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Introduction

The Waring problem was first stated as a number theory problem, as a general-
ization of the four-squares theorem. Lagrange proved in 1770 that every natural
number can be expressed as a sum of at most 4 squares. Waring stated that
every number can be decomposed as a sum of 9 cubes, 14 fourth powers, and
so on. This question can be generalized to homogeneous polynomials, asking
when a degree d form f ∈ C[x0, . . . , xn]d admits a decomposition as sum of d-th
powers of linear forms, that is if there exist l1, . . . , lr ∈ C[x0, . . . , xn]1 such that

f = ld1 + . . .+ ldr .

Many different questions arise in this context. For instance, given n and d, what
is the minimum r such that all f ∈ C[x0, . . . , xn]d admit such a decomposition?
And what is the minimum r such that this holds for the general f? These are
called the Little Waring Problem and the Big Waring Problem, respectively.
While the latter was completely solved by Alexander-Hirschowitz in [1], the
former is still unsolved in its generality. Many authors have devoted their time
to different versions of the problems, using a variety of approaches, algebraic,
geometric and computational. A survey of such results can be found in [20,
Section 7].

The set of all decompositions of a given polynomial f naturally has the
structure of an algebraic variety V SP (f), called the variety of sums of powers
of f . The interest in such varieties greatly increased after Mukai, in [59], gave
a description of the Fano 3-fold V22 as V SP of a general quartic polynomial in
three variables. Since then many authors investigated this area and generalized
Mukai’s techniques to other polynomials. In [36], Dolgachev presents most of
the strategies used and the results achieved in this direction. With a different
approach, it is also possible to work out some properties of V SP (f) such as
rationality, unirationality, rational connectedness and so on (see for example
[55]).

When the decomposition is unique (that is, when V SP is a point) the poly-
nomial has a canonical form and it is said to be identifiable. Identifiability is
a desirable feature whenever one wants to “infer the parameters of the model
from the data”, so it has applications in many areas of mathematics. Examples
range from Blind Signal Separation to Phylogenetic and Algebraic Statistic, see
[53] for an account. Even if we always work over the complex numbers, for some
applications it is also interesting to study identifiability over R instead of C, as
suggested in [32] and [4].

Few generically identifiable cases are known, and finding all of them is a
challenging task. A computational approach allowed us to find a new example,
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presented in Theorem 3.4. Despite this result comes from a computer-aided
analysis, there is another interpretation of generic identifiability in terms of the
secant variety of the Veronese variety Vn,d. The Waring problem can be stated
for different classes of tensors as well (see for instance [24], [3] and [13]), and
Segre varieties play a similar role in this case. One of the advantages of this point
of view is that the uniqueness of the decomposition implies the birationality of a
certain tangential projection, so in order to disprove identifiability it is enough
to show that the degree of the map is greater than 1. For this reason we work
with the associated linear system. This topic is widely studied, and we could
use different techniques, in particular degenerations.

The study of such degenerations led us to consider flat limits of 0-dimensional
subschemes of Pn. Unlike the standard specialization approach, we find it con-
venient to also consider the collision of some of the fat points. This yields the
new problem to fully understand and describe such limit scheme. However, once
it is done we have a new possible degeneration which proves useful to pursue
our goal.

This thesis is organized as follows.
Chapter 1 introduces the first definitions about 0-dimensional schemes and

linear systems on Pn. Moreover we recall some useful tools we will use to work
with these systems, such as degenerations, the Castelnuovo exact sequence and
few nonspeciality results. We also recall the definitions we need about secant
varieties.

In Chapter 2 we focus on specializations with collapsing points, and we try
to determine the flat limit scheme Z0 of a fat points scheme Z ⊂ Pn. This relies
on ideas developed by Ciliberto-Miranda and Nesci for n = 2, and we attempt
to generalize them to any dimension. The method to compute the multiplicity
of the limit scheme involves the minimum degree k of a divisor containing Z.
The base locus of the corresponding linear system gives information on the first
order neighbourhood of Z, so it is necessary to work with linear systems on Pn
with assigned singularities. Despite a general description of the limit scheme
seems to be out of grasp, this analysis provides answers for several cases. In
particular we are able to describe the limit of n+ 1 collapsing double points in
Pn, which we will be the key ingredient of the degeneration argument in Chapter
4.

Chapter 3 is a joint work with Elena Angelini, Massimiliano Mella and Gior-
gio Ottaviani which faces the Waring problem for forms, [5]. We give the defini-
tion of Waring decomposition of a vector of homogeneous polynomials, focusing
on identifiability. After a brief review of the state of the art, we present a
new identifiable case. Both the theoretical and the computational approach are
discussed. We also address the simultaneous identifiability of a pair of ternary
forms, and we show that such a pair of degree a and a+1 forms is not identifiable
for a ≥ 3.

We were also able to disprove the existence of new identifiable cases when we
are dealing with only one form. This joint work with Massimiliano Mella, [41]
is the content of Chapter 4. As we mentioned above, we translate the problem
about uniqueness to a question about the degree of a rational map. We work
with the associated linear system and we set up a degeneration involving limits
of double points which allows us to use induction, and therefore to focus on the
planar case.
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Chapter 1

Notations and preliminaries

We work over the complex field C. Every scheme will be projective, unless we
specify it is not. For a scheme X and a subscheme Y ⊂ X, we will write IY,X
to denote the defining ideal of Y in X. With abuse of notation, we use the same
symbol to indicate the associated ideal sheaf on X. If no ambiguity is likely to
arise, we will write simply IY instead of IY,X .

We start by recalling some definitions and facts about 0-dimensional schemes.

Definition 1.1. Let X be a 0-dimensional scheme. The degree, or length, of X,
denoted by degX, is the dimension of its ring of regular functions as a complex
vector space.

If X is supported on a point p, we define the multiplicity of X, denoted by
multX, to be the largest natural number k such that X contains the k-ple point
supported on p.

Proposition 1.2. Let X be a 0-dimensional scheme.

i) The degree of X is the limit value of the Hilbert polynomial of X.

ii) Let Y ⊂ X be a 0-dimensional subscheme. If degX = deg Y , then X = Y .

1.1 Linear systems and degenerations

Since we will deal with linear systems on Pn with assigned singularities and
tangent directions, we now introduce the notations we are going to use.

