)~! = (zg,¢9~ ') . The groupoid
X %G is called the right translation groupoid of X by G. Furthermore, there is a canonical
morphism of groupoids o: X x G — G, given by o9 = ¢ pr; and g; = prs.

Regarding the left version, let (Z,1) be a left G-set with structure map ¥ and action A.
Then

G 7= (glsxﬂz,z)

is a groupoid with structure maps s* = A, t* = pry and, for each z € X, 15 = (7, 15(s))-
Moreover, for each (g, ), (h,y) € G1 sxy X such that t*(h,y) = s*(g, x) we define the multipli-
cation in this way: (g,x)(h,y) = (hg,z). For each (g,x) € G1 sxy Z the inverse map is defined
by (9,2)"' = (g2,97') . The groupoid G x Z is called the left translation groupoid of Z
by G.

Definition 1.1.16. Given a groupoid G, a morphism of right G-sets, also called a right
G-equivariant map, F': (X,¢) — (Y,0) is a function F': X — Y such that the following
diagrams commute:

XcxtG— X

x— % .y
\ / and FXIdQlJ/ JF
S 0
Go

Y oxi G ————Y.

Clearly any such a G-equivariant map induces a morphism of groupoids F: X xG — X' x@.
A subset Y € X of aright G-set (X, <), is said to be G-invariant subset whenever the inclusion
Y — X is a G-equivariant map. Morphisms of left G-sets can be defined in a similar way.

Definition 1.1.17. Given a groupoid G, a morphism of left G-sets (or left G-equivariant
map) F: (X,q) — (Y,0) is a function F': X — Y such that the following diagrams
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commute:

Y Grsxc X — X

x—*8
\ / and Idg, xF l lF
S 0
Go

glsXQY—>Y.

We denote by Sets-G the category of right G-sets and by Homsers.g (X, X') the set of all
G-equivariant maps from (X, <) to (X’,¢’). The category of left G-sets, denoted by G-Sets, is
analogously defined and it is isomorphic to the category of right G-sets, using the inverse map
by switching the source with the target. It is noteworthy to mention that the definition of the
category of groupoid-sets, as it has been recalled in Definition can be rephrased using
the core of the category of sets. To our purposes, it is advantageous to work with Definition
, rather than this formal definition (see Remark for further explanations).

Remark 1.1.18. A right G-set can be defined also as a functor 2 : G’ — Sets to the core of
the category of sets. Then to any functor of this kind we can attach a set X = |4),.g, £ (a)
with the canonical map ¢: X — Gy and action

0: X xt G — X
(z,9) — xg:= 2 (g9)(z).

Notice that, if none of the fibers 27(a) is an empty set, then the induced map ¢ is surjective.
However, as the example expounded in subsection shows, this is not always the case.

Any natural transformation between functors as above leads to a G-equivariant map between
the associated right G-sets. This in fact establishes an equivalence of categories between the
category of the functors of this form (i.e., functors from G to the core category of the category
of sets) and the category of right G-sets. The functor, which goes in the opposite direction,
associates to any right G-set (X,¢) the functor 2 : G’ — Sets that sends any object a € Gy
to the fibre ¢~!({a}), and any arrow g in G° to the bijective map ¢~ *({t(g)}) — < '({s(9)})
that sends x to xg.

Formally there should not be a more advantageous choice between these two definitions.
Nevertheless, in our opinion, for technical reasons, it is perhaps better to deal with groupoid-sets
as given in Definition instead of the aforementioned functorial approach. Specifically,
the latter approach presents an inconvenient, since one is forced to distinguish, in certain
“local” proofs, between the cases when the fiber is empty and when it is not. There is no such
difficulty using Definition [1.1.14] as we will see in the sequel.

Ezample 1.1.19. Given a morphism of groupoids ¢: H — G, let us consider the triple
(Ho o %t G1,DPr1,5), where ¢: Ho oo xt Gi — Go sends (u,g) — s(g) and pry is the first
projection. Then the following maps

(Hopoxc G1) Xt G ————Hogyx G
((uv.gl)ag) — (uag/)ﬁg = (u,g’g) ( )
1.1.5

H1sX pr, <H[)<poxt gl) ———Hopoxt G

(1 (4,9)) ——— h—~(u,9) := (t(h). o (h)g)
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define structures of right G-set and of left H-set, respectively. Analogously, the maps

(glsxgoo HO) pry X t Hq —>g1 s X g /HO

((g,u). 1) —— (g, w)~h 1= (gp(h), 5(n)) -
glsxﬂ (glsxcpo HO)%QISXQO HO B

(g, (g’,U)) ————9-(d",u) == (99, u)

where ¥: Gy sx o, Ho — Go sends (g, u) — t(g), define structures of right H-set and of left
G-set on G sx o, Ho, respectively. This in particular can be applied to any morphism of
groupoids of the form

(XvX) - (Y X Y7Y)
(.’E, l'/) - ((f(x)a f(.’E)), f(x/))a
where f: X — Y is any map. On the other hand, if f is a G-equivariant map, for a group G

acting on both X and Y, then the above construction applies, as well, to the morphism of
action groupoids

(GxX,X)— (GxY)Y)
((g:2),2") —> ((g, f(=)), f(a")).

The proofs of the following useful lemmas are immediate.

Lemma 1.1.20. Given a groupoid G, let (X,<) be a right G-set with action p and let be
(X',<") be a right G-set with action p'. Let F: (X,s) — (X', <) be a G-equivariant map with
bijective underlying map. Then F~1: (X' ¢') — (X,<) is also G-equivariant.

Proposition and Definition 1.1.21. Given a groupoid G, let (X,<) be a right G-set with
action p and let be X' < X. We define

c’=<|X,:X’—>g0 and p'=p|X/</th1:X’<zxtQ1—>X

and let’s suppose that for each (a,g) € X' x, G we have p(a,g) € X'. Then (X',<’) is a right
G-set with action map p' and we say that (X',<') is a right G-subset of (X,<).

1.1.3 Orbit sets and stabilizers

Next we recall the notion (see, for instance, |Jel03, page 11]) of the orbit set attached to a
right groupoid-set. This notion is a generalization of the orbit set in the context of group-sets.
Here we use the (right) translation groupoid to introduce this set.

Given a right G-set (X,¢), the orbit set X/G of (X,<) is the orbit set of the (right)
translation groupoid X x G, that is, X/G = m(X % G), the set of all connected component.
For an element x € X, the equivalence class of x, called the orbit of x, is denoted by:

3(x,g9) € (X % G),; such
[2] G := Orbx wg(z) =< y€ X | that z = t*(z,g) and = {:L‘geX‘t(g) = ¢(x) }
y=s"(z,9) =29

Let us denote by repg(X) a representative set of the orbit set X/G. For instance, if
G = (X x G,X) is an action groupoid as in Example|1.1.10, then obviously the orbit set of
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this groupoid coincides with the classical set of orbits X /G. Of course, the orbit set of an
equivalence relation groupoid (R, X) (see Example is precisely the quotient set X /R.
The left orbits sets for left groupoids sets are analogously defined by using the left translation
groupoids. We will use the following notations: given a left G-set (Z, 1), its orbit set will be
denoted by G\Z and the orbit of an element z € Z by G[z].

A right G-set is said to be transitive if it has a single orbit, that is, if X /G is a singleton
or, equivalently, if its associated right translation groupoid X x G is transitive.

Now let (X,¢) be a right G-set with action p: Xcx,G; — X. The right stabilizer
Stabg (x) of z in G is the groupoid with arrows

(Stabg (z)); = {g€Gi|c(z) =t(g) and zg=uz}
and objects
(Stabg (2))g = {u € Go | Ig € Guls (@) ,u) : g =2} € Oy,
Therefore, we have that

(Stabg (z))g = {s(2)},  Stabg(x)™) = (Stabg (z))1 < G*.

and, as a groupoid with only one object ¢(x), the set of arrow is:
(Stabg (2)), = { g€ G1 | s(9) =t(9) =< (ag) and ag =& }.

In other words, the stabilizer of an element x € X is the subgroup of the isotropy group G
consisting of those loops g which satisfy xg = x. The following lemma is then an immediate
consequence of this observation.

Lemma 1.1.22. Let (X,<) be a right G-set and consider its associated morphism of groupoids
0: X xG—G,

given by oo = spr; and o1 = pry. Then, for each x € X, the stabilizer Stabg (z) is the image
by o of the isotropy group (X »x G)* and there is an isomorphism of groups:

(Stabg (z)); = (X x G)*.

The left stabilizer of an elements of a left groupoid set is similarly defined and enjoys
analogue properties, as in Lemma [1.1.22

1.1.4 A right groupoid-set with a non surjective structure map

We will give an example of a right G-set whose structure map is not surjective, completing by
this the observations made in Remark Given a set S, let be @ # 5" & S and let R
be an equivalence relation on S. Assume that there is z¢ € S\S’ such that for every y € S’,
(z0,y) ¢ R. Let’s define Rgr = R n (S’ x '), that is, the restriction of R to S’. It is clear
that Rg/ is an equivalence relation on S’.

We have the following two groupoids of equivalence relation: G = (R, S) and H = (Rg,5")
with the inclusion 7: H — G of groupoids. Let us define X := Hy,x;G1 = 5’ - x¢ R. Note
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that we have to choose S’ # & otherwise X would be empty. The set X becomes a right G-set
with structure map

¢: X —Go
(s',(a,b)) —> s(a,b) =b
and action
ngs gl — X
((2(@,0), (v.d) ) — (5, (a,b) (¥,d) = (5", (0 ).,
where

b=g (s/, (a, b)) =t (b',d) =b.
The axioms of right G-set are not difficult to verify.

Now, we want to prove that ¢ is not surjective. By contradiction, let us assume that ¢ is
surjective. Therefore, there is (s, (a,b)) € X = S’ ;x; R such that xy = ¢ (¢, (a,b)) = b: in
particular a = t(a,b) = 79 (s') = ¢, hence (s, x9) = (a,b) € R, with s’ € §’, which contradicts
our assumption. As a consequence xy doesn’t belong to the image of ¢ in Gy and ¢ is not

surjective. As a particular implementation of this example, we can choose S = R, S’ = Q,
zo = v/2 and for every si,S9 € S we can define s;Rso if and only if s1 — s9 € Z.

1.2 Groupoid-bisets, translation groupoids, orbits and cosets

In this section, we recall from |El 18| (with sufficient details) the notions of groupoid-biset,
two sided translation groupoid, coset by a subgroupoid and tensor product of bisets. After
that, we will discuss the decomposition of a set, with a groupoid acting over it, into disjoint
orbits. Moreover, we will prove the bijective correspondence between groupoid-bisets and left
sets over the product of the involved groupoids.

1.2.1 The category of bisets and two sided translation groupoids

The following definitions are abstract formulations of those given in [Jel03| for topological
groupoids and in [MMO5| for Lie groupoids. In this regard, see also |El 18|.

Definition 1.2.1. Given a set X and two groupoids H and G, let ¥: X — Hpand ¢: X —
Go be two maps. The triple (X, 9,¢) is said to be an (#,G)-biset if there is a left H-action
A Hisxy X — X and a right G-action p: X (x¢ G — X such that:

(1) for each x € X, h € H; and g € G; such that ¥ (x) =s(h) and ¢ (z) = t(g), we have

I (zg) =V () and ¢(hx) =¢(x);

(2) for each x € X, h € H; and g € G; such that ¥ (z) =s(h) and ¢ (z) = t(g), we have

h(zg) = (hx)g.

The triple (X,,¢) is referred to as a groupoid-biset, whenever the two groupoids H and G
are clear.

Note that the first condition in the definition of biset is necessary for the second one to
have meaning. For simplicity the actions maps of a groupoid-bisets are omitted in the notation.
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Definition 1.2.2. Given two groupoids H and G, let (X,v,¢) and (Y, «, 8) be two (H,G)-
bisets. A morpshism of (#, G)-biset is a function f: X — Y such that f (X,9) — (Y, @)
is a morphism of left H-set and f: (X,¢) — (Y, ) is a morphism of right G-sets. The
resulting category will be denoted by H-BiSets-G.

The two sided translation groupoid associated to a given (H,G)-biset (X,d,¢) is
defined to be the groupoid H x X x G whose set of objects is X and whose set of arrows is

Hisxy Xoxs G = {(h,x,g) € Hi x X x G s(h) = 9(z), s(g) = C(l‘)}'
The structure maps are:
s(h,z,9) =z, t(h,z,g9)=hxg ' and 1, = (ng(x),a:, Lg(x)) i
The multiplication and the inverse map are given by
(h,z,g)(h, 2", ¢') = (hh',x’,gg') and (hyx,g9)"t = (h_l,hxg_l,g_l),

respectively.

Ezample 1.2.3. Given two groups G and H and a group-biset U, the category (U) defined by
Bouc in [BoulObl Notation 2.1| is the translation groupoid of the (#,G)-biset V', where H,
respectively G, is the groupoid with only one object and isotropy group H, respectively G,
and V is exactly U considered as a groupoid-biset.

The orbit space of the two translation groupoid is the quotient set X /(H,G) defined
by the following equivalence relation: for each x, 2’ € X, x ~ 2’ if and only if there exist h € H;
and g € G; with s(h) = 9(z) and t(g) = ¢(2') such that hz = 2’'g. We will also employ the
notation H\X /G := X/(H, G) and denote by rep;, g)(X) one of its representative sets.

Ezample 1.2.4. Let ¢: H —> G be a morphism of groupoids. Consider, as in Example
the associated triples (Ho %t G1,5,pry) and (GisX o, Ho, Pry,¥) with actions defined as
in equations ((1.1.5) and (1.1.6). Then these triples are an (#,G)-biset and a (G, H)-biset,

respectively.

Proposition 1.2.5. Let (X,9,¢) be an (H,G)-biset with actions
A Hisxyg X — X and p: XXy G — X.
Then H\X is a right G-set with structure map and action as follows:

62 /H\X —> go /’)\I (/H\X)gxtgl —_— H\X
and

Hlz] — S(H[z]) = < (2) (Hlzx], 9) — o (H[z], 9) = H[zg] = H|p (2, 9)].

Proof. Let be x1,z9 € X such that H[x1] = H[z2]. Then by definition of orbit there is
h € H; such that 1 = hze and 9 (z2) = s(h). One of the biset conditions says that
¢(x1) = ¢ (hxa) = ¢ (x2). This shows that p is well defined. Now let be g € G1, z1,22 € X
such that H[z1] = H[z2], S (H[z1]) =t (g) and ¢ (H[x2]) = t(g). We have

[
¢ (z1) = S(H[z1]) = t(g) = T (H[22]) = < (22)
and
p(x1,9) = 219 = (haz) g = h(x2g) = hp (22,9)
so H[z1g] = H[z2g] which shows that p is well defined.

Now we only have to check the axioms of right G-set but this is easy and is left to the
reader. As a consequence, we have proved that H\X is a right G-set as stated. O
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The left version of Proposition also holds true. Precisely, given an (H,G)-biset
(X,,1), since X is obviously a (G°P, H°P)-biset, applying Proposition we obtain that
GOP\ X is right H°P-set, that is, X /G is a left H-set.

1.2.2 Left (right) cosets by subgroupoids and decompositions

Now we will introduce the notion of left and right cosets associated to a morphism of groupoids.
Let us assume that a morphism of groupoids ¢: H — G is given and denote by

cp,H(g) = HOSOO Xt g1

the underlying set of the (#,G)-biset of Example Then the left translation groupoid is
given by

HxPH(G) = Hx (Howoxtgl) = (Hl s Xpry (Howoxtgl) ’/HOWOthl)

where the source s is the action — described in equation (1.1.5) and the target t* is the
second projection pry on X. The multiplication of two arrows (h1, a1, g1) and (he, as, g2) of
H x PH (G) such that s*(hy,a1,91) = t*(he, az, g2) is given as follows. Since

(t(h1)7901(h1)91) = (hlﬁ(alvgﬂ) =s"(h1,a1,91) = t*(he, a2, g2) = (a2, g2)

and s(hg) = pry(az,g2) = az = t(h1) we can write hohy. We calculate t* (hi,a1,¢1) = (a1,91)
and

s* (ho, a2, g2) = (h2~(02,92)) = (t(h2)7¢1(h2)g2) = (t(h2h1)7901(h2)901(h1)91)
= (t(thl),wl(fwhl)gl) = <(h2h1)_’(a1791)>7

therefore the situation is as follows

hi,a1, ha,az,
(a1,91) (o1 (t(hl)uWI(h1)91> (h2,02.92) ((h2h1)ﬁ(a1,g1)>

and we obtain
(h1,a1,91)(h2, a2, g2) = (hahi, a1, g1).

Definition 1.2.6. Given a morphism of groupoids ¢: H — G, we define
(G/H)F 1= mo(H = *H(G) ) = H\*H(G)
and, for each (a, g) € Hoy, %, G1, we set

“Hl(a,9)] = { (hla,9)) € “H(G) | he Hy, s(h) =a }.

If H is a subgroupoid of G, that is, if ¢ := 7: H — G is the inclusion functor, we use the
notation

(G/H)X =H\H (G) = H\"H(G) = H\ (Hon . G1) = { H[(a,9)] | (a.9) € Hor %, gl(, } |
1.2.1
and, for each (a, g) € Hor, %, G1,

Hl(a. 9)] = "Hl(a.9)] = { (h—(0.9)) e H(G) | he M, s(h) = a }. (12.2)

Moreover, (G/H)R is called the set of right cosets of G by .
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For each arrow (h,a,g) of H x "H (G) we have

(h~(a.9)) = (¢ (B), 71 () g) = (t(h) . hg)  and (k) =a = (a) = t(g)

thus, for each (a,g) € Hor, %, G1, we obtain
Hl(a,9)] = { (¢ (k) ,hg) € H(G) |he My, s(h) = t(g) }.

Keeping the notation of the previous definition we can state:

Lemma 1.2.7. Given (a1, 91), (a2, 92) € Hory % G1, we have H[(a1,91)] = H[(az, g2)] if and
only if there is h € H (az,a1) such that h = g1g5 .

Proof. We have H[(a1,91)] = H[(az, g2)] if and only if (a1, ¢1) € H[(az, g2)], if and only if
there is h € H; such that s(h) = t(g2) and (a1, g1) = (t(h), hga), if and only if there is h € H;

such that
t(g1) = a1 = t(h)
g1 = hga,

if and only if there is h € H; such that s(h) = t(g2) = ag, t(h) = t(g1) = a1, h = g1g5 ', if and
only if there is h € H (a1, az2) such that h = glggl. O]

The set of left coset of G by H is defined using the (G, H)-biset
H(G)" :=G1sX 7, Ho

of Example with action maps as in equation (1.1.6). If 7: X — G is the inclusion

functor, then we use the notation

(G/H)" = (@) /H = { [(g.0)]H | (9,u) € H(G)" } (1.2.3)

and, for each (g,u) € H(G),

[(g, )17 = { ((9:0)~h) = (gh.5 () € H(G)"

s(g) = u = t(h) }

Moreover, (G /H)L is called the set of left cosets of G by H. The following is an analogue
of Lemma [[.2.71

Lemma 1.2.8. If 7: H — G is an inclusion functor, then for each (g1,u1), (g2, u2) €
Gis X, Ho we have [(g1,u1)]H = [(g2, u2)|H if and only if g5 g1 € H.

Proof. Is similar to that of Lemma O

As a corollary of Proposition [1.2.5] we obtain:

Corollary 1.2.9. Let H be a subgroupoid of G via the inclusion functor 7: H — G. Then
(G/H)R becomes a right G-set with structure map and action given as follows:

< (G/H)R — Go p: (G/H)% x, G — (G/H)"

a (1.2.4)
H[(a,9)] — s(9) (H[(a,91)], 92) — H[(a, 9192)]-
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In a similar way the left coset (G/H)" becomes a left G-set with a structure and action
maps given by:

9: (G/H)" — Go g NGk (G/H)" — (G/H)"

(1.2.5)
[(g, u)]H — t(g) (91, [(g2, W]H) — [(9192, u)]H.

The following crucial proposition characterizes, as in the classical case of groups, right
orbits of an element (i.e. right transitive G-sets) using the stabilizer subgroupoid of that
element.

Proposition 1.2.10. Let (X,<) be a right G-set with action map p: X ¢x, G — X. Given
x € X, let us consider H = Stabg (x) its stabilizer as a subgroupoid of G (see Subsection m
Then the following map
o1 (G/H) ————— ]G
H[(a, 9)l——— 29

establishes an isomorphism of right G-sets. Likewise, a similar statement is true for left cosets.
That is, for a given left G-set (Y,4) with action X, we have, for every y €Y, an isomorphism
of left G-set
L
¥: (G/H) ——G[y]

[(g, W) H ——— gy,

where H = Stabg (y) is the stabilizer of y.

Proof. We only show the right side of the statement. Given H[(a,g)] € (G/H)R, we have
a€Hy={s(x)} and, since (a,g) € Hor, x, G1, where 7: H — G is the inclusion functor, we
have t (9) = a = ¢ (z) and we can write g. Now consider (a1, g1), (a2, 92) € Hor, x, G1 (that
is, a1 = t(g1) and as = t(g2)) such that H[(a1,g1)] = H[(a2,g2)]. Then, by Lemma [1.2.7]
there exists h € H; such that s(h) = ag, t (h) = a; and h = g1g, . Since H = Stabg () we
have a1 = a2 = ¢ (x) and zh = x so x = zh = xglggl, whence xgs = xg;. This shows that ¢
is well defined. Now let be

H[(a1,91)],  H[(az, 92)] € (G/H)"
such that ¢(H[(a1,91)]) = ¢(H[(az, g2)]). Then we have

zg1 = p(H[(a1,91)]) = ¢(H[(az, 92)]) = zg2,

S0 29195+ = x, which means that g1g, ' € Stabg (z) = H. Therefore H[(a1,g1)] = H[(az
and ¢ is injective. Now consider an element zg € [2]G: by definition we have ¢ (H[(s(x), g
xg, therefore ¢ is a surjective map. As a consequence, ¢ is bijective.

By Corollary and Proposition [1.1.21|it follows that (G/H)R and [2]G are right G-sets.

We denote by ¢, and p, the structure and the action maps of [x]G, respectively. To prove
that ¢ is a morphism of right G-set we have to prove that the following two diagrams are
commutative:

(G/HRex G — (@1 and  (G/H)R———— Gy

o I | <

([#]19) ¢, x, G1 ——— [2]G ]G,
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where we used the notation < and p for the structural and the action maps given in ([1.2.4)). Let
us check the commutativity of the triangle. So take H[(a, g)] € (G/H)R, using the definition of
right action, we have

S (H[(a,9)]) = sz (2g) = < (xg) = s(g9) = S (H[(a,9)])

since t(g) = a = ¢(x). As for the rectangle, take an arbitrary element (H[(a,g)],m) €
(G/H)R %, G1, we have

pu (9 x 1g,) (HI(a,9)], 91) = pu (¢ (HI(a,9)]) . 1)
= p2 (zg,01) = p(zg9,91) = (zg) g1 = 2 (991) = ¢ (H[(a,991)]) = ©p(H[(a,9)], g1).

Therefore, ¢ is compatible with the action and by using Lemma [I.1.20] we conclude that ¢ is
an isomorphism of right G-set as desired. O

Corollary 1.2.11. Let (X,<) be a right G-set. Then there is an isomorphism of right G-sets:

X = [ (g/Stabg (),

zerepg(X)

where the right hand side is the coproduct in the category of right G-sets and with repg(X) we
indicate a set of representatives of the orbits of the right G-set X.

Proof. Immediate from Proposition [I.2.10] considering the fact that a right G-set is a disjoint
union of its orbits. O
1.2.3 Groupoid-bisets versus (left) groupoid-sets

In this subsection we give the complete proof of the fact that the category of groupoid
(H, G)-bisets is isomorphic to the category of left groupoid (H x G°P)-sets (equivalently right
(H°P x G)-sets). Here the groupoid structure of the (cartesian) product of two groupoids is
the one given by the product of the underlying categories as described in Example

Proposition 1.2.12. Given a set X and two groupoids H and G, there is a bijective corre-
spondence between structures of (H,G)-bisets on X and structures of left (H x G°P)-sets on

X.

Proof. Let X be an (H,G)-biset with actions and structures map as follows:

¥: X — Hy c: X — Gy
and
ArHigxyg X — X p: Xcx, G — X.

We define the structure map and action as follows

a: X — (H xG°P), N B:(HxGP)sxe X — X
z— (0 (), (2)) ((h,g9), %) — h(zg).

Now the verification that (X, «) is a left (H x G°P)-set is obvious.
Conversely, let X be an (H x G°P)-left set with

a: X — (H x G°P), and B: (HxGP)sxe X — X
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as structure map and action. Let be pr; and pry the canonical projections

pry: (H x G°)y — Ho pry: (M x G%)y — Go

and
(h,g) — h (h,9) — g.
We define a structure of left H-set as follows
19:X—>H0 )\:7'[15X19X—>X
and
x —> pry o (z) (z,9) — B ((h, Le(z))s x)
and a structure of right G-set as follows:
¢: X — Gy pr Xcx G — X
and
Q:l—>pr2a(l’) (x,g) '—)B((Lﬂ(a:)vg)ax)'

For each (h,z) € Hisxy X we have

a(x) = (z),s(x)) = (s (h),t (Lc(z))) =s (h, Lg(m))

so A is well defined. The verification that (X, ) is a left H-set is obvious. As for the right
action, for each (z,g) € X¢x, Gi, we have

G (JJ) = (19 (l') ) S ([E)) = (S (Lﬂ(z)) T (g)) =S (Lﬂ(x)ag)

so p is well defined. The verification that (X,<) is a right G-set is also obvious. Now we
only have to verify the properties of a biset but this is easy and it is left to the reader. As a
consequence, X is an (H,G)-biset. Lastly, it is clear that these two constructions are mutually
inverse and this completes the proof. O

A similar proof to that of Proposition [I.2.12] works to show that there is a bijective
correspondence between right (H°P x G)-set structures and (H, G)-set structures. Furthermore,
any (#H,G)-equivariant map (i.e., any morphism of (#, G)-bisets) is canonically transformed,
under this correspondence, to a left (H x G°P)-equivariant map. This allows us to state the
following corollary.

Corollary 1.2.13. Let H and G be two groupoids. Then there are canonical isomorphisms
of categories between the category of (H,G)-bisets, the category of left (H x GP)-sets and the
category of right (H°P x G)-sets.

1.2.4 Orbits and stabilizers of bisets and double cosets

We will use the notations of the proof of Proposition Let X be an (H,G)-biset and let’s
consider € X. Thanks to Proposition X becomes an (H x GP)-left set, therefore we
can define the bilateral stabilizer Stab(y g (z) of z in (H,G) as the left stabilizer of x in
H x G°P. As a result we have

(Stabiye,g) (@) = (Stab x gon) (), = { (9 (@) < (@)}

and
(Stabe,g) (2)), = (Stabga x ger) (), = { (hyg) € H1 x GP S(l%g)(z g)(};’i); a(z) }
s(h) =t(h) =V (x)
=1 (hg)eHix G| s(g) =t(g) =< (2)
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Similarly, we can define the orbit of x, with respect to the (H, G)-biset X, as the orbit set
of x with respect to the left (H x G)-set X and we denote it by Orb(y, g)(z) or H[z]G.
Consequently, we have

Orbiy g)(x) =[2G = { hag = (h,g)w € X | s(h) =9 (), < (2) = t(g) } .
The following proposition is an useful precursor of Proposition [3.1.7]
Proposition 1.2.14. Given a groupoid H, let A and B be subgroupoid of H. We define
X = Agxy Hsx By = { (a,h,b) € Ag x Hy x Bo‘ a=t(h),s(h) = b}.

Then X is an (A, B)-biset with structure maps

9 X — .A() q: X — BO
and
(a,h,b) — a (a,h,b) —> b
and action maps
)\2./415><19X—>X d p:XCXt81—>X
an
(r, (a, h,b)) — (t(r),rh,b) ((a,h,b),q) — (a, hq,s(q)).

Proof. We have to check the properties of a groupoid right action.
(1) For each (a,h,b) € X and g € B; such that ¢ (a, h,b) = t(q) we have

s ((a,h,b) d) = < (a,hq,s(q)) = s(q)-
(2) For each (a,h,b) € X we have
(a,h,b) to(anp) = (a; h,b) 1y = (a, hip,s (1)) = (a, h,b).
(3) For each (a,h,b) € X and ¢, ¢ € By such that < (a,h,b) =t(q) and s(q) = t(¢’) we have

((a,h,b) q) q' = (a,hq,s(q)) ¢ = (a,hqq';s (q)) = (a,had’,s (aq')) = (a,h,b) (¢¢) -

The properties of the left action are similarly proved. Now, we have to check the compatibility
conditions of a biset. For each (a,h,b) € X, r € A; and g € B; such that ¥ (a, h,b) = s(a) and
¢ (a,h,b) = t(q) we have

ﬁ((avh7b)Q) = ﬁ(avh%s(Q)) =a= ﬁ(a7h7 ):
s(r(a,h,b)) =¢(t(r),rh,b) =b=c(a,h,b
and
r ((a7 h, b) Q) =r (a’a hq,s (Q)) = (t (T) yThg,s (Q)) = (t (T) ,Th, b) q= (T (av h, b)) q,
and this finishes the proof. O

Proposition [1.2.14] allows us to define the orbit set A\ X /B as the set of double cosets
of H by A and B, thus a double coset of H by A and B will be in the form .A(a, h, b)B with
(a,h,b) e X.
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1.2.5 The tensor product of groupoid-bisets

Now we are going to recall, from |[MMO5| page 161], [DG70, Chap. III, §4, 3.1] and |Gir71]
Définition 1.3.1, page 114] the definition of the tensor product of two groupoid-bisets and we
are going to show its universal property.

Given groupoids G, H and K, let (X, 9, <) be a (H,G)-biset and let (Y x, 0) be a (G, K)-biset.
Considering the triple (X XtG1sX, Y, 0, @), where

ﬂ:ngtglsXXY%Ho and @:ngtg15><XY—>/Co
(xmgvy) - 19('%') (Sﬂ,g,y) - Q(y)’

we have that (X Xt G1sxy Y, 1, @) is an (#H, K)-biset with actions

(ngtglsxXY)Ext Ki— XxtG1sx, Y
((%Q,y),k) - (ﬂc,g,yk‘)

and
7‘[15><5 (ngtglsxxy) —’chtglsxxy

(h7 (JJ, 9, y)) - (h.’L‘, g, y)
Then we can define a right G-set (X ¢x, Y,w) with structure map and action
w: X xy Y — Gy q (X Xy Y) wxt G — (X oxy Y)
an
(z,y) — s(x) = x(y) (2,9),9) — (zg,97"y)
respectively.

Following the notation and the terminology of |El 18, Remark 2.12|, we use the notation
X @Y = (X %, Y) /G

to denote the orbit set of the right G-set (X ¢ x, Y,w) and we refer to it as the tensor product
over G of X and Y. We also use the notation = ®¢g y to denote the equivalence class of the
element (z,y) € X ¢x, Y, therefore for every g € G; such that ¢(x) = x(y) = t(g) we have
rg®gy = x ®g gy. Moreover, X ®g Y admits a structure of (H, K)-biset whose left and right
structure maps are

V: X ®gY — Ho 1 0: X®gY — Ko
an
Qg y — V(x) z Qg y — o(y)
respectively, and whose left and right actions are
’HlsX{g(X@gY)—)X@gY (X@gY)@XtK1—>X®gY
(h,x®gy) — hx Qg y (z Qg y, k) — Qg yk
respectively.

Now we will state the universal property of the tensor product between groupoid-bisets (in
this regard, see also [EK17, Remark 2.2|). We will denote with 7: X ¢x, Y — X ®g Y the
canonical projection to the quotient.
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Lemma 1.2.15. Let G,H and K be three groupoids and (X,9,<), (Y, x, 0) the above groupoid-
bisets. Then the following diagram

px1x
ngtglsXxY4>1—>\>XgXXY+»X®gY (1.2.6)
Yy X

is the co-equalizer, in the category of (H,KC)-bisets, of the pair of morphisms (p x 1x,1y x )\).
Furthermore, if §f: X — X' and g: Y — Y are morphism of (H,G)-biset and (G, K)-biset,
respectively, then there is a unique map f Qg g: X ®gY — X' ®¢g Y’ rendering commutative
the following diagram:

pxX1lx x

X xtGrsxy Y (X XV ———» X®gY
ly x A |

fxIdg, Xgl lfxg 1 i®gg
p/><1X/ 71'/ <

X' x¢Grsxy Y/ 1 = (X x Y ———» X' ®¢ Y.
Y/X

Proof. Straightforward. O

Remark 1.2.16. It is clear from its universal construction that the tensor product establishes a
functor:
‘H-BiSets-G x G-BiSets-K —— H-BiSets-K
(X, Y) | XQ®gY (1.2.7)
(,0)1 f®g o

Although we will not employ the notion of bicategory in the context of bisets, it is noteworthy
to mention that groupoids and groupoid-bisets give rise to a bicategory as follows: 0-cells are
groupoids, 1-cells are groupoid-bisets and 2-cells are morphisms between groupoid-bisets. The
horizontal and vertical compositions, as well as the coherence constraints, are given by the
tensor product stated in Lemma and equation (|1.2.7)).

1.3 Monoidal equivalences between groupoid-sets

The material in this section will be essential in Chapter [5| to construct the Burnside ring of a
groupoid. Mainly, we will prove some isomorphisms of categories of groupoid-sets, after having
described two monoidal structures on them. Before starting doing this, however, we have to
establish some definitions that will help us to state the future theorems and propositions in a
more succinct way.

1.3.1 Laplaza categories and their functors

Given two monoidal structures ¢ and [ on a category C, let’s assume that one of them, let’s
say ¢, distributes over the other, that is, for each object A, B and C of C, there are natural
isomorphisms

Ao (BHC)~AoBHA-C and (AHB)oC=AocCHBoC.

To distinguish the two monoidal structures, we call ¢ the “multiplicative” monoidal structure of
C and [ the “additive” monoidal structure of C. This situation was foreshadowed in [Lap72al
and studied more thoroughly in [Lap72b, page 29|, where a complete set of coherence conditions
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is provided. We will call such a category, for lack of a better name, a Laplaza category and
we will denote the category of small Laplaza categories by LPZCat. An example of a small
Laplaza category, as we will see in subsection is the category Sets-G of the finite right
G-sets over a groupoid G where [ is the coproduct, i.e., the disjoint union &, and ¢ is the

fibered product x.
Go

In this subsection, for brevity reasons, we will omit the unity of the monoidal structures
involved and we will denote a Laplaza category with the notation (C,<,F) where the first
monoidal product, ¢, is the multiplicative one the second monoidal structure the additive one.
For the definition of strong monoidal functor and monoidal natural transformation we remand
to Appendix [C]

Definition 1.3.1. Let (Cy,01,H)h) and (Ca, 02, H2) be Laplaza categories. A Laplaza functor
F: (C1,01,H1) — (C2,02,H2)

is simultaneously both a strong monoidal functor F': (Cy,¢1) — (C2,<2) and a strong monoidal
functor F': (C1,H;) — (Co,Ho).

Definition 1.3.2. Let (Cy,01,H)) and (Ca,02,Hk) be Laplaza categories. A Laplaza functor
F: (C1,01,H1) — (C2,02,H2)

is said to be an isomorphism of Laplaza categories if it is an isomorphism of categories
and the inverse functor F~! is also a Laplaza functor.

Definition 1.3.3. Given two Laplaza categories (C1,<1,H;) and (Co, o2, Hk), let
F: G: (6170171) - (C27<>272)

be two strong monoidal functors. A Laplaza natural transformation (respectively, a
Laplaza natural isomorphism)

(2 F—G: (Claohl) I (6270272)

is simultaneously both a monoidal natural transformation (respectively, a monoidal natural
isomorphism)
@Y: F—G: (Cl,<>1) —> (CQ,OQ)

and a monoidal natural transformation (respectively, a monoidal natural isomorphism)
p: F— G: (C1,H) — (Ca,FHh) .
Definition 1.3.4. Given (Cq,¢1,H:) and (Co, ¢2,Hs) two Laplaza categories, let
F: (C1,01,HL) — (C2,00,)

be a Laplaza functor. We say that F' realizes a Laplaza equivalence of categories if there
is a Laplaza functor

G: (Cq,09,He) — (C1,01,H)

and Laplaza natural isomorphisms 7: Ide, — GF and e: FG — Idg,.
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1.3.2 The monoidal structures of the category of (right) G-sets and the
induction functors

We will start describing the Laplaza structure on Sets-G and, after that, we will explore the
concept of the induction functor and of the induced natural transformation.

Given a groupoid G the category of right G-sets is a symmetric monoidal category with
respect to the disjoint union W&. This structure is given as follows: given two right G-set (X, ¢)
and (Y,4), we set (X,¢) W (Y,9) = (Z,u) where Z = X WY and the map u: Z — Gy is
defined by the conditions pj x = ¢ and py = 9. The action is defined by:

Z‘uxt gl — 7
(ng) — Zg
where zg stands for zg if z = x € X or yg if z = y € Y. The identity object of this monoidal

structure is the right G-set with an empty underlying set whose action is, by convention, the
empty one.

On the other hand, the fibre product — x — induces another symmetric monoidal structure

Go
(see, for instance, [EK17, section 2]). Explicitly, the product of (X,¢) and (Y, ) is defined as
follows:
(X.9) x (V) = (X x Vo),

Go Go
where X xY = X xpY and ¢¥: X x Y — Gy sends (z,y) to ¢(x) = ¥(y). The action is
Go Go

given by (x,y)g = (xg,yg) for each g € Gy and (z,y) € X x Y such that ¢(z,y) = t(g). The
Go

identity object is the right G-set (Go,Idg,) with action given as in (1.1.3). Furthermore, up to
isomorphisms, (Gp,Idg,) is the only dualizable object with respect to this monoidal category.

The compatibility between the two monoidal structure is expressed by the subsequent
lemma, while the coherence condition expressed in [Lap72bl page 29| are clear.

Lemma 1.3.5. Given a groupoid G, let be ((Xi,<));e and ((Yj,9;)), ¢ ; two families of right
G-sets. Then there is an isomorphism of right G-sets

o, ((sz%)x(yjaﬁj)) > Y] < (1 ).
;g{} Yo iel Yo jed

Proof. 1t is omitted, since it is a direct verification. O

Let ¢: H — G be a morphism of groupoids. We define the induced functor, referred to
as the induction functor
©*: Sets-G —> Sets-H,

which sends the right G-set (X, <) to the right H-set (X ¢ x4, Ho, pry) with the following action:

(X§><4po /HO) prQXtHl - chgoo HO
((z,a),h) — (zp1(h),s(h)).

Given a morphism of right G-set f: (X,¢) — (Y, ), we define the morphism

©*(f): ¢* (X,6) — ¢ (Y, )
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as the morphism
f X Hop: (ngtpo Ho,prg) - (YOXQDO Hprr2)
(.CL‘,CL) - (f(;r),a)

For instance, we have that ¢*(Go,Idg,) = (go Idg, X0 Ho, pr2>. The following is a well known

property of the induction functor (see [EK17]|). However, for the sake of completeness and for
the convenience of the reader, we give here an elementary proof.

Proposition 1.3.6. The functor p*: Sets-G —> Sets-H is Laplaza, that is, is monoidal with
respect to both the disjoint union & and the fibered product — x —.
Go

Proof. The fact that ¢* is well defined is a routine computation and we leave it to the reader.
Let us check that ¢* is monoidal with respect to &. Given right sets (X,¢) and (Y,9) we
have the natural isomorphisms

(X, o) W (Y,9) =" (X DY, c W) = (X DY) co9Xyp Ho, Pra)
= (X ¢ X Ho, Pra) W (Y x5y Ho, Prg) = 0" (X, ) W ¢* (Y,9)

and, we also have that

0" (B, D) = (& g X o Ho,pra) = (I, ) .

Now we have to prove that ¢* is monoidal with respect to the fibered product. Given right
G-sets (X, <) and (Y, 9) we have the natural isomorphisms

0

* ((X,g) X (Y,q?)) =" (X x9pY,60) = (X xpY) 0 Xy Ho, PTa)

(X X oo Ho) pry X pry (Y 9%, Ho) » (PT3) (PTQ))
= (X¢ X@oHOaprz)H (Y 9x 4, ,p12) = ¢ (X’g)ﬁ o (V,9),
0

0

lle

because an element of (X ¢ Xy, Ho) pr, Xpr, (Y 9%, Ho) is of the kind (z,a,y,a) with z € X,
yeY, ae Hy. Therefore, we have a natural isomorphism

(o

0

(0)) = ¢ (X9 x 9" (120).
Ho
for every pair of right G-sets (X,¢) and (Y,?). On the other hand, we have that

#* (G0, 1dgy) = (Go 1ag, X Mo, pra) = (Ho, Idr)

since the map pry: Go 14X%,, Ho — Ho establishes an isomorphism of right H-sets. O

Proposition and Definition 1.3.7. Given groupoid H and G, let p,vp: H — G be two
morphisms of groupoids and consider a natural transformation a: ¢ — . We define an
induced natural transformation

a*so*_)w*

between the induced functors

©*, *: Sets-G —> Sets-H
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as follows: for each right G-set (X,<) and for each (x,a) € p*(X,<), we set
aly ot ¢ (X, 6) — (X, <)
(,0) — o, ¢ (z,a) = (z - (aa) ' a).
Then o* is a Laplaza transformation (as defined in subsection m
Proof. Given a right G-set (X,¢) and (z,a) € ¢*(X,¢), the situation is as follows:
s(z) = po(a) ———to(a).

We have ¢(z) = ¢o(a) = s(aa) =t ((ca)™!) thus we can write z - (va) ™" and we have

¢ (- (oza)_l) =s ((oza)_l) = t(aa) = Yp(a).

Therefore a*(X, <) is well defined. We have to check that ¢*(X,¢) is a morphism of right
H-sets. The condition on the structure map is obviously satisfied. Regarding the condition
on the actions, let be (z,a) € p*(X,<) and h € H; such that a = pry(z,a) = t(h): the arrow
h: b —> a is a morphism in H thus the following diagram is commutative:

®1 (h)J( le (h)
a(a) '

vo(a)

As a consequence we can compute

alx,o((x,a)h) = afy o (zp1(h),0) = (z - @1(h) - (ab)™',b) = (z - (ab) ™! - ¥1(h),b)
= (z-(ab)™',a)  h = (ozz‘X’g)(:v,a)) - h,

which show that az“X 9 is an H-equivariant map.

We have to check that o* is natural that is, given a morphism of right G-sets f: (X,¢) —
(Y, 9), that the following diagram is commutative:

a®(X,5)
¢*(X,6) = (X ¢ Xy Ho, DLy) -

@*(f)_fXIdHOl
90* (Y7 ﬁ) = (Yﬁxtpo HO? prQ)

PH(X, <) = (X o xyy Ho, Pry)
Jzﬁ*(g)—gxldwo

a*(Y,9)
Y*(Y,9) = (Y 9 x4, Ho, Pra) -

This follows from the following computation: given (z,a) € ¢*(X,<), we have
W*f) (@*(X,<)) (z,a) = (V*f) (z - (aa) " a) = (f (z- (aa)7") ;a) = (f(2)(aa)"",a)
= o (Y,9) (f(x),a) = a*(Y, ) (9" ) (x,a).
The fact that o™ is a Laplaza transformation is proved directly and it is left to the reader. [

Proposition 1.3.8. Given groupoids KC, H and G, let’s consider the following homomorphism
of groupoids:
¥

K H—F G,
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Then the following diagrams commute up to a natural isomorphism

* (Idg)*
Sets-G % Sets-IC d

~

/\‘
“D*J( = and Sets-G ~ Sets-G.

¥ \_/
SetS‘H IdSets-g

That is, there are Laplaza natural isomorphisms
V() —P*e" and B (Idg)* — Idsetsg -
Proof. Given a homomorphism f: (X,¢) — (Y,0) in Sets-G, we have

(X %0 Ko, D) = (01" (X,6) — 2D (0¥ (¥,6) = (Y % o Ko, L)

(z,a) ———— (f(2),a)

and
* % % P*e*(f) %, % %
1/} (X§X¢0H07pr2):w ® (X,C) w 2 (Y,H) :1/} (Y9X¢0H07pr2)
I I
((X s X0 HO) pry Xahg Ko, pr3) ((Y 0 X oo HO) pry Xahg Ko, pr3)
(ac,a, b) (@*(xva)ab) = (f(:c),a, b) .

Now, for each right G-set (X, <) we consider the G-equivariant maps

TP (g) — ()" (X6) AKX, (1dg)* (X,5) — (X,9)
(x,a,b) — (z,b) (r,0) — x

that give us the desired natural transformations. The proof of the fact that v and 8 are
Laplaza isomorphisms is immediate. O

Proposition 1.3.9. Given groupoids H and G and morphisms of groupoids o, ¥, u: H — G,
let’s consider natural transformations a: ¢ —> 1 and B: v —> u. Then the diagrams

o* % w* (Idg)*

/\
o and o* o*
ﬁ* \_/(
¢* Id«

. . . . . Y -1
are commutative. Moreover, if a is a natural isomorphism, then we have (a 1) = (a®)".

Proof. Straightforward. O

We finish this subsection with the following useful results.

Proposition 1.3.10. Given a groupoid G, let A be a subgroupoid of G. Then the functor
F': Sets-G — Sets-A
(X,5) — (g—l (Ao), §‘§—1(_A0)) )

opportunely defined on morphisms, is a Laplaza functor.
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Proof. The fact that F' is a well defined functor is obvious. We have to prove that F' is
monoidal with respect to the disjoint union. So, let be (X1,¢1),(X2,s2) € Sets-G: we have

F(X1,6) W F (X2,6) = (57 (A0) s stl1 ) W (37 (Ao 2l o1y )

=F (X1 W X, W q)=F((X1,6) P (X2,5))

and evidently, we have F (&, &) = (&, ). Therefore, since the coherency conditions are
immediate to verify, F' is monoidal strict with respect to &. It remains to check that F' is
monoidal with respect to the fiber product. For each (X7,¢1), (X2,¢2) € Sets-G, we have, using
the notations ; = gi‘qfl(Ao) forie{1,2},

F(X1,61) ;{ F(X2,5) = (57" (Ao) ;Y1) X (55 (Ao) ,92)

0 0

_ (1 ~1
= 1 )

(§ (Ao) v, %v, S (Ao) 191192)
= (glgz)il (AO) ) g1§2|(§1g2)_1(,/40)>

= F(Xl §1X§2 XQ)§]_§2) = F ((Xlag].) X, (X2,§2)>

0

and, obviously, we have that F'(Gp,Idg,) = (Ag,Id4,). Therefore, since the coherency
conditions are immediate to verify, F' is monoidal strict with respect to the fiber product and
the proof is concluded. O

1.3.3 Monoidal equivalences and category decompositions

We will describe several equivalences of categories of groupoid-sets that will be used in the
forthcoming sections. Before starting, we need to talk about the coproduct in the category of
small categories and, in particular, in the category of (small) groupoids.

Proposition 1.3.11. Let Cat be the category of small categories and let (Xj)jel be a family of
objects in Cat (respectively, in Grpd). Let X be the small category (respectively, the groupoid)
whose set of object is the disjoint union of the X;’s, that is,

Obj (X) = |4 Obj (),

jel
and such that, for every y,z € Obj (X)),

Homy:, (y, 2) ifdiel:y,ze Obj(X)
HOIHX (y7 Z) = ! .

%) otherwise.
Now let (Xj)jel be a family of objects in Cat (respectively, in Grpd) and, for each j € I,
let ij: X;j — X be the inclusion functor. Then (i;: Xj — X)jel s the coproduct in Cat
(respectively, in Grpd) of the family (X}) Henceforth, we will often simply write X =

jel-
]_Ijel ‘Xj'
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Proof. Let (¢;: X; — y)jd be a family of morphisms in C. We have to prove that there is a
unique morphism ¢: X — ) such that for every j € I the following diagram is commutative:

X, ®j y

X

Let be x be an object of A: then there is a unique j € I such that x € &; so we define
¢(z) := p;(z) (note that j is unique because Obj (X) is the disjoint union of the X;’s). Next,
let g: * — y be a morphism in X: then there is a unique j € I such that g: + — y is a
morphism in X; and we can define

plg:z—y)i=gj(g:z—y).

Proving that ¢ is actually a functor, that is, a morphism in Cat (respectively, in Grpd) is
immediate, therefore we just have to show that ¢ is unique. Let ¢': X — Y be another
functor such that, for each j € I, the diagram

X

commutes. Given z € X, there is j € ¢ such that x € X thus ¢'(z) = ¢ (ij(x)) = ¢;j(z) = ().
Now let be g: * — y a morphism in X: there is j € J such that g is a morphism in &, thus
we have ¢'(g) = ¢’ (i;(9)) = #;(g9) = ¢(g) and, consequently, ¢ = ¢'.

Note that this proof works both for small categories and groupoids. O

Lemma 1.3.12. Given a family of groupoids (G;),.;, let be j € J and let’s consider and
object (X,<) € Sets-G;. Let G = ]_[jej G; be the coproduct of the family (Gi); ., as explained in
Proposition [1.3.11] We can define an object (/)‘(\,g) = (X,<) € Sets-G as follows. The structure
map $: X —> G is such that for every x € X, {(x) = (). The action

ﬁ: X Xt gl — Xj

is such that for every x € X and g € Gy such that () = t(g), we have p(x,g) = p(z,g), where
p: X xt G —> X is the action of (X,<).

Proof. Straightforward. O

Proposition 1.3.13. Let {G;}ic1 be a family of groupoids and let {ij: G; — G}jer be their
coproduct in Grpd. Then we have a Laplaza isomorphism of categories:

Sets-(]_[ Qj> ~ H Sets-G;.
jel jel
Proof. We define a functor

T: H Sets-G; — Sets- (H Qj> = Sets-G

jel jel
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in the following way. Let be ((Xj,<;)), . an object of [ ;¢ ; Sets-G;. Using Lemma [1.3.12, we
set
T ((X5)jer) = b (X5)-
jel
It is clear that T becomes a functor in the expected way.

In the other direction, we define

S': Sets- (]_[ gj> — [ ] Sets-g;

jel jel

as follows. Given (X,¢) € Sets-G, we set

S(X,q) = ((Cl ((G)o) » §|¢1((9j)0))>

jeI'

It is clear that S becomes a functor in the expected way and that T" and S are isomorphism of
categories such that S = T~!. To conclude, thanks to Corollary [C.0.14] is it enough to prove
that S is a Laplaza functor, but this follows from Proposition [I.3.10] O

Proposition 1.3.14. Let H and G be isomorphic groupoids. Then there is a Laplaza isomor-
phism of categories Sets-G >~ Sets-H.

Proof. It is an immediate verification. O

Given a groupoid G and a fixed object z € Gy, we denote with G*) the one object
subgroupoid with isotropy group G*.

Theorem 1.3.15. Given a transitive and not empty groupoid G, let be a € Gy. Then there is
a Laplaza equivalence of categories

Sets-G ~ Sets-G(®).

Proof. Set S = Gy. Thanks to Propositions and Remark [1.1.13] it is enough to prove
the theorem when G = G ¢ and gla) = QG{ a} We set A = G@ for brevity. Let’s define the
functor

F': Sets-G —> Sets-A
(Xa §) - (C_l(a)7 g|§’1(a))

where ¢: X —> Gy is the structure map of X. Thanks to Proposition [I.3.10, F' is a well
defined Laplaza functor, opportunely defined on morphisms, of course.

Now we have to construct a functor G: Sets-A — Sets-G: for each (X,¢) € Sets-A we
define G (X,¢) = (Y, ) € Sets-G such that Y = X x Gy and

Y =pry: Y =X x Ggp — Go
(z,b) — .

Note that ¢(x) = a for every x € X because Ay = {a}. We also want to extend the
action X cx¢ A1 — X to Yyxi Gy — Y. Let be (z,b) € Y and (b,g,d) € G1: we set



28 CHAPTER 1. BASIC NOTIONS

(z,b)(b,g,d) = (x(a,g,a),d). It’s easy to prove that the action axioms are satisfied. Now let
be f: (X1,61) — (X2,$2) a morphism in Sets-A: we define

G(f)=(f xIdg): (X1 x S,pry) — (X3 x S, pry)
(z,0) — (f(z),b).

It is easy to see that G is well defined and respects the properties of a functor. Thanks to
Corollary [C70.14] it is now sufficient to show that F' and G establish an ordinary equivalence
of categories.

For each (X,¢) € Sets-A we calculate

FG(X,6) = F(X x Go,9: X x § — 8) = (971(a), #]y-1(,))
= (X x{a},sxIdy) = (X,q).
Since the behaviour on the morphisms is obvious, we obtain F'G =~ Idgets-4.

For each (X,¢) € Sets-G we have
GF (X,6) = G (@), sl-s() = (@) x S,pry: 67 () x S —> 8) i= (V)

We have to define a natural isomorphism o: GF — Idsets.g. Thus, given (X, <) € Sets-G, we
have to define o := a(x ): (Y,;9) — (X,<) and prove that it is a homomorphism of right
G-set. According to the above notation, for each (z,b) € Y we set a(z,b) = x (a,1,b). We left
to the reader to check that this is a G-equivariant map turning commutative the following
diagram of G-sets

(X1,61)

f\ _1 xIdSJ( Jf
«a

(X2,%)

and the proof is completed. O

In Chapter [ we will explain, using Lemma [£.3:4], how to obtain another proof of Theo-
rem [1.5. 1))



Chapter 2

Conjugations and Burnside Theorem

In this chapter we will explore in depth, with several example and counterexamples, the
concept of conjugation of two subgroupoids of a given groupoid, illustrating instances of new
phenomenons that are not present in the group context. For example, unlike the classical case
of groups, there can be two subgroupoids that are conjugated without being isomorphic (see
Example 2.1.11]). Another peculiar situation is described in Example where we show
that there is a groupoid with two conjugated subgroupoids such that not each isotropy group
of the first subgroupoid is conjugated to each isotropy group of the second subgroupoid. Both
Examples make manifest the complexity of the study of the “poset” of all subgroupoids using
the conjugacy relation.

Next we will apply these concepts to an in-depth discussion of the Burnside Theorem
for groupoids: first in the general case (Proposition and, then, in the finite one
(Theorem [2.2.7)). The proof in the finite case is based on the fact that the table of marks, or
the matrix of marks, of the groupoid under consideration can be shown to be a diagonal block
matrix, where each block is a lower triangular matrix, which corresponds to the matrix of
marks of an isotropy group type of the groupoid (see Proposition .

2.1 Conjugation of subgroupoids and the fixed points functors

We give in this section our first result concerning the conjugacy criteria between subgroupoids of
a given groupoid, and we expound some illustrating examples. A discussion, from a categorical
point of view, about fixed point subsets is provided here, as well as the description, under
certain finiteness conditions, of the table of marks of groupoids.

2.1.1 The conjugation equivalence relation

In this subsection we clarify the notion of conjugation between subgroupoids. To illustrate the
concept, crucial in the sequel, of conjugacy in the groupoid context, the following notion is
needed.

Definition 2.1.1. Let G be a groupoid and let ‘H and K be two subgroupoids of G with
inclusion monomorphisms 7x: K — G and 7: H — G. We say that K and H are
conjugally equivalent subgroupoids if there is an equivalence F': L — H, between their
underlying categories, and a natural transformation g: 7y F' — 7%.

29
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Remark 2.1.2. It follows from the definition that g is, actually, a natural isomorphism, because
for each a € Ky, g(a) € Gy, thus it is an isomorphism, and the inverses of these arrows lead to
the inverse of g.

We note that all the groupoids under consideration are assumed to be small, therefore the
subgroupoids of a given groupoid actually constitute a set and, even more, a small category.

Lemma 2.1.3. Being conjugally equivalent subgroupoid, as defined in Definition[2.1.0], induces
an equivalence relation on the set of subgroupoids of G.

Proof. The fact the relation is reflexive is immediate: it’s sufficient to take F' = Idy and
g = Idp = Idig,,- Now let H and K be conjugally equivalent subgroupoids: there is an
equivalence of categories F': K — H and a natural transformation g: 7y F — 7x. Since F
is an equivalence there is a functor G: H — K such that there are natural isomorphisms
€: FG — Idy and n: GF —> Idx. The functor G and the natural transformation

-1
g G THE
G —2 % PG o

render K and H conjugally equivalent therefore the relation is transitive.

Now, to prove the transitivity, we consider subgroupoids H, K and A of G such that H
and KC are conjugally equivalent and such that K and A are too. This means that there
are equivalences of categories F': K — H and L: A — K, and natural transformations
g: 7y —> 7 and n: 7. —> 74. The equivalence of categories FIL: A — H and the
natural transformation

P L —F

T L TA
imply that ‘H and A are conjugally equivalent. O

Using elementary arguments, this definition is equivalent to say that there is a functor
F: K — H, which is an equivalence of categories, such that there is a family (gb)belco as
follows. For every b € Ky it has to be g, € G (F(b),b) and for every arrow d: by — be in K it
has to be F'(d) = g, Ydgy, , which justifies the terminology. This will be explained in the proof
(7i1) = (iv) of the following Theorem which is the main result of this subsection.

Theorem 2.1.4. Let H and K be two subgroupoids of a given groupoid G. Then the following
conditions are equivalent:

(i) (g/H)R ~ (g/IC)R as right G-sets;

(ii) There are morphisms of groupoids F : KK — H and G: H — K together with two natural
transformations g: Ty F — 1ic and §: kG —> 4.

(11i) The subgroupoids H and K are conjugally equivalent.

(iv) There are families (up)perc, and (gb)perc, with up € Ho and gy € G (up, b) for every b e Ky,
such that:

(a) for each by,be € Ky we have gb_211C (b1,b2) gp, = H (upy , up,);
(b) for each u € Hy there is z € Ko such that H (uy,u) # &.
(v) (Q/H)L ~ (Q/IC)L as left G-sets.
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Proof. (i) = (ii). Let us assume that there is a G-equivariant isomorphism
R R
F:(G/K)" — (9/H)

and for each class of the form IC[(b, )] € (Q/IC)R, denote by H|[(ap, gp)] its image by F. Thus,
for each b € Ko, there could be many objects a, € Ho such that F(K[(b, 1s)]) = H[(as, gb)]
and, moreover, two such objects a;, and @} are isomorphic. Therefore, we can make a single
choice by taking a representative element, which will be denoted by Fy(b), and we will have
F(K[(b,6)]) = H[(Fo(b), gs)], according to this choice. As a consequence, we have a map
Fy: Ko — Hg, which will be the object function of the functor we are going to built. On
the other hand, considering the definition of F, we have s(gy) = b and t(gp) = Fy(b), thus we
obtain a family of arrows

(86 Fo(b) — by,

with g, = gb_1 for every b € Ky. Now, given an arrow k: b — b’ in K1, we have K[(b, 1)] =
K[(k—(b,w))] = K[(V, k)], which implies

H[(Fo(b), go)] = F(KI(b,w)]) = F(K[Y, k)]) = F (K[, w)]k) = F (K[, 00)])
= H[(Fo(V), gv) 1k = H(Fo (), gy k)]

(

Therefore, there is a unique arrow h € H(Fy(b), Fo(b')) such that we have the equality hg, = gy k
in G;. In this way we can construct a map, at the level of arrows, Fi: K1 — H; with the
property that, for any k € K(b,b'), we have kg, = gy F1 (k) as an equality in G;. The properties
of groupoid action show that F': L — H is actually a functor with a natural transformation
g: 7y F' —> 71, as claimed in (ii). To complete the proof of this implication, it’s enough to
use the inverse G-equivariant map of F to construct, in a similar way, the functor G with the
required properties.

(73) = (i73) We have the following natural transformations:

9G

mFG G I Ty = Ty 1dy

and

fF g

GF T = Tic Ide .

v F
Since 7 and Tk are just inclusion functors, it is now clear that F' and G establish an equivalence

of categories.

(#i7) = (iv). Let F': KK —> H be the given equivalence of categories and g the accompanying
natural transformation. For each element b € Ky we set up = F'(b) € Ho and g, = gp € G(up, b).
Condition (a) follows now from the naturality of g, while condition (b) from the fact that F'is
an essentially surjective functor.

(iv) = (v). We define the following map:

L L
i (G/K)" — (9/H)
[(g, )IK — [(9g6, us)|H
Condition (a) in the statement implies that 1 is a well defined and injective G-equivariant map.

Let us check that it is also surjective. Let be [(p,u)]H € (G/H)": thanks to the condition (b)
there is z € Ky such that there is h € H (u,u). The situation is as follows:

-1
. h
g Uy u—7r t(p).




32 CHAPTER 2. CONJUGATIONS AND BURNSIDE THEOREM

Computing

6 ([(phe=",2)]K) = [(phyua)] H = [(pw) k] H = [(p, w)] H

we obtain that ) is surjective.

(v) = (i). It’s enough to use the isomorphism of categories between right G-sets and left
G-sets. O

Definition 2.1.5. Let ‘H and K be two subgroupoids of a given groupoid G. We say that ‘H
and K are conjugated subgroupoids if one of the equivalent conditions in Theorem is
fulfilled.

Definition 2.1.6. Given a groupoid G, let be a,b € Gy, H a subgroup of G* and K a subgroup
of G. We say that H and K are conjugated isotropy subgroups if there is d € G (a,b)
such that K = dHd™!.

Example 2.1.7. There is a groupoid G with not empty subgroupoids H and K which are
conjugally equivalent and satisfy the following property: there are = € Hy and w € Ky such
that H* and K% are not conjugated. Namely, let us consider a group G, with two distinct
subgroups A and B which are not conjugated, and a set S with at least four elements x, y,
z and w. Set G = Gg g, as in Remark we construct two subgroupoids H and K of G,
with only loops as arrows, in the following way. We set Hg = {z,2 }, Ko = {y,w },

H* = (x, A, x), H? = (2,B,2), KY = (y,A,y), and KY = (w, B,w)

where we made the abuse of notation (z,A4,z) = {x} x A x {z}. We want to prove the
condition (iv) of Theorem : to this purpose we set u, = x and u,, = z. We obtain
H(uy,z) = H® # & and H (uy,2) = H* # & thus (b) is proved. Since all the arrows
of 1 and K are loops we just have to prove that there are g, € G (uy,y) = G(z,y) and
9w € G (uy,w) = G (z,w) such that

9y 'K (y,0) 9y = H (uy,uy)  and g, K (w,w) gy = H (v, ) -
To this end we set g, = (y,1,2) and g, = (w, 1, 2) and we calculate
9y K wy) gy = 9, KVgy = (2, 1,9) (v, A, y) (y, L, 2) = (z, A, 2) = H* = H (uy, uy)
and
9 K (W, w) g = 90 K¥g0 = (2,1, w)(w, B,w)(w, 1,2) = (2, B,2) = H* = H (tw, U)

proving (a) and, thus, the claim. Now, by contradiction, let be d: w — x such that
K% = d~1Hd. Of course, there has to be g € G such that d = (x, g, w). Calculating

(w,B,w) =K" =d '"H"d = (2,97 'z) (x, 4, X) (z,9,w) = (w,g” ' Ag,w)
we obtain g~!Ag = B, which is a contradiction.

Proposition 2.1.8. Given a groupoid G, let’s consider two conjugated subgroupoids H and K.
Then H is transitive if and only if IC is transitive. Moreover, in this case, every isotropy group
of H is conjugated to every isotropy group of K.
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Proof. Let’s assume H transitive and let’s consider by, by € Ko: fori € { 1,2 } there are up, € Ho
and gp, € G (up,, b;) such that

,gb;llC (b17 bl) 9b, = H (ublvubg)

therefore K (b1, b2) # &. If we assume K to be transitive, we can obtain H to be transitive
using (iv) of Theorem with the two subgroupoids exchanged.

Now let’s assume H and K to be transitive (i.e., connected) and let be u € Hy and v € K.
Thanks to (iv) of Theorem there are u, € Ho and g, € G (uy, v) such that g, 1KVg, = H%.
Since H is transitive there is h € H (u,,u) such that H% = h=1H*h therefore

-1 _ _ _
(9uh™") " K (goh™") = hgy ' KCPgoh ™" =AY,
which shows that H" and K? are conjugated, and finishes the proof. O

Corollary 2.1.9. Now let’s consider a,b € Gy, H < G* and K < Gb. Then H and K
induce subgroupoids H and KC of G such that Ho = {a} , H1 = H* = H and Ky = {b} ,
K1 = Kb = K. Moreover, H and K are conjugated subgroupoids if and only if H and K are
conjugated 1sotropy subgroups.

Proof. 1t follows from Proposition [2.1.8] OJ

Remark 2.1.10. The conjugation in the context of groupoids is a much more complex phe-
nomenon then in the case of groups. For instance, there is a difference between a global
conjugation, between subgroupoids, and a local conjugation, between isotropy subgroups. In
this regard, Example shows that there is a groupoid G, with conjugated subgroupoids
H and /C, such that, given x € Hy and w € Ko, H* and K¥ are not conjugated. Propo-
sition shows that this behaviour cannot happen if # and K are transitive, therefore
two subgroupoids with a single object are conjugated if and only if their isotropy groups are

conjugated (Corollary [2.1.9).

Another interesting phenomenon is that, in contrast with the classical case of groups, conju-
gated subgroupoids are not necessarily isomorphic. The issue is that conjugated subgroupoids
have equivalent underlying categories, which means that they are not necessarily isomorphic
as groupoids. We will show in depth the difference between the conjugacy relation and the
isomorphism relation between subgroupoids in Example 2.1.11]

It is straightforward to see that the conjugation induces an equivalence relation ~¢ on the
set Sg of all subgroupoids of G with only one object. The equivalence class of a given element
H in Sg will be denoted by [H]. Notice that any subgroup of an isotropy group of G can be
considered as a subgroupoid with only one object (see Definition and, consequently,
as an element of Sg. The converse is, by definition, also true. We denote by rep(Sg) a set
of representative elements of Sg modulo the equivalence relation ~¢. It is clear that this
equivalence relation can be extended to the set of all subgroupoids of G.