Notation 1.3. Let p1, . . . , pr ∈ Pn. Let {q1, . . . , qj} ⊂ P(Tp1Pn) be a set of
tangent directions (infinitely near points) in p1. The linear system

Ln,d(m1, . . . ,mr)(p1[{q1, . . . , qj}], p2, . . . , pr) ⊂ P(H0OPn(d))

is the projective space of hypersurfaces of Pn having multiplicities at least mi

at the point pi and whose tangent cone at p1 contains {q1, . . . , qj}. If either the
points p1, . . . , pr and q1, . . . , qj are in general position, or no confusion is likely
to arise, we indicate

Ln,d(m1[j],m2, . . . ,mr) := Ln,d(m1,m2, . . . ,mr)(p1[{q1, . . . , qj}], p2, . . . , pr)
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and
Ln,d(m1, . . . ,mr) := Ln,d(m1[0],m2, . . . ,mr).

Moreover, if m1 = . . . = mg = m, then we indicate

Ln,d(mg,mg+1, . . . ,mr) := Ln,d(m1, . . . ,mr).

Again, if L is a linear system, sometimes with abuse of notation we will use
the same symbol to indicate the associated ideal sheaf.

Definition 1.4. The virtual dimension of such a linear system is

vdimLn,d(m1[j],m2, . . . ,mr) =

(
d+ n

n

)
− 1−

r∑
i=1

(
mi − 1 + n

n

)
− j.

The expected dimension is defined as

expdimLn,d(m1[j],m2, . . . ,mr) = max {vdimLn,d(m1[j],m2, . . . ,mr),−1} ,

where expected dimension −1 indicates that the linear system is expected to be
empty. Note that

dimLn,d(m1[j],m2, . . . ,mr) ≥ expdimLn,d(m1[j],m2, . . . ,mr).

If dimLn,d(m1[j],m2, . . . ,mr) > dimLn,d(m1[j],m2, . . . ,mr), then the linear
system is said to be special. Otherwise it is called nonspecial.

The speciality of linear systems has been extensively studied, see [27] for
an account, but very little is known in general. The most studied cases are
linear systems with only double points and linear systems of plane curves. If all
mi = 2, there is the famous Alexander–Hirschowitz’ theorem (see [1]).

Theorem 1.5 (Alexander-Hirschowitz). The linear system Ln,d(2h) is special
if and only if (n, d, h) is one of the following:

i) (n, 2, h) with 2 ≤ h ≤ n,

ii) (2, 4, 5), (3, 4, 9), (4, 3, 7), (4, 4, 14).

Remark 1.6. Further note that for all special linear systems in Theorem 1.5
ii) the dimension is 0, while the expected dimension is negative.

In order to compute the dimension of a linear system, degeneration is a
useful tool. Since we are going to use degeneration arguments to work with
such linear systems, we give here the necessary definitions.

Definition 1.7. A degeneration is a morphism π : V → ∆, where ∆ 3 0, 1 is a
complex disk, V is a smooth variety and π is proper and flat. For any t ∈ ∆,
we denote by Vt the fiber of π over t. Let σi : ∆ → X be sections of π and let
Z be a scheme with Zred =

⋃
i σi(∆). For t 6= 0, let Zt := Z|Xt

, and let Z0 be
their flat limit. We say that Z0 is a specialization of Zt.
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Construction 1.8 (Specialization without collisions). Let X be the blow-up of
Pn at the point p1, with exceptional divisor E, V := X×∆, and π : V → ∆ the
canonical projection. Fix j disjoint sections τ1, . . . , τj such that τi(∆) ⊂ E×∆,
and r − 1 disjoint sections σ2, . . . , σr such that σi(∆) ∩ (E ×∆) = ∅. Let

Z :=

r⋃
i=2

σi(∆)mi ∪
j⋃

h=1

τh(∆)

be the scheme supported on the sections with multiplicity mi along σi(∆). Let

Ln,d(m1[j],m2, . . . ,mr)(p1[{τ1, . . . , τj}], σ2, . . . , σr)

be the linear subsystem on V associated to degree d divisors having multiplicities
at least mi along σi(∆), m1 in p1 and whose tangent cone contains τj(∆). Then,
for any t ∈ ∆, the linear system

Ln,d(m1[j],m2, . . . ,mr)(p1[{τ1, . . . , τj}], σ2, . . . , σr)|Vt

is

Lt := Ln,d(m1[j],m2, . . . ,mr)(p1[{τ1(t), . . . , τj(t)}], σ2(t), . . . , σr(t)).

By semicontinuity we have

h0(V0,L0) ≥ h0(Vt,Lt).

Therefore to prove the nonspeciality of Lt it is enough to produce a specialization
having L0 nonspecial.

Remark 1.9. Let H ⊂ Pn be a hyperplane containing the point p1 and let

Z1 := {pm2
2 , . . . , pms

s } ∪ {t1, . . . , tj}

be a 0-dimensional scheme as in Construction 1.8. Furthermore, assume that
p2, . . . , ph ∈ H and t1, . . . , tl ∈ Tp1H. A classical way to study the speciality of
a linear system is via the Castelnuovo exact sequence, that in this case reads

0→ Ln,d−1((m1 − 1)[j − l],m2 − 1, . . . ,mh − 1,mh+1, . . . ,ms)→
→ Ln,d(m1[j],m2, . . . ,ms)→ Ln−1,d(m1[l],m2, . . . ,mh).

Therefore the nonspeciality of the linear systems

Ln,d−1((m1 − 1)[j − l],m2 − 1, . . . ,mh − 1,mh+1, . . . ,ms)

and
Ln−1,d(m1[l],m2, . . . ,mh)

implies the nonspeciality of Ln,d(m1[j],m2, . . . ,ms).

It is also possible to modify Construction 1.8 and to allow the specialized
points to collapse.
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Construction 1.10 (Specialization with h collapsing points). Let V = An×∆
and let π : V → ∆ be the canonical projection. Fix a point q ∈ An × {0} and
h general sections σ1, . . . , σh such that σi(0) = q. Let Z :=

⋃
i σi(∆)mi and let

ν : V → An be the projection.
Let X → V be the blow-up of V at the point q, with exceptional divisor W .

Then we have natural morphisms νX : X → An, a degeneration πX : X → ∆,
and sections σX,i : ∆ → X. The fiber X0 is given by W ∪ V0, where V0 is
An blown up at one point and W ∼= Pn. Let R = W ∩ V0

∼= Pn−1 be the
exceptional divisor of this blow-up. We want to stress that, since the sections
σi’s are general, {σX,i(0)} is a set of general points of W .