Ezxample 2.1.11. In contrast with the classical case of groups the conjugacy relation differs form
the isomorphism relation. Here we give examples of two subgroupoids which are isomorphic
but not conjugated, as well as two subgroupoids which are conjugated but not isomorphic.

e Let us show that there is a groupoid G with two subgroupoids H and K which are
isomorphic but not conjugated. Namely, given a set J # J, let’s consider A, B < J such
that A # ¢J # B and |A| = |B|. Given an abelian group G, the relation of conjugacy
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is the same of the relation of equality, thus if we consider two distinct and isomorphic
subgroups H and K of G they are not conjugated. In particular, given an abelian group
U, possible choices are G =U x U, H =U x 1 and K =1 x U. Now let us consider the

induced groupoids G = Gg,7, H = G4 and K = Gg B (see Example and Remark
for the notations). Thanks to Remark we know that the groupoids H and
K are isomorphic. By contradiction, let’s assume that the subgroupoids H and K are
conjugated. Then, by Theorem [2.1.4(iv), there are families (a;),.p and (g;) ;. such

that a; € A, g; € G (a;,j) and g; K7g; = H% for each j € B. By definition, for each
J € B there is n; € G such that g; = (j,n;,a;) thus

{ag} x Hx (a5} = = g7 K g = (agm; ) (L3} x K x {3 ) Gimyay)
={aj}><77j_1Knj x{aj}.

As a consequence we obtain H = n;lK 7n;, which is a contradiction with the above
choices made for G, H and K.

e Let us check that there is a groupoid G with two subgroupoids B and A which are
conjugated but not isomorphic. To this end, we consider two subsets A and B of a given
set J such that ¢ # A € B < J, and we construct the groupoids of pairs G = (J x J, J),
B = (BxB,B)and A= (Ax A, A) (see Example for the definition). Since
A # J we can choose a € A and, for every b € B, we define the families (up),cz and
(9)pep as follows:

b, be A (b,b), be A
up = and gy =
a, be B\A (b,a), be B\A.

We have to check that for each by, by € Ko, we have gb_21/C (b1,b2) gb, = H (up, , up,) but
this condition is trivially satisfied in a groupoid of pairs. Now for each a € A we have to
check that there is b € B such that A (up, «) # & but this is obvious: it is enough to
choose b = . Lastly, the groupoids A and B are not isomorphic if |A| < |B.

Lemma 2.1.12. Given a groupoid G, let’s consider a subgroupoid T of G with a single object
a, that is, Ty = {a}. Set I =T; < G*, we can construct a G*-equivariant injective map

G*/I — (G/D"
Ip — I[(a,p)]

Moreover, if we assume that G and Gy are finite sets, then the set of right cosets (G/I)R must
also be finite.

Proof. We have
G/ D% ={Z[(a,p)] | PG t(p) =a}

therefore, if we denote with G$% the connected component of G containing a, using the
characterization of transitive groupoids (see Remark |1.1.13)), we obtain

@m<|(g),|=[(e"),

and this proves the claim. O

<191 x |(69) | < 1@l x 16 x 1G] < =,

The following lemma will be used in subsequent sections.
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Lemma 2.1.13. Let G be a groupoid and consider two elements H and IC in rep (Sg). Then
we have the following properties.

(i) Let be a,be Gy such that Hy = {a} and Ko = {b}, and let’s define the set
T = {g € G(b,a) ‘ K1 < g "Hag, where Hy < G* and K1 < G° } .
Then there is a bijection
Homsesg ((9/K), (G/H)R) — T.
In particular, the set of G-equivariant maps Homses.g ((G/K))R, (G/H))R) is a not empty

set if and only if there is g € G(b,a) such that K1 < g ' H1g, where H1 < G* and K1 < G°.

(ii) Assume that all isotropy groups of G are finite groups. Then the following implication

Homsess.g ((9/K)R, (G/M)%) # @ — Homsasg (/7R G/0R) = 2
holds true, whenever H # K.

Proof. (i) Assume that we have a G-equivariant map F: (G/K)R — (G/H)R, and let be
g € G(b,a) such that
F(K[(b,w)]) = Hl(a,9)] € (G/H))".

For every k € K1 we compute

Hl(a,9)] = F(K[(b,ws)]) = F(K[(b, k)]) = F(K[(b, 1)1 k) = F(K[(b, )] )
= H[(aag)] k = H[(aagk)]'

This means that there exists h € H; such that hg = gk. Therefore, we obtain K; € ¢ Hg.
The inverse function, from 7' to Homses.g ((G/K))R, (G/H))R), is built in a similar way.

(ii) Assume by contradiction that we also have that Homses.g ((G/H))R, (G/K))R) # &.
Applying the first part, we get that there exist g1 € G(b,a) and go € G(a,b) such that
Ki < gy %191 and H, < 9o 1IC192. Thus H; and K1 have the same cardinality as subsets
of Gi. Since G? is a finite group, we obtain K; = gl_lngl. This means that H and K are
conjugated, that is, they represent the same class in Sg/ ~¢, which is a contradiction because,
by hypothesis, H # K as elements in rep (Sg). O

2.1.2 Fixed points subsets of groupoid-sets and the table of marks of finite
groupoids

This subsection deals with the fixed point subsets of groupoid-sets under subgroupoid actions
and discusses their functorial properties. Moreover we give the analogue notion of what is
known in the classical theory as the table of marks attached to a given (finite) groupoid
|Burll].

Definition 2.1.14. Given a groupoid G, let H be a subgroupoid of G and let (X, <) be a right
G-set. We define the set of fixed points by H in X as:

2 s(z) € Ho
Xt'=(zeX .
Vh € H; such that ¢ (x) =t (h), we have that zh =z
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Notice that not any subgroupoid is allowed to stabilize the elements of a given right G-set
(X, ). More precisely, the set of fixed point X M can be introduced only for those subgroupoids
‘H satisfying the condition Hy N ¢(X) # ¢ and possessing at most one object. If this is not
the case, then it implicitly stands from the definition that we are setting X* = (.

Note that, if H and H' are conjugated subgroupoids of G with only one object (see
Corollary [2.1.9), then X* and X M are clearly in bijection (see Corollary [2.1.16]).

If F: (X,s) — (Y,9) is a G-equivariant map, then F induces a function

It is clear that, in this way, we obtain a functor
(=)™ : Sets-G —> Sets (2.1.1)

from the category of G-sets to the category of sets. Therefore, if F' is an isomorphism of G-sets,
the function F* is a bijection. Since there is another functor

Homsets g ((Q/H)R, —) : Sets-G — Sets, (2.1.2)

we can ask ourselves if there is a natural transformation between these two functors. It turns
out that the answer is affirmative, as stated in the following result, where we also state their
compatibility with the coproduct.

Proposition 2.1.15. Let H be a subgroupoid of G with only one objects. Then we have the
following natural isomorphism

=+ Homseisg ((9/H)%, =) — ()"
defined, for each (X,<) € Sets-G, in the following way:
£(X,<): Homsets.g ((Q/H)R, X) L x*
f— f(Hl@w)]).

where a € Gy is such that Hy = { a }. Furthermore, the functors of formulas (2.1.1)) and (2.1.2))

commutes with arbitrary coproducts. In particular, given a disjoint union X = Y, 1X; of
right G-sets, we have a natural bijection

XH ~ |4 x7 (2.1.3)
Proof. To prove that € is a natural transformation, we have to prove that, for each G-equivariant
map F': (X,¢) — (Y, 0), the following diagram is commutative:

e(X9) XH

Homsers.g ((G/H)R, X)
Homsets.g((g/H)RF)J JFH
(¥,9)
Homsets.g ((G/H)R, V) — v
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For each f € Homsesg ((G/H)R, X) we calculate:
e (Y, 9) Homsewog ((G/H)R, F) () = £ (Y, 9) (Ff) = Ff (H [(a,10)])
= FA(f (@ 0))) ) = F™e (X,9) ().

We want to define a natural transformation
n: () — Homsasg ((9/7)%, )
such that, for each (X,¢) € Sets-G,

R, X)

7 (X.<): X* — Homseisg ((G/H)%,
(a,9)] — ag].

z— 1 (X,¢) (x) = | H[

Note that, since = € X7, we have ¢(z) = a = t(g) and zg is well defined. For each
f € Homses.g ((G/H)R, X) we calculate

ne(f) = nf (Hl(aa)]) = (Rl )] = F(H[(a,0a)])g)
— (Hl(a.9)] = (HI(a.0)])) = f

and, for each x € X7,
en(x) = &?(H[(a,g)] > wg) = Ttg = 7.
As a consequence ¢ is a natural isomorphism.

Lastly, it is clear that the functor (*)H commutes with coproducts and, since ¢ is a natural
isomorphism, so does Homsets.g ((G/H)R, —). O

Corollary 2.1.16. Let H and H' be two subgroupoids of G both with only one object. Assume
that we have a G-equivariant map F: (G/H)R — (G/H)R. Then, for any right G-set (X,<),
we have a commutative diagram:

Homsgers g ((G/H)R, X) ———— Xﬁ’

Homsets_g(F,X)l | XxF (2.1.4)
¢
Homsets.g ((G/H)R, X) ———— X™.

In particular, if H and H' are conjugated, we have a bijection XM ~ XM

Proof. Set Ho = {a}, H{, = {da’} and let g € G(a, a’) be the arrow attached to the G-equivariant
map F, that is, g is determined by the equality F(#[(a,..)]) = H'[(d/,g)]. Then the stated
map X X" — X* is a given by 2 — zg. The desired diagram commutativity is now clear
from the the involved maps. The particular case is a direct consequence of the first claim. [

Remark 2.1.17. Let G be a groupoid and consider as before the set Sg of all subgroupoids
with only one object. One can define a category whose objects set is Sg and, given two
objects H,H' € Sg, the set of arrows from H' to H is the set of all G-equivariant maps
Homsets.g ((G/H)R, (G/H)R). This category is also denoted by Sg. In this way, the set
rep(Sg) is then identified with the skeleton of the category Sg. On the other hand, for any
right G-set (X, ) we obtain as, in Corollary a functor H — X, which is naturally
isomorphic to the functor H — Homsets.g ((G/H)R, X).
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Next we discuss the cardinality of the fixed point subsets of right G-cosets by subgroupoids
with a single object, that is, by elements of Sg. First, we give the definition of the notion of
finite groupoid, which we will deal with.

Definition 2.1.18. Given a groupoid G, we say that G is strongly finite if its set of arrows
Gy is finite. This obviously implies that Gy and my(G) are finite sets. We say that G is locally
strongly finite provided that the category Sg of Remark is skeletally finite and
each of the isotropy groups of G is a finite set. Here skeletally finite means that Sg/ ~¢ is a
finite set.

Remark 2.1.19. Evidently, any strongly finite groupoid is locally strongly finite. On the other
hand , it could happens that a groupoid has each of its isotropy groups finite, but rep(Sg) is
not. To see this, it suffices to look at the class of not transitive groupoids with trivial isotropy
groups and with an infinite number of connected components. More precisely, one can take a
groupoid of the form &;¢ ;G;, where I is an infinite set and each of the groupoids G; is one of
those expounded in Example [I.1.11]

Let H be a subgroupoid of G. From now on we will denote by G/H := (G/H)R the set of
right G-cosets.

Given a groupoid G, we let’s fix a set rep(Gy) of representative objects modulo the regular
action of G over itself, by using either the source or the target. In other words, rep (Gy) is a
set of objects representing the set of connected components 7y(G) of G.

Proposition 2.1.20. Let G be a groupoid: for each a € my(G), we denote by G{% the connected
component subgroupoid of G containing a (this is clearly a transitive groupoid) and we consider,
in a canonical way, Sgey/ ~c as a subset of Sg/ ~c. Then:

(i) We have a disjoint union

Sg/~c= | (Sg<a>/ ~c )

a€rep(Go)

(ii) If G is locally strongly finite, then mo(G) and rep (Go) are finite sets and so is each of the
quotient sets Sgiay/ ~c.

(1i1) If G is locally strongly finite, then the set of all G-equivariant maps Homses.g (G/H,G/K)
is finite, for every H,K € Sg.

Proof. (i) and (i7). Straightforward.

(7i7). By hypothesis, G is locally strongly finite, therefore each of the isotropy groups of G
is a finite set. As a consequence, thanks to the characterization in Remark of transitive
groupoids, since every groupoid is the coproduct of its own connected (transitive) components,
we obtain that G(b,a) is finite, or empty, for each a,b € Gy. Now the thesis follows from

Lemma [2.1.13(1). O

Given a locally strongly finite groupoid G, let us fix a set of representatives rep(Sg) and
a set of representatives of the quotient set my(G), whose elements we call aq,...,a, € Go.
According to Proposition [2.1.20] (i), we can write

rep (Sg) = |+ rep (Sgean) (2.1.5)
i=1
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where each of the G$% is a transitive groupoid (i.e., the connected component containing a;).
Furthermore, once fixed the choice of rep(Sg), we can consider the following family of not
negative integers:

mey, k) = |Homsesg (G/H,G/K)], VH,K erep(Sg),

and by Proposition [2.1.15] we know that these entries are

M) = |G/, YHK e rep(Sg).

This, in conjunction with Lemma(2.1.13} shows that the natural numbers {m i)}

H, K erep (Sg)

satisfy the following conditions:
m(g_“c) m(;QH) = 0, VH # K and m(H,H) #* 0, VH, (216)

where H = K in rep (Sg) means that H and K are conjugated (or isomorphic as objects in
the category Sg of Remark . The table that we want to construct in the sequel, which
will be formed by those coefficients (where H denotes the row position and K denotes the
column one), is what we can call, in analogy with the classical case [Burll, §180], the table
of marks of the groupoid G.

Proposition 2.1.21 (The table of marks of a finite groupoid). Let G be a locally strongly
finite groupoid. Then the fized set of representatives rep(Sg), can be endowed with a total
order < satisfying the following property: for every H,K € rep(Sg), we have

m(H,;C) #0 zf?-[le.

In particular, under this choice of ordering, the table (or matrix) of marks of G has the
following form:

M| O] O
m = - ,
( (H,IC))errep(‘gg) 0 .10
0|0 |M,
where n is the number of connected components of G and each of the matriz M;, i =1,--- ., n

1s a lower triangular matrix with each diagonal entry different from zero.

Proof. To construct this total order on the finite set rep (Sg), one proceeds as follows. If
the handled groupoid G has only one object, then we are in the classical situation of a finite
group and the total ordering is exactly given by comparing the cardinalities of representative
subgroups of this group modulo the conjugation relation. The details are expounded in |[Burll]
pages 236 and 237|, and the result is one of the matrices M;’s. Regarding the case when G is a
transitive groupoid, one can employ, for instance, Theorem to reduce this case to the
particular one of finite groups and proceed as in the classical case.

As for the general case, one uses equation to decomposes rep (Sg) into a finite disjoint
union of finite sets { rep (8g<ai>) }i=1 e where n is the number of connected components of
G. In this way one can extended the éo‘éal ordering of each piece rep (8g<ai>) to the whole set
rep (Sg), since each of the G{i)’s is a transitive groupoid (following, for example, the order
1 <2 < --- < n between the pieces). The resulting matrix (or the table of marks) of G will

be a diagonal block-matrix whose blocks correspond to the matrix of G(a) and, such that,
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outside of these blocks, only zeros will appear. Given two distinct elements H, K € rep (Sg)
with Ho = {a} and Ky = {b} such that a and b are not connected, it is necessary, by
Corollary (i), to have m(3 x) = m(ic %) = 0. Thus, the whole matrix will also be lower
triangular with non zero entries in the diagonal as stated. O

2.2 Burnside Theorem for groupoid-sets: general and finite
cases

Before introducing the ghost function for (finite) groupoids, an analogue of Burnside Theorem
for right groupoid-sets will be accomplished in this section. The classical situation of groups is
described as follows. Take two right G-sets X and Y and assume that their fixed point subsets
under any subgroup are in bijection, that is, X# ~ Y for any subgroup H of G. Under this
assumption, in general X and Y are not necessarily isomorphic as right G-sets. The main
objective of the Burnside Theorem (see [Burll, Theorem I, page 238| or, for instance, [BoulOal
Theorem 2.4.5]) is to seek further conditions under which X and Y become isomorphic as
right G-sets.

From a categorical point of view, one can assume, in the previous situation, a stronger
hypothesis, namely, that the functors H — X and H — Y¥ are naturally isomorphic (see
Remark for the definition of these functors). Nevertheless, this is equivalent to say that
the functors {e} — X{¢ and {e} — Y{¢} are naturally isomorphic (here we're taking the
full subcategory of the category of subgroups of G, with only one object e, the neutral element
of G) which, as we will see below, is equivalent to say that X and Y are isomorphic as right
G-sets. In this direction, it is not clear, at least to us, whether the condition X# ~ Y#  for
every subgroup H of G, implies that the functors H — X and H — Y are naturally
isomorphic (it seems that, without passing through the classical Burnside’s theorem, this is
not known even for the finite case, that is, when G, X and Y are finite sets).

All this suggests that, in the context of groupoid-sets, one should treat separately the case
when the fixed point subsets functors are naturally isomorphic.

2.2.1 The general case: two G-sets with natural bijections between fixed
points subsets

Let us first explain what is the meaning of the natural bijections, between the fixed points
subsets, that was mentioned above.

Definition 2.2.1. Let (X,¢) and (Y,9) be two right G-sets. We say that (X,¢) and (Y,9)
have naturally the same fixed points subsets, provided there is a natural bijection
X" ~ YH for every subgroupoid H of G with only one object. This means that we have a
commutative diagram

xH X—F> xH

Zl lz (2.2.1)
yH v vH
for any G-equivariant map F: G/H — G/H’ between cosets of subgroupoids with only one
object, where X and Y are the maps given as in the proof of Corollary [2.1.16

Remark 2.2.2. In the case of groups, if we assume that two right G-sets have naturally the same
fixed points subsets as in Definition then this, in particular, implies that X{¢} ~ yie} in
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a natural way (e is the neutral element of G). Thus, for any g € G, the right translation map
z — xg from G to G gives arise to a G-equivariant map F': G/{e} — G/{e} which, by the
commutativity of diagram , shows that X and Y are isomorphic as right G-sets. Thus,
in the group context, two right G-sets are isomorphic if and only if they have naturally the
same fixed points subsets. The case of groupoids is a bit more elaborate, as we will see in the
sequel.

Using the previous definition we can show the following result.

Proposition 2.2.3. Let G be a groupoid and let’s consider two right G-sets (X, <) and (Y,1).
Then the following statements are equivalent.

(i) (X,s) and (Y,9) have naturally the same fixed points subsets under the action of each
one object subgroupoid (Definition ;

(i) (X,<) and (Y,9) are isomorphic as G-sets.

Proof. (ii) = (i). It is clearly deduced from Proposition [2.1.15] Corollary [2.1.16| and Re-
mark

(1) = (ii). Given such an ‘H we have, by Proposition [2.1.15] the following a commutative
diagram

Homses g (G/H, X) ———— X7

W{ f

Homsets.g (G/H,Y) ———— Y,

Let us check that ¢_ establishes a natural transformation (isomorphism indeed) over the
class of right G-sets which are right cosets by one object subgroupoids. Thus, given another
subgroupoid with only one object H' together with a G-equivariant maps F: G/H — G/H’

xXH X" XM

10

1

Homsgets g (F,X)

HomSets-g (g/HI7 X) J{z hN HomSets-g (g/Hv X)

YF YH

HOmsets_g (F,Y) \

Homsets.g (G/H,Y)

PgH! yH

PG/H

10

Homsges g (G/H',Y)

we need to show that the front rectangle is commutative. However, this follows immediately
from Corollary [2.1.16] since we already know by assumptions that the rear square commutes,
and the desired natural isomorphism ¢_ is derived.

Now, let us consider an arbitrary G-set (Z, (). We know from Corollary |1.2.11] that

Z = |4 g/Stabg(2)

zerepg(Z)
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and, for each subgroupoid H of G with a single object, we have the following commutative
diagram.

1

H Homsets g (G/ Stabg (2), X)

zerepg(Z)

I
I
I
¢z ~ 1_[ ¥G/ Stabg(z)
: zerepg(Z)
I

10

[] Homsasg (G/Stabg (2),Y)
zerepg(Z)

This leads to a natural isomorphism
Homsets g (Z, X) ~ Homgers.g (Z,Y)
for each G-set (Z, (). As a consequence we obtain (X, ¢) = (Y, ) as right G-sets, as claimed. [

Remark 2.2.4. Combining Propositions [2.2.3] and [2.1.15] we deduce that two G-sets are
isomorphic if and only if their fixed points sets are in a natural bijection, in the sense of
Definition It could happen that two G-sets have bijective fixed points subsets but not in
a natural way, that is, there is no choice of a family of bijections that turns the diagrams
commutative (to the best of our knowledge, this is not even known for the case of groups).
Since we do have neither a counterexample nor a complete proof for the fact that these
diagrams are always commutative, once a bijection is given between the fixed points subsets,
it is wise to consider the proof of the case when diagrams do not commute. Of course,
in this case, the proof of Proposition does not work and the converse of the previous
equivalence fails. Finiteness conditions should be imposed, in order to provide the proof of the
converse implication. This seems to explain the notable difficulty of the classical Burnside
theory.

2.2.2 The finite case: Two finite G-sets with bijective fixed points subsets

Next, we will try to find sufficient conditions under which two finite G-sets, whose fixed points
subsets have the same cardinality, should be isomorphic; this will be the Burnside Theorem
we are looking for.

Given groupoid G, recall that Sg denotes its set of subgroupoids with only one object and
~¢ is the equivalence relation on this set given by conjugation.

Lemma 2.2.5. Let (X,<) be a right G-set and let’s consider x,x’' € X. Then if x and 2’ belong
to the same orbit, Stabg (z) and Stabg (z') are conjugated subgroupoids of G. Furthermore, the
canonical map X — Sg sending x — Stabg (z) < G®), which factors through the quotient
sets X /G —> Sg/ ~c, leads to a well defined map

px : repg(X) — Sg/ ~c
x —> [Stabg ()]

Proof. Let be x, 2’ € X such that they belong to the same orbit. Thanks to Proposition [1.2.10
the right cosets G/ Stabg (x) and G/ Stabg (2’) are isomorphic G-sets therefore, using Theo-
rem we deduce that Stabg (z) and Stabg (z') are conjugated subgroupoids of G. As a
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consequence the map X /G — Sg/ ~¢ that sends the orbit [z] G to [Stabg ()] is well defined,
but this clearly implies that also the map px is well defined, proving the thesis. O

Using this lemma, one can construct the following map with values in the natural numbers:
given a right G-set (X,¢) (with a countable underlying set X'), we define

H— [ ((H])]- 222

Of course we get that ax () = 0 if no representative element x in repg (X) has its orbit Orbg(x)
isomorphic to the coset G/H, or equivalently, if its stabilizer Stabg () is not conjugated with
the subgroupoid H.

For any set I and Z any right G-set we denote by Z() the disjoint union of I copies of Z,
that is, the coproduct, in the category of right G-sets, of Z with itself I-times. If I has a finite
cardinal, say n € N, then we denote this coproduct by n Z, with the convention 0 Z = (&, ).

We know, thanks to Corollary [[.2.11] that the category of right G-sets has a cogenerator
object given by the right G-set
W 9/n,

HESg

that is, the disjoint union of all the cosets of the form G/H, where H € Sg. So given a right
G-set (X, <) with a countable underlying set (or it set of representatives modulo the G-action
is countable), then we have a monomorphism of right G-sets

X (g,
HESQ

for a family of sets (I, X)’He S’ whose image can be written as follows. First, we have the
following isomorphism of G-sets:

L"_'J (g/H)(IH’X) ~ L_|__J (Q/IC)(J’C'X),
HeSg lCErep(Sg)

where the cardinality of each of the sets Jx, x’s is of the form |Jx x| = |Ix, x| |[K]|, where
I[K]| is the cardinal of the equivalence class represented by K in the quotient set Sg/ ~c.

Given an element K € rep (Sg), define the following natural numbers:

ne(X) = |Jic, x|, if 2(X) n (g//c)(J;c,x) # O
. 0, otherwise.

Lemma 2.2.6. Keep the above notations. Then, for every element K € rep (Sg), we have
ax(K) < ne(X)  and <aX(IC) —0 < ne(X) = o).
Furthermore, we have isomorphisms of right G-sets:

X=yx)= | ax(K)g/k, (2.2.3)
Kerep (Sg)

where the map ax is the one of equation (2.2.2)).
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Proof. It is immediate. O

Observe that if the underlying set X of (X, ) is finite, then there are finitely many elements
K € rep (Sg) with the property ax (k) # 0. Thus, in the finite G-sets case, the support sets
{ Kerep (Sg)| ax(K) # 0 } have to be finite as well.

The subsequent theorem is the main result of this section.

Theorem 2.2.7 (Burnside Theorem). Let G be a locally strongly finite groupoid (Defini-
tion . Consider two finite right G-sets (X, <) and (Y,1). Then the following statements

are equivalent.
(1) The right G-sets (X,<) and (Y,¥) are isomorphic.

(2) For each subgroupoid H of G with a single object, we have that

X7 = YT
In particular, this applies to any strongly finite groupoid.

Proof. (1) = (2). Follows from Propositions [2.1.15| or
(2) = (1). Using the isomorphisms given in equation ([2.2.3), we know that

X= | ax(®g/K ad Y= | a(Kg/K
ICErop(Sg) ICErcp(Sg)

By hypothesis it is assumed that ‘XH’ = ’YH| for each subgroupoid H of G with a single
object. Applying the bijections of equation (2.1.3]) to the previous isomorphisms, we get the
following equalities

H
> ax(O|@ = 1 axt0@mt || W ax)gx
K erep(Sg) K erep(Sg) K erep(Sg)
= XM= YR = Y ar (0|60,
K erep(Sg)
for every subgroupoid H € Sg. Therefore, for each H € rep (Sg), we have the equality
M (@ax(K) - ay(K)) ‘(g/m)”) —0. (2.2.4)

Kerep(Sg)

Now by Proposition the entries { M (34, ) } form a lower triangular square matrix, which
is non-singular. It follows that, in the system (2.2.4), we have ax(H) = ay(H) for each
H € rep(Sg). Therefore (X, ) and (Y, 1) are isomorphic as right G-sets. Lastly, the particular
claim is clear and this finishes the proof. O

An important consequence of the Burnside Theorem is the injectivity of the ghost map of
a groupoid (see Corollary [5.2.2]). Moreover, it also implies a sort of cancellative property, with
respect to the internal operation of disjoint union &.
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Corollary 2.2.8. Given a locally strongly finite groupoid G, let be (X,<), (Y,¥) and (Z,()
finite right G-sets such that there is an isomorphism of right G-sets of the form

(X,¢) W (Z,¢) = (Y,9) W (Z,().
Then we have an isomorphism (X,<) = (Y,9) of G-sets.

Proof. Given H € Sg, using the bijection of equation ([2.1.3)), we obtain

0% + | Z.0"] = || + | 2.0

therefore

(X,g)H’ = ‘(Y,z?)H’. As a consequence, thanks to Theorem [2.2.7] we get (X,¢) =
(Y, 9) as right G-sets. O

Corollary [2.2.8) gives us a strong property on the behaviour of G-sets that turns out to
be extremely useful. For example, it will be crucial to prove an important property of the
Burnside ring of a groupoid, as explained in Remark [5.1.6]
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Chapter 3

Mackey formula for bisets over
groupoids

The main goal of this chapter is to extend the Mackey formula obtained Bouc about group-bisets
(see |BoulOa, Lemma 2.3.24]) to the context of groupoid-bisets. Since the proof of this formula
is very technical and for the sake of completeness, we decided to include all the steps and
most of the details of the proof. Moreover, in Subsection we will provide an elementary
application of this formula to groupoids of equivalence relations (see Example .

3.1 Preliminaries

Before proving the Mackey formula for Groupoids, we have to introduce some particular
groupoid-bisets and prove their properties. We will also have to define a specific kind of
product of two subgroupoids (see Definition [3.1.4)).

Let G and ‘H be two groupoids and £ a subgroupoid of the product H x G. Consider the set

of equivalence classes (HTXQ) as in equation ([1.2.3)). An element in this set is an equivalence
class of a fourfold element

(h,g,u,v) € L(H x G)" = (Hl X g1) sX 7, Lo

where 7: £ «— H x G is the inclusion functor, that is,

[(h,g,u,v)]L = { (hhl,ggl,s(hl),s(gl)> eLHxG) | (hi,91) € L1 with

t(hy) = s(h) } |

t(g1) = s(g)
Lemma 3.1.1. Given two groupoids G and H, let L be a subgroupoid of H x G. Then the left
L-coset .
HxG
X =

(%)

is an (H,G)-biset with structure maps
¥: X — HO q: X — g()
and
[(h,g,u,v)]ﬁ'—> t(h‘) [(h,g,u,v)]ﬁ '—>t(g),

left action

A Hyoxg X — X
(hlﬂ [(h’vg’uvv)]ﬁ) — [(h1h797u7v)]£

47
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and right action
pr Xcx G — X
([(h‘v g,u, ’U)]‘Ca gl) — [(ha gl_lga u, U) :|£

Proof. Let us first check that ¥ and ¢ are well defined maps. Given two representatives
of the same equivalence class [(h, g, u,v)]L = [(W,¢,u/,v")]L, by Lemma we know
that (h',¢')"1(h,g) € L1, from which we obtain t(h’) = t(h) and t(¢') = t(g). Regarding
A and p, let’s take hy € Hy and g € Gi such that s(hi) = 9([(h, g,u,v)]L) = t(h), t(g1) =
s([(h, g,u,v)]L) = t(g) and [(h, g,u,v)]L = [(W, ¢’ ,u',v")]L. We have

(hlh/ 719/) (hlh, g;lg) _ (h/_lhflh1h7 g,_lglgflg) _ (h/—lh7 g/—lg)
= (W.g) " (hg) e Ly

which shows that
[ (hah, g7 g,u,v) ]E = [ (Ml g7t g u',v) ]E-

Therefore, A and p are well defined. The verification that (X,,¢) is a biset is now easy and
is left to the reader. O

Lemma 3.1.2. Given two groupoids H and G, let (X,9,<) be an (H,G)-biset and take x € X.
We define

(La), = { (h,g) € H x g‘ s(h) =9 (x), t(g) =< (x), ha = xg} (3.1.1)

and
(L) ={ (0 (@), (@) }. (3.12)
Then Ly is a subgroupoid of the groupoid H x G.

Proof. 1t is immediate, since by using the first axiom of a biset, we know that, for every
(h,g) € (L), we have

O(x) =0 (xg) =9 (he) =t(h)  and  <(2) =< (hz) =< (zg) =s(g).

Thus, L, is a subgroup of the isotropy group (H x g) 2),5(#)) and then a subgroupoid with
only one object {(¥(z), ¢(z))}. O

Proposition 3.1.3. Given two groupoids H and G, let X be an (H,G)-biset and take v € X.
We define:

= (K)o = { W (@) s @) },
{ (h, 9) eng\ v=2g, V(@) =s(h), tlo) =5}
= { (o) e xGlhag =2, D) =s(h), tlg)=s()},
that is, K = Staby, g) (z). Then
o (H ZfoIJ)L—) <7_[£>;g>L

| (hg,9(@),5(@)) Ko — | (g7 (@), s(@)) | £a

is a well-defined isomorphism of (H,G)-bisets with structure given as in Lemma m
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Proof. For each b/, h € Hy and ¢', g € G1 with s(h) = ¥(z) = s(h’) and s(g) = ¢(x) = s(¢'), we
have
[(7,g", 9 (2) < (2))1Ks = [(h,g™" 0 (2) < (2))]Ks

if and only if
- - _ _10p _
(h'h'.g'g™") = (h gt 9’) = (h,g) " (W, ¢') € (Ku),
I — g, if and only if A=Wz = ¢~ ", if and only if

(h,g™ ) (0, g ") = (0,997 € La,

if only if h~bzag™

if and only if
[(7, ™19 () < (2))1Ke = [(hyg™" 9 (2) ;< (2))] K
Therefore ¢, is well defined and injective. For each W/ € H; and ¢’ € G; we have

QDJJ ([(hlagliaﬁ (1’) 7§ (IE))]}CQ;) = [(h/aglvﬁ ({L') 7§ ('r>)]£$

hence @, is surjective.

Now given y = [(W,¢', 9 (2),s(z))]K, € (HEEOP>L, h € Hi and g € Gy such that
s(h) =19 (y) and ¢ (y) = t(g) we have
0z (hyg) = ¢a ([(hh',go'p g0 (x),s (fv)]) Kac) = ¢u ([(hH',9'9,9 (2) ,< (2)]) Ka)
= [(al, g7 g0 () < ()] Lo = R ([(W, 9719 (2) < (2))]La) 9 = hew (y) g
thus ¢, is an isomorphism of (H, G)-bisets as stated. O

Now we have to define a particular kind of product between two subgroupoids of a given
groupoid. This product will be essential to state the Mackey formula.

Definition 3.1.4. Given groupoids G, H and /I, let £ be a subgroupoid of H x G and M be
a subgroupoid of K x H. We define

(M*E)lz{(k:,g)elClxgl‘ﬂheHl such that (k,h) € M; and (h,g)eﬁl}
and
(M*E)Oz{(U,a)elCoxgo‘HueHo such that (v,u) € My and (u,a)eﬁg}.

Notice that, if pry(M) npri(£) = &, where pry and pry are the first and second projections,
then (M = L)( is obviously an empty set.

Lemma 3.1.5. Given groupoids G, H and K such that H has only one object, let L be
a subgroupoid of H x G and M be a subgroupoid of KK x H. Then M = L, as defined in
Definition 314, is a subgroupoid of K x G.

Proof. Given (k,g) € (M = L), then there is h € H; such that (k,h) € My and (h,g) € L1 so
(k7' h7Y) e My and (h™1,g7!) € £y thus (k,g) " € (M * £),. Now let be (k1,g1), (k2, 92) €
(M = L), such that s (ki,g1) = t (k2,g2). There are hi, ho € Hq such that (k;, h;) € My and
(hi,gi) € L1 for each i € { 1,2 }. Since H has only one object we have s (h;) = t (hg) thus we
can write hihs and we have

(k1,h1) (k2, he) = (kikz, hihg) € My, (ha,g1) (he, g2) = (hiha, g192) € L1
Therefore (k1,91) (k2, 92) = (k1k2,g192) € (M % L), and this completes the proof. O
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The next example shows that there are situations where the subgroupoid given by the
product * is actually not empty.

Ezxample 3.1.6. Given groupoids K, H and G such that H has only one object w, we consider
subgroupoids D < K, C < H, B < H and A < G where C and B are not empty, that is, have
exactly the object w. Then M = D x C is a subgroupoid of L x H and £L = Bx A is a
subgroupoid of H x G. For each dy € Dy and ag € Ay we have (dy,w) € My and (w, ag) € Ly
thus (do,a0) € (M = L),. We have v, € C; n By so for each d; € D and a; € A; we have
(di,t,) € My and (i, a1) € Ly therefore (di,a1) € (M *L),. As a consequence we have
Dix Ay < (M=L), fori=0andi=1. Foreachie {0,1} and for each (k;,g;) € (M = L),
there is h; € H; such that (k;, h;) € M; = D; x C; and (h;, g;) € L; = B; x A;, thus k; € D; and
gi € A;, therefore (k;, g;) € D; x A; and (M * L), < D; x A;. This shows that M L =D x A
is not an empty groupoid if both D and A are not so.

The next result, crucial to even state the Mackey formula (Theorem [3.2.1), is a sort
of generalization of the double cosets construction, in the groupoid context, realized in
Proposition |1.2.14

Proposition 3.1.7. Given groupoids IC, H and G, let M be a subgroupoid of IC x H and L
be a subgroupoid of H x G. Let be

X = { (w,u, hyv,a) € Ko x Ho x Hi x Ho x Go

wvu) EtMOa (’U,CL) € 'CO) } ' (313)
v

Then X is a (M, L)-biset with structure maps
9. X — My : X — Ly

d
(w,u,hyv,0) —> (wyu) (w, u, h,v,a) —> (v, a),

left action
A ./\/ll s><19X — X

((k, 1), (w,u, h, v, a)) — (t(k),t ('), W'h, v, a)
and right action
p: Xcx L1 — X
((w,u, h,v,a), (h”,g)) — (w,u, hh",s (h”) ,S (g)) )
Proof. We only check the properties of a right action, since a similar proof shows the left
action properties.
(1) For each y = (w,u, h,v,a) € X and (h”,g) € L1 such that ¢ (y) = t(h”,g) we have
o (W".9)) = s (w.u. B 5 (1) () = (5 () .5 0)) = s (0" )
(2) For each y = (w, u, h,v,a) € X we have
Yle(y) = Yl(v,a) = Y (Los ta) = (WU, hiy, s(tw),5(ta)) = Y-

(3) For each y = (w,u, h,v,a) € X and (h1,g), (he,g') € L1 such that ¢ (y) = t (h1,g) and
s(h1,9) = t(h2,g') we have

(Z/ (hhg)) (he,g) = <w7U, hhi,s (h1) 75(9)> (he,g') = (UJ,U, hhiha,s (h2) ,s (g’))

- (w,U, hhihg,s (h1h2) s (99’)) = ?J(hlhz,g,g/) = y((hl,g) : (h279/)>'
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Now we have to check the properties of a biset on X, that is, condition (2) in Definition m
for the stated actions A and p. For each y = (w,u, h,v,a) € X, (k,h') € My and (b, g) € L4
such that s (k,h') = ¢ (y) and ¢ (y) = t (h", g) we have

( (h”,g)) (w,u, hh",s (h”) ,s(g)) = (w,u) =9 (y),
((k h') y) ( (k),t (h’) ,h’h,v,a) = (v,a) =< (y)

and

(k) (y (0".9)) = (k') (w,u,h",s (") 5 (9)) = (£ ()€ (B') ,WRR",s (R") ;5 (9))
= (£t (W) Whiv.a) (0. g) = (k1) y) (".9).

In this way we obtain the desired properties, completing the proof. O

3.2 Mackey formula: The Theorem

Let’s keep the notations of Proposition [3.1.7 and let’s assume we are given w € Ko, u € Hg and
a € Gy such that (w,u) € My and (u,a) € Ly. Under these assumptions, identifying isotropy
groups with one-object subgroupoids, we can apply Lemma to the groupoids K%, H"
and G* by taking the subgroupoids M%) of K% x H* and L£*% of H* x G% Of course,
here we are identifying the isotropy groups M%) and £ with groupoids having only one
object (w,u) and (u,a), respectively. In this way, we obtain that

M), ((h, La)ﬁ(u,a)> (3.2.1)

is a subgroupoid of K% x G* for every (h,tq) € L1 with s(h) = t(h) = u, where we used the
notation YH = gHg™', with H a subgroup of a group G and g € G. Since we know that
K@) 5 Gla:a) ig o subgroupoid of K x G, we have that M (%) x ((h"”)ﬁ(“’ “)) is a subgroupoid
of L x G. This will be used implicitly in the sequel.

The next theorem is the main result of this chapter.

Theorem 3.2.1 (Mackey formula for groupoid-bisets). Let K, H, G, M and L be as in

Proposition . Consider the biset X defined in equation (3.1.3) and the subgroupoids
MW, u) ((h’La £ “)) of equation (3.2.1)). Assume that Mo = Ko x Ho and Lo = Ho x Go,

then there is a (non canonical) isomorphism of bisets

L
KxH\" Hx G\" Kxg
< M > ®”< 3 > =, v ()(M(w,w*((h,ba)g(u,a)) - (322)

w,u, h,v,a) Erep(pq, £y (X

where rep(rq, £)(X) is a set of representatives of the orbits of X as (M, L)-biset.

Proof. Notice that under assumptions the denominator in the right hand side of Formula
(3.2.2)) is a well defined subgroupoid of K x G and thus the right hand side of this formula is

well defined as well. For simplicity let us denote

_(KxH\" _(HxG\"
V.—<M> and Ll.—( e )
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As expounded in Lemma V is a (K, H)-biset with structure maps

0:V— Ky d H:V — Ho
an
[(K; by w, u) JM — t (k) [(; i, w, u)]JM — t (h)

and U is an (H,G)-biset with structure maps

T:U — Hy and AU — Gy
[(h, g, v,a)]L—> t(h) [(h, g,v,a)]L—> t(g).

Therefore, following subsection the tensor product V ®y U in the left hand side of (3.2.2)
makes sense and it is a (K, G)-biset by Lemma [1.2.15| The orbit of a given element

[(k, h,w, u) M@y [(W, g,v,0)]LeV U

will be denoted by K[([(k,h,w,u)]./\/l O [(h’,g,v,a)]ﬁ)]g. If ye Q\(VR®uU) /G is an
element in the set of orbits of ¥V ®y U, then we will use the following notations, similar to the
ones already used in Section and in Proposition [3.1.3

(Stabge,0) W), = ((£,9),) = {© W) . AW) |,
((€.9),), = { o) e ki x G| by =yg, OW) =s(k), t(9) =AW)},
(Stabgc, g) (1)), = { (k,g) € K1 x 91‘ kyg=y, ©(y) =s(k), t(g)=A(y) }

Since, by Lemma [I.2.11] and Proposition [I.2.12] every biset is the disjoint union of its orbits.
By Proposition we obtain the following isomorphisms of (IC, G)-bisets:

Kxg \* Kxg\"
o= yerep(,C’L-:J)(V®HM) <Stab(’¢ 9) (?J)> - ygrep(,cgj)(vcaﬂu) (UC’ g)y> ‘
Consider the map
p: K\N(VenU) /G — M\X/L
| (10, w, )M @y [(W, 9,0,0)1£) |G —> M| (w,u,h7W v,0) | £,

We have to check that ¢ is well defined. Let us choose two representatives for the same orbit,
that is, let us assume that we have an equality of the form

K[, b w, )M @3 [0 g, v,0) 1] G
= K[t ermIM @y [(€ f,m,b)IL]G & K\ @ul)/a
in the orbit set of V ® U, where [(k, h,w, u)]M, [(l,e,r,n]M € V and
[(W,g,v,0)]L, [(¢, f,m,b)]L € U.

By definition this equality means that there are k1 € K1 and g1 € G; such that s (k1) = t (1),
t(l) =t(g1) and

[(k, h,w,u)]./\/l Qu [(W,g,v,a)]L = k1 ([(l, e,m,n) M@y [(¢, f,m, b)]ﬁ) g1
= [(k1l7 e, n)]M Qn [(6/7 gl_lfv m, b)]ﬁ
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Thus there is h; € Hq such that t(e) =t (h1), t(h1) =t(e') and
([(k,h,w,u)]./\/l, [(h/,g,fu,a)]ﬁ) = ([(kll,hl_le,r, n)JM, [(hl e, g7 f,m b)]ﬁ) e VxU.

This means that
{[(k: h,w,u)IM = [(kil, hi e, r,n) M

[(h g9,v, a)]ﬁ [(hl 6 91 lfvm b)]E

As a consequence, from one hand, there is (ko, he) € My such that s(ka, ha) = (w,u),
t (k2, h2) = (r,n) and

(k,h,w,u) = (/ﬁl,hfle,r, n) (k‘g,hz) (/ﬁl/ﬁg,hl €h2, (k‘z) ,S(hg)) . (3.2.3)
On the other hand, there is (hs, g2) € £1 such that s (hs, g2) = (v,a), t (hs, g2) = (m,b) and
(h’,g,v,a) = (h1 Lef ,o1f,m, b) (hs, g2) = (hfle’hg,glfgg,s(hg) ,5(92)) . (3.2.4)

Therefore we obtain the following equalities from equations (3.2.3)) and (3.2.4)

ko =1k, ho=ethih, and hy=¢€'hih!, g = flg;lg
Thus
(ka, ho) (w,u, k™ h v a) (hs, g2) ™" = (s(k2) ,t (ha), hoh™ 1h'h31, t(h3),t(g2))
= (w n,e Yhihh='h'n'~ 1h1 Le! m, b) (w n,e ‘e, m, b),

which shows that M[(w,u, h "1 v,a)]L = M[(w,n,e te’,m,b)]L in the orbits set M\ X /L.
Henceforth, ¢ is a well defined map.

In other direction, we have a well defined map given by
v M\X/L— K\(VenU)/G
M (w,u, h,v,a)]L — ]C[[(Lw, Ly W, ) | M @y [(By Ly v, a)]ﬁ]g.

Let us check that ¢ and 1 are one the inverse of the other. So, for each orbit
/c[[(k, h,w, u)]M @3 [(H, 9,0, a)],c]g e K\(VeuU) /g
we have
b0 o (K[ [0k hyw, ] IM @ [(W, 9,v,0)1£|G ) = (M (w,u,h™'W,v,0) |£)
= K| [t tas 0, )M @iy [(B7 W 10,v,0) 1] G
= K| (K ([ tas w, w]] M)A @3¢ ([0, 10,0, )] L) g™ ) |
= K[[(k, h, w,u)IM &y [(I, 9,v,a)]£] G,
which shows that % o ¢ = id.
Conversely, for each element M[(w, u, h,v,a)]L € M\X/L, we have

Y

potp (M[(w,u,h,v,a)]L) = @(K[[(bw, L, W, ) M @y [(By Ly v, a)]ﬁ] Q)
= M| (w,u, vt h,u, a)| £ = M[(w,u, h,u,a)]L,
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whence ¢ o1 = id. Therefore ¢ is bijective with inverse 1.
Let us check that, for every element of the form
Y = [(tw; tu, w, W) M @3 [(h, 10, 0,0)]L € [K\ (V@1 U)/G],
there is the following equality of subgroupoids
(K.G), = Mwsw) y (hyea) p(u,a)

So, taking (ks, g3) € K1 x Gy such that s(k3) = t(k3) = w and s(g3) = t(g3) = a we have
ksy = ygs if and only if

= [ (K3, tu, w, u)]IM @y [(h, g3, u, a)] L,
if and only if there exists hy € H; such that s (hy) = t (hy) = u and
([t tas w0, IM, (B 1y 0, @)]E)
= ((1Chs, v, M), 1 ({1 5,1 ))0))
— (I(
[

ks, Luh4 , W, u)]./\/l, [(hglh,gg, u, a)]/l)
( (ks, by w, u)IM, [(hy " h, g, u, a)]ﬁ) eV xU.
This holds true, if and only if, there exists hy € H(*%) such that
{[(Lw,Lu,w,u)]M = [(kg,hgl,w,v)]./\/l eV,
[(hytg,u,a)]L = [(h;lh,gg,u, a)]ﬁ € U,
if and only if there exists hy € H(*® such that
(k3, hy ) e Mww)
{ (hyta) ™ (R g3) (ota) = (ha) ™ (B hygs) € L&),
if and only if there exists hy € H(® % such that
{ (k3,hyt) € MW
(th,gg) g (hrta) plusa)
if and only if
(ks,g3) € MWW y (hea) plusa),

As a consequence we get the following isomorphisms of (K, G)-bisets:

L L
KxG Kxg
veuu= |y ((zcmy) ] Y <M<w,u> : <h»ba>£<u7a>> ’

yerep(x gy (VOHU) (w,u, h,v,a)erep pq, £)(X)

which depends on the choice of a representatives set of the orbits of the biset X. The proof is
now completed. O

As a final remark of this section we note that, as it has been done in |[BoulOa, Remark
4.1.6], the Mackey formula could be used to characterize the admissible subcategories of the
biset category of finite groupoids, once this has been opportunely defined. We do not go into
the details because it would be very technical and it will be the object of future work.
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3.3 Examples using the equivalence relation groupoid

In this section we will give a simple application of Theorem [3.2.1] using the case of groupoids
of equivalence relations as subgroupoids of groupoids of pairs (see Example . In other
words, we want to test this formula for this case. As we will see at the end of subsection
this result is not surprising, although not immediate to decipher.

3.3.1 Subgroupoids and equivalence relations

Given a set H, consider as in Example [1.1.11| the groupoid of pairs H = (H x H, H) and let
R be an equivalence relation on H. Given the groupoid of equivalence relation R = (R, H),
we can consider the inclusion of groupoids

R=(RH) s H=(HxHH). (3.3.1)
Following equation (1.2.3]), we know that

H

<R>L = { [(a,u)]R‘ (a,u) e R(H)" = Hisx- Ro }

where a € Hi, s(a) = u € Ry = H and where

[(a,W)] R = { (ar,5(r)) € R (H)"

reRys(a) =t(r) }

with 7 € Ry; so there are hg, hy € H (in the same equivalence class) such that » = (hg, hy), and
we also have a = (hy, hg) € H1 with hy, hy € H. In particular, we have hy = s(a) = t(r) = hs,
hy =s(r)e Ro=H, ha =s(a) =ue Ry and

ar = (hl, hz) (h3, h4) = (hl, h4) .
As a consequence
[(a, w)] R = [((h1, h2) , h2)| R = { ((h1, ha) , ha) € Hasx 7, Ro = (H x H) x H }

and

<z)L B { [((hl,hz),fw)]R‘ hn,ho & H }

Lemma 3.3.1. Let H/R be the quotient set of H by the equivalence relation R. Then
H x (H/R) becomes a left H-set with structure map and action given by

H H X
g:HxE—>H0:H und ’Hlsxg(HxR)—>HxR

(s hz) — M ((h3,h) s (s hz)) — (hs,ha)
where for every h € H, h denotes the equivalence class of h modulo the relation R.

Proof. 1t is immediate. O

The following lemma is also straightforward.

Lemma 3.3.2. Given hy, ha, h3, b, hy, hy € H we have that ((h, ha) ha) ~ (R, h) , hy), as

representative elements of the coset [((h1,h2),h2)] R, if and only if hy = b and hy = b)) as
equivalence classes in H/R.



56 CHAPTER 3. MACKEY FORMULA FOR BISETS OVER GROUPOIDS

Now we are able to deduce the following isomorphism of groupoid-sets.

Proposition 3.3.3. Using the morphism of groupoids (3.3.1)), we consider (H/R)" as a left
H-set with structure map and action given explicitly in equation (1.2.5). Then, there is an
isomorphism of left H-set

R R
[((P1,h2) , ha)| R — (h1, h2) .

L
¢<H> —>ng

Proof. The map 1 is well defined and injective thanks to Lemma and the surjectivity
is obvious. Therefore, we only have to check that 1 is a homomorphism of left H-set. The

condition on the structure maps is trivial so we only have to check the condition on the actions.
Henceforth, take (y1,h1) € Hy and [((hy, he), ha)] R € (H/R)": using the action of equation

, we compute
(y1,h1) - [((h1, h2) ,h2) ] R = [((y1, ko) , ko) R

and we apply v to obtain (yl,FQ). Now we apply again ¢ to [((h1,h2),h2)] R, we obtain
(hl, I’TQ) and finish by applying the action once again to obtain (y1, h1) - (hl, E) = (y,ITQ) O
3.3.2 Equivalence relations and Mackey formula

Given sets H, K and G, let us consider the groupoids of pairs H = (H x H,H), K =
(K x K,K) and G = (G x G,G). We have the isomorphisms of groupoids (they're just a
switch)

KxH=(KxKxHxHKxH)~(KxHxKxHKxH)=:A

and

HxG=(HxHxGExGHxG)=(HxGxHxG,HxG)=8

that we call
1:KxH—A and Yo: H xG— B,

respectively. Note that A is the groupoid of pairs with respect to the set K x H and B is the
groupoid of pairs with respect to the set H x G. Let R be an equivalence relation on K x H
and ) be an equivalence relation on H x G: we have R < A; and Q < By and we can consider
the inclusion of groupoids

Ri=(RKExH)—>A and Q= (QHxG) — B

Defined the groupoids M = ;! (R) and £ = v, (Q), we clearly have the isomorphisms

(5 = (&) = (F) = ()

of (IC, H)-bisets and of (H, G)-bisets, respectively. In this way we get an other isomorphism of

(K, G)-bisets
K x H\" HxG\" _ (A" B\"
() e ("27) = () 2 (Q)

where, in the right hand term, the structure map and the action are opportunely defined.
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On the other hand, we know that

A L
(%) = {1 sk b)) Rl b = 0 b )

and

B L
(5) = {0500 hucg2) Chsoga)) Qs s 91,522 G

Lemma 3.3.4. The following Cartesian product of sets

(K x H) x (K;H)

admits a structure of a (I, H)-biset.

Proof. The fact that it is a left K-set can be proved like in Lemma |3.3.1] Therefore we only
have to show that it is a right H-set. The structure map is given by

91 (K x H) x (K;;H)—w

((/fl,hl) : (k2,h2)) — Iy

and action is defined by
KxH

)19><S’H1—>(K><H)>< (KXH>

(K x H) x < -
(k1) For) (b, hs) ) — (k. o) oo o).

Now we have to prove the action conditions. The neutral element conditions and the associa-
tivity are trivial. Regarding the other condition, let be

((Ckr 1), o, B2) ) () ) € (K x H) <K;H>>§xt’}{1 :
we have
v ((k‘l,hz) ’m> = h3 = s(h1, h3).

Lastly, the compatibility conditions of the left and right actions are immediate to verify. [

Proposition 3.3.5. Keeping the above notations, we have the following isomorphism of
(KC, H)-bisets
A\* K x H
|l=) — (K xH
o () — @m <

[((k1, b1, ko, ho) , (K2, he)) | R — ((khhl),(k27h2))-

Proof. As a map of left K-sets, ¢ is an isomorphism thanks to Proposition [3.3.3] applied to
the set K x H. So we just have to prove that it is an homomorphism of right H-sets. The
condition on the structure map is obvious. Regarding the condition on the action maps, given
T = [((kl, hl, kz, hg) R (k‘g, hg))] R € (.A/R)L and (hl, hg) € /Hl, we have

- (hi, hs) = [((k1, hs, ko, ho) , (ko ha) )[R s ((k:l,hg) , (kQ,hQ)) .
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On the other hand, we have
o(@) - (k) = ((Fa b, Ghzoh2) ) ) - (hashs) = ((kashs) (ks o) )
and this finishes the proof. O

Since a similar proposition is true also for (B/ Q)L, we have the following isomorphism of

(K, G)-bisets:

<7“:>L®H (g)L_) (% 1) (K;H”@H (% G) x (H5G>) (3.3.2)

The typical element of the right hand side of formula (3.3.2)) is

y = ((k‘l,h3) s (ka, hz)) ®3 ((h:a,gl) : (h4,g2)> (3.3.3)

for ki,ke € K, ha,hs,hy € H and g1,g2 € G. Notice that, by the definition of the tensor
product over H, the element hg should appear in both factors of the tensor product. Therefore,
there is the following isomorphism of (I, G)-bisets given explicitly by:

(1 10y (B ) Yo (11 2 x (59 ) i x B i E

((k17h3) ; (k%h?)) On <(h3791)7(h4,92)) — <k1,(/€2,h2)7(h4,92)791> :

This gives us the left hand side of the Mackey formula ((3.2.2)) in the situation under considera-
tion.

Let us pass to the right hand side of the formula (3.2.2)). Consider the biset X given in
equation (3.1.3), and fix a representative set rep(y, £ (X). Using the notations of Proposition

B.1.7, we have

Xz{(w,u,h,v,a)elCoxHole x Ho x Go

(wau) € MOa (v,a) € ‘CO:
u=t(h),v=-s(h) .
In our case, it is clear that X is identified, as a (M, £)-biset with
Y ={(k,(hi1,h2),9) e KxHx HxG}=KxH; xG.

Therefore, one can choose a bijection between their representative sets rep(ag, r) (X) and
rep(u, 2y (Y). As a consequence, we obtain the following isomorphism of (K, G)-bisets:

L
4 ( K x H )
k,h hi,h2),t ha,
(k,ha,(h,h2),h2,9) € rep aq, £)(X) M) 5 ((( 1,h2),19) £ (h2 9))
L (3.3.4)

~ LJ_FJ ( K xH >
- k,h hi,h2),t ha,

(Ky(h1,h2),9) €rep(aq, £)(Y) M) ((( 1,h2),19) £(h2 g))

On the other hand, given k, k" € K, hq,ho, h},hl, € H and g,¢ € G, we have

(kv (h17h2) 79) ~ (k/7 ( /17h/2) 79)
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as elements of the (M, £)-biset Y, if and only if there are m = (k,k’,hi,h}) € My and
l = (ha,hb,g,9") € L1 such that

(kv (hla h2) ag) =m (klv ( /17 h/2) 79/) l>
if and only if (k, k', h1, b)) € My and (he, hY, g,¢") € L1, if and only if we have (k, h1) R (K, hY)
and (he, g) Q (hh, g’). Therefore, we have a bijection

KxH HxG
repaq, o) (V) =~ 7 X o (3.3.5)

Let us now decipher the denominator parts of the right hand-side of equation (3.3.4)). For
any element (k, (h1,h2),9) €Y, we have

M) {(k,k,h1,h1) }, L9 = {(h27h279,9)}

and, using the multiplication of groupoids of pairs we get

((h1,h2),9) p(h2,9) — ((h1,h2), (9,9)) p(h2,9)

= (0:02,60.9)) (.12 (0.9) ) (o) (0:0)) ™ |

= { (h1,ho) (hesh2) (k2. 1), (9.9) (9.9) (9.9) ) }
= { ((hlahl),(g,g)) } = {(hljhl,g,g) }

As a consequence, we have
Wwwn*wammgmm):{%$ﬂﬂnzwxxwwm7

which leads to the following isomorphism of (K, G)-biset

I xH
M(kh1) 4 (((hlth)

L
7Lg)£(h2’g))> ~ {(kl,k,gl,g) e K x K xGxG|(k1,q1) e K xG}.

Combining with formula (3.3.4]), we arrive to the isomorphism of (C, G)-bisets

K xH

L
E_J (M(krhl) * (((h17h2)7bg)£(h2vg))>
(k,ha,(h1, h2),h2,g9) €reppq, £)(X)

& (K x Q)

(ky(h1,h2),9) €rep(ay, (V)

12

Therefore, using the bijection of equation (3.3.5)), in this case the Mackey formula can be
read as the following isomorphism of (C, G)-bisets

gy B HXG o H  &xo) (3.3.6)

R Q KXHXHXG
R Q

where the right hand side is the coproduct of K—IX%H x HXG times K x G in the category of

(K, G)-bisets. As anticipated at the beginning of this section, formula (3.3.6]) isn’t surprising
but the Mackey Formula of Theorem enabled us to shed new light on the fact the it’s
actually an isomorphism of (C, G)-bisets, and not a simple bijection.
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Chapter 4

Weak equivalent groupoids

Let G be a groupoid: it is possible to prove that the right translation groupoid induces a
functor — x G: Sets-G — Grpd. We will show that this functor is faithful and cocontinuous
but, in general, it is neither full nor essentially surjective.

Subsequently, we will turn to an obvious question that arises since groupoids are, in
particular, categories: how to characterise groupoid that are equivalent as categories.

Lastly, using the aforementioned theory, we will explain how to introduce a particular
equivalence relation on the category of finite right groupoid-sets (see Definition [£.4.1)): we will
say that two groupoid-sets are weakly translationally equivalent if their translation groupoids
are equivalent as categories.

4.1 A few preliminary results

Let f,h: (X,s) — (Y,0) be morphisms in Sets-G. We define a relation ~ on Y in the
following way: for each yq,y2 € Y we set y1 ~ yo if one of the following three conditions is
satisfied:

(1) there is x € X such that y; = f(z) and yo = h(x);
(2) there is x € X such that y; = h(x) and yo = f(z);
(3) y1 = yo.

The relation ~ is clearly reflexive and symmetric.

We define ~ as the equivalence relation generated by ~, we denote with Z its quotient
set Z =Y/ ~ and with [y] the equivalence class of y € Y. Moreover, we denote with 7 the
canonical projection to the quotient

Y — 7
y— [yl
Proposition 4.1.1. The quotient set Z is a right G-set with structure map and action
w: Z —> G n Zu*xtG1 — Z
[y] — 0 (y) (lwl,9) — lyl -9 = lygl,

respectively. Moreover, the canonical projection 7 is a G-equivariant map and a coequalizer of
the morphisms f and g in the category Sets-G.

61
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Proof. Let be y1,y2 € Y such that y; ~ yo: if there is € X such that y; = f(z) and yo = h(z)
we obtain

0(y1) = 0f () = < (x) = Oh(z) = 0 (y2) -

Otherwise, if there is x € X such that y; = h(x) and yo = f(x) or if y; = y2, we obtain the
same result, that is, 0 (y1) = 0 (y2). As a consequence y; ~ yo implies 0 (y1) = 0 (y2) and
y1 ~ yo implies € (y1) = 6 (y2). This proves that w is well defined. Now we only have to show
that the action is well defined. Let be g € G; and y1,y2 € Y such that 0 (y;) = 0 (y2) = t(g)
and y1 ~ yo: if there is z € X such that y; = f (x) and y2 = h(x) we obtain y19 = f (zg) and
y2g = h (xg), thus y19 ~ yag. Otherwise, if there is x € X such that y; = h(x) and y3 = f(z)
or if y; = yo we obtain the same result, that is, y1g ~ y2g. As a consequence the action of G
on Z is well defined and 7 is a G-invariant map.

It is evident that wf = wh: for each z € X we have wf(x) = [f(z)] = [h(x)] = 7h(z).
Now let g: (Y,0) — (A, ) be a morphism of right G-sets such that ¢f = gh. We want to
construct a G-equivariant map u: (Z,w) — (A, «) such that umr = ¢q. The situation is as
follows:

f
(X,() T} (Y79) <ﬂ> (Zaw)

(4,q).

Let be y € Y: we define u ([y]) = ¢(y). We have to check that u is well defined. Let be
y1,y2 € Y such that y; ~ yo: if there is x € X such that y; = f(x) and y2 = h(x) we
obtain ¢ (y1) = ¢f(x) = gh(x) = ¢ (y2). Otherwise, if there is x € X such that y; = h(z) and
y2 = f(z), or if y; = yo, we obtain the same result, that is, ¢ (y1) = ¢ (y2). As a consequence
y1 ~ yo implies ¢ (y1) = ¢ (y2) and y; ~ yo implies q (y1) = ¢ (y2). This proves that u is well
defined. For each y € Y we calculate

au ([y]) = aq(y) = 0(y) = w ([y])

and, for each ([y],g) € Z,, %t G1, we calculate

u([ylg) = u(lygl) = a(vg) = a(y)g = v ([y]) g-

As a consequence we have proved that u is a G-equivariant map. Moreover, it is clear that
um = q from the definition of w.

Lastly, let be v: (Z,w) — (A, «) such that ¢ = vm. For each y € Y we calculate
u([y]) = q(y) = vr(y) = v ([y]) therefore u = v and the universal property of the coequalizer
is now proved. O

Theorem 4.1.2. The category Sets-G has (small) colimits, that is, is cocomplete.

Proof. Thanks to the dual version of [Bor94, Thm. 2.8.1], the thesis follows from Proposi-
tion and the fact that the category Sets-G clearly has (small) coproducts, which are given
by the disjoint union. O

4.2 The right translation functor

Ezxample 4.2.1. Let G be a groupoid and consider (Go,Idg,) as a right G-set with action given
by formula (1.1.3[). Then the right translation groupoid Gy x G is isomorphic to G: this
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isomorphism is given at the level of arrows by the map
pry: Gotdg, Xt 91 — Y1
(t(9),9) — 9.
Give a morphism of right G-sets F': (X,s) — (Y, 0) we have a morphism of groupoids
FxG:XxG— X' xgG
defined by (F' x G), = F and (F x G),; = F x Idg,, that is,

X xg X'xg
T F(x)

(xg (=9) :c) —_— <F($g) — F(z)g (F(z),9) F(;g)> | (4.2.1)

This implies that — x G establishes a functor as claimed by the following statement.

Proposition 4.2.2. Given a groupoid G. Then the right translation groupoids establish a
functor
— % G: Sets-G — Grpd

defined, on morphisms, as in equation (4.2.1). Furthermore, — x G preserves coproducts, that
18, we have an isomorphism of groupoids

(@Xj) g [[(X;%0).

jel jel
for every family ((X;, gj))jel of right G-sets. Moreover, the functor — x G is faithful.

Proof. The proof of the first statement is immediate. The proof of the second and the third
claims use routine computations and are left to the reader. O

Remark 4.2.3. Notice that the functor — x G: Sets-G — Grpd is not always full. In other
words, not any morphism of groupoids Xx — Y x G comes from a G-equivariant map

(X,s) — (Y, 9), as shown in Example and Remark

Proposition 4.2.4. The functor — x G is not essentially surjective.

Proof. Given a right G-set (X,¢), the connected component of the right translation groupoid
X x G are of the type

(G/H) % G,

where H is a subgroupoid of G with a single object. The isotropy groups of (G/H) x G are
isomorphic to H;. This means that the isotropy groups of X x G are all subgroups of the
isotropy groups of G. Now let us consider A, a connected groupoid whose isotropy groups are
not isomorphic to any subgroups of the isotropy groups of G (such groupoid A clerly exists
for cardinality reasons). It is evident that there cannot be a transitive G-set whose right
translation groupoid is isomorphic to A, which implies the thesis. O

Proposition 4.2.5. The right translation functor — x G: Sets-G — Grpd preserves the
coequalizers.
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Proof. We consider a situation as in the following diagram, with ¢ coequalizer of f and h:

(X,9) :

_—
h

(V,0) —L 5 (4,a).

We consider another coequalizer of f and h, the morphism 7: (Y,0) — (Z,w), as defined in
the proof of Proposition [£.1.1] The situation is as follows:

(Z,w)
; / l
(X0 T S0 " (),

where s is an isomorphism of right G-sets that exists thanks to the universal property of the
coequalizers. Since — x G is a functor we obviously obtain

(@xG)(fxG)=(¢gxG)(hxgG) and  (7xG)(fxG)=(rxG)(hxG).

We have to prove that ¢ x G is a coequalizer of f x G and h x G. Let be ¢: Y x G — H such
that o (f x G) = ¢ (h x G). We have to construct a morphism of right G-sets u: A x G — H
such that u (¢ x G) = ¢. The situation is as in the follows diagram.

ZxGg
TG Jsxg
4>ng qxg
X xg Y xGg— 3 AXxG

hong \
u
<p ~
H

Let be a € A = (AxG),: there is y € Y such that a = s([y]) = ¢(y) thus we can
define ugp(a) = ¢o(y). We have to check that ug is well defined. Let be y1,y2 € Y such that
s([y1]) = a = s([y2]): since s is an isomorphism we obtain [y;] = [y2] thus y; ~ y2. This

means that there are zg,...,2, € Y such that zg ~ 21 ~ -+ ~ z,,. If n =0 and y; = ys we
have proved that ug is well defined. Otherwise, without loss of generality, we can assume n > 1
and z; # z;4+1 for each i =0,...,n — 1. We have

wof = o (f xG)y=1o(hxh)y=oh.
Let be i € {1,...,n—1}: there is x; € X such that either f (z;) = z; and h(x;) = 241, or
h(x;) = z; and f(x;) = zi+1. In the first case we obtain ¢g (2;) = wof (zi) = poh (z;) =
©o (zi+1) and in the second ¢g (z;) = woh (;) = @of (zi) = po (zit+1). Therefore g (y1) =
©o (y2), up is well defined and, by definition,

ug (g ¥ G)y = uoq = ¢o-

Now let be (a,g) € (A x G),: there is y € Y such that a = s([y]) = s7(y) = ¢(y) and we
define uq(a, g) = ¢1(y,g9). We have to check that uy is well defined. Let be y1,y2 € Y such

that y; ~ ys. There are zg,...,2, € Y such that zo ~ 21 ~ -+ ~ z,. If n =0 and y; = yo we
have proved that u; is well defined. Otherwise, as before, without loss of generality, we can
assume n > 1 and z; # z;11 for each i =0,...,n — 1. We have

p1(f=xG)y=p1(hxh).
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Let beie {1,...,n—1}: there is ; € X such that either f (z;) = z; and h (z;) = 241, or
h(x;) = z and f (z;) = z;4+1. In the first case we obtain

e1(zi,9) = o1 (f (i) ,9) = o1 (W (xi), 9) = ¢1 (211, 9)

and in the second

¢1(2i,9) = 1 (h(xi) , 9) = o1 (f (i) 9) = ¥1 (2i41,9) -
Therefore ¢1 (y1,9) = ¢1 (y2,9), u1 is well defined and, by definition,

u1 (g % G); = u1 (g x Idg,) = ¢1.