With these notations, we say that Z0 is the flat limit of h collapsing points
of multiplicity m1, . . . ,mh. One of our problems will be to describe Z0. This
is in general quite hard and we only have partial solutions. Nonetheless, once
we understand the limit, we may study the speciality of a linear system via
its specializations with collapsing points, using the same technique described in
Construction 1.8 and Remark 1.9.

1.2 Some nonspeciality result

Interpolation theory studies the dimension of linear systems. The problem to
characterize special system has a long history, but there is still much we do not
know. Later we will review some of the known results on this topic. Now we
want to state some nonspeciality results about certain linear systems, which we
will use in this thesis.

We start with the following well known fact.

Lemma 1.11. Let L be a linear system on a smooth projective variety X and
let C ⊂ X be a positive dimensional subvariety. Let s := codimL |L ⊗ IC |. If
x1, . . . , xs ∈ C are general points, then x1, . . . , xs impose independent conditions
to L.

We apply the above remarks to prove the nonspeciality of some linear systems
we will use along the proof of Theorem 4.1. The next result is about systems
with a triple point and a bunch of double points.

Proposition 1.12. Let n ≥ 3 and d ≥ 4. Define

r(n, d) :=



⌈
(n+d

n )
n+1

⌉
− n− 1 if either n 6= 3 or (n, d) = (3, 4),

⌈
(d+3

3 )
4

⌉
− 5 if n = 3.

The linear system Ln,d(3, 2a) is nonspecial if a ≤ r(n, d).

Proof. We prove the statement by induction on d. It is clear that it is enough
to prove it for a = r(n, d). The first step of induction is d = 4 and it is the
content of [68, Lemma 2.4].
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Assume that d ≥ 5. Let Z1 := {q3, p2
1, . . . , p

2
a} be a 0-dimensional scheme.

Fix a hyperplane H not containing q. Let Z0 be a specialization without colli-
sions of Z1 with

h :=

⌈(
d+n−1
n−1

)
n

⌉
− 1

points on the hyperplane H. Since q 6∈ H, the Castelnuovo exact sequence reads

0→ Ln,d−1(3, 2a−h, 1h)→ Ln,d(3, 2a)→ Ln−1,d(2
h),

where the simple base points are all on the hyperplane H. Since d ≥ 5, the
linear system on the right is nonspecial by Theorem 1.5. Therefore to conclude
it is enough to prove that Ln,d−1(3, 2a−h, 1h) is nonspecial.

Claim 1.13. We have expdimLn,d−1(3, 2a−h, 1h) ≥ 0.

Proof. Assume first that n > 3. Then

vdimLn,d−1(3, 2a−h, 1h) =

(
n+ d− 1

n

)
−
(
n+ 2

2

)
− (n+ 1)a+ nh− 1

≥ n2 −
(
n+ 2

2

)
− 1 ≥ 0.

Assume that n = 3. Then

vdimL3,d−1(3, 2a−h, 1h) =

(
d+ 2

3

)
− 10− 4a+ 3h− 1 ≥ 16− 14 > 0,

as desired.

We start by proving that the simple base points impose independent condi-
tions. The points are general in H, therefore, by Lemma 1.11, we have to check
that

dimLn,d−2(3, 2a−h) ≤ 0.

This is clear for d = 4. For d ≥ 5 we want to apply Theorem 1.5. Checking also
the special cases, we have

dimLn,d−2(3, 2a−h) ≤ dimLn,d−2(2a−h+1)

=

(
n+ d− 2

n

)
− 1− (n+ 1)(a− h+ 1). (1.1)

For n = 3, this reads

dimLn,d−2(3, 2a−h) ≤
(
d+ 1

3

)
− 4

(⌈(
d+3

3

)
4

⌉
− 5−

⌈(
d+2

2

)
3

⌉
+ 2

)
− 1

≤
(
d+ 1

3

)
−
(
d+ 3

3

)
+

4

3

(
d+ 2

2

)
+ 15

= −
(
d+ 1

2

)
+

1

3

(
d+ 2

2

)
+ 15

=
1− d2

3
+ 15 < 0

for every d ≥ 7. We check the rest of the cases by a direct computation.
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(n, d) = (3, 5) In this case a = 9, h = 6 and the linear system L3,3(3, 23) has a unique
element.

(n, d) = (3, 6) In this case a = 16 and h = 9. An element of the linear system L3,4(3, 27)
has to contain all quadrics passing through the 8 singular points. This
shows that L3,4(3, 27) is empty.

For n > 3, inequality (1.1) yields

dimLn,d−2(3, 2a−h) ≤
(
n+ d− 2

n

)
− (n+ 1)

(⌈(
n+d
n

)
n+ 1

⌉
−

⌈(
n+d−1
n−1

)
n

⌉
− n+ 1

)
− 1

≤
(
n+ d− 2

n

)
−
(
n+ d

n

)
+

(
n+ d− 1

n− 1

)
+

(
n+d−1
n−1

)
n

+ n2 + n− 1

= −
(
n+ d− 2

n− 1

)
+

(
n+d−1
n−1

)
n

+ n2 + n− 1

= − (n+ d− 2)!

(n− 1)!(d− 1)!
+

(n+ d− 1)!

n!d!
+ n2 + n− 1

=
(n+ d− 2)!

(n− 1)!(d− 1)!

[
−1 +

n+ d− 1

nd

]
+ n2 + n− 1

=

(
n+ d− 2

n− 1

)
· (1− n)(d− 1)

nd
+ n2 + n− 1.

The latter decreases as d increases, so

dimLn,d−2(3, 2a−h) ≤
(
n+ d− 2

n− 1

)
· (1− n)(d− 1)

nd
+ n2 + n− 1

≤ 4

5

(
n+ 3

4

)
· 1− n

n
+ n2 + n− 1

=
−n4 − 5n3 + 25n2 + 35n− 24

30
< 0

for every n > 3.
To conclude, we prove the nonspeciality of Ln,d−1(3, 2a−h). For this observe

that

a− h−r(n, d− 1) ≤
(
n+d
n

)
n+ 1

−
(
d+n−1
n−1

)
n

−
(
n+d−1
n

)
n+ 1

+ 2

=
1

n(n+ 1)

[
n

(
n+ d

n

)
− (n+ 1)

(
d+ n− 1

n− 1

)
− n

(
n+ d− 1

n

)]
+ 2

= −
(
n+d−1
n−1

)
n(n+ 1)

+ 2 < 1.