Now we have to prove that u is a morphism of groupoids. Given (a, g) € (A x G),, let be
y € Y such that a = ¢q(y); we calculate

X

s™u1(a,g) = s*u1(q(y),9) = s"v1(y,9) = vos™ (4,9) = vo(yg) = uo (¢(vg))
= ug (q(y)g) = uo(ag) = uos™(a, g)
and
t"ui(a,g9) = t"u1(qy), 9) = t"¢1(y,9) = vot™(y,9) = vo(y) = uoq(y) = uo(a) = uot™(a, g).

Let be (a, 9), (ag, h) € (A x G),: then (a, g) and (ag, h) are composable and we have (a, g)(ag, h) =
(a,gh). Given y € Y such that a = ¢(y), we calculate

u((a,9)(ag, b)) = wi(a,gh) = @1y, 9h) = o1 ((,9)(vg. 1))
= ¢1(y,9)e1(yg, h) = w1 (a, g)ui(ag, h).
Now, given a € A, let be y € Y such that a = ¢(y): we calculate, since a(a) = aq(y) = 6(y),

(51 (a, La(a)) =¥1 (y, ba(a)) =¥l (y, Le(y)) =¥ (L;) = Loo(y) = tuo(a):
As a consequence we have proved that u is a morphism of groupoids.

Now we only have to prove that a groupoid morphism wu such that u (¢ x G) = ¢ is unique.
Therefore, let be v: A x G — H such that v (¢ x G) = ¢. Note that, since sm = ¢, then ¢, as
a function, is surjective. We calculate

voq = v0 (¢ X G)y = wo = uo (¢ ¥ G)y = uoq

thus, thanks to the surjectivity of ¢, we obtain vy = ug. We have to prove that
(q A gl) : YGngl - Aaxsgl

is surjective. Let be (a,g) € A 4XxsGi: there is y € Y such that a = ¢(y), thus 0(y) = aq(y) =

a(a) = s(g), therefore (y,9) € Y 9xsG1 and (¢ x G1) (y,9) = (a(y),9) = (a,g). This implies
that (¢ x G1), is surjective and, since vy (¢ X G); = ¢1 = u1 (¢ ¥ G);, we obtain v; = u;.

As a consequence u = v and the thesis is proved. O

Theorem 4.2.6. The functor — x G: Sets-G —> Grpd is cocontinuous, that is, it preserves
all (small) colimits.

Proof. Thanks to the dual version of [Bor94, Prop. 2.9.2|, the thesis follows from Proposi-
tions {.1.1], @.2.2| and [£.2.5] O
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4.3 Weakly equivalent groupoids

Definition 4.3.1. We say that a morphism of groupoids ¢: H — G is a weak equivalence
if ¢, as a functor, is an equivalence of categories. We say that two groupoids H and G are
weakly equivalent groupoids if there is a groupoid K and there are two weak equivalences

w and v as follows:
K
¥ P
(4.3.1)
} / \ .

Remark 4.3.2. Evidently, any identity morphism is a weak equivalence. Therefore, if there
is a weak equivalence H —> G (or G — H), then H and G are obviously weakly equivalent.
Conversely, if H and G are weakly equivalent, then, as was explained in [EK17, page 562], one
can choose an inverse of one of the arrows in the diagram and obtain, in this way, a weak
equivalence. As the reader will notice in the sequel (see Proposition , the fact that we
should express the weak equivalence “relation” in the form of a “span”, as in diagram , is
essentially due to its connection with principal-bisets and their two sided-translation groupoids
(see |[EK17, Lemma 2.8]).

Proposition 4.3.3. Given groupoids G and H, let p: G — H be a weak equivalence. Then
the induced functor
p*: Sets-H — Sets-G.

1s a Laplaza equivalence of categories.

Proof. By hypothesis there is a morphism of groupoids ¥: H — G such that there are natural
isomorphisms
e: Yo — Idg and n: e — Idy .

Considering the induced functors and induced natural transformation and using Proposi-
tion [1.3.9 we obtain

* ES
P = (o) —— (Idg)* = Idsersg,  *¢* = (p0)* —— (Idy)* = Idsers

To conclude, it’s sufficient to apply Propositions [1.3.7 and [1.3.8] O

Given a groupoid G and a fixed object x € Gy, recall that by G*) we denote the one object
subgroupoid of G with isotropy group G* and object x.

Lemma 4.3.4. Given a transitive groupoid G, let be x € Gy. Then the inclusion functor
(@) . g(w) SN/
establishes a weak equivalence of groupoids.

Proof. The functor 7 is clearly fully faithful; moreover, it is essentially surjective because G
is transitive. As a consequence 7@ is an equivalence of categories. O

Notice that Lemma [£.3-4] and Proposition [£.3.3] generate another proof of Theorem [I.3.15]

Proposition 4.3.5. Given two transitive groupoids G and H, then the following statements
are equivalent.



4.3. WEAKLY EQUIVALENT GROUPOIDS 67

(1) There is a weak equivalence G — H..
(2) For each u € H, and for each x € G, there is an isomorphism of groups G¥ =~ H".

(3) There are u€ H, and x € G, such that there is an isomorphism of groups G* =~ H"™.

Proof. Without loss of generality we can assume G, # & # H,.

(1) = (2). Given a weak equivalence ¢: G — H we have an isomorphism of groups
G =~ M@ for every z € Gy. Moreover, if u € H is an arbitrary element, then H* and
H¥0(z) are conjugated subgroup, since H is transitive. As a consequence G* and H" are
isomorphic groups.

(2) = (3). Obvious.

(3) = (1). Fix the pair (z,u) € Gy x Ho such that G* =~ H#0(*) as groups. Then clearly
H® and G are isomorphic as groupoids. Therefore, there is a weak equivalence G — H,
as, thanks to Lemma there is a weak equivalence between G and G () and also between
H and H™. O

Definition 4.3.6. Let (X,«, ) a (G, H)-biset. We say that (X, «, ) is a left principal
(G, H)-biset (or left principal (G, #)-bundle) if the following conditions are satisfied:
(1) the structure map f: X — Hy is surjective;

(2) the canonical map
ViGisxa X — XgxpX

(9,2) — (g, x)
is bijective.
Definition 4.3.7. Let (X, «, ) a (G, H)-biset. We say that (X, «, 3) is a right principal
(G, H)-biset (or right principal (G, #)-bundle) if the following conditions are satisfied:
(1) the structure map a: X — Gy is surjective;

(2) the canonical map
V' XgxiHi — X axa X

(xmg) - (wig)
is bijective.
Definition 4.3.8. We say that a biset (X, «, ) is a principal (G, #H)-biset (or principal
(G, H)-bibundle) if it is both a principal right biset and a principal left biset.
The following result, which we will need in the sequel, improves somehow the one stated

in |[EK17, Theorem 2.9].

Proposition 4.3.9. Given two coproduct of groupoids G = ]_[jeJ Gj and H = [ [, Hi, where
G; and H; are not empty and transitive for each j € J andi € I. Then the following statements
are equivalent:

(1) The groupoid G and H are weakly equivalent.

(2) There is a weak equivalence G —> H.

(3) There is a bijection a: J — I such that for each i € I and for each y € (H;),, there is
an isomorphism of groups (gafl(i))‘”” > (Mi)?, for each x € (Go-1(3)), -

0
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(4) There is a bijection a: J —> I such that there are i € I, y € (M), and x € (Gy1(;)
(Hi)”.

0

lle

such that there is an isomorphism of groups (gafl(z-))””
(5) The categories Sets-G and Sets-H are Laplaza equivalent.

(6) The monoidal categories Sets-G and Sets-H are equivalent with respect to the fibre product
monotdal structure.

(7) There is a principal (H,G)-biset.

Proof. 1t follows from Remark and Proposition in combination with the result [EK17]
Theorem 2.9|. O

Now we can state the following result.

Proposition 4.3.10. Given a groupoid G, let X and Y be two right G-sets and consider their
sets of orbits J = X /G and I =Y /G. Then the following statements are equivalent.

(1) There is a weak equivalence X x G —Y x G.

(2) There is a bijection o: J —> I such that for each | € I and each y € I, the group
(Stabg (y)), is isomorphic to (Stabg (z)),, for every x € a=1(l).

(3) There is a bijection a: J —> I such that for each l € I, there are y €l and x € a~ (1)
such that the groups (Stabg (y)), and (Stabg (z)), are isomorphic.

(4) There is a principal (X x G, Y x G)-biset.

Proof. To prove (1) < (4), it is sufficient to apply Lemma |1.1.22fin conjunction with Proposi-
tion 4.3.9 0

4.4 Weakly translationally equivalent groupoid-sets
We start this section by giving the subsequent definition.

Definition 4.4.1. Given a groupoid G and two right G-sets (X,¢) and (Y,9), we say that
(X,¢) and (Y, ) are weakly translationally equivalent G-sets provided that one of the
equivalent conditions in Proposition is satisfied. When the class of objects of the
category Sets-G is actually a set (or when we restrict ourselves to the full subcategory of G-sets
with underlying finite sets), then the previous relation induces an equivalence relation which
we denote by ~,t. By abuse of notation we will also use this symbol between any kind of right
g-sets.

According to Proposition two transitive right G-sets are weakly equivalent if and
only if there is an isomorphism of groups between two of their stabilizers. More precisely,
two transitive G-sets (X,¢) and (Y,9) are weakly equivalent if and only if there is a pair
(x,y) € X x Y and an isomorphism of groupoids Stabg () =~ Stabg (y). Applying these
observations to the case of right cosets, we obtain the following result.

Corollary 4.4.2. Let G be a groupoid and take two subgroupoids H,IC with single object, that
is, elements in Sg. Then the following statements are equivalent.

(1) G/H and G/K are weakly translationally equivalent G-sets.

(2) There is an isomorphism of groups Hi = K;.
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Proof. Recall first that if we set Ho = { a }, then for any coset H[(a, g)] € G/H, we have that

Stabg (H#[(a,9)]) = ¢~ " H1g,

where H; is the group of loops of H1, viewed as a subgroup of the isotropy group G*. The
implication (i) = (i7) follows then from Remark and Proposition [4.3.10, Assume now
that we have an isomorphism of groups H; =~ K. This means that

Stabg (H(a, 24)]) = Stabg (K[(5, )]
as groups, where Ky = { b }. The inverse implication follows then from Proposition 4.3.10 [

Any two isomorphic G-sets are weakly equivalent, as stated in the following proposition.

Proposition 4.4.3. Given a groupoid G, let (X,s) and (Y,9) be isomorphic right G-sets.
Then we obtain (X, <) ~wt (Y, 1).

Proof. Thanks to Proposition [£:2.2] we know that isomorphic right G-sets have isomorphic
right translation groupoids, and this shows the claim. O

Ezxample 4.4.4. Tt is possible that, given a group G, there are subgroups H and K of G
such that G/H and G/K are not isomorphic as right G-sets but there is nonetheless a weak
equivalence between the groupoids (G/H) x G and (G/K) x G . It is enough to take two
subgroups H and K of G that are isomorphic but not conjugated, and the claims will follow
from Corollary [£:4.2] For example, if G is abelian, the relation of conjugacy is the same of the
relation of equality, therefore it is sufficient to take two different isomorphic subgroups of an
abelian groups G. In particular, given an abelian group A, possible choices are G = A x A,
H=Axland K =1x A.

Remark 4.4.5. In relation with Remark [£.2.3] we will use the above arguments to show that
— x G is not always a full functor. Let us keep the notations of Example [4.4.4] By contradiction,
if it were full, since by Proposition [£.:2.2]it is also faithful, then the isomorphism of groupoids
(G/H) x G = (G/K) x G would imply the isomorphism of right G-sets G/H =~ G /K, which is
false, for instance, in the case of Example [£.4.4]

Remark 4.4.6. Unfortunately, the weakly translationally equivalence relation is compatible

with the disjoint union but not with the tensor product — x —. This implies that, unlike the
Go
isomorphism relation, which enables us to construct the classical Burnside rig (see Chapter [5)),

using the equivalence relation ~; we only obtain an additive monoid, and not a rig. As a
consequence, applying the Grothendieck construction (see Appendix , we obtain only an
abelian group, and not a ring.
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Chapter 5

The “classical” Burnside ring of a
groupoid

In this chapter we continue the study of the Burnside theory for groupoids already begun in
Chapter 2l Our main aim here is twofold. First, after defining the Burnside ring of a groupoid,
we characterize it as the direct product of the Burnside rings of its isotropy groups: exactly one
for each connected component. Next, we prove the existence of an opportunely defined ghost
map, in the groupoid context, and we show that it is injective as in the classical group case.
The idempotent of the Q-algebra Q ®z A(G) are then computed employing the decomposition

stated in Corollary [5.1.10

5.1 Burnside functor for groupoids: coproducts and products

In this section we introduce the Burnside ring attached to a groupoid with finitely many objects,
whose construction is based on the skeleton of the category of the right G-sets with underlying
finite sets. For the convenience of an inexperienced audience we recall in the Appendixes [A]
and [B] with very elementary arguments, the general notions of Grothendieck functor and rig
(a ring without additive inverses, also called semiring). Both are crucial in performing the
construction of the Burnside ring functor. The compatibility of this functor with coproducts
and product is needed in order to establish the main result of this section, which asserts that
the Burnside ring of a given (finite) groupoid is the product of the Burnside rings of its isotropy
groups, where the product is taken over the set of the connected components (see Theorem
5.1.8).

We assume, in this chapter, that all handled groupoids have a finite set of objects. This
condition is in fact needed to have a unit for the Burnside ring we are planing to introduce,
since we will make use of the skeletally small category of finite groupoid-sets to perform this
construction. We also assume that functors between groupoid-sets preserve objects with finite
underlying sets, and transform an empty groupoid-set to an empty one, as the induction
functors do. Given a groupoid G, we denote by sets-G the full subcategory of right G-sets with
finite underlying sets.

5.1.1 Burnside rig functor and coproducts

Given a groupoid G, let (X, <) be a finite right G-set, that is, an object in sets-G, and denote by
[(X,¢)] its equivalence class modulo the isomorphism relation. Consider .Z(G), the quotient

71
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set of all finite right G-sets modulo the isomorphism of right G-sets equivalence relation. This
means that elements of £ (G) are classes [(X,¢)] represented by G-sets (X,¢) with finite
underlying set X. We endow the set .Z(G) with an addition and a multiplication operations:
for every (X,¢), (Y, ) € Sets-G, we define

[(X.0)] + [V, )] = [(X.6) @ (¥,9)] = [(X @ Vis @ 0)]
and
[(X.9)] - [V 9)] = [(X, X (7 ﬂ)] (X ex Yich)].

(see subsection for the notations). It is immediate to check that these operations are
well defined and that, in this way, .2 (G) becomes a rig (also called semiring) with additive
neutral element [(J, &f)] and multiplicative neutral element [(Gp,Idg,)] (see Definition
for further details).

The rig construction is a functorial one, as one can prove using general monoidal category
theory. We give, in our case, an elementary proof.

Lemma 5.1.1. Given two groupoids G and H, let F': Sets-G — Sets-H be a strong monoidal
functor with respect to both monoidal structures: & and the fibered product. Let us define

h: 2(G) — L(H)
[(X,9)] — [F(X,9)].

Then h is a homomorphism of rigs.

Proof. Clearly h is a well defined map, since any functor preserves isomorphisms. Now, for
every (X,¢), (Y, 9) € Sets-G we have the following isomorphisms of right H-sets

F(XWY,c W) =F((X,q) W (V,0)) = F((X,q)) HdF((Y,ﬁ)) ~ F(X, )+ F(Y,9),
and

F(XCX§Y,§19> =F<(X,g)g>< (Y,ﬁ)) = F(X,6) x F(V,9) = F(X,)- F(Y,9).

0

Passing to the isomorphism classes and applying h, leads to the the equalities

h([(X, )] + [V, ) =h((X DY, c W)]) = [F(X DY, J)]
= [F (ng) + F(Yvﬁ)] = [F (X7 C)] + [F (Y7 19)] =h ([<X7 C)]) +h ([(K ﬁ)])

and
h ([(X, )] - [(Y,9)]) = h ([(X cxy Y, ¢0)]) = [F (X cxy Y, c0)]

= [F(X,¢) - F(Y,9)] = [F(X,9)] - [F (Y, 9)] = h ([(X,)]) - h ([(Y,9)]).
On the other hand, we have the isomorphisms of right H-sets

F(3,0) = (T, D) and  F(Go,Idg,) = (Ho, Idy,) .
We then obtain h ([(, I)]) = [F (F, )] = [(F, )] and

h ([(G0, 1dg,)]) = [F (Go,1dg,)] = [(Ho, Ids,)] -

As a consequence we have proved that, as desired, h is a homomorphism of rigs. O



5.1. BURNSIDE FUNCTOR FOR GROUPOIDS: COPRODUCTS AND PRODUCTS 73

Now, let ¢: H — G be a homomorphism of groupoids. By Proposition [1.3.6| we can
consider the induced functor ¢*: Sets-G — Sets-H and, thanks to Lemma [5.1.1], from this
functor we obtain a homomorphism of rigs from .Z (G) to .£ (#), induced by ¢*, which we
denote by Z(¢). More precisely, we have

ZL(p): Z(G) — Z (H)
(X, )] — [¢* (X, 9)].-

Proposition and Definition 5.1.2. The correspondence £ defines a contravariant functor
from the category of groupoids Grpd to the category of rigs Rig which we call, inspired by
|Sch91), page 381/, the Burnside rig functor.

Proof. Let ¥: K — H and ¢: H —> G be morphisms of groupoid. Using Proposition [1.3.8
for each [(X,¢)] € £ (G), we obtain

2 W) L) ([(X90]) =2 @) ([(#* (X,0)] = [ (X,9)] = [(p)" (X,)]
= 2 (pv) ([(X,9)]):

Thus the following diagram is commutative

Z(G) L)

—
iﬂ(ml %
%

(H).

Z (K)

Moreover, for each groupoid G we calculate, thanks again to Proposition [1.3.§

29 ([(X.9)]) = [(1de)* (X,9)] = [(X,9)] = (g ([(X.)])

thus £ (G) = Id ¢(g). This shows that .Z is a well defined functor as desired. O

We finish this subsection by discussing the compatibility of the Burnside rig functor with
coproduct.

Proposition 5.1.3. The Burnside rig functor £ sends coproduct to product. In particular,
given a family of groupoids (gj)jef, let (ij: G — g)jel be their coproduct in Grpd. Then

(L)) : Z(G) — Z(G)),;
is the product of the family (£ (gj))j€, in the category Rig.
Proof. Let (fj: A — £ (G;));c be a family of homomorphisms of rigs. We have to prove
that there is a unique homomorphism f: A — £ (G) of rigs such that the following diagram

commutes for every j € I:

A—T 2@

> lg@j) (5.1.1)
2(Gj).
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Let a € A: for every j € I there is (Xj,¢;) € sets-G; such that fj(a) = [(Xj,55)] € £ (G;).
Henceforth, we define, thanks to Lemma [T.3:12]

fla) = [L+J @E)] ,

jel

obtaining, in this way, a function f: A — £ (G). Furthermore, for every [ € I we have

£ (i) f(a) = [(il)* <L+J (EE))] = [Lﬂ (in)* ((ZZ))] (5.1.2)

jel jel
For every [, j € J such that [ # j we clearly have
(i)* ((Xja%')) = (chyx(n)o (gl)ovpr2) = (J, D)
because (G;), N (G1)q = . Instead, for every j € I we have the following isomorphism of right
Gj-sets:
pry: (i5)" ((Xja%‘)) = (chax(ij)o (gj)oapl"2> — (X, )
(x,¢) — .

Continuing from formula (5.1.2]) we obtain that
Z (1) f(a) = [(X1,9)] = fila), forevery lel, and a € A.

This shows that the diagram (5.1.1]) commutes.

The fact that f is a morphism of rigs, that is, f is compatible with the addition and
the multiplication, is proved by direct computations using in part Lemma Lastly, if
v: A— £ (G) is another homomorphism of rigs which turns commutative diagrams (5.1.1),
then for a given a € A, let be (X, <) € Sets-G such that v(a) = [(X,¢)]. Setting, for every j € I,
X; = gj_l (Gio) and ¢ = g‘c‘l(gz) : X; — (G1),, and restricting appropriately the action, we
have

v(a) = [HJ (va<j)] :
jel
Thus, using properties of (i;)* already proved in this proof, we get
fila) = 2 (i) (v(a)) = [(ij)" (X,9)] = [(X;, )]
Therefore, by definition of f, we obtain that f(a) = v(a), for every a € A, and this shows that
f is unique and finishes the proof. O

5.1.2 “Classical” Burnside ring functor and product decomposition.

Now we introduce, using the Burnside rig functor, the classical Burnside ring functor, and
give our main result dealing with the decomposition of the Burnside ring of a given groupoid
as a product of the classical Burnside rings of its isotropy groups.

Definition 5.1.4. We define the Burnside ring functor % as the composition of the
Burnside rig functor .Z with the Grothendieck functor ¢, that is, & = ¥.Z.
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The situation is explained in the following commutative diagrams of functors:

Grpd % CRing
i
Rig
where CRing denotes the category of commutative rings. Of course, since .£ is contravariant

functor and ¢ is a covariant one, 4 is a contravariant functor.

Theorem 5.1.5. Let be G and A be groupoids such that there is a Laplaza equivalence of
categories

Sets-G ~ Sets-A,

that s, with respect to both & and the fibre product. Then there is an isomorphism of
commutative 1ings

B(G) =B (A).

In particular two weakly equivalent groupoids (see Definition have isomorphic classical
Burnside rings.

Proof. Let us denote by
F: Sets-G — Sets-A and G: Sets-A —> Sets-G

the strong monoidal functors which give the stated equivalence. Thanks to Proposition [B:0.2]
it is enough to prove that there is an isomorphism of rigs .Z (G) ~ .2 (A). By Lemma
we have the following
f: 2(G) — £ (A) g: Z (A) — Z(0)
[(X,9)] — [F((X;9))] (Y, 9)] — [G((Y,0))]

well defined homomorphism of rigs. It is left to reader to check that f and g are mutually
inverse. 0

Remark 5.1.6. Observe that, for every finite right G-sets (X,<), (Y, 9), (Z,¢) and (W,w), we
have that

(X1 (0] | = | 12,01, [(Ww)] |,

as elements in %(G) (the notation is the one adopted in Appendix [B)), if and only if there is a
finite right G-set (U,v) such that

(X )]+ [(W, )] + [(U, 0)] = [(Z, O + [(Y,9)] + [(U, 0)] -

If the groupoid G is locally strongly finite, thanks to Corollary this is equivalent to say
that [(X,¢)] + [(W,w)] = [(Z,{)] + [(Y,¥)]. Note that a locally strongly finite groupoid with
a finite set of object is actually strongly finite.

Corollary 5.1.7. The Burnside ring functor % sends coproduct to product. Specifically, given
a family of groupoids (gj)jep let (i;: G — Q)jel be their coproduct in Grpd. Then

(B (i5) - B(G) — B(95))er
is the product of the family (% (G;)),c in CRing.
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Proof. Immediate from Proposition and Proposition O

Given a groupoid G, we let’s fix a set rep(Gp) of representative objects modulo the regular
action of G over itself, by using either the source or the target. In other words, rep(Gy) is a set
of objects representing the set of connected components 7y(G) of G.

The next theorem is the main result of this section.
Theorem 5.1.8. Given a groupoid G, firx a set of representative objects rep(Gy). For each

a € rep(Go), let G be the connected component of G containing a, which we consider as a
groupoid. Then we have the following isomorphism of rings:

29 = [ # (g<a>) .

acrep(Go)

Proof. Immediate from Corollary |5.1.7, since we already know that (g<a> — Q) is a

a€rep(Go)

coproduct in the category of groupoids.

Each connected component of a given groupoid is clearly a transitive groupoid, and the
Burnside ring of a transitive groupoid is considered in the following proposition. First, notice
that the classical Burnside ring of a group, as introduced in [Sol67| (see also [Die79]), is
isomorphic to the Burnside ring of the groupoid, with a single object, that has the group itself
as the only isotropy group.

Proposition 5.1.9. Given a transitive groupoid G, let a € Gg and let G = G be its isotropy
group. Let A be the subgroupoid of G such that Ay = {a } and Ay = G*. Then we have a chain
of isomorphism of rings

BG) = B(A) = B(G)
where B(G) is the classical Burnside ring of the group G introduced in [Sol67] (see also
[Die79]).

Proof. Tt is immediately obtained by combining Theorems [1.3.15] and [5.1.5] O

The following corollary is the main conclusion of this section. It gives the desired decompo-
sition of #(G) into a finite product of Burnside rings of groups, although, in a not canonical
way. As a consequence, it shows that the Burnside functor, as defined in Definition does
not distinguish the arrows of a given groupoid. As one can see from this Corollary, the stated
isomorphism depends on a given choice of a set of representative, that is, the decomposition is
not unique. Let’s keep the notations of Theorem and Proposition 5.1.9

Corollary 5.1.10. Given a groupoid G, we have the following isomorphism of rings:

2@G)= [ 2@,

a€rep(Go)

12

where the right hand side term is the product of commutative rings.

Proof. Tt follows from Proposition [5.1.9and Theorem [5.1.8 O

Remark 5.1.11. It was proved in [Sol67| that the Burnside ring of a group G is isomorphic to
a ring that is a free abelian group over the set of conjugacy classes Sg/ ~c. Therefore, thanks
to Corollary [5.1.10] the Burnside ring of a groupoid is also a free abelian group.
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Ezxamples 5.1.12. We expound examples of the Burnside ring of certain groupoids.

(1) It clear that if G = {x} is a trivial group, then A(G) is the ring of integers Z. Therefore,
the Burnside ring of any groupoid whose isotropy groups are trivial is the product ring

7' for some set I. This is the case for instance of all the relation equivalence groupoids
expounded in Example|1.1.11

(2) Let G be a cyclic group of order a prime number p > 2. Thanks to Remark we
have the isomorphisms of abelian groups %#(G) = Zv @ Zw, where v = [G/G] = [1] and
w = [G/1] = [G]. Now we have to study the multiplicative structure of Z(G). It is
immediate to see that v? = v and vw = wv = w. Since |G x G| = p?, we deduce that
either w? = [G x G] = p?v or w? = pw. Considering that G x G can be decomposed into
the p orbits { (a”j,aj) ’je{O,...,p—l}}forz'e{0,...,10—1},Weobta»inw2 = puw.
Now it is easy to deduce that we have the following isomorphism of rings

Z[X)

B(G) = XX

(3) Given not empty sets S1, So and S3, we denote with G the trivial group, with Gs a
cyclic group or order a prime p > 2 and with G3 the alternating group As. We consider
the groupoid G with the following three connected component: Ggs, ,, Gs,,G, and Gs, g,-
If follows from Corollary the two previous examples and [Die79, page 10|, that
we have the following isomorphism of rings

Z[X] < R

B(G) = B (G1) x B(Gs) x B(Gs) =7 x o

where R is the Burnside ring of the group As described in [Die79} page 10].

Remark 5.1.13. It was proved in [Dre69| that a group G is solvable if and only if the prime
ideal spectrum of Z(G) is connected. Since it is a known fact that the prime ideal spectrum
of a direct product of commutative rings is the disjoint union of their spectrums, we deduce,
thanks to Corollary that the prime ideal spectrum of the Burnside ring of a groupoid
G is connected if and only if G is transitive and it has a solvable isotropy group type.

Remark 5.1.14. Now let (Gj)jeJ be the connected components of the groupoid G. Let be
A=1li;Z(G) and R = Z (G): the families
(26 2(9) —»$(gj))jej and (wj: [z @) —>$(gj)>
leJ jed

are products in the category Rig therefore there are homomorphism of rigs f: A — R and
h: R — A such that the following diagrams commute for every j € J:

A%R and R— I 4

T | T I

(45)
Z(G;) Z(G;).

Using the universal property of the product of rings and Lemma [I.3.12] we obtain that the
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following homomorphism of rigs

1126 —2©

jedJ
(lx.s0) , — [L+JJ<)7\<>]
and

h: 2(G)— 12 @)

jed

(%91 (| (Xexug, @ ’p”)])je] = (@) slesian)]) o

are isomorphism such that h = f~1. It is now obvious that ¢(f) and ¢4(h) are isomorphism
of rings between #(G) and [ [;c; £ (G)).

Remark 5.1.15. We note that Definition can’t be used to construct a new Burnside ring
because the functor — x G is not monoidal.

5.2 The Burnside algebra of a groupoid and the ghost map

In this section we will continue to assume that G is a groupoid with a finite set of object Gy.
We define the Burnside algebra of G over Q as QZ (G) = Q®z % (G) and, given a group
G, its Burnside algebra over Q is defined as Q#Z (G) = Q ®z Z (G) (see [BoulOa, Page 31]).
Thanks to Corollary we have

2G> [[ 201G

acrep(Go)

and, tensoring with Q, we obtain, since over a finite set the direct product and the direct sum
of Z-modules coincide,

Q2(G) =Qez#(G) =@z [[ 2G> [] @226 = |] @zG").

a€rep(Go) a€rep(Go) a€rep(Go)

Therefore also the Burnside algebra QZ (G) is a split semi simple commutative Q-algebra,
exactly like the Burnside algebra of a group. As a consequence the idempotents of Q% (G) are
in a bijective correspondence with the set of elements (z,) aerep(Go)’ where z, is an idempotent
of QA (G*) for each a € rep (G). We recall that the idempotents of the Burnside algebra
Q% (G) of a group G were completely characterized in [BoulOa, Theorem 2.5.2].

Ezample 5.2.1. Keep the notation of Example

(1) It has been stated in Example that the Burnside ring of the trivial group is Z
therefore, of course, its Burnside algebra is Q whose only idempotents are 0 and 1. This
implies that the Burnside algebra of a groupoid G with all isotropy group types trivial
and a finite set of objects is Haerep(go) Q. Therefore, this can be applied to any of the
groupoids given in Example [I.1.11]

(2) Let G be a cyclic group of order a prime p > 2. Thanks to Example |5.1.12| we know that
PB(G) = Zv @ Zw, where

v=[G/G] =[1], w = [G/1] = [G], v* = v, vw = wv = w and w* = pw.
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We will use [BoulOa, Theorem 2.5.2|: since the only subgroups of G are only G itself
and 1, we have that u(1,1) = u(G,G) = 1 and p(1,G) = —1 where p is the Moebius
function on the poset of subgroups of G. Applying the quoted theorem and computing,
we obtain

1 G 1

- b [9]-4

p Ly »p

and

¢ -1 (s [§]+meca|G]) - ot

the two primitive idempotents of Q% (G). Notice that, in the case of a cyclic group of
order p, we can, by abuse of notation, avoid distinguishing a subgroup of G from its
conjugacy class. Trying to rewrite e? and eg with the notations used in this paper we
obtain

1
ef = - ®z[[G],0]
p
and
—1
c¢ = - ®z [[G],0] +1®z[[1],0].
Now let’s consider a groupoid G with two connected components such that Gy = { a,b },

G® is a trivial group and G? is the cyclic group of order p. We consider the subgroupoids
A and B such that Ay = {a}, A1 = {ta}, Bo = {b} and By = {1 }. We denote
with ¢: A — Gy a structure map with image {a} and with ¢: G/B — Gy and
v: G/B®) — Gy two structures maps with image { b}. Thanks to Remark we
deduce that the Burnside algebra Q% (G) has the following four primitive idempotents:

e1 =1®z[0,0] =0,
e2 = 1Q®z [[(Ao, §)] aO] )

oS [(5)] ]
o= Sel[(G] o] v [( & )]

In the subsequent, we are going to construct the Ghost map of the groupoid G and prove
that is injective. Let H € rep (Sg) be a subgroupoid of G with only one object a. We want to
prove that the function

on: L (G) — N
[(X,¢)] — |X*]

is a homomorphism of rigs. We have ¢y ([&]) = 0 and ¢y ([Go]) = |G}t| = [{ a }| = 1. Given
finite right G-sets (X,¢) and (Y, ), we calculate

o ([X,s] + [Y.0]) = 0w ([X W Yic W 0]) = (X @ Vic W 9)"|

— (0™ + | 9)%] = o (16 + o ([, 90)
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and

H
(X xY, gﬁ)
Go

o=

1 ([X, 5] [V, 9]) = on ([X x Y,gq?]) -

| (0 @)

’ ‘

‘ H ‘—% ([X,<]) en ([V,9]) -

Applying the Grothendieck functor ¢ we obtain the homomorphism of rings
G (on): BG) =% (L (G) —F(N) =7

(X1 [YT] — [ X%] = ¥

Using the universal property of the direct product, we are able to define the following
homomorphism of rings, which is called the ghost map of the groupoid G:

w20 — ] z
Herep(Sg) (5.2.1)
[[X]’[Y]] (‘XH‘_lyH‘)Herep (Sg) -

Now let’s suppose that there are [[X],[Y]],[[A],[B]] € B(G) such that g ([[X],[Y]]) =
g ([[A],[B]]). Then that for each H € rep (Sg) we obtain

(X @ BY™| = [ X7 4 [BY] =[] + [YH] = | (4w ).

which, thanks to the Burnside Theorem implies X @& B ~ AW B. As a consequence we
have [X] + [B] = [A] + [Y], therefore [ [X],[Y]] = [[A],[B]] and g is injective. We have
now proved the following result.

Corollary 5.2.2. Given a groupoid G, its ghost map g, as defined in equation (5.2.1)), is
injective.



Chapter 6

The categorified Burnside ring

We discovered, in Chapter [ that the Burnside contravariant functor does not distinguish
between a given groupoid and its bundle of isotropy groups. Specifically, it has been realized
that, under appropriate finiteness conditions, the classical Burnside ring of a given groupoid is
isomorphic to the product of the Burnside rings of its isotropy group types, although, not in a
canonical way.

The crux of the matter is that the isomorphism relation between finite (and not finite)
groupoid-sets leads only to the consideration of (right) cosets by subgroupoids with a single
object, and this, somehow, obscures the whole structure of the handled groupoid. In other
words, the classical Burnside ring of a (finite) groupoid does not reflect, as in the classical
case, the whole “lattice” of subgroupoids, since the subgroupoids with several objects are not
relevant in this context.

In this chapter we attempt to give an alternative approach to the Burnside ring of groupoids,
considering the category (2-category, actually) of internal categories inside the category of
(right) groupoid-sets. The objects of this category (also called 0-cells) are named categorified
groupoid-sets and, by abuse of terminology, the associated ring is called the categorified
Burnside ring of the given groupoid. A point is worth mentioning: albeit, in this way, we get
a commutative ring that strictly contains the classical one, we’ll show that this new ring also
can be decomposed, in a not canonical way, as a product of rings, which are the categorified
Burnside rings of the isotropy group types of the groupoid. This makes manifest that also
the idea of employing the categorification of the notion of groupoid-sets does not reflect the
groupoid structural characteristics.

The main idea is to categorify the notion of groupoid action on a set to obtain a particular
category, with a groupoid action on both the set of objects and of morphisms. Moreover, the
source, target, identity and composition maps of this category will have to be compatible with
the groupoid action. Regarding the usual right translation groupoid, it will be replaced by a
right translation double category (an internal category in the category of small categories) to
illustrate the new higher dimensional situation.

After this, using these concepts, we elaborate a new Burnside theory based on a particular
notion of weak equivalence between these new categories endowed with a groupoid action.

81
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6.1 Internal categories and basic definitions

In this section we recall the notion of internal categories in small categories with pullbacks, and
we use this notion to introduce what we will call the category of right categorified groupoid-sets.
This is a categorificaton of the usual notion of right groupoid-set object.

The fibre product of equation [I.I.1] can be generalized: given small categories A, B and D,
and functors F': A — D and G: B — D, we set, for i = 0, 1,

(ApxaB), = {(a,b) e A x B; | F(a) = G(b) }. (6.1.1)

The category A pxg B is called the fiber product (or fibre product) of f and g and it
is the pullback of the functors F' and G in the category of small categories. The following
Definition is taken from [BC04, pag. 495]|.

Definition 6.1.1. Given a category with pullbacks C, we define an internal category X in
C as a couple of objects Ay and X} of C and morphisms

tx

_— Lx mp
X1 . Xo Rel Ao 1= Al sy Xtp A1 s
Sx

where sy and ty are called the source and the target morphisms, respectively, ¢y is called
the identity morphism and mx is called the composition morphism, or “multiplication
morphism”, such that the following diagrams are commutative (note that we will use the
notation Xg = Xl sx Xty Xl sy Xty Xl)

my XIXm

X0L4X>X1 Xgﬂ))ﬁ Xgﬂ))ﬁ Xg%)@
Id
LXJ/ \0/‘ lsx prll J{tx prQJ/ ls/y Idy >‘<m,\/1 lmx
1
X —r 3 X —2 X, X —2 X, X — " x

LXxIdXI IXm Xty
X0 1y, Xt X1 = X1 s Xep X1 6 X155 X1y, Ao

my
pr; pry
X1

Internal categories constitute the 0O-cells of a specific 2-category (see Definition [6.1.4)).

Definition 6.1.2. Given a category with pullbacks C, let’s consider two internal categories
X and Y in C. We define an internal functor F': X — ) in C as a couple of morphism
Fy: Xy — Vo and Fi: Xy — Y such that the following diagrams are commutative, where
we use the notation Fy = F; x F1: Xy — ).

Xls*XLXO yl t*X%/Yo XQL%Xl XQ%Xl

V1 —2= Vi —= Yo—— N Vo —25 )

Before giving the next definition we have to state precisely the universal property of the
pullback. Given a category &, let us consider two morphism f: A — C and h: B — C'in £.
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We say that a triple given by an object P and two morphisms v: P — A and v: P — B of
& constitute the pullback of f and h if the following diagram is commutative

P—5B

q{ f J" (6.1.2)

A——C

and if, given another object P’ of £ with two other morphisms u': P — A and v': P — B
in &, there is a unique morphism A(f,h): P’ — P such that the following diagram is

commutative:
!

P/

A(fh)
P——B
" ul .
A f
— .

Definition 6.1.3. Given a category with pullbacks C, let’s consider two internal categories
X and Y in C, two internal functors F,G: X — ) in C, we define an internal natural
transformation a: F — G in C as a morphism «: Xy — ) in C such that the following
diagrams are commutative.

[e a A(Glaasx)
Xo———W Xo———W X ———=
R = x [ e |
Mo Mo Vo —F— 0

Internal natural transformations can be composed (horizontally or vertically) in a similar
way to ordinary natural transformation and we refer to [BC04, Pag. 498| for a more detailed
explanation.

We note that the experienced reader will not fail to see the similarities between the theory
of internal categories and enriched category theory (see [Kel05|). In this work, however, we
chose to keep the internal categories approach already used by Baez in [BL04] and [BC04].

Before giving the next definition we have to precise the construction of pullbacks in Sets-G.
Let f: (X,s) — (Z,w) and h: (Y,0) — (Z,w) be two G-equivariant maps. The pullback
of f and h in Sets-G is given by the set X yxj;, Y with the structure map and action given,
respectively, by

§O: X pxp Y — Go and (X pxnd) 9%t G1
(z,y) — <(z) = 0(y) ((z,y),9) — (zg,y9).

The maps u and v of Diagram (6.1.2)) are given by pr; and pry, respectively.

Definition 6.1.4. Given a groupoid G, we define a right categorified G-set as an internal
category in the category of right G-sets, a morphism of right categorified G-sets as an
internal functor in the category of right G-sets and a 2-morphism between morphisms of
right categorified G-sets as an internal natural transformation in Sets-G. In this way, thanks
to |[Ehr63a] and [BC04, Prop. 2.4], we obtain a 2-category that we denote with CSets-G. We
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will also employ the terminology right categorified groupoid-set, whenever the groupoid
under consideration isn’t relevant. The category of left categorified G-set is similarly defined,
and clearly Laplaza isomorphic to the right one (see section for the construction of the
pertinent monoidal structures).

Remark 6.1.5. The category of right simplicial G-sets is defined as the category of functors
[A°P Sets-G| from the opposite category of A of finite sets A, = {0,1,--- ,n}, with increasing
maps as arrows, to the category Sets-G of right G-sets. Obiously, this category “contains”
CSets-G as a subcategory. As the reader will realize, the majority of the constructions of this
chapter could be extended to [A°, Sets-G]. Notwithstanding this, we will not further pursue
this line of research here since, in our opinion, the study of the whole categoy [A, Sets-G]|
deserves a separate project.

Remark 6.1.6. We have to note that right categorified G-sets, morphisms of right categorified
G-sets, and the relative 2-morphisms constitute, respectively, categories, functors and natural
transformations in the usual sense. This means that many definitions of the usual category
theory can be extended in this setting. For example, given a right G-set X', an element f € A
is called an isomorphism if there is h € X} such that hf = cx (sx(f)) and fh = tx (tx(f)).
In this way, we obtain a forgetful functor from the 2-category of internal categories in a
category C to the category of ordinary small categories.

Let be (X,¢) a right categorified G-set. As with groupoid, given a,b € Xy, we will use the
notation

X(a,b)={feX|sx(f)=a and tx(f)=0b}.

As was mentioned above, the set X5 admits in a canonical way a G-action, given by (p,q)g =
(pg,qg), for every (p,q) € X3 and g € Gy such that ¢;(p) = ¢1(q) = t(g) and, moreover, we have
the equality

mx (pg,q9) = (mx(p,q))g,

which could be rewritten as (p o q)g = (pg) o (¢g). In this direction, we have that a morphism
p € A1 is an isomorphism if and only if pg is an isomorphism for some g € G such that
¢1(p) = t(g). Furthermore, for any element a € Xy and g € G; such that ¢y(a) = t(g), we have
that the map

X(a,a) — X(ag,ag)

p—Dpg
is a morphism of monoids, well defined because we have <1(p) = ¢tx(p) = so(a) = t(g).

In the rest of the paper we will consider CSets-G mainly as a category (the 2-category level
will be used to define the concept of weak equivalence in Definition [6.3.3]).

Remark 6.1.7. Let be (X,¢) € CSets-G: we consider the decomposition of (Xp,sp) into orbits
(i.e. transitive right G-sets) (Xo,<0) = [Hyea [Ta] G With 24 € &) for each av € A. Since 1y is a
morphism of right G-sets, for each o € A we obtain 1y ([24]G) = [tx (xa)] G, therefore we can
state that

(X1,61) = (EFJ [t (za)] g) @ | [ [l G

acA BeEB

with z, € & for each a € A and yg € &Xi\ty (Xp) for each S € B, with Bn A= . Asa
consequence we can state that X' is a discrete category if and only if X} = 4,4 [tx (2a)] G.
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Remark 6.1.8. A groupoid G cannot be a right categorified G-set. If this were the case, the
map t: G; — Go should be compatible with the right action by G: this means that for each
a,b € G such that s(a) = t(b), it should be t(ab) = t(a)b but, since the situation is as follows,

t(a) 2 s(a) = t(b) +—2——s(b),

b cannot act on t(a), in general. Actually, a groupoid G can be seen as a “twisted” and
“asymmetrical” version of a right categorified G-set: this idea will be the object of future work.

6.2 Monoidal structures

Let G be a groupoid. In this section we will describe the two symmetric monoidal structures on

the category of right categorified G-sets: one is given by the disjoint union, i.e., the coproduct

& | and the other by the fibre product x. Moreover, we will show that the fibre product
Go

is distributive with respect to the disjoint union, rendering CSets-G a Laplaza category (see

subsection |1.3.1).

We define a monoidal structure (CSets-G, &, ¢F), based on the disjoint union, as follows:

&) : CSets-G x CSets-G — CSets-G
(X,6),(V,0)) — (X, 6) B (V,0) = (¥ D Y,c B 0)

where (X W Y, ¢ W ) is defined as

((XO W Vo, 0 W 00) ) (Xl W ,a W 91) 75)(ij7t;(tijyabxu-)y7m)(tijy) .

The source, target, identity and composition maps are defined, in Sets-G, as the following
morphisms: Sywy =sx Isy, typyy =tx Yty typy =t Yoy and

Mywy =mxy & my: XoW Vo — X1 D ).

It is clear that (X & ), ¢ W 0) is an object in CSets-G, because the commutativity of the
diagrams of Definition [6.1.1] to be verified derives from the commutativity of the respective
diagrams of (X,9) and (), 0).

Moreover, given morphisms ¢: X — ) and : A — B in CSets-G, we define the
morphism ¢ & ¢: X & A — Y W B in CSets-G as the couple of morphisms (¢ & ), =
0o W g and (¢ Y ), = p1 B 9 in Sets-G. As before, the commutativity of the diagrams
of Definition to be verified derives from the commutativity of the respective diagrams of

w and .

Proposition 6.2.1. The object

z-(2.92).2.9).9.2.9.9),

is initial in CSets-G, & is a coproduct in CSets-G and (CSets-G, &, &) is a strict monoidal
category.

Proof. Immediate. O
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Now we want to define an “inclusion” functor from the category of normal right G-sets to
the category of right categorified G-sets:
Z-G: Sets-G — CSets-G

(X,6) — ((X,6), (X,6) 5, tx, 1, mx ) o210

where sy =ty = tx = Idx and

mx = pry: (X,¢)y — (X,¢)

(a,b) — a,

with a = Idx(a) = sx(a) = tx(b) = b. Regarding the morphisms, given a morphism of right
G-sets p: (X,s) — (Y, 0), we define

I-G(p): T-G(X, <) — T-G(Y,0)

in the following way: (Z-G(p)), = ¢ and (Z-G(y)),; = . Basically, the image of Z-G is given
by discrete categories. Moreover, we will use the abuse of notation Gy = Z-G (Gp).

Now we want to construct a monoidal structure (CSets—g, gx , Q()). Given (X,¢),(V,0) €
0
CSets-G we define

<X X y) = <Xo X y0,§090> , (X X y) = <X1 X y1,§191>
Go 0 Go Go 1 Go

(X,¢) x (1,0) = ((Xo X yo,§090> , (Xl X y1,§191> 75X><yatX><yaLX><y7mX><y> ,
Go Go Go g g So 9o

and

0 0

where ty xy = (tx,ty), sxxy = (sx,sy) and txxy = (tx,ty). Regarding the composition,
So )

90
we define
Mmxyxy: (X X y) —> (X ><y>
So Go 2 Go 1
((z,9), (a,b)) — (Mx(z,a) My(p)) -

It is a direct verification to check that sy«y, txrxy, taxy and m;(xy are well defined
So So 90
morphisms in the category Sets-G. We have to prove that the dlagrams of Definition [6.1.1

about X x ) are commutative, but this is a direct verification and follows from the analogous

Go
diagrams about X and ). Now, given morphisms ¢: X — ) and : A — B in CSets-G,
we define the morphism

gpxq/J XxA—>y><B
Go Go

in CSets-G as the couple of morphisms

(e x )y = o x o and (o xP); =1 x P

in Sets-G. We have to prove that the diagrams of Definition about ¢ x 1 are commutative,
but this is a direct verification and follows from the analogous diagrams about ¢ and . As a
consequence we have constructed a functor

(— X —> : CSets-G x CSets-G — CSets-G.
Go Go
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Now we want to construct natural isomorphism

b <IdCSets—G g>< go) — Idcsets-G, v (go 5 Idcsetsc — IdCSets—G)
0 0

and the associator on CSets-G

(Ca)e)—Cals)

The associator is the identity, which is clearly a natural isomorphism and satisfies the pentagonal
identity. We will construct only ® because ¥ can be construct in a similar way. Let be (X, ¢):
for i = 0,1 we define

(I)(X)z XZ X QO—>X1
Go
(a7b> —a

where ¢;(a) = b. We have to check that ® (X),, for i = 0,1, is a well defined morphism in
CSets-G and that it’s a bijection: both are direct verifications. Now we just have to prove that

o <IdCSets-g gX go) - IdCSets-Q
0

is a natural transformation: let &: X — ) be a morphism in CSets-G. We have to prove that
the diagram

Xx Gy Ly

Go
agzgol a
()

ygxgo(;w

is commutative, which is equivalent to say that the diagram

(X)),
Xi x Gg ————— &}

0
aigilgol ‘/ai
(),

Vi x go(—>yz'

is commutative for i = 0,1. Given ¢ = 0, 1, for each (x,a) € X; x Gy we have
Go

0 (8 (X);) (2,0) = a(z) = ( (V),) (as(a). 0) = (& (V) (ai x QO) (e, a).

Lastly, it is obvious that ® and W satisfies the triangular identity; therefore we have proved
the following proposition.

Proposition 6.2.2. The triple <CSets-g, X, Qo> 1s a monoidal category.
Go

We now have two monoidal structures, (CSets-G, &, &¥) and | CSets-G, x,Gy |, and it is
Go

necessary to prove the distributivity of x over W. Let be (X,<),(),0),(A,w) € CSets-G: we
Go

have to construct a morphism

A [(X,6) W (1,0)] X (A,w) — [(X,9)] x (A,w) B [(V,0)] x (A w)

0 Go
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in CSets-G. We define it as the couple of morphisms in Sets-G, for i = 0, 1,

Ait [(Xy ) W (yiﬁi)]gx (Ai,wi) — [(Xz‘,%) X (Aivwi)j| S {(%ﬁi)g (Ai,wz‘)] ;

0 0 0

that send (a,b) to (a,b) both if ¢;(a) = w;(b) with a € X; and if 0;(a) = w;(b) with a € Y;. Tt
is clear that A is a morphism in CSets-G.

6.3 2-morphisms and weak equivalences

We introduce the notion of weak equivalences in the category of categorified groupoid-sets.
Then, we show that both operations & and x are compatible with 2-functor and, therefore,

0
with the weak equivalence relation. This will be crucial to build up the weak Burnside ring
functor %¢ in section [6.6]

Given morphisms in CSets-G ¢, ¢: (X,5) — (V,0) and ,n: (A,\) — (B, u), let’s
consider 2-morphisms in CSets-G a: ¢ — ¥ and §: € — n: we have

@ @ g, w @ n: (X,§) @ (Aa)‘) - (y79> N (Bvu)
We want to define a 2-morphism in CSets-G as the morphism in Sets-G:

ad b ApyWwWAy — Y YB
Xosx — ax)ed
Aysx — B(x) € B.

The verification that o & 3 renders the diagrams of Definition commutative is immediate
and derives from the relative diagrams regarding o and 3. Now we consider ¢': X — )
and n': A — B, morphisms in CSets-G, and o/: ¢y — ¢’ and 3’: n — 7, 2-morphism in
CSets-G.

Lemma 6.3.1. We have

(W) (aWp)=(da) W (B'B8):pPe—ypDny and Idgpwy = Id, W Idy .
Proof. Immediate. O

Let’s consider

(X ) — 0 B :
90g>;6,1/15;77 ( ,g)go(fl, ) o, )g>f)( 1)

we want to define a 2-morphism

axfBrpxe—Yxn
Yo Go Go

in CSets-G as the morphism
ax fB: X x Ag — V1 x By
Go Go Go

(z,a) — (a(z), B(a)) -



6.3. WEAK EQUIVALENCES 89

Given (z,a) € Xy x Agp we have f1a(x) = ¢(z) = Ao(a) = p18(a) thus a x g is well defined.
Go Go

It is immediate to see that o x (8 is a morphism in Sets-G. Now we have to prove that o x
Go Go
satisfies the three following diagrams of the definition of 2-morphism in CSets-G.

a§< B a§< B
XOXA040>371><81 XOXA040>3)1><81
Go Go Go Go
Sy x B tyxn
Yo X €0 9o %o X 1o %0
9o S0
Yo x By, Yo x By
Go Go

and

A(wlgx m,<oagx /B)SXg A)
0 0
X x Ay > <371 X Bl)
Go Go 2
A((Ozgxoﬁ>t)ch,5015;€1> myngB
J{ my x B J
Yo
(yl X Bl) Y1 x By.
Go 9 Go
The commutativity of the two triangular diagrams is obvious because syxp = sy x sg
(04} Go
and tyxp = ty x tg. Regarding the commutativity of the third we calculate, for each
o Q

(z,a) € X1 x Aj,
Go

my s (1 (@ 8 ) s ) (00) = my (012 mn(0) () Bsae) )

= (my (v1(2), asx (@) ;ms (m (@), Bsa(@)) ) = (my (ate (@), e1(a)) . ms (Bsa(a),1(a)) )
= mygxog((at;((a:),ﬁtA(a)) (p1(a),21(a)) ) =my B <( X 5) b a1 X 51> (z,a).

So Yo

Lemma 6.3.2. We have

(o/xﬂ) <axﬂ>:(a’a)><(6’6):g0><5—>w><77 and Idy = Idy, x Idy .
Go Go Go Go

Go o Go

Proof. For each (z,a) € Xp gX Ap we calculate
0

Id, x Id:(z,a) = Idw(a:) X Idw(a) = Log(z) X Log(a) = Lpo(x) x pola)
Go Go Go So

= Llpg xeo(z,a0) = Ide « 8(377 CL)
So S0
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(o/goﬂ/) <aézﬂ) (z,a) = mngOBA <o/g><OB',ozg>Z ﬁ) (x,a)

—myen (o 2 8) o), (a2 8) (00) = my e (@0, 51(0)  ao), 5(0) )

Go <)

my (o/(2), a(2)) ,ms ('(a), B(a)) )
(@) (@) (58) @) = ( () x (#9)) (e,

Now we are going to give the main definition of this section.

Definition 6.3.3. Let be (X,¢),(),0) € CSets-G. We say that (X,¢) and (), 0) are weak
equivalent and we write (X,¢) ~we (¥, 0) if there are morphisms in CSets-G ¢: (X,¢) —
(V,0) and ¢: (¥,0) — (&,<) and 2-isomorphisms in CSets-G a: ¢p: — Idy ) and
BZ 90¢ — Id(y’g)

The following lemma, which will be essential to define the weak Burnside rig Z¢ in
section states that the disjoint union and the fibre product are compatible with the weak
equivalence relation.

Lemma 6.3.4. Let be (X,s),(V,0),(A,N), (B, ) € CSets-G such that
(X,6) ~we (V,0) and (A, A) ~we (B, p) -
Then

[ ODUN | ~ue | @.0WB W] and | (2,6 x (AN | ~ue | (,0)x (B, |

Proof. Let be

p: (X,q) — (V,0) n: (AA) — (B, p)
P (y,H)—>(.)(,§) €: (87:“)—’(-’47A)
morphisms in CSets-G such that there are 2-isomorphisms in CSets-G
a: Yo —> Id(ng) y:en — Id(A,)\)
/BZ g0¢ — Id(y}g) d: ne — Id(B,,LL) .

We calculate
(@ Wy ) (@Wq) =[aa] W (y71Y) = 1dy, W Idey = Idypuen

and 1 1 1 1
(aWy) (07 e ) = (O‘OF ) W (777 ) = ldia o W ldia y
= Idiq, = Idiq,

x,6) wld(y 0 X,9)w(¥,0)
thus
aWy: e Wen — Idx o

is a 2-isomorphism in CSets-G. We can prove in the same way that

BWY S ph B ne — 1d(y gy (B )
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is a 2-isomorphism in CSets-G. As a consequence we obtain

[(X,g) W (A, A)] ~we [(3&0) @ (Bw)]

and we can prove that

(2. 2 (AN | ~ue [ ,6) x (8,10

in the same way. O

As already noted in Remark [6.1.6, many concept of ordinary category theory can be
extended to right categorified G-sets. With reference to [AHS04, Pag. 51|, we will now briefly
explain how to extend the concept of skeleton of a category. The proof are essentially the
same thus we will omit them.

Definition 6.3.5. Let be (X,<) and (Y, 0) right categorified G-sets.

(1) We say that (),0) is a right categorified G-subset of (X,¢) if the following two
conditions are satisfied:

(a) (Do,06p) and ()1,0;) are right G-subset respectively of (Xp, ) and (X1,¢1);

(b) the structure on (), ) is appropriately induced by that on (X, <) by restriction, in
the usual sense for subcategories.

(2) We say that (),0) is a full right categorified G-subset of (X,¢) if it is a right
categorified G-subset of (X, <) such that, for each a,b € )y, we have Y(a,b) = X(a,b).

(3) We say that (),0) is a isomorphism-dense right categorified G-subset of (X,¢) if
it is a right categorified G-subset of (X, <) such that, for each a € ), there is b € &)
such that there is an isomorphism f € X;, with sy(f) = a and tx(f) = a.

Definition 6.3.6. The skeleton of a right categorified G-set is a full, isomorphism-dense
right categorified G-subset in which no two distinct objects are isomorphic.

Proposition 6.3.7. (1) Every right categorified G-set has a skeleton.
(2) Two skeletons of a right categorified G-set (X,<) are isomorphic.
(3) Every skeleton of a right categorified G-set (X,<) is weak equivalent to (X,<).

Corollary 6.3.8. Two right categorified G-set (X,<) and (,0) are weak equivalent if and
only their skeletons are isomorphic as right categorified G-sets.

6.4 A class of examples

Let be C a small category, G a groupoid, and (X, <) a right G-sets. We set Xy = Cp x X and
X1 = C1 x X. The structure maps and the actions, for ¢ = 0,1, will be

Gt Xy — Go XigxeG — X
@0 —<@) " ((@).9) — (eag).
We set
sxy: X1 — Ao ty: &y — Ao Lx: X1 — &p

(CL,QZ) - (Sc(d),&?), (a,x) - (tc(a),m), (av‘r) - ([’C(G’)vx)
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and
my: Xo — X

((a,2), (b.)) — (me(a.b).2)

with (s¢(a),z) = sx(a,z) = t(b,y) = (te(b),y). It is evident that s¢, te, (¢ and m¢ are
morphisms of right G-sets thus we just have to prove that the diagrams of Definition [6.1.1
about X are commutative, but this follows immediately by the analogous diagrams about C
(an ordinary category can be considered as an internal category in the category of sets).

Now let C and D be small categories, let (X,<) and (Y, 0) be right G-sets and set Xy =
Cox X, X1 =C1 xX,Yy=DyxY and Y; =D; xY. Let be F: C — D a functor and
¢: (X,s) — (Y,0) a morphism in Sets-G. We want to define a morphism

(Fp): (X,6) — (V. 0)

in CSets-G setting (F, p)o = (Fo, ) and (F, @)1 = (F1,¢). It is evident that (F, ¢)o and (F, ¢);
are morphism of right G-sets, thus we just have to prove that the diagrams of Definition [6.1.2
about (F,¢) are commutative, but this follows immediately by the analogous diagrams about
F (an ordinary functor can be considered as an internal functor in the category of sets).

Given another functor G: C — D, we consider a natural transformation p: F — G.
With the notations already introduced, we have a morphism (G,v¢): (X,s) — (),6) in
CSets-G such that (G, ¢)o = (Go, ) and (G,v¥)1 = (G1,¢). We want to define a 2-morphism
(1, 0) = (F, ) — (G, p) given by a morphism of right G-sets

(1, 0): Xo — N1
(a,2) — (u(a), 9())

therefore, we have to prove that the following diagrams commute,

() (1:0) A((G)1,(1yp)sx)

H—"0 sy "0 P ’
\
S A i , ’ m
(Fe)o J Y (G.@)o Jty ((w so)ti« (Fe)1) . l v
yO yo y2 yl

but this is just a direct verification.

Remark 6.4.1. Let be C, D and £ small categories, F': C — D and G: D — & functor,
v: (X,5) — (Y,0) and ¢: (Y,0) — (Z,w) morphisms of right G-sets. Continuing to use
the notation of Section [6.4we set X; =C; x X, ), =D xY and Z; =& x Z for i =0,1. It is
then clear that

Idy = (Id¢,Idx) @ (X,5) — (X,¢) and (GF,Yp) = (G,)(F,¢): (X,¢) — (Z,w).

Proposition 6.4.2. Let be C and D small categories, (X,s),(Y,0) € Sets-G, F,G,H: C — D
functors, p: (X,s) —> (Y, 0) a morphism of right G-sets, u: F —> G and A\: G — H natural
transformations. We define 2-morphisms

(/”'7(70) : (Fa 30) - (G’ 90)7 (>‘7 90) : (Gu 90) - (Hv 90) and ()\,U,, SO) : (F7 SO) - (Ha 90)
in CSets-G given by morphisms of right G-sets

(1) Xo —> 1 Ap): X — M
(a,x) —> (p(a), p()), (a,z) — (A(z), ()
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and

(A, @) (Flp) — (H, )
(a,2) — ((Au)(a), p(2)) -
Then (Aw, ) = (A, ) (1, ) and (Idp, ) = 1d(g ).

Proof. We consider the 2-morphism (A, ¢) (i, @) : (F,p) — (H, ) given by a morphism in
right G-set
T XO — yl

(a,2) — rla,) = my( (A ) (@,2), (1,) (0,2)).

For each (a,x) € Xy we calculate

r(a,x) = my (A, ¢) (a,2), (1, ) (a, 7)) = my (Ma), p(z)) , (u(a), p(z)))
(me (Ma), p(a)), o(x)) = (A)(a), p(x)) = (A, ») (a, ).

The 2-morphism Id g, is given by the morphism of right G-sets

z: Xog — 1
(a,2) — 1y (F(a), p(z)) = (tpF(a), p(2))
and (Idg, ¢) is given by

(IdF, QO): XQ E— yl
(a,2) — (Idp(a), p(x)) = (o(F(a)), p(2))

therefore we obtain Id (g = (Idr, ¢). O

Now let C and D be two categories, F': C — D and G: D — C two functors, ¢: FG —
Idp and 7: GF — Id¢ two natural isomorphisms and ¢: (X,s) — (Y, 6) a morphism of
right G-sets. Continuing to use the notation of Section [6.4] we set X; =C; x X and ); =D x Y
for i = 0,1, and we consider morphisms of right categorified G-sets (F,¢): (X,s) — (V,0)
and (G,¢): (V,0) — (X,s). We have

(G.o™") (Fy@) = (GF, ¢ ) = (GF,1d(x)), Idxg = (Ide,Id(x ) : (X,5) — (X,9)
and
(F.p) (G,o7") = (FG,pp™") = (FG,1d(yp), Idye = (Idp,Idyvg)) : (V,0) — (I,6).
We define 2-morphisms
(e,1d(xq) : (G)(F,0) — Idxg  and  (n,Idpyg) : (F,9)(G,9) — Idy )
in CSets-G as the morphisms of right G-sets

(e,1d(x,0)) : (Xo,50) — (X1,<1) N (1, 1d(y,0)) : (Vo,00) — (V1,61)
(a,2) — (e(a), @) (B,y) — ((B),y)

respectively. We have already proved that (a,Id( X}g)) and (n,Id(yyg)) are well defined. Consid-
ering e ': Idp — FG and n~': Ide —> GF we can construct the 2-morphisms

(Eilvld(X,C)) : Id(X,C) - (va)(F7 90) and (n7171d(Y,9)) : Id(y,@) - (F7 @)(Gﬂ/’)
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in CSets-G
(e7' 1d(x.0) t (Xo,50) — (X1,51) . (n™ " 1d(ye)) : (Vo,00) — (Y1, 61)
(a,2) — (¢ '(a),z) (8,y) — (1 (8),y)-

We calculate

(petdy) = [dre: 1dye) = (€776, 1) = (£ 1dwe) (¢, 1d(vg))
and

M i) = (s 1)) = (6= i) = (€ 1dgv)) (£ Ty

In the same way we prove that

Idcriay,) = (1™ 1d(x0) (1. 1d(xq) and (14 10x.0)) = (mId(x,0) (0", Td(x)

therefore (X,<) ~we (V,0).

Using the forgetful functor of Remark we deduce, from the previous argumentations,
that X and ) cannot be weakly equivalent if the categories C and D are not equivalent.
Furthermore, we proved the following result.

Proposition 6.4.3. Given a groupoid G, we have a functor

Cat x Sets-G — CSets-G
(C.(X,q)) — C x (X,5)

where Cat denotes the category of small categories. Moreover, two right categorified G-sets
of the form C x (X,<) and D x (Y,60) are weakly equivalent if and only if the C and D are
equivalent categories and (X,<) and (Y, 0) are isomorphic G-sets.

Proof. Straightforward. O

6.5 The right double translation category

Given a groupoid G, let us consider a right G-set (X,¢). The right translation groupoid
X x G (see eq. (1.1.4)) illustrates the orbits that the groupoid G creates acting on (X,<). To
extend this notion to the new right categorified G-sets we need the notion of double category,
introduced for the first time in [Ehr63a).

Definition 6.5.1. A double category is an internal category in the category of small
categories.

Given a double category D, the relevant functors are illustrated in the following diagram:

4>TD Ip Mp
Dy . Do Dy Dy
Sp

where Dy, D; and Dy = Dy s, X1, D are categories (we remind to the reader that the category
of small categories has pullbacks).
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T (xvg) xg f,Ug (xg,h) xgh (:mgh) gh
) h gh
T ,{&k . fgk%ygh T fl ot Jf .
( ) ) ,h , h
Yv:9 Yg yg (yg ) ygh (yg ) g

T xg,h
oo @9 h zg(gw .
h h
T fl (f.9h) { i o fgl ) J o
(4,9) (yg,h)
———ygh yg <——ygh

Figure 6.1: Target functor, composition condition

Definition 6.5.2. Given a double category D, the set (Dy), is called the set of objects,
the set (Dp), is called the set of horizontal morphisms, the set (D), is called the set of
vertical morphisms and the set (D), is called the set of squares. Moreover, the category
Dy is called the category of objects and D; is called the category of morphisms.

The reason behind Definition will be manifest in the forthcoming diagrams of this
section that will also illustrate how to operate with double categories.