Therefore we apply the induction hypothesis.

In the degeneration we will use to prove Theorem 4.1, we will deal with
systems with simple base points in special position. We conclude this Section
by proving a Lemma that will prove useful to handle such situation.
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Lemma 1.14. Let b, d ∈ N such that d ≥ 4 and

1 ≤ b <
(
d+3

3

)
4
− 1.

Fix q ∈ Π ⊂ Pn a linear space of dimension 3 and b general points on it, say
x1, . . . , xb. Then the linear system

Ln,d(2a, 1b)(q, p1, . . . , pa−1, x1, . . . , xb)

is nonspecial if

a ≤ a(n, d) :=

⌊(
n+d
n

)
− b− 1

n+ 1

⌋
−max{0, n− 4},

where the pi are general points. For the special case (d, b) = (4, 5) we prove a
better estimate

a(n, 4) =

⌊(
n+4
n

)
− 5− 1

n+ 1

⌋
−max{(n− 7), 1}

Proof. Note that, since b ≥ 1, d ≥ 4 and the virtual dimension is non negative,
Ln,d(2a) is nonspecial by Theorem 1.5. Therefore we have only to care about
the simple points.

For n = 3 the statement is immediate. For n = 4, by Lemma 1.11, it is
enough to check that dimL4,d−1(2a(4,d)−1, 1) ≤ 0. By Theorem 1.5, it is enough
to check that vdimL4,d−1(2a(4,d)−1, 1) < 0. The latter is a simple computation.

Next we prove the statement by induction on n. For n = i + 1 ≥ 5, fix a
general hyperplane H ⊃ Π and consider a degeneration with a(i, d) points on
H. By Castelnuovo exact sequence, we only need to prove the nonspeciality of

Li,d(2a(i,d), 1b) and Li+1,d−1(2a(i+1,d)−a(i,d), 1a(i,d)).

The former is nonspecial by the induction step. For the latter note that

a(i+ 1, d)− a(i, d) ≥
(
i+1+d
i+1

)
− b− 1

i+ 2
−
(
i+d
i

)
− b− 1

i+ 1
− 2

>

(
i+1+d
i+1

)
− b− 1

i+ 2
−
(
i+d
i

)
− b− 1

i+ 2
− 2

>

(
i+d
i+1

)
i+ 2

− 2 ≥
(
i+d−1
i+1

)
i+ 2

.

For d ≥ 5, the linear system Li+1,d−2(2a(i+1,d)−a(i,d)) is empty by Theo-
rem 1.5. For d = 4, it is easy to see that

a(i+ 1, 4)− a(i, 4) > i,

and again Li,2(2a(i+1,4)−a(i,4)) is empty. Let

a(i, d) =

⌊(
i+d
i

)
− b− 1

i+ 1

⌋
− α(i).
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Then α(i+ 1) = α(i) + 1, and we have

vdimLi+1,d−1(2a(i+1,d)−a(i,d), 1a(i,d))

≥ (i+ 2)α(i+ 1)− (i+ 1)(α(i) + 1))− 1 > 0. (1.2)

Lemma 1.11 proves that the linear system Li+1,d−1(2a(i+1,d)−a(i,d), 1a(i,d)) is
non special to conclude this case.

Assume that d = 4 and b = 5. We first prove that L5,4(219, 15) is nonspecial.
Observe that, by degenerating 12 double points on a hyperplane, Castelnuovo
exact sequence decomposes L5,4(219) into L4,4(212) and L5,3(27, 112). It is easy
to check that these two systems are nonspecial and dimL5,3(27, 112) = 1. The
linear system L4,3(211) is empty, therefore there is at most a pencil of divisors
in L5,4(219) that contains a given P3 through a double point. By hypothesis,
vdimL5,4(219, 15) > 1, hence this linear system is nonspecial. To conclude the
statement for d = 4, we then argue exactly as in the first part of the proof,
checking Equation (1.2) case by case for n ≤ 8 and then conclude as in the
general case.

1.3 The secant construction

Secant varieties play a very important role in different areas of mathematics.
Here, we are interested to the fact that they naturally give a geometric meaning
to the decomposition of a polynomial or a tensor as a sum of powers. We now
recall the basic definitions concerning secant varieties.

Let Grk−1 = Gr(k − 1, N) be the Grassmannian of (k − 1)-linear spaces in
PN . Let X ⊂ PN be an irreducible variety of dimension n and let

Γk(X) ⊂ X × . . .×X ×Grk−1,

be the closure of the graph of

α : (X × . . .×X) \∆→ Grk−1,

taking (x1, . . . , xk) to [〈x1, . . . , xk〉], for a k-tuple of distinct points. Observe
that Γk(X) is irreducible of dimension kn. Let π2 : Γk(X) → Grk−1 be the
natural projection. Denote by

Sk(X) := π2(Γk(X)) ⊂ Grk−1.

Again Sk(X) is irreducible of dimension kn. Finally, let

Ik := {(x, [Λ])|x ∈ Λ} ⊂ PN ×Grk−1,

with natural projections pi onto the factors. Observe that p2 : Ik → Grk−1 is a
Pk−1-bundle on Grk−1.

Definition 1.15. Let X ⊂ PN be an irreducible variety. The abstract k-Secant
variety is

Seck(X) := p−1
2 (Sk(X)) ⊂ Ik

and the k-Secant variety is

Seck(X) := p1(Seck(X)) ⊂ PN .
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It is immediate that Seck(X) has dimension kn+k−1 and it has a Pk−1-bundle
structure on Sk(X). One says that X is k-defective if

dimSeck(X) < min{dim Seck(X), N}

and calls k-defect the number

δk = min{dim Seck(X), N} − dimSeck(X).

Remark 1.16. Let us stress that in our definition Sec1(X) = X. A simple
but useful feature of the above definition is the following. Let Λ1 and Λ2 be
two distinct k-secant (k − 1)-linear spaces to X ⊂ PN . Let λ1 and λ2 be the
corresponding projective (k− 1)-spaces in Seck(X). Then we have λ1 ∩λ2 = ∅.

Here is the main result we use about secant varieties.

Theorem 1.17 (Terracini Lemma, [77, 23]). Let X ⊂ PN be an irreducible
projective variety. If p1, . . . , pk ∈ X are general points and z ∈ 〈p1, . . . , pk〉 is a
general point, then the embedded tangent space at z is

Tz Seck(X) = 〈Tp1X, . . . ,TpkX〉.

If X is k-defective, then the general hyperplane H containing Tz Sec(X) is tan-
gent to X along a variety Σ(p1, . . . , pk) of pure, positive dimension, containing
p1, . . . , pk.
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Chapter 2

Limits of fat points

A standard approach to study the speciality of linear systems Ln,d(m1, . . . ,mr)
is via degeneration. This is accomplished by using a flat family in which the
involved points specialize in some special configuration, for instance by sending
some of the points on a hyperplane to apply induction arguments. However,
sometimes it can be useful to allow points not only to be in special position, but
also to collide to the same point. In other words, sometimes it is convenient to
apply a degeneration as defined in Construction 1.10. Like every degeneration
technique, this one is useful only if the specialized system is easier to deal with
than the original one, so we want to understand what the limit scheme is. This
leads to a fairly natural question, which is interesting in itself.

Question Let n, h,m1, . . . ,mh ∈ N. What is the flat limit scheme of h
colliding points of multiplicities m1, . . . ,mh in Pn?

Despite the question is easy to formulate, the answer is far from being simple.
Work by Ciliberto–Miranda ([30]) and Nesci ([62]) show that there is not a
definite and clean solution to this problem, even in the planar case n = 2.

We will use the notations of Chapter 1, in particular those of Construction
1.10. As a warm-up, we start with a very easy result that completely describes
all collisions of fat points in P1.

Proposition 2.1. Let m1, . . . ,mh ∈ N and let m = m1 + . . .+mh. The limit
of h collapsing points of multiplicities m1, . . . ,mh is an m-ple point.

Proof. It is enough to observe that the only scheme of length m supported on
a point is the m-ple point.

Now that the case n = 1 is settled, we assume n ≥ 2 and we try to move to
some more interesting cases in higher dimension. In order to understand what
Z0 is, the first problem to tackle is to compute its multiplicity. We will show
that multZ0 does not depend on the choice of the sections σi, and we will give
a method to compute it.

The following result was proved in [62, Theorem 2.6].

Lemma 2.2. The multiplicity of the limit scheme Z0 is at least the minimum
integer j such that the linear system Ln,j(m1, . . . ,mh) is not empty.
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Proof. Set µ = multq Z. Then we have multZ0 ≥ µ. Let IX,Z be the ideal
associated to Z on X. Then IX,Z|W ∼ Ln,µ(m1, . . . ,mh). Since the ideal IX,Z
is globally generated, the linear system P(IX,Z|W ) has to be nonempty.

We aim to show that the value predicted by Lemma 2.2 is actually achieved
with equality.

Proposition 2.3. Define k = min{a ∈ N | H0IZ1(a) 6= 0}. Then multZ0 = k.
In particular, the multiplicity of the limit scheme does not depend on σi, as long
as they are general.

Proof. Thanks to Lemma 2.2 it is enough to show that multZ0 ≤ k.
For t 6= 0, set l = dim IZt

(k). Since the base points of Zt are in general
position, l does not depend on t, and by hypothesis we know that l ≥ 1. Fix
p1, . . . , pl−1 general points on At = An, and define Z ′t = Zt ∪ p1 ∪ . . . ∪ pl−1.
Observe Z ′t ⊃ Zt for every t, and there is a unique degree k divisor Dt ⊂ At such
that Dt ⊃ Z ′t. Let ft be the polynomial defining Dt as a divisor in At. If we
regard it as a polynomial in C[x1, . . . , xn, t], ft defines a divisor D of An × A1,
which has degree k with respect to x1, . . . , xn. Then f0 defines a divisor D0

of A0 which is the flat limit of the Dt’s. The degree of f0 is at most k and
D0 ⊃ Z ′0 ⊃ Z0, so multZ0 ≤ k.

In some special cases the multiplicity is enough to compute the limit scheme.

Example 2.4. Let us collapse 7 double points in P2. The scheme consisting of
those points has length 21. Since h0OP2(5) = 15, they can not lie on a quintic
curve by Theorem 1.5. On the other hand, they lie on a sestic, so the limit
scheme contains a 6-ple point by Proposition 2.3. Since a 6-ple point in P2 has
length 21, the limit scheme is a 6-ple point by Proposition 1.2.

When the scheme we are specializing does not have the degree of a multiple
point, this analysis is not enough to determine the limit scheme.

In the notations of Construction 1.10, consider the limit scheme Z0 ⊂ An.
Let

ΣX =

h⋃
i=1

σX,i(∆)

be the smooth scheme associated to strict transform ZX of Z on X. Let X → X
be the blow-up of the ideal sheaf IΣX

, with exceptional divisors E1, . . . , Eh, and
let ϕ : X → ∆ be the degeneration onto ∆. Note that this blow-up is an
isomorphism in a neighbourhood of V0. The central fiber is

X0 := ϕ−1(0) = P ∪ V0,

where P is the blow-up of W in h general points. As before, let R = P ∩ V0.
The linear systems we are interested in are L := OX (−

∑
i 2Ei − µP ) and its

restrictions LP , LR, to P and R. The linear system L is complete and we aim
to understand when its restrictions stay complete.

Let us start with an instructive example ([62, Example 2.10]).

Example 2.5. In the case of 3 colliding double points in P2, the limit has
multiplicity 3. On the other hand, the starting scheme Z1 degZ1 = 9 while
a triple point has degree 6, therefore the limit is not only the triple point.
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There are 3 more linear conditions the linear system has to satisfy. In order to
understand them, observe that a plane cubic with 3 double points in general
position is a union of 3 lines. These lines intersect the divisor R in 3 points, and
the missing linear conditions are exactly the passage through those 3 points. In
particular, the linear system LR is not complete.

Unlike LR, the system LP is always complete, as proved in [62, Lemma 2.11].

Lemma 2.6. The linear system LP is complete.

Proof. Consider the exact sequence

0→ L(−P )→ L → LP → 0.

To prove the claim, it is enough to show that h1(L(−P )) = 0. To this end, note
that the sheaf L(−P ) ∼ O(

∑
i 2Ei− (µ+ 1)P ) is the pull-back of the ideal sheaf⋃

i I2
σi(∆) ∪mµ+1

p on An ×∆. Hence we have

H1(L(−P )) = H1

(⋃
i

I2
σi(∆) ∪mµ+1

p

)
= 0,

as desired.