Given a groupoid G and a right categorified G-set (X,¢), we set D; = X; x G for i =0, 1.
We are now going to construct a structure of double category D starting from the categories Dy
and D;. We define the target functor Tp: D; — Dy as in the following diagrams, where

s0(y) = sotpy (f) = s1(f) = <osp, (f) = so(z):

" (z,9)
(T”D)o (f ) (TD)1 (yvg)
fl——uy and fle=tt lfg — " |\ Y —y9 ).
Y (v,9)

We will now check that Tp is a functor. Given a vertical morphism f: x — y in (D1), we
have

(m’%o (=) )
<7

x xg
()
To 1&}@ = <y<—°ny :

(o))
Yy<s———Yg

and, regarding the composition, see figure (6.1)). We define the source functor Sp: D; — Dy
as in the following diagrams:

(z,9)
x T 29
(Sp)o (f,9) (Sp)y (z,9)
] —5 =z and 7 <’7—9Jfg —— | x+——1x9 |.
Y (v,9)
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The identity functor lp: Dy — D; can be defined as in the following diagrams, where
s0(z) = sotp, (Idz) = 1 (Ids) = osp, (Idz) = so(z):

T T <—(x’g) xg
| T |
LN Jldz and ( PR > b, Idz‘/<:(1dz7g) Jldzg
X (xvg)

The proof that Sp and lp are functors is similar to the one of Tp. Regarding the multiplica-
tion functor (or composition functor) Mp: Dy —> D;, we define

y « T
Jz, J’f _Modo Jlf
z Y z
and
ys———vyg T PG Ry xg p B9 xg
(MD) 1
J J l .9) Jfg — lfl<:( 1.9 J(mg
(v,9) (2,9)
Z y — yg Z & Zg

Now we have to prove that Mp is a functor: we calculate

Z,L, T e :E
y (y’Lso(y)) Y T ( <o )) " . ( Tyl ( ) -
L Frtey () lf,
Mo | | l (tr0) y fJ (s Jf y V 50) J“‘
(2650(2)) (vtsow) (21t60(2))
242 y — y 242

and, since (If)g = (lg)(fg) and (If)gh = (I(gh))(f(gh)), we can prove the composition
condition as in figure (6.2]).

Definition 6.5.3. The double category D just constructed is called the right translation
double category of the right categorified G-set (X, <) and we denote it by X x G.

To clarify this concept we give an example in the context of groups.
FEzample 6.5.4. Given a small category C and a group G, let X = C x G be the right categorified
G-set of section[6.4. We want to describe the double translation category D = Cx X. Fori = 0,1

we have (Dy), = (X x G)y = X, (Do); = (X x G); = Xy x G, (D1), = (X1 x G)y = X; and
(D1); = (X1 x G); = &1 x G. The target, source and identity functors are as follows:

TD = (tc X IdX,t(;), SD = (Sc X IdX,Sc) and |D = (Lc X Idx,l,c),
Regarding the composition functor, we have:

Mp: Dy — Dy
(D2>0 3 (h7f) - mX(hv f)
(D2>1 3 ((h7g)7 (fv g)) - (mx(h,f>,g)

Now we want to introduce the concept of orbit category and, to do this, we need some
preparation.



Yys——

(z,9) (yg,h) (xg,h)
yg x<—xg yg<———ygh rg «——xgh

M’D J/ (L.9) J{ J{ J/fg o lg‘/&llgh? ng({%J/fgh
Y (_ (zg,h) (yg;h)

I
<
9

Z4——— vg 29 +———— zgh yg «——— ygh
D yg 2 ygh 29 g 2g Y 2oh
{ (Lg) llg o l (g.h) llgh P PeL) l iy l (fg,h) l o
)4 (2,9) b 5 (ﬂ 2oh ; (¥,9) g e (yg,h) y
w.5h) ygh Z’(ngh (=.gh) xgh
(Lgh) ll no | l R I A U ) l(l o
4 (z,9h) 2gh ; (y,gh) yah (z,9h) 2gh
x(ﬂxg QL gh
(1f.9) l( ol fyg l lf) h
)4 (2,9) o EAPCION zgh
MG PO B yg 0 yoh ag g
ll (L.9) llg’ fl (£,9) l 0 oMo lgl (lg,h) llgh’ fgl (fg.h) l foh
L T g cgn g ygn

Figure 6.2: Multiplication functor, composition condition

AHOOHLVO NOLLVISNVYL H1910d LHOIHd HHIL '¢°9
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Definition 6.5.5. Given a double category D, let us consider a square @ € (D;);. We define
the vertices of the square @ as sp, (Sp(Q)), tp, (Sp(Q)), sp, (Tp(Q)) and tp, (Tp(Q)).

Ezample 6.5.6. Given (X, <) € CSets-G, in the following square in X x G

(z,9)
———xg

x 9.

fJ (f.9) { p
(v,9)

Ys——

K

the vertices are z, xg, y and yg.

Definition 6.5.7. Let be X € CSets-G: for each a,b e X we define aﬂb if and only if there
is a square in X x G with a and b amongst its vertices.

Remark 6.5.8. Given (X,¢) € CSets-G, if we have a morphism (f: a — b) € X} then we have
the diagram

therefore a sqb.

Remark 6.5.9. Given (X, <) € CSets-G, for each a € &) and g € G; such that ¢y(a) = t(g), we
have the diagram

<—(lg

a
(l7g
Idal Ida g=Idag
a<———

therefore asqag.

The relation sq is reflexive and symmetric but not transitive: it’s enough to consider the
following example with a trivial action: Xy = {a,b,c} and only f: a — band h: a —> c as
not isomorphism arrows. In this case it is clear that asqb and asqc but we don’t have bsqc.
This suggests us to give the next definition. B B o

Definition 6.5.10. Let be (X,<) € CSets-G: for each a,b e Xy we define a Sqb if and only if
there are ag, ..., a, € Xy, with n € NT, such that for each i € {0,. -1 Tal sqa;y1. This
means that Sq is the equivalence relatlons generated by sq. leen a € Xp, we denote with
Orbsq (a) the full subcategory of X such that the set of objects of Orbgq (a) is the equivalence
class of a with respect to Sq. We also set Orbgq (f) := Orbsg (sx(f)) = Orbsq (tx(f)) for
every f € X;. Moreover, we denote with rep;(g) a set of objects of X that acts as
set of representative elements with respect to the relation Sq. Note that, for every f € X1
(respectively, for each a € &p), Orbgq (f) (respectively, Orbsqr)) contains both the G-orbit of
f (respectively, of a) and the connected component of the category X (see [Mac98| pag. 88,
90]) that contains f (respectively, a). As a consequence, both Orbsq (f) and Orbsq (a) are
right G-sets, can be decomposed in G-orbits and are called the orbit categories of f and a,
respectively.
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Proposition 6.5.11. Let be (X,<) € CSets-G: we have

X = L—ij Orbsgq (a)
a€e repsj(X)

and, for every a € repgq (X), there cannot be two categorified G-sets Y and Y, both not empty,
such that Orbsj(a) =)ydv).

Proof. Immediate from the definitions. O

6.6 Categorified Burnside theory

We will give the main steps to build up the weak Burnside ring functor, using its category of
categorified groupoid-sets, ad we will compare this new ring with the classical one, providing a
natural transformation between the two contravariant functors.

Given a morphism of groupoids ¢p: H — G, in similar way to how it has been done in
subsection we define the induction functor

©*: CSets-G —> CSets-H,
which sends the right categorified G-set (X, <) to the right categorified H-set ¢* (X, <) such

that, for i = 0,1,
((,0* (X7§))i = (XZ i X0 Ho, pl‘g)

is the right H-set with the following action:

(XZ Si X‘PO HO) pro Xt Hl - Xz Si X(pg H()
((%,CL), h) - (xgpl(h),S(h))

The target, source and identity maps of ¢* (X, <) are defined as follows:
Spx(x,q) = Sx X Idyy,, tox(xq) = ta X Idyy, and bpx(xq) = Lt X Idyy,.
Regarding the composition, we set
Mg (x,6)t (X6 X 00 10) s e, Xt ey (X1 X0 Ho) — (X1 Xy Ho)

(@), (5,8)) — (m(z.y).0)

Given a morphism of right categorified G-set f: (X,s) — (), 60), we define the morphism of
categorified right H-sets

@ (f): ¢ (X,6) — ©* (1,0)

as the morphism f x Idy,. In a similar way to how it has been done in Proposition it is

possible to prove that ¢* is monoidal with respect to both & and x.
Go

Let now G be a groupoid: we will develop a Burnside theory based on categorified right
G-sets, in a similar way to how it has been done in Chapter [5] We assume, in this section, that
all handled groupoids have a finite set of objects: this condition is needed for the categorified
Burnside ring we are planing to introduce to have a neutral element with respect to the
multiplication. We also assume that functors between categorified sets with a right action
preserve objects with finite underlying sets, and transform an empty categorified groupoid-set
to an empty one, as the induction functors do.
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We denote with csets-G the 2-category of finite right categorified G-sets; however, as with
CSets-G, we will mainly consider it as a category. We define % (G) as the quotient set of
csets-G by the equivalence relation ~e: thanks to Lemma it becomes a rig. Moreover,
given a morphism of groups ¢: H — G, in a similar way to how it has been proved in
Lemma [5.1.1] it is clear that we have a monomorphism of rigs

Zc(p): Zc(G) — Zc (H)
[(X,9)] — [ (X,9)].

To see that Zc () is well defined it’s enough to consider that, given a 2-morphism a: f — h
between two morphisms f,h: (X,s) — (¥, 60) in CSets-G, we can define a 2-morphism

aXIdHO:fXIdHO%hXIdHO

in CSets-H between f x Idy, and g x Idy,. As a consequence, (X,<) ~we (V,0) in CSets-G
implies ¢* (X,5) ~we ©* (V,0) in CSets-H. In this way we obtain a contravariant functor
Zc: Grpd — Rig, that is, from the category of groupoids to the category of rigs.

Given a groupoid G, using the functor Z-G of Eq. (6.2.1)), we can construct an injective
morphism from the classical Burnside rig of G to the categorified Burnside rig of G in the
following way:

21(9): £ (G) — Zc(9)
[(X7 §)] - [I_g (Xa §)] :

Note that .Z7(G) cannot be surjective because, thanks to Corollary categories with a
not discrete skeleton cannot be weak equivalent to discrete ones. In this way we obtain a
natural transformation .27 : . — %, that is, given a morphism of groups ¢: H — G, the
following diagram is commutative:

Z(G) ———— Z(9)
f(w)l ch(w)
L1 (M)

2 H) —2 s 2 (H).

We define B¢ = G %c and Br = G.%7, where ¢ is the Grothendieck functor (see Appendix7
that is, a functor that associates to each rig an opportune ring with a specific universal property.
In this way we obtain a contravariant functor ¢: Grp — CRing, that is, from the category
of groups to the category of commutative rings, and a natural transformation

Br=9L1: B =9L — PBc =9 <.

Definition 6.6.1. We call % the categorified Burnside rig functor and %c the cat-
egorified Burnside ring functor. In particular, given a groupoid G, we call ¢ (G) the
categorified Burnside ring of G.

Remark 6.6.2. An obvious question is if, given a groupoid G, the morphism of rings %#7(G) is
injective (we will use the abuses of notation .47 = Z7(G) and A1 = HB1(G)). Let be

(@ 1.0 ], [[AN][B. 0] | € Zc )

such that

|22 (o)), 22 (.0 | = 22 ([ (X 91. [0.01] )
= %1 ([ (AN 1B.01]) = |22 (AN, Z2 ([B.w)]) |
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then there is [(Z,w)] € Zc(G) such that

21 ([(X,9)]) + 2z ([(B, w)]) + [(Z2,w)] = Zz ((AN]) + ZZ ([(V,0)]) + [(Z2,w)] -

If £c(G), as an additive monoid, satisfies the cancellative property, then, since %7 is injective,
we can easily deduce that %7 is injective too. In the classical case this is guaranteed by the
Burnside Theorem (see [BoulOa, Thm. 2.4.5]) but in this context we still don’t know whether
a similar theorem is true or not and, consequently, the question about the injectivity of %z
remains open.

Example 6.6.3. Given a groupoid G, the following categories, with only the identities as isomor-
phisms and with the actions and structure maps opportunely defined, thanks to Corollary

77777777777 3 ¢! fia€
RN S R D S N R
La La b L a b+ ' a b
o L _____ ! [ ! B Ji 2 :

A A

: a/_\b i : a/_\;b i 3 amb i

: ~_ ‘ | ~_ \ ‘f l\_/! |

‘ fo L faoce ! ‘e l

are all examples of not weak equivalent right categorified G-sets, thus they give rise to different
elements in Z¢ (G). For example, let be G = 1, the groupoid with one object and one arrow:
in this case the G-action is trivial, thus .2 (G) = N (we just have finite sets) but, regarding
Zc (G), we have to consider all the classes given by all the previous not weak equivalent right
categorified G-sets. More specifically, for each n € NT, in the case of .Z(1), we just have n
points, but in the case of #(1), we have to consider all the possible graphs with n vertices!

The following results are adaptations of the corresponding results from Chapter [5| to the
new situation of categorified sets.

Proposition 6.6.4. Given a groupoid G, let A be a subgroupoid of G. We define a functor
F: CSets-G — CSets-A

in the following way: let be (X,<) € CSets-G. We define F ((X,<)) as the internal category in
Sets-A with set of objects <§0—1 (Ao), §0|§0_1(A0)) and set of morphisms (gl_l (Ao), §1|§1_1(A0)).

The source, target, identity and composition maps of F ((X,<)) are the opportune restriction
to go_l (Ap) and §1_1 (Ao) of the relative maps of (X,s). Then F, opportunely defined on
morphisms, is a Laplaza functor.

Proof. It proceeds as the proof of Proposition [1.3.10] O

Given a groupoid G and a fixed object z € Gy, we recall that by G®) we denote the one
object subgroupoid with isotropy group G*.

Theorem 6.6.5. Given a transitive and not empty groupoid G, let be a € Gy. Then there is a
Laplaza equivalence of categories

CSets-G ~ CSets-G@),
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Proof. 1t is similar to the proof of Theorem but there are a few differences. Let’s set
Ao = {a}. The functor F: CSets-G —> CSets-A is the one constructed in Proposition [6.6.4}
Regarding G: CSets-A — CSets-G, we define G ((X,)) as the internal category in Sets-G
with set of objects

<y0=X0><go, 190=Pr2iy0=?50><go—>go)
and object of morphisms
(y1=/'\71><90, 191=prgiy1=Xlxgo—>go>-

The source, target, identity and composition maps of G ((X,<)) are defined as sg((x¢)) =
S(re) X 905 o) = e X 90 La(rg) = L) X Yo and mG«X&))((””"“)’(y’b) -
(mere(@,9),a) for cach ((z,a), (y,0)) € X =

Proposition 6.6.6. The Burnside rig functor £c sends coproduct to product. In particular,
given a family of groupoids (gj)jd, let (ij: G — g)jel be their coproduct in Grpd. Then

(ZLc(15) : Zc(G) — Zc(G)))jer
is the product of the family (ﬁfc(gj))je] in the category Rig.

Proof. The idea of the proof is similar to Proposition the only difference to keep in
mind is that we are dealing with particular small categories and not sets. O

Theorem 6.6.7. Let be G and A be groupoids such that there is a Laplaza equivalence of
categories CSets-G ~ CSets-A. Then there is an isomorphism of commutative rings Bc (G) =

Be(A).
Proof. Tt proceeds as in Theorem [5.1.5 O

Theorem 6.6.8. Given a groupoid G, fix a set of representative objects rep(Gy) representing
the set of connected components mo(G). For each a € rep(Go), let G be the connected
component of G containing a, which we consider as a groupoid. Then we have the following
isomorphism of rings:

#c(G) = [] #c (g<a>) .
acrep(Go)
Proof. Tt follows directly from Proposition O

Corollary 6.6.9. Given a groupoid G, we have the following isomorphism of rings:

Bc(G) = [] B9,

aerep(Go)

where the right hand side term is the product of commutative rings.

Proof. Immediate from Theorem [6.6.8, Theorem [6.6.7} and Theorem [6.6.5 O
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The category Rig

One of the essential notion to introduce a Burnside ring is that of rig.

Definition A.0.1. Let S be a set with two associative and commutative internal operations -
and +. We call S a rig if the following conditions are satisfied:

(1) + has a neutral element 0;
(2) - has a neutral element 1;

(3) - distributes over + on the right and on the left that is, for each a,b,c € S,

a(b+c) = ab+ ac and (a + b)c = ac + ab;

(4) S respect the absorption/annihilation laws that is, for each a € S we have a-0 =0 = 0-a.

A homomorphism of rigs f: S — T is a function which is a homomorphism of monoids both
as f: (S,+) — (T,+) and as f: (S,) — (T,-). The category of rigs will be denoted by
Rig.

With this definition we choose to follow the definitions given by |Gla02, page 7|, and [Sch91,
page 379]. The reader should know, however, that what we called a rig is called a semiring
by other authors (|Gol99, page 1|). Nevertheless, in analogy with the word semigroup that
describes a monoid without a neutral element, we think that the word semiring should be
reserved to a ring that lacks both the negative elements (i.e., the inverses with respect to the
addition) and the additive neutral element.

Proposition A.0.2. Given a family of rigs (Si),c;, set S =1 l,c; Si and let w;: S — S; be
the canonical projection. Then (m;: S — S;),.; is the product of the family (S;),c; in the
category Rig.

Proof. Given arig A, let (f;j: A — Sj)je] be a family of rigs. We have to prove that there is
only one morphism f: A — S such that the following diagram commutes for every j € I:
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For each a € A we define f(a) = (fj(a));c;: obviously, f is a homomorphism of rigs because
so is f; for every j € I. Regarding the commutativity of the diagram, for every j € I and for
every a € A we have:

7 (f(a)) = m; ((fi(a)ier) = fi(a).
Now let g: A — S be another morphism of rigs such that, for every j € I, the following
diagram commutes:

Then for every j € I and a € A we have
mj(9(a)) = fi(a) = m; (f(a))

thus f(a) = g(a) and f = g. O



Appendix B

The Grothendieck functor

This topic has been treated in [Ros94, Thm. 1.1.3|, even if only in the additive version.

We will denote by ¢ the Grothendieck functor which sends a rig S to the ring 4(.5)
constructed as follows. We define a equivalence relation ~ on S x S such that for every
(a,b),(c,d) € S x S, we have (a,b) ~ (¢,d) if and only if there is e € S such that a +d + e =
¢+ b+ e. The equivalence class of the couple (a,b) € S x S will be denoted with [(a, b)], or
simply by [a, b] to make the notation more clear, and the quotient set of S x S with 4(S). We
will define an addition and a multiplication on ¢(S) as follows: for every [a,b], [c,d] € 4(S),

[a,b] + [¢,d] = [a + ¢, b+ d] and [a,b] - [¢,d] = [ac + bd, ad + bc].

In this way ¢(S) becomes a commutative rings with [0, 0] as neutral element with respect to
+ and [1, 0] as neutral element with respect to -.

Given a rig S, the ring ¢(S) has the following universal property.

Proposition B.0.1. Given a rig S, for any ring H and for any homomorphism of rigs
V: S — H, there is a unique homomorphism of rings 0: 4(S) — H such that ¢ = 0, that
18, such that the following diagram is commutative:

Using the universal property of Proposition given a homomorphism of rigs f: § — T
we can define
9(f):9(5) —9(T)
[CL, b] - [f(a)u f(b)] :

It is possible to prove that ¢(f) is a homomorphism of rings and that, with these definitions,
% becomes a covariant functor from the category of rigs Rig to the category of commutative
rings CRing.

Proposition B.0.2. Given an isomorphism of rigs f: S — T we obtain an isomorphism of
TINgs

G(f): 4(S) — G(T).

105
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Proof. Immediate. O

Proposition B.0.3. The Grothendieck functor 4 preserves all products. In particular, given
a family of rigs (S;) let be (mj: S — Sj)je[ their product in riG. Then

(G (mj) - 9(S) — 9 (5)))

jel’
jel

is the product of the family (¢ (Sj))jd in CRing.

Proof. Given aring A, let (A — ¢ (Sj))jel be a family of morphisms in CRing. We have

to prove that there is a unique homomorphism of rings f: A — %(S) such that for every
j € I the following diagram commutes:

AT Laq)
P l%(ﬂj)

G (S;).

Thanks to Proposition we will assume that S = [];.; S; and that m;: S — S; is the
canonical projection for every j € I (the categorical product is unique up to isomorphism in
every category so there is no loss of generality in this choice). Let a € A: for every j € I there
are xj,y; € S; such that f;(a) = [z, y;] thus we can define

7(@) = | @)ser» W)y |-

We have to prove that this is a good definition. For every j € I let be z;,w; € S such that
[z;,y;] = [#j, w;]: then there is e; € S such that z; + w; +e; = z; + y; + ;. As a consequence
we have
(@) jer + (W) jer + (&) jer = (Zi)jer + (W) jer + (€5) jer
thus
@) er O)ser | = [ Gidjer (w1) et
and f is well defined.

Now we have to prove that f is a homomorphism of rings. Given a,b € A, for every j € I
let be aj, o ,b;, B € S; such that f;j(a) = [aj, ;] and f;(b) = [bj, B;]. We have

fila+b) = fi(a) + f;(b) = [a;, ;] + [b, B;] = [a; + bj, o + Bj]

and
filab) = fi(a) f;(b) = [aj, ;] [bs, Bi] = [ajb; + By, a;B; + ajb;]
thus

F@) + FO) = [@)ser @0)jer |+ [®)ier s Bidger | = [@)ser + ®)ser (@) + (B
= [(aj +0j)jer» (@ + ﬁj)jef] = f(a+b)
and
@ F®) = |(@)jer» @3)jer | [ G3)jer> B |
[ @) s B)ser + (@) jer Bi)yer (@) jer (Byser + (@) jer (b e |

= [(ajbj +ajBj)jer (a;B; + ajbj)je[] = f(ab).
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Moreover, for each j € I we have f;(0) = [0,0] and f;(1) = [1,0] thus

FO) = [0 09)yer]  and £ = [ (1) er 2 (0))

therefore we have proved that f is a homomorphism of rings. Regarding the commutativity
of the diagrams, for every j € I and every a € A let be z;,y; € Sj such that f;(a) = [z}, y;].

Then f(a) = [(zi);es > (Wi)ser] thus
G (m;) (f(a)) = [mj @i)ier »7j (Yidier] = 25,951 = [
therefore ¢ (7;) f = f; and the commutativity of the diagrams is proved.

Now let be g: A —> ¢(S) another homomorphism of rings such that, for every j € I, the
following diagram commutes:

A—72  4(S)
x g(”j)
9 (5;) -

For every j € I and for every a € A we have

G () (9(a)) = fi(a) = ¥ (7)) (f(a))

Let be zj,y; € S such that f;(a) = [z;,y;] and let be (€;);c;, (fi);e; € S such that g(a) =

[(€i);er > (fi)iei]l- We calculate:

lej, i1 = [mj [(ei)iei] s 75 ((fidier)] = 9 (75) (9(a) = F () (f(a))
=G (m) (@) icr » Wi)ier]) = 75 (@) ier) 75 ((Yi)ier)] = [75,95]

thus we obtain that there is £; € S; such that

el

ej +y; +¢; =:Uj+fj+€j
therefore
<€j)jel + (yj)jel + (ej)jel = ($J')jel + (fj)jel + (8j)jel
and g(a) = [(z4),cr» (Yi)ses] = f(a). We have now proved that f = g. O
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Appendix C

Monoidal categories

In this appendix we will state a few definitions over which there isn’t still a complete consensus
(Definition [C'.0.2)) and, after that, we will prove a few known results whose proofs we have
been unable to find elsewhere.

We refer the reader to |[TV17| for the following definitions.

Definition C.0.1. A monoidal category is a category C endowed with:
(1) a functor CHC — C called the monoidal product;
(2) an object J € C called the monoidal unit object;

(3) a natural isomorphism
a: (FB-)E-) — (EH(EE-)

called the associativity constraint;

(4) a natural isomorphism
r: (Ide®J) — Ide

called the right unitality constraint;

(5) a natural isomorphism
l: (JEIde) — Ide

called the left unitality constraint.
Moreover, the following conditions have to be satisfied.
(1) The following diagram, called the pentagonal identity, has to be commutative for

each quadruple (X,Y, Z, W) of objects of C:

(XBEY)E(ZEW)
(XEY)mZ2)BwW XEYECZEW))
Ja(X,Y,Z)IdW Idx a(Y,Z,W)T

a(X,YHZ,W
( ) X@(Y@mZ)mW).

X@Y®E2)Ew

109
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(2) The following diagram, called the triangular identity, has to be commutative for each
couple (X,Y) of objects of C:

XHY
r(X)Hldy Idx HI(Y)

a(X,J.Y
(X@J)mY (57Y) X@EJ@Y).

We will use the notation C = (C,#, J,a,l,7). If a, r and [ are identities we say that C is a
strict monoidal category and we use the notation C = (C,H, J).

Definition C.0.2. Let C = (C,#H, J,a,l,r) and D = (D,®,I,d’,l',r") be two monoidal
categories. A monoidal functor from C to D is a functor F': C — D endowed with a
morphism Fy: I — FJ and a natural transformation

Fy(—,—-): FO F — F(H)
such that the following conditions are satisfied.

(1) For each triple (X,Y, Z) of objects of C the following diagram is commutative.

o (F(X),F(Y),F(Z))

(F(X)® F(Y)) @ F(2) F(X)® (F(Y) @ F(2))
Fg(X,Y)@IdﬂZ)J( lIdF(m QF:(Y,Z)
FI(X@Y)® F(Z) F(X)®F(Y@Z)
FQ(XY,Z)J( lFQ(X’YZ)
F(XEY)E2) FloXx.2)) F(X@(Y@Z))

(2) for each object X of C the two following diagrams are commutative.

U(F(X)) ' (F(X))

1@ F(X) F(X) FX)®I F(X)
F0®IjF(X) F(Z{X)) IdF()i) ®Fo F(QX))
FIFX) Y L romx) FX)eF) 2% L pxcma)

We say that F'is a strong monoidal functor (respectively, a strict monoidal functor) if
F5 and Fy are both isomorphism (respectively, both identities).

Example C.0.3. It is clear that the identity functor is a strict monoidal functor.

Definition C.0.4. Given monoidal categories C = (C,[#, J, a,l,r) and D = (D,®,I,d’,l',1"),
let F,G:C — D be two monoidal functors and let’s consider a natural transformation
uw: F— G. We say that p is a monoidal natural transformation if the the following
diagrams are commutative:

(X)®u(Y)
_—

I Go G(J) FX)®G(X) G(X)®G(Y)
F(J) Fixmy)—"E)  axmy).
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Definition C.0.5. Given monoidal categories C = (C,H, J, a,l,7) and D = (D,®,I,d’,l',r"),
let’s consider a couple of monoidal functors

(F:C—D, G:D—2C)

and monoidal natural transformations n: Id¢ — GF and €: FG — Idp. We say that:
(1) (F,Q) is an monoidal adjunction of categories if eF o F'n = Idp and GeonG = Idg;
(2) (F,G) is an monoidal equivalence of categories if 7 and ¢ are isomorphisms;

(3) (F,G) is an monoidal adjoint equivalence of categories if it is an equivalence of
monoidal categories such that 7 and e are isomorphisms.

Definition C.0.6. Let be C = (C,H, J,a,l,r) and D = (D,®, I,d’,l’,r") monoidal categories.
We say that C and D are monoidally equivalent categories is there is a monoidal equivalence
between them.

As proved in [Mac98, Chap. 7], there is no loss of generality to restring ourselves to strict
monoidal categories.

Theorem C.0.7. Every monoidal category is monoidally equivalent to a strict one.

Theorem allow us, henceforth, in this appendix, to assume that all the monoidal
categories under consideration are strict.

Lemma C.0.8. Given monoidal categories (C,H,J), (D,®,I) and (€,0,K), consider the
monoidal functors

F: (C,H,J) — (D,®,1) and G: (D,®,I) — (£,0,K).
Then GF is a monoidal functor with

G(Fo)

(GF), = (GFy) Go = (K G(I) GF (J) )
and (GF), = (GF) (G2(F, F)) that is, for every couple (X,Y) of objects of C, (GF), is

defined by the following commutative diagram:

GF(X) o GF(Y) —— 2 GREEY)
Gz(F(X)’F(Y))J G (X)Y)
GF(X)®F(Y)).

Proof. To prove that (GF), and (GF), allow GF to become a monoidal functor it is enough
to consider the commutative diagrams of Definition relative to ' and G and use them
to prove the respective diagrams for GF. O

Proposition C.0.9. Let be (C,H,J) and (D,®, I) be monoidal categories and let F': C — D
be a strong monoidal functor that realises an adjunction

(F:C—7D, G:D—2C)

with unit n: Ide — GF and counit e: FG — Idp. Then we can endow G with a strong
monotidal structure in such a way that € and n become monoidal natural transformations.
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Proof. We define a natural transformation
Gy(—,—): GHG — G (®)

as follow:

Gao(—,—) = G(e®¢e) o GF, H(G,G) on(GEG).

This means that for every objects A, B € D the following diagram is commutative:

GFy; Y(GA,GB)

G (FGA® FGB) GF (GAEGB)
G(eA@eB)J Tn(GAGB)
G(A® B) G2(4.5) GA®HGB.

Moreover, we define Gy: J — GI according to the following commutative diagram

Go

J ——GI
J
! J GFy !
GFJ

Note that, by hypothesis, eF' o F'p = Idr and Ge o nG = Idg. Reading the diagram in
figure (C.1)) we obtain that, for every X € D, the following diagram is commutative

GX@HJ———GX
Idgx Gol
GX®EGI
Ga (X,I)J
G(XQI) =———GX.

The commutativity of the diagram

JHGX ———GX
GoIdGXl
GIEGX
GQ(I,X)J{
G(IQX)=———CGX.

can be proved in the same way or by applying what has already been demonstrated to the
opposite monoidal categories of (C,H,J) and (D,®, I) (here we mean opposite with respect
to the monoidal products, not opposite with respect to the direction of the morphisms).

Now we have to prove the associativity coherency conditions. Reading the diagram in
figures [C.2], [C.3] and [C4] we obtain that, for every X,Y,Z € D, the following diagram is
commutative:

Go(X,Y)HGZ

GXEGY mGZ GX®Y)maGZ
GXMHG2 (Y,Z)l J/GQ(X@Y,Z)
CXEGY ®7) —2X  aixevez).