Before we move to the first results on limits, it is important to have clear
in mind what kind of characterization we want. In general it will be way too
complicated to determine what the limit is up to isomorphism. For instance,
consider 14 collapsing simple points in P2. They lie on a unique quartic C,
so multZ0 = 4. BsL2,4(114) = C, so its restriction to the exceptional line R
consists of 4 simple points. Since

deg(fourtuple point) + 4 = 10 + 4 = 14 = degZ1,

the limit is a fourtuple point with 4 infinitely near simple points. However,
notice that if we change the sections σ1, . . . , σ14, then we will have different
tangent directions to the limit. Recall that two 4-tuples of points in P1 are not
projectively equivalent in general, so the limits do not need to be isomorphic.
Nonetheless we will be satisfied to say that the limit is a fourtuple point with 4
infinitely near simple points.

We also want to stress that our analysis works as long as we make all points
collide at once. If we collide some of them to a limit scheme Z̃1 and then
we collide the others and Z̃1, we are not guaranteed to obtain the same limit
scheme as if we collide all of them at once. As an example, let Z1 be the scheme
consisting of a double point and 3 simple points in P2. If we make them collide,
the multiplicity of the limit scheme Z0 is 3 by Proposition 2.3. On the other
hand, we could collide the 3 simple points to a double point, but the limit of 2
colliding double points has multiplicity 2.

It is time to move to the first description of the limit Z0. The next Section
is devoted to collisions of simple points.
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2.1 Simple points

In this section we assume m1 = . . . = mh = 1. When the number of colliding
simple points is small compared to the dimension of the ambient space, we have
enough information to understand the limit. The following Proposition gives a
description of Z0 for h ≤ n+ 1.

Proposition 2.7. 1. If h ≤ n, then the limit of h collapsing simple points
in Pn is a simple point together with h−1 linear conditions on its tangent
cone.

2. The limit of n+ 1 collapsing simple points in Pn is a double point.

Proof. 1. Since general simple points always give independent linear condi-
tions, multZ0 = 1 by Proposition 2.3. BsLn,1(1h) = Ph−1 consists of
the linear space generated by the h points. Its intersection with R is an
infinitely near (h− 2)-dimensional linear space. This imposes h− 1 linear
conditions on the first infinitesimal neighbourhood of the limit. In order
to conclude, it is enough to observe that this candidate limit scheme has
length 1 + h− 1 = h = degZ1.

2. As before, the simple points give independent conditions, so multZ0 = 2
by Proposition 2.3. Since a double points has length n + 1 = degZ1, Z0

is a double point.

When h ≥ n+ 2, the situation gets more involved. As shown in [30, Propo-
sition 3.1], the data we have on the tangent cone are not enough to define the
limit.

Example 2.8. Let Z1 = {p1, p2, p3, p4} ⊂ P2 be a scheme consisting of 4 simple
points, and let Z0 be the scheme obtained by colliding those 4 simple points.
Then degZ1 = 4 and multZ0 = 2 by Proposition 2.3. Since a double point
has length 3, there is one condition left to find. L2,2(14) has no base locus
beside the 4 fixed points. The general element of L2,2(14) meets the exceptional
divisor R = P1 in 2 points, but the choice of the first one identifies the other
one. In other words, L2,2(14)|R ( P(H0OR(2)) = P2. More precisely, there
is no element of L2,2(14) containing R, so L2,2(14)|R = P1 is a hyperplane in
P(H0OR(2)). If we call ι the involution sending each point x ∈ R into the
other intersection of the only conic through x, p1, . . . , p4 with R, then the last
condition defining Z0 is that P(H0IZ0

(2)) = L2,2(14)|R is the space of quadrics
of R made by two points x, y such that y = ι(x).

In higher dimension we need a more refined argument. Indeed, Ln,2(1n+1)|R
is not defined by an involution. We will define the variety parametrizing such
hyperplanes, and later we will study it in low dimension.

Proposition 2.9. The limit of n+ 2 collapsing simple points in Pn is a double
point with the additional condition that H0IZ0

(2) is a specific hyperplane in
H0OPn(2).

Proof. Let p1, . . . , pn+1 ∈ Pn be the coordinate points and let

M = Ln,2(1n+1)(p1, . . . , pn+1).
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It is immediate that M is nonspecial of dimension
(
n+2

2

)
− n− 2. Define

α :M→ P(H0OR(2))

to be the restriction to R. Since there are no quadrics containing p1, . . . , pn+1

and R, α is surjective. Moreover observe that dimM = dimP(H0OR(2)), so α
is an isomorphism. Call α∗ the induced isomorphism between the duals.

For p ∈ Pn, define Hp = Ln,2(1n+2)(p1, . . . , pn+1, p). If p is general, then Hp

has dimension
(
n+2

2

)
− n− 3 =

(
n+1

2

)
− 2. This means that Hp is a hyperplane

in M, and therefore α(Hp) = Hp|R is a hyperplane in P(H0OR(2)). Hence the
association p→ [Hp|R] defines a rational map

ϕn : Pn 99K P(H0OR(2))∗. (2.1)

If ϕM is the rational map associated to M, then the diagram

Pn

ϕn &&

ϕM //M∗

α∗xx
P(H0OR(2))∗

commutes, because

α∗(ϕM(p)) = α∗(Ln,2(1n+2)(p1, . . . , pn+1, p))

= Ln,2(1n+2)(p1, . . . , pn+1, p)|R

= ϕn(p)

for a general p ∈ Pn.
The limit Z0 has multiplicity 2 by Proposition 2.3, so we are studying

Ln,2(1n+2). Up to projectivity, we can assume the n + 2 simple points are
p1, . . . , pn+1, x. Since a double point has length n+1, there is only one condition
left and such condition is the following. Once we blow-up the limit point, in the
exceptional divisor R, H0IZ0

(2)|R ( H0OR(2) does not contain all quadrics,
but only those coming from restriction to R of quadrics of W = Pn. More
precisely H0IZ0(2)|R = Hx|R = α(Hx) = ϕ(x).

It is natural to ask what are the quadrics in the ideal of the limit. This leads
to studying the map ϕn, which is interesting in itself.

The map ϕn

Let Z0 be the limit of n + 2 collapsing simple points in Pn. We proved that
h0IZ0

(2) =
(
n+2

2

)
− 1, that is the quadrics containing Z0 are a hyperplane of

quadrics of Pn. In order to better describe Z0, we want to understand which
hyperplanes of P(H0OPn(2)) arise as IZ0

(26), meaning that we want to give
more information about the Hx’s, when x ∈ Pn is general. In other words, we
want to say more about the map ϕn and its image.

Lemma 2.10. Let ϕn be the rational map (2.1) and let Yn = ϕn(Pn). Then

1. the indeterminacy locus of ϕn consists of the n+ 1 coordinate points,
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2. deg Yn = 2n − n− 1,

3. ϕn is birational onto Yn, in particular Yn is rational,

4. ϕn is dominant ⇔ n = 2,

5. for n ≥ 3, the system of quadrics of P(H0OPn(2)) containing Yn has
dimension at least 2

(
n+1

4

)
.

Proof. In Proposition 2.9 we noticed that, up to isomorphism, ϕn is de-
fined by the linear systemM = Ln,2(1n+1)(p1, . . . , pn+1). Then the inde-
terminacy locus of ϕn is BsM = {p1, . . . , pn+1}. Moreover the degree of
Yn can be computed as the self-intersection ofM, so deg Yn = 2n−n− 1.

In order to prove the birationality, let x be a point in the generic fiber.
Since ϕM(x) = Ln,2(1n+2)(p1, . . . , pn+1, x) has no base points except the
imposed ones, there are no points in the fiber other than x.

Note that the map ϕ2 is associated to the linear system L2,2(13), so it is
the standard quadratic Cremona map, which is dominant. On the other
hand, for n ≥ 3 we have n < dimP(H0OPn−1(2))∗, so ϕn is not dominant.

For the last part, the structure exact sequence of Yn gives

0→ IYn
(2)→ OP(H0OR(2))∗(2)→ OYn

(2)→ 0,

so

h0IYn(2) = h0OP(H0OR(2))∗(2)− h0OYn(2) + h1IYn(2)

≥
( 1

2 (n2 + n− 2) + 2

2

)
− dim(Ln,4(2n+1)) + 1

=

(n2+n+2
2

2

)
−
((

n+ 4

4

)
− (n+ 1)2

)
.

To conclude, observe that the latter equals 2
(
n+1

4

)
.

A family of hyperplanes of P(H0OR(2)) is made by those defined by the con-
tainment of a given point. Such hyperplanes are parametrized by the Veronese

variety Vn−1,2 ⊂ P(H0OR(2))∗ = P(n+1
2 )−1, and we want to determine how Yn

and Vn−1,2 are related. The next Lemma shows that Vn−1,2 ⊂ Yn and describes
some other special subvarieties of Yn.

Lemma 2.11. Assume n ≥ 3. Let X = Blp1,...,pn+1
(Pn) and let

X

µ

��

Φn

  
Pn

ϕn

// Yn

be the resolution of indeterminacy of ϕn, with exceptional divisors E1, . . . , En+1.
Set lij = 〈pi, pj〉, let l̃ij be its strict transform on X and let Πj = 〈pi | i 6= j〉.
Then
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1. ϕn|R is the 2-Veronese embedding of R = Pn−1 in P(H0OR(2))∗, in par-
ticular Vn−1,2 = ϕn(R) ⊂ Yn,

2. ϕn|Πj
= ϕn−1 for every i ∈ {1, . . . , n+ 1}, in particular Yn contains n+ 1

copies of Yn−1,

3. Φn contracts l̃ij to a point yij ∈ Vn−1,2 ∩ Sing Yn,

4. Φn(Ei) = 〈yij | j 6= i〉 for every i ∈ {1, . . . , n+ 1}.

Proof. 1. It is enough to observe that ϕn|R is defined by

ϕn(r) = Ln,2(1n+2)(p1, . . . , pn+1, r)|R = Ln−1,2(1)(r)

for every r ∈ R.

2. Assume for instance that j = n + 1. ϕn|Πj
is associated to the linear

system Ln,2(1n+1)(p1, . . . , pn+1)|Πn+1
, that is Ln−1,2(1n)(p1, . . . , pn), and

thus it coincides with ϕn−1.

3. Let x ∈ lij \{p1, . . . , pn+1}. Then lij ⊂ BsLn,2(1n+2)(p1, . . . , pn+1, x) and
therefore ϕn(x) is the hyperplane of quadrics of R passing through R∩ lij .
Hence Φn contracts l̃ij to a point yij = ϕn(R ∩ lij) ∈ ϕn(R) = Vn−1,2.
Notice that codim lij = n− 1 > 1, so Yn is singular at yij .

4. Since pi has multiplicity 1 as a base point of M, Ei = Pn−1 is embedded
with degree 1, so it is a linear space of dimension n − 1. Moreover lij
contains pi, so l̃ij and Ei meet. Thus Φn(Ei) 3 yij for every j 6= i.
Finally observe that the pi’s are general, hence the lij ’s are general and
therefore the same holds for the yij ’s. This means that {yij | i 6= j} are n
general points of Φn(Ei) = Pn−1 and so they span it.

Quadrics containing the limit of n+2 simple points in Pn form a hyperplane
in P(H0OPn(2)), but it is interesting to point out that if x ∈ Pn is general
then that hyperplane is not defined by a tangent direction. Indeed, a tangent
direction is an infinitely near point, so such hyperplane is defined by the con-
tainment of a point of R. This is equivalent to require ϕn(x) ∈ ϕn(R) = Vn−1,2.
Since dimYn > dimVn−1,2, in general the hyperplane ϕn(x) is not defined by
a tangent direction. However, the previous Lemma shows this can happen not
only for x ∈ R, but also for other points, for instance when x ∈ lij .

If we fix p1 = [1, 0, . . . , 0], . . . , pn+1 = [0, . . . , 0, 1] the coordinate points and
R = Pn−1 the hyperplane of Pn defined by xn = x0 + . . . + xn−1, then it is
possible to give explicit equations for ϕn. Let q = [q0, . . . , qn] ∈ Pn be a general
point. A quadric Q ⊂ Pn containing p1, . . . , pn+1 has equation∑

0≤i<j≤n

aijxixj = 0. (2.2)

Since q is general, we may assume q0, q1 6= 0. By imposing q ∈ Q we get

a01 = −
∑

0≤i<j≤n
(i,j) 6=(0,1)

qiqj
q0q1

aij . (2.3)
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By substituting the equation of R in equation 2.2, we see that Q|R is defined by

0 =
∑

0≤i<j≤n

aijxixj

=
∑

0≤i<j≤n−1

aijxixj +

n−1∑
k=0

aknxkxn

=
∑

0≤i<j≤n−1

aijxixj +

n−1∑
k=0

aknxk(x0 + . . .+ xn−1)

=
∑

0≤i<j≤n−1

(aij + ain + ajn)xixj +

n−1∑
k=0

aknx
2
k.