GXHJ

GXHJ

GXHJ

GXGO

GXHEGI

Ga2(X,I)

G(X®I)

G(X®I)

GXH®HJ GXH®HJ GX
n(GPLJ) n(G)‘(J) né‘x
n(GX@J) ' ' b
GF (GX@®J) GF (GX®J) GF (GX®J) GFGX
GF(G%nJ)
CXB L GXmGFT NEXBOR) | R (GX ®GFT)
GXfFO1
GXm@EJ GF; Y (GX,J)
n(GX‘GI)
L GF(GXEGF; ")
GF (GXHGI) GF (GXHGFJ)
GF;l(‘fX,GI) GF{l(C\Y‘LX,GFJ)
G(FGXQFGF;! .
G(FGX @ FC.T) . ") G (rex @ FGF) < CECXEN) G paX @ F)
G(FG%@;EFJ) H
G(FGX®FJ) G(FGX®FJ)
G(eXQel) G(FG—’}®F61)
1
G(eX@F; ') G(FGX®I) GFGX
| |
G(eXQI) GeX
E\L j/
G(X®I) G(X®I) G(X®I) GX

Figure C.1: Coherence diagram unity condition
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GXHGYHGZ

GXHG2(Y,Z)

GXHG (Y ® Z) ——

G2(X,Y®Z)

GXRY ®2)

GXHGYHGZ

GXHGYHGZ

GXn(C}V;YGZ)
GX@EGF (GY BGZ) GX@GF (GY BGZ)
GXGF;t(GY,GZ) n(GXGFJ‘EGYGZ))

GXHG (FGY @ FGZ) GXHG (FGY  FGZ)
GXGE‘E:Y@eZ) n(GXG(FLGY@FGZ) ) GF(GXGI:LE_l (GY,GZ))

GXAG(Y ®Z) GF (GXHG(FGY Q FGY))——GF (GXHG (FGY  FGZ))
n(cxcl(x@z)) GF(GX?‘/J(EY@EZ)) GFy! (GXGELFGY@FGZ))

GF (GXHGY ®2)) GF (GXHGY ®2))

\

GFy 1 (GX,G(Y®Z))
¢

G(FGX@F\LG(EY@EZ))

G(FGXQFG(Y ® Z)) G(FGX Q@ FG(Y ® Z))
G(FGX@}(Y@Z))
G(eX®e(Y®Z)) GFGX®(Y®Z2)
G(eX(l)Y@Z)
GX®YQZ) G(X ®¢Y®Z)

GF(GX B GF(GY HGZ)) ———

G(FGX ® FG(FGY @ FGZ)) ——

n(GXGlYGZ)
GF(GXEGY BGZ)
GF(GXvi‘EGYGZ))
GF(GX@GF(GY BGZ))
GF;l(GX,GLF(GYGZ))
G(FGX ® FGF(GY HGZ))
G(FGX@FG‘f;l(GY,GZ))
G(FGX @ FG(FGY @ FGZ))
G(FGX@E(F“GY@FGZ))
G(FGX ® (;GY QR FGZ))
G(FGX®‘(5Y®EZ))
G(FGX 5 (Y ®2Z))

G(eXQl)Y@Z)
1

GXQY®Z)

Figure C.2: Coherence diagram associativity condition - Part 1
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GXHGY HGZ
|

n(GXﬁYGZ)

GXHGY HGZ
|

n(GXﬁYGZ)

GF(GXHEGYHGZ) GF(GXHGYHGZ)
GF(GX?‘EGYGZ) ) GFy! (G)j‘:GYGZ)
GF(GX®HGF(GYHGZ)) G(FGXQ®F(GYHGZ)) ——G(FGX ® F(GY HGZ))
GF;I(GX,G‘E“(GYGZ)) G(FGX@F%(GYGZ))
G(FGX @ FGF(GY BGZ)) —— G(FGX ® FGF(GY BGZ))
G(FGX@FGLF;(GY,GZ)) G(FGX@aFl(GYGZ))
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|
G(FGX@@(?‘/GY@FGZ)) G(FGX®F, ' (GY,GZ))
1

G(FGX ® F(GY B GZ))

GF(GXEGY BGZ) GF(GX ®HGY BGZ)

GF; ! (G%GY,GZ)
G(F(GXAGY)®FGZ)
G(Fr](GX‘GY)@FGZ)
G(FGF(GX®EGY)® FGZ)
G(sF(GX‘GY)@FGZ)
G(F(GX éY) ®FGZ)

\
G(Fy ' (GX,GY)RFGZ)
1

\
GF; Y (GXEGY,GZ)
1

G(F(GX@GY)® FGZ)

G(Fy Y (GX,GY)QFGZ)

G(FGX ® (FGY ® FGZ)) G(FGX @ (FGY ® FGZ)) G(FGX ® FGY)® FGZ) —— G((FGX ® FGY) ® FGZ)
G(FGX@‘(&Y@sZ))
G(FGX 5 Y®2) G(eX®eYReZ)
G(5X®‘Y®Z)
G(X ®LY®Z) GX®Y®Z)

Figure C.3: Coherence diagram associativity condition - Part 2

1T



GXBGYHGZ

r](CX%YGZ)

GF(GXHGYHGZ)
GFZ’l(G)j‘/GY,GZ)
GF(GXAHGY)RFGZ)

G(Fr](GXJf.*Y)@FGZ)

GF(GX®BGYHRGZ)
GF(r/(GXGY)CZ)
GF(GF(GX GY)HGZ)
GFZ’l(GF(GJ‘/XGY)?GZ)
G(FGF(GXAGY)Q FGZ)—— G(FGF(GXEGY)® FGZ)
G(sF(GX‘GY)@FGZ)
G(F(GX é‘y) ® FGZ)
G(Fy! (cxl‘/cy)@mz)

G((FGX @ FGY) ® FGZ)

|
G(FGF; M (GX,GY)QFGZ)
1

G(s(FGX@IJiGY)@FGZ)
G(FGX @ FGY)® FGZ)

G(sX@sJX‘//@FGZ)

— GF(GF(GX®GY)BGZ)

G(FG(FGX ® FGY) ® FGZ) ——

7](CX%:Y)GZ

GF(GX@GY)mGZ
7/(CF(CXCY)GZ)
G(FGX ® FGY)mGZ

|
GF(GF;  (GX,GY)HGZ) r](C(FGX@fGY)GZ)
1

GF(G(FGX @ FGY)H GZ) —— GF(G(FGX ® FGY)H GZ)
GF,;l(G(FGi‘/(@FGY),GZ) GF(G(EXl@sY)GZ)
G(FG(FGX @ FGY)® FGZ) GF(G(X®Y)HGZ)

G(FG(.»:X@J/&Y)@FGZ)

G(FG(X®Y)® FGZ)

G(S(X®%)®FGZ)

G(eXQeYReZ) GX®RYQ®FGZ) GX®YQ®FGZ)
G(X®j’®62)
GXQY QZ) GXQYRZ)

GF(GXHGY)HGZ
GF{I(G)j‘:GY)GZ
G(FGXQ®FGY)®BHGZ

G(aX@%y)cz

GXRY)HGZ ——

WI(G(X@%)GZ)

GF(GX®Y)HGZ)
GF.;%G()E@Y),GZ)

GFG(XQ®Y)® FGZ)

G(e(X®Y)®:Z)

GX®Y®Z)

Figure C.4: Coherence diagram associativity condition - Part 3
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As a consequence we have proved that G is a monoidal functor. We still have to prove
that 1 and € are monoidal natural transformations.

To prove that 1 is monoidal we have to show that the two following diagrams are commu-
tative:

n(X)En(Y)

J———" L GF(J) Xgy (GF)(X)B(GF)(Y)
Id{ 7 and l(GF)z(X,Y)
n
7 X@Y 1Y) GF(X@Y).

Using Lemma we calculate
(GF)y = (GFy) 0 Gy = (GFy) o (GEy ") = .

Now let be (X,Y") a couple of objects in C. We calculate:

0G(eFX ®eFY)oGE, Y(GFX,GFY)on(GFXMGFY) onX @nY
0G(eFX ®cFY)oGF, Y (GFX,GFY) o GF(nXMFY)on(X@Y)
0G(EFX®eFY)oG(FnX @ FnY) o GF, H(X,Y) on(X @Y)
oGF, M X,Y)on(X@Y) =n(X@Y).

We have now proved that 7 is monoidal.

To prove that € is monoidal we have to show that the two following diagrams are commu-
tative:

S (FG)(X) ® (FGQ)(v) S20&) X®Y
(FG){ and l(chx,Y)
e(I) X@v)
FG(I) FG(X®Y) o XQY.

Using Lemma [C70.§ we calculate
eloFGyg=¢el o FGyo Fy :efoFGFo_lanJoFo :Fo_loE(FJ)anJoFO =1Id;.
Now let be (X,Y") a couple of objects in C. We calculate:

e(X®Y)o (FQ),(X,Y)
=e(X®Y)oFGo(X,Y) 0 Fr(GX,GY)
=e(X®Y)oFG(eX ®eY) o FGF, {(GX,GY) o Fn(GX @M GY) o F>(GX,GY)
=eX®eY 0s(FGX ® FGY) o FGF, {(GX,GY) o Fn(GX B GY) o F>(GX,GY)
=eX®eY o Fy ' (GX,GY) 0 e F(GXBGY) o Fp(GX MGY) o F5(GX,GY)
=eX®eY o Fy ' (GX,GY) 0 F5(GX,GY) = X ®¢Y.

We have now proved that 7 is monoidal, completing the proof of the proposition. O
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Now we are going to apply the monoidal category theory developed so far to Laplaza
categories. We have already introduced them and given their basic definitions in Subsection [I:3.]]
but, to prove the results we need, we have to give two more definitions about them.

Definition C.0.10. Given (C1,¢1,H;) and (Cq, o2, Fs) two Laplaza categories, we say that a
Laplaza adjunction is a couple of Laplaza functors
F: (C1,01,H1) — (Ca,02,Hk) and G: (Cq,02,He) — (C1,01,Hh)
such that there are Laplaza transformations
n: Ide, — GF and e: FG — Idg,
such that e o F'p = Idp and Ge o nG = Idg.
Definition C.0.11. Given (C1,¢1,H;) and (Ce, o2, Fs) two Laplaza categories, we say that a
Laplaza adjoint equivalence is a couple of Laplaza functors
F: (Cy,01,H1) — (Ca,02,H>) and G: (Ca,09,H2) — (C1,01,Hh)
such that there are Laplaza natural isomorphisms
n: Ide, — GF and e: FG — Idg,
such that ¢ o Fp = Idp and Ge o nG = G.
Proposition C.0.12. Let be (C1,01,H1) and (Co,o2,F:2) be two Laplaza categories and let
F: Cy —> Cy be a Laplaza functor which realises an adjunction
(F:C,—Cyy, G:Co— ()

with unit n: Ide, — GF and counit ¢: FG — Id¢,. Then we can render G a Laplaza
functor in such a way that € and 1 become Laplaza transformations.

Proof. 1t is sufficient to apply Proposition separately fist to the strong monoidal functor
F: (C1,01) — (C2,92) and then to the strong monoidal functor F': (Ci,H;) — (Co,Hz). O

The following result is a standard categorical lemma.

Lemma C.0.13. Given categories C1 and Ca, let us consider functors F:Ci —> Co and
G: Co —> Cy that realise an equivalence of categories. Then there are natural isomorphisms
n: Ide, — GF and e: FG — Id¢, such that e¢F o F'n = 1dp and Ge onG = Idg.

Proof. Let be a: Id¢;, — GF and : FG — Id¢, two natural isomorphisms that realise the
equivalence (F,G) and define n = a and ¢ = B0 Fa™'G o FGB~!. We calculate:

GeonG =GBoGFa 'GoGFGB ' oalG
=GBoGFa 'GoaGFGoGA™?
=GBoaGoa 'GoGR ! =1dg.
Since FGB ot =B 1FGoB 1 and a ' o GFa™! = o' oo 'GF we obtain FGB~! =
B~LFG and GFa™! = a~'GF therefore we have
eFoFn=pFoFa 'GF o FGB™'Fo Fa
— BF o FGFa ' o B7'FGF o Fa
=BFofB 'FoFa'oFa=1Idp.
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Now we can finally state the following result, which is the objective of this entire appendix.

Corollary C.0.14. Let be (Ci,01,H1) and (Co,o2,He) be two Laplaza categories and let
F:C —> D be a Laplaza functor which is an equivalence of categories. Then there is a Laplaza
functor G: D — C such that there are Laplaza natural isomorphisms

n: Ide, — GF and e: FG — Idg,
such that (F,G) realises an adjunction with unit n and counit .

In particular, the inverse of a Laplaza functor is a Laplaza functor itself.

Proof. Thanks to Lemma there are natural isomorphisms 7: Ide, — GF and
e: FG — Idg, such that ¢F o Fp = Idp and Ge o nG = Idg. As a consequence we
can apply Proposition obtaining the thesis. O



120 APPENDIX C. MONOIDAL CATEGORIES



Bibliography

[AHSO04]

[BCO4|

[BL04]

[Bon00]
[Bon03]
[Bor94]
[Boul0a]
[Boul0b|
[Bro06|
[Bros?|
[Burl1]
[Car08]
[Con94]

[CR62)

[DG70]

[Die79|

J. Adédmek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories, The
Joy of Cats. Online edition. 2004. URL: http://katmat .math.uni-bremen.de/
acc/acc.pdfl

J. C. Baez and A. S. Crans. “Higher-Dimensional Algebra VI: Lie 2-Algebras”.
Theory and Applications of Categories 12.15 (2004), pp. 492-538. URL: http :
//www.tac.mta.ca/tac/volumes/12/15/12-15abs.html.

J. C. Baez and A. D. Lauda. “Higher-dimensional algebra V: 2-Groups”. Theory
and Applications of Categories 12.14 (2004), pp. 423-491. URL: http://www.tac.
mta.ca/tac/volumes/12/14/12-14abs.html.

C. Bonnafé. “Mackey formula in type A”. Proc. London Math. Soc. 80.3 (May 2000),
pp- 545-574. DOI: |10.1112/50024611500012399.

C. Bonnafé. “Corrigenda: Mackey formula in type A”. Proc. London Math. Soc.
86.2 (Mar. 2003), pp. 435—442. DOI: 10.1112/S0024611502014132.

F. Borceux. Handbook of Categorical Algebra 1 - Basic Category Theory. Vol. 50.
Encyclopedia of Mathematics and its Applications. Cambridge Univ. Press, 1994.
S. Bouc. Biset Functors for finite Groups. Vol. 1990. LNM. Springer-Verlag Berlin
Heidelberg, 2010.

S. Bouc. “Bisets as Categories and Tensor Product of Induced Bimodules”. Appl.
Categ. Structures 18.5 (Oct. 2010), pp. 517-521. DOI: 10.1007/s10485-008-9180-
1.

R. Brown. Topology and Groupoids. BookSurge Publishing, Feb. 2006.

R. Brown. “From groups to groupoids: a brief survey”. Bull. London Math. Soc.
19.2 (Mar. 1987), pp. 113-134. por: 10.1112/bIlms/19.2.113.

W. Burnside. Theory of groups of finite order. Second Edition. Cambridge Univ.
Press, 1911.

P. Cartier. “Groupoides de Lie et leurs algébroides”. Séminaire Bourbaki 60éme
année, 2007-2008 num. 987 (Mar. 2008), pp. 165-196.

A. Connes. Noncommutative Geometry. Academic Press, Inc., San Diego, CA, 1994.
C. W. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative
Algebras. Interscience Publishers, a division of John Wiley & Sons, New York -
London - Sydney, 1962.

M. Demazure and P. Gabriel. Groupes Algébriques - Tome 1: Géométrie Algébrique,
Généralités, Groupes Commutatifs. Masson & Cie, Editeur, Paris. Avec un appendice
Corps de classes local par Michiel Hazewinkel. North-Holland Publishing Co.,
Amsterdam, 1970.

T. T. Dieck. Transformation Groups and Representation Theory. Vol. 766. Lecture
Notes in Mathematics. Springer Verlag, 1979.

121


http://katmat.math.uni-bremen.de/acc/acc.pdf
http://katmat.math.uni-bremen.de/acc/acc.pdf
http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html
http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html
http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html
http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html
https://doi.org/10.1112/S0024611500012399
https://doi.org/10.1112/S0024611502014132
https://doi.org/10.1007/s10485-008-9180-1
https://doi.org/10.1007/s10485-008-9180-1
https://doi.org/10.1112/blms/19.2.113

122

[DLO09]
[DL76]

[DLS3]

[DM91]
[Dre69]
[EB18)]
[Ehr63al

|[Ehr63b]

[Ehr66]

[EK17]

[E1 18]
[ES18a]
[ES18b]
[ES18¢]
Gir71]

[Gla02]

[Gol99]

[GRR12]

[Hig71]
[HYO07]

[Jel03]

BIBLIOGRAPHY

A. Diaz and A. Libman. “The Burnside ring of fusion systems”. Advances in Math.
222 (Dec. 2009), pp. 1943-1963. DOI: 10.1016/j.aim.2009.06.023.

P. Deligne and G. Lusztig. “Representations of Reductive Groups Over Finite
Fields”. Ann. of Math. 103.1 (Jan. 1976), pp. 103-161. po1: 10.2307/1971021.

P. Deligne and G. Lusztig. “Duality for representations of a reductive group over
a finite field, II”. J. Algebra 81.2 (Apr. 1983), pp. 540-545. DOI: 10.1016/0021
8693(83)90202-8.

F. Digne and J. Michel. Representations of Finite Groups of Lie Type. Vol. 21.
London Math. Soc. Student Texts. Cambridge Univ. Press, Cambridge, 1991.

A. Dress. “A Characterisation of Solvable Groups”. Mathematische Zeitschrift 110
(1969), pp. 213-217.

L. El Kaoutit and J. J. Barbarédn Sénchez. “Linear representations and Frobenius
morphisms of groupoids”. June 2018. URL: https://arxiv.org/abs/1806.09327.
C. Ehresmann. “Catégories structurées”. Ann. Ec. Normale Sup. 80.4 (1963),
pp- 349-426. DOI: [10.24033/asens . 1125,

C. Ehresmann. “Catégories structurées III: Quintettes et applications covariantes”.
Topol. et Géom. Diff. Sém. C. Ehresmann. Institut H. Poincaré, Paris. 5 (1963),
p- 21.

C. Ehresmann. Ehresmann, Introduction to the theory of structured categories.
Technical Report Univ. of Kansas at Lawrence. 1966.

L. El Kaoutit and N. Kowalzig. “Morita theory for Hopf algebroids, principal
bibundles, and weak equivalences”. Doc. Math. 22 (2017), pp. 551-609. URL: https:
//www.math.uni-bielefeld.de/documenta/vol-22/17.html.

L. El Kaoutit. “On geometrically transitive Hopf algebroids”. J. Pure Appl. Algebra
222.11 (Nov. 2018), pp. 3483-3520. DOI: 10.1016/j.jpaa.2017.12.019.

L. El Kaoutit and L. Spinosa. “Burnside theory for groupoids”. July 2018. URL:
https://arxiv.org/abs/1807.04470.

L. El Kaoutit and L. Spinosa. “Mackey formula for bisets over groupoids”. J. Alg.
and Its Appications (July 2018). DOI: |10.1142/50219498819501093.

L. El Kaoutit and L. Spinosa. “Simplicial sets with a groupoid action and Burnside
ring”. Nov. 2018. URL: https://arxiv.org/abs/1811.11966.

J. Giraud. Cohomologie non abélienne. Vol. 179. Die Grundlehren der mathematis-
chen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, 1971.

K. Glazek. A guide to the literature on semirings and their applications in mathe-
matics and information sciences. With complete bibliography. Kluwer Academic
Publishers, Dordrecht, 2002.

J. S. Golan. Semirings and their Applications. Springer Netherlands, 1999. DOTI:
10.1007/978-94-015-9333-5.

P. E. Gunnells, A. Rose, and D. Rumynin. “Generalised Burnside rings, G-categories
and module categories”. J. Algebra 358 (May 2012), pp. 33-50. DOI: 10.1016/j .
jalgebra.2012.02.016.

P. J. Higgins. Notes on categories and groupoids. Vol. 32. Mathematical Studies.
Van Nostrand Reinhold, 1971.

R. Hartmann and E. Yalgin. “Generalized Burnside rings and group cohomology”. J.
Algebra 310.2 (Apr. 2007), pp. 917-944. DOI: [10.1016/j . jalgebra.2006.10.037.
B. Jelenc. “Serre fibrations in the Morita category of topological groupoids”. Topol.
and its Appl. 160.1 (Jan. 2003), pp. 9-23. DOI: [10.1016/j.topol.2012.09.013.


https://doi.org/10.1016/j.aim.2009.06.023
https://doi.org/10.2307/1971021
https://doi.org/10.1016/0021-8693(83)90202-8
https://doi.org/10.1016/0021-8693(83)90202-8
https://arxiv.org/abs/1806.09327
https://doi.org/10.24033/asens.1125
https://www.math.uni-bielefeld.de/documenta/vol-22/17.html
https://www.math.uni-bielefeld.de/documenta/vol-22/17.html
https://doi.org/10.1016/j.jpaa.2017.12.019
https://arxiv.org/abs/1807.04470
https://doi.org/10.1142/S0219498819501093
https://arxiv.org/abs/1811.11966
https://doi.org/10.1007/978-94-015-9333-5
https://doi.org/10.1016/j.jalgebra.2012.02.016
https://doi.org/10.1016/j.jalgebra.2012.02.016
https://doi.org/10.1016/j.jalgebra.2006.10.037
https://doi.org/10.1016/j.topol.2012.09.013

BIBLIOGRAPHY 123

[Kel05]

[Lap72al

[Lap72b]

[LS79]

[Mac05]
[Mac51]
[Mac52]

[Mac87|

[Mac98|

[MMO5]

[0Y01]

|[Ren&0)|

[Ros94|

[Scha1]

[Seg71]

[Ser77]

[Sol67]

[Tay17]

G. M. Kelly. Basic Concepts of Enriched Category Theory. Vol. 10. Theory and
Applications of Categories. 2005, pp. 1-136. URL: http://www.tac.mta.ca/tac/
reprints/articles/10/tr10abs.html.

M. L. Laplaza. “Coherence for categories with associativity, commutativity and
distributivity”. Bull. Amer. Math. Soc. 78 (1972), pp. 220-222.

M. L. Laplaza. “Coherence for distributivity”. In: Coherence in Categories. Vol. 281.
Lecture Notes in Math. Springer-Verlag, Berlin, Heidelberg, New York, 1972, pp. 29—
65.

G. Lusztig and N. Spaltenstein. “Induced Unipotent Classes”. J. London Math. Soc.
$2-19.1 (Feb. 1979), pp. 41-52. DOI: [10.1112/j1lms/s2-19.1.41.

K. C. H. Mackenzie. General Theory of Lie Groupoids and Lie Algebroids. Vol. 213.
London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2005.
G. W. Mackey. “On Induced Representations of Groups”. Amer. J. Math. 73.3
(July 1951), pp. 576-592. DOI: 10.2307/2372309.

G. W. Mackey. “Induced Representations of Locally Compact Groups I”. Ann. of
Math., Second Series 55.1 (Jan. 1952), pp. 101-139. DOI: |10.2307/1969423.

K. C. H. Mackenzie. Lie Groupoids and Lie Algebroids in Differential Geometry.
Vol. 124. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge,
1987.

S. Mac Lane. Categories for the Working Mathematician. Second Edition. Vol. 5.
Graduate Texts in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg,
1998. DOI: 10.1007/978-1-4757-4721-8.

I. Moerdijk and J. Mréun. “Lie groupoids, sheaves and cohomology”. In: Poisson
Geometry, Deformation Quantisation and Group Representations. Ed. by S. Gutt,
J. H. Rawnsley, and D. Sternheimer. Vol. 323. London Math. Soc. Lecture Note
Ser. Cambridge Univ. Press, Cambridge, 2005, pp. 145-272.

F. Oda and T. Yoshida. “Crossed Burnside Rings I. The Fundamental Theorem”.
J. Algebra 236.1 (Feb. 2001), pp. 29-79. DOI: 10.1006/ jabr.2000.8341.

J. Renault. A Groupoid Approach to C*-Algebras. Vol. 793. Lecture Notes in Math.
Springer-Verlag Berlin Heidelberg, 1980. DOI: [10.1007/BFb0091072.

J. Rosenberg. Algebraic K-Theory and its applications. Vol. 147. Graduate Texts in
Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, 1994. DOT1: |10.1007/
978-1-4612-4314-4.

S. H. Schanuel. “Negative sets have Euler characteristic and dimension”. In: Pro-
ceedings of the International Conference held in Como, Italy, July 22-28, 1990.
Vol. 1488. Lecture Notes in Math. Springer-Verlag, Berlin, Heidelberg, New York,
1991, pp. 379-385.

G. B. Segal. “Equivariant stable homotopy theory”. In: Actes du Congreés Interna-
tional des Mathématiciens (Nice, 1970), Tome 2. Ed. by Gauthier-Villars. Paris,
1971, pp. 59-63.

J. P. Serre. Linear Representations of Finite Groups. Translated from the second
French edition by Leonard L. Scott. Vol. 42. Graduate Texts in Mathematics.
Springer-Verlag New York, Inc., 1977.

L. Solomon. “The Burnside algebra of a finite group”. J. Combin. Theory 2.4 (June
1967), pp. 603-615. DOI: [10.1016/50021-9800 (67 ) 80064-4!

J. Taylor. On The Mackey Formula for Connected Centre Groups. Aug. 2017. URL:
https://arxiv.org/abs/1707.04773v2.


http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
https://doi.org/10.1112/jlms/s2-19.1.41
https://doi.org/10.2307/2372309
https://doi.org/10.2307/1969423
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1006/jabr.2000.8341
https://doi.org/10.1007/BFb0091072
https://doi.org/10.1007/978-1-4612-4314-4
https://doi.org/10.1007/978-1-4612-4314-4
https://doi.org/10.1016/S0021-9800(67)80064-4
https://arxiv.org/abs/1707.04773v2

124 BIBLIOGRAPHY

[TV17] V. Turaev and A. Virelizier. Monoidal Categories and Topological Field Theory.
Vol. 322. Progress in Mathematic. Birkh&user, Springer International Publishing
AG, 2017. por1: [10.1007/978-3-319-49834-8.

[Wei96]  A. Weinstein. “Groupoids: unifying internal and external symmetry. A tour through
some examples.” Notices Amer. Math. Soc. 43.7 (July 1996), pp. 744-752.

[Whi46] J. H. C. Whitehead. “Note on a previous paper entitled ‘On adding relations to
homotopy groups™. Ann. of Math. 2.47 (1946), pp. 806-810. DOI: [10.2307/1969237.

[Whi49] J. H. C. Whitehead. “Combinatorial homotopy II". Bull. Amer. Math. Soc. 55
(1949), pp. 453-496. DOI: 10.1090/S0002-9904-1949-09213-3.


https://doi.org/10.1007/978-3-319-49834-8
https://doi.org/10.2307/1969237
https://doi.org/10.1090/S0002-9904-1949-09213-3

Index

G-invariant subset, [0] categorified,

2-morphism Theorem, [44]
of right categorified G-sets, [83]

G-set Categorified
left, right G-set, [83]
right, right G-subset, [01]

G-subset full,
right, isomorphism-dense,

right groupoid-set,

Action Category
left, double, 04]
regular, internal in C,
right, ] monoidal, [I09]

Action groupoid, strict, [I10]

Adjoint equivalence of morphisms, [95]
Laplaza, of objects, [05]
monoidal, of categories, orbit,

Adjunction small,

Laplaza, Composition
monoidal, of categories, [I11] functor,

Arrow, morphism,

Associativity Conjugally equivalent subgroupoids,
constraint, [T09] Conjugated

isotropy subgroups, 32|

Bibundle subgroupoids, [32]
principal, |6_7| Connected component of a groupoid, |Z|
Bilateral Connected groupoid,
stabilizer of z in G, [16] Constraint
Biset associativity, [[09]
definition, left unitality,
left, principal, [67] Coproduct groupoid,
morphism of,
principal, [67] Double
right principal, [67] category, [97]
Bundle cosets of H by A and B, [17]
left principal, [67] right translation category of (X,<) by G,
right principal, [67] 06
Burnside
algebra of G over Q, Equivalence
rig functor, monoidal, of categories,
categorified, of Laplaza categories, [20]
ring functor, [74] relation groupoid, [

125



126

weak,

Equivalent
categories, monoidally,
groupoids, weakly,
weak, [00]

Fiber product, [T} [82]

Fibre product,

Fine groupoid, [

Fixed points by H in X
set of,

to have naturally the same set of,

Full
right categorified G-subset,
Functor
Burnside rig, [73]
categorified,
Burnside ring, [74]
categorified, [I00]
composition, 96|
Grothendieck,
identity, [96]
induction,
internal in C, [82]
Laplaza, [20]
monoidal
strict, [T10]
strong, [I10]
multiplication,
source, [05]

target, [95]

Ghost map of a groupoid,
Grothendieck functor,
Group

of isotropy of G at a,
Groupoid

action, [3]

biset,

connected,

connected component, |2|

coproduct,

definition,

fine, [

Ghost map,

induced of G by the map <, [4]

left translation of X by G, [0]

locally strongly finite,

morphism of,

of equivalence relation, []

of pairs, ]

opposite, [2]

orbit set,

product G x H,
pullback of G along ¢, [4]
right translation of X by G, []
set, 0]

simplicial,

skeletally finite,
strongly finite,

table of marks, [39]
transitive, 2]

trivial,

two sided translation,

Identity

functor,

morphism, [82]

pentagonal, [T09]

triangular,
Induced

groupoid of G by the map «,

natural transformation,
Induction functor, [21] [09]
Internal

category in C,

functor in C, [82]

natural transformation in C, [83]
Isomorphism-dense

right categorified G-subset,
Isotropy

conjugated subgroups,

group of G at a,

maps, [3|

Laplaza
adjoint equivalence, [118
adjunction, [TT§]

category, [20]
equivalence of categories,

functor, [20]

isomorphism of categories,

natural isomorphism,

natural transformation, [20]
Left

G-equivariant map, [6]

G-set, [f]

action, [o]

principal biset, [67]

principal bundle, [67]

INDEX



INDEX

stabilizer of z in G, [9]
translation groupoid of X by G, [6]
Left cosets
set of,
Left unitality constraint,
Locally strongly finite
groupoid, [38]
Loop, [I]

Mackey formula for groupoid-bisets, [51]
Monoidal
adjoint equivalence of categories, [111
adjunction of categories,

category, [I09]

strict, [T10]

equivalence of categories, [111
functor

strict, [T10]
strong, [T10]

natural transformation, [I10
product,
unit object,
Monoidally equivalent categories, [T11]
Morphism
composition, [82]
identity,
multiplication, 82]
of (H,G)-biset,
of groupoids, [3]
of left G-sets, [0]
of right G-sets, [f]
of right categorified G-sets, [83]
source, [82]
target, [82]
Multiplication

functor,
morphism, [82]

Natural isomorphism

Laplaza,
Natural transformation

induced,
internal in C, [83]
Laplaza, [20]
monoidal,

Opposite groupoid,
Orbit
category, [08]

of z, 2| B [I7]

127

set of (X,g),
set of the groupoid G, 2]
space of the two translation groupoid, [T1]

Pairs

groupoid of, [
Pentagonal identity, [109
Principal

bibundle, [67]

biset, [67]

Product

monoidal,
Product groupoid G x H,
Pullback groupoid of G along ¢, [4]

Regular action, [j]
Representative set,
Rig,
Right
G-equivariant map, [0]
G-set, [f]
transitive, [9]
G-subset,
action, [5]
categorified G-set, [83]
categorified G-subset, [9]]
full,
isomorphism-dense,
skeleton,
categorified groupoid-set, [84]
principal biset, [67]
principal bundle, [67]
stabilizer of z in G, [9]
translation double category of (X,¢) by
g,[og
translation groupoid of X by G, [6]
Right cosets
set of, [12]
Right unitality constraint, [I09]
Ring
categorified Burnside,

Set
X with a left (or right) G-action,
of double cosets of H by A and B, [17]
of fixed points by H in X,
of horizontal morphisms,
of left cosets of G by H,
of objects,
of right cosets of G by H, [12]



128

of squares,

of vertical morphisms, [05]

orbit,

representative, [§ [IT]
Simplicial

groupoid,
Skeletally finite

groupoid,
Skeleton of a right G-subset, [01]
Small category,

Source, [T} 82

functor,

Stabilizer
bilateral,
left, [9]
right, [9]

Strongly finite
groupoid, [38]

Structure map,
Subgroupoid, 2]
Subgroupoids
conjugally equivalent, [29]
conjugated,

Table of marks of a groupoid,
Target, [T}, 82
functor,
Tensor product over G of X and Y,
Transitive
right G-set, [9]
Transitive groupoid, [2]
Triangular identity, {110
Trivial groupoid, [3]
Two sided translation groupoid,

Unit object
monoidal, [I09]

Vertices of a square, 0§

Weak
equivalence,

equivalent,
Weakly equivalent groupoids, [66]

INDEX



Index of notations

(X,0,9),
Afxg-87|I|
X/(H.6), [
X x G, [0

X ®g Y,@
X % G,[0]
X/G,8

XH,
#16.
CSets-G, B3]
AFXGB,
A(a, h, b)B, [[7]
G\Z,[

G xH, B
g(l’,y),
Go, [

G, [0
GONEY
g(w)’
g, 2

g, A

g, [
H\X/G,[L]
Hx X xg, [
H(G)".[13
M« L, [49]
X % G, g
X (a,b),[34
A(f.9),83
G[=1. [
Grpd, [3
H[(a, 9)]

-G,
Sets, [7]
Orbgq (a)
Orbsq (f),
)

o8
reij ( ) W

W, [15]
Xl)

R F
N RIEREE

2
5
2
=
=
E

AR
RO
RE

—
Q
~
X
SN—
“N‘G\';U
HE

Q=
X
X
~ Ut
=

[OV)]

o=
W2
€<
=

T Q
o
i

L Az
SV S
=EEEEss



130

SXa@
s”,

t(f), [
tx,@
£,

A3
V", [67]

LPZCat,

0,12

70(G),

rep(Sg),
TeP(x, ) (X),

repg(X),

Rig,

B (G),
B (),
B1(G),
21(G),
Zc (9),
Zc (9),
~a, @
TIC, |2;9|

Gac,s, @

—
—_

100

100

100

100

100

100

i
aqu
asqb, @
g R

mX’@

T ®g y, [1§

9]{7

*H[(a, g)],

YH(G),

INDEX OF NOTATIONS



	Table of contents
	List of diagrams
	Introduction
	Acknowledgements
	Basic notions
	Abstract groupoids: General notions and basic properties
	Notations, basic notions and examples
	Groupoid actions and equivariant maps
	Orbit sets and stabilizers
	A right groupoid-set with a non surjective structure map

	Groupoid-bisets, translation groupoids, orbits and cosets
	The category of bisets and two sided translation groupoids
	Left (right) cosets by subgroupoids and decompositions
	Groupoid-bisets versus (left) groupoid-sets
	Orbits and stabilizers of bisets and double cosets
	The tensor product of groupoid-bisets

	Monoidal equivalences between groupoid-sets
	Laplaza categories and their functors
	The monoidal structures of the category of (right) G-sets and the induction functors
	Monoidal equivalences and category decompositions


	Conjugations and Burnside Theorem
	Conjugation of subgroupoids and the fixed points functors
	The conjugation equivalence relation
	Fixed points subsets of groupoid-sets and the table of marks of finite groupoids

	Burnside Theorem for groupoid-sets: general and finite cases
	The general case: two groupoid-sets with natural bijections between fixed points subsets
	The finite case: Two finite G-sets with bijective fixed points subsets


	Mackey formula for bisets over groupoids
	Preliminaries
	Mackey formula: The Theorem
	Examples using the equivalence relation groupoid
	Subgroupoids and equivalence relations
	Equivalence relations and Mackey formula


	Weak equivalent groupoids
	A few preliminary results
	The right translation functor
	Weakly equivalent groupoids
	Weakly translationally equivalent groupoid-sets

	The ``classical'' Burnside ring of a groupoid
	Burnside functor for groupoids: coproducts and products
	Burnside rig functor and coproducts
	``Classical'' Burnside ring functor and product decomposition.

	The Burnside algebra of a groupoid and the ghost map

	The categorified Burnside ring
	Internal categories and basic definitions
	Monoidal structures
	Weak equivalences
	A class of examples
	The right double translation category
	Categorified Burnside theory

	The category of rigs
	The Grothendieck functor
	Monoidal categories
	References
	Index
	Index of notations