Fix the canonical basis {xixj | 0 ≤ i < j ≤ n} on H0OR(2). If we call λij the
coefficient of xixj , then the hyperplane ϕn(q) satisfies

λii = ain for every i ∈ {0, . . . , n− 1}
λ01 = a01 + a0n + a1n

λij = aij + ain + ajn for every 0 ≤ i < j ≤ n− 1, (i, j) 6= (0, 1).

By elimination process we get
ain = λii for every i ∈ {0, . . . , n− 1}
aij = λij − λii − λjj for every 0 ≤ i < j ≤ n− 1, (i, j) 6= (0, 1)

λ01 = a01 + a0n + a1n

By substituting equation 2.3 in the third line, we get the defining equation of
the hyperplane of H0OR(2) corresponding to ϕn(q) as

λ01 = a01 + a0n + a1n

= a0n + a1n −
∑

0≤i<j≤n
(i,j) 6=(0,1)

qiqj
q0q1

aij

=

(
1− q0qn

q0q1

)
a0n +

(
1− q1qn

q0q1

)
a1n −

∑
0≤i<j≤n
(i,j)6=(0,1)

qiqj
q0q1

aij −
n−1∑
i=2

qiqn
q0q1

ain

=

(
1− q0qn

q0q1

)
λ00 +

(
1− q1qn

q0q1

)
λ11 −

∑
0≤i<j≤n
(i,j) 6=(0,1)

qiqj
q0q1

(λij − λii − λjj)−
n−1∑
i=2

qiqn
q0q1

λii

=

1− q0qn
q0q1

+

n−1∑
j=2

q0qj
q0q1

λ00 +

1− q1qn
q0q1

+

n−1∑
j=2

q1qj
q0q1

λ11

+

−q2qn
q0q1

+
∑

0≤j≤n
j 6=2

q2qj
q0q1

λ22 + . . .+

−qn−1qn
q0q1

+

n−2∑
j=0

qn−1qj
q0q1

λn−1,n−1

−
∑

0≤i<j≤n
(i,j)6=(0,1)

qiqj
q0q1

λij .
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Up to multiply by q0q1, the coefficient of ϕn(q) with respect to the (i, j) element
of the canonical basis of P(H0OR(2))∗ is

ϕn(q)ij =

{
−qiqj for 0 ≤ i < j ≤ n
qi

(
−qn +

∑
k 6=i,n qk

)
for 0 ≤ i = j ≤ n.

Now, for 1 ≤ a < b ≤ n + 1, we want the coordinates of the singu-
lar points yab. Since yab = ϕn(〈pa, pb〉), we can compute its coordinates as
ϕn(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0), where the 1’s are in the (a−1)-th and (b−1)-
th slots. First assume that b = n+1. Then the coordinate of ya,n+1 correspond-
ing to the element Xij of the basis is

(ya,n+1)ij =

{
−1 if i = j = a− 1

0 otherwise.

In particular ya,n+1 is a coordinate point of P(H0OR(2))∗, corresponding to the
element Xa−1,a−1 of the basis. Assume now that b ≤ n. Then

(yab)ij =


−1 if (i, j) = (a− 1, b− 1)

1 if i = j = a− 1 or i = j = b− 1

0 otherwise.

Once we have the yab’s, we can get the equations of the images of the n+ 1
exceptional divisors as Φn(Ei) = 〈yij | j 6= i〉. This is useful to study Yn for
some small values of n.

Example 2.12. Let us consider the case n = 3. By Lemma 2.10, Y3 ⊂ P5 is
a rational threefold of degree 4, contained in at least a pencil of quadrics, so it
follows that Y3 is the complete intersection of two quadric hypersurfaces in P5.
We can give an explicit expression of the map.

ϕ3([a, b, c, d]) = [ab+ ac− ad,−ab,−ac, ab+ bc− bd,−bc, ac+ bc− cd].

We compute

y12 = ϕ2([1, 1, 0, 0]) = [1,−1, 0, 1, 0, 0],

y13 = ϕ2([1, 0, 1, 0]) = [1, 0,−1, 0, 0, 1],

y14 = ϕ2([1, 0, 0, 1]) = [−1, 0, 0, 0, 0, 0],

y23 = ϕ2([0, 1, 1, 0]) = [0, 0, 0, 1,−1, 1],

y24 = ϕ2([0, 1, 0, 1]) = [0, 0, 0,−1, 0, 0],

y34 = ϕ2([0, 0, 1, 1]) = [0, 0, 0, 0, 0,−1].

Therefore the ideal of the planes Φ3(E1), . . . ,Φ3(E4) are

IΦ3(E1) = (x4, x1 + x3, x2 + x5),

IΦ3(E2) = (x2, x0 + x1, x4 + x5),

IΦ3(E3) = (x1, x0 + x2, x3 + x4) and

IΦ3(E4) = (x1, x2, x4).
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We want to find the equations of the two quadrics generating the ideal of Y3. It
is known that

IV2,2
= (x0x3−x2

1, x0x4−x1x2, x0x5−x2
2, x1x4−x2x3, x1x5−x2x4, x3x5−x2

4)

is the ideal of V2,2 ⊂ Y3. The quadrics Q1 = (x0x4−x1x2+x1x4−x2x3 = 0) and
Q2 = (x1x4 − x2x3 + x1x5 − x2x4 = 0) contain V2,2 and all the planes Φ3(Ei).
An explicit computation shows that ϕ3(p) ∈ Q1 ∩Q2 for every p ∈ P3, hence Y3

is the complete intersection of Q1 and Q2. By computing the determinant, we
get det(λQ1 +µQ2) = λ2µ2(λ+µ)2, so there are exactly three singular quadrics
in the pencil defining Y3, and they all have rank 4. If we set Q3 to be the quadric
defined by the sum of the two polynomials defining Q1 and Q2, then the three
rank 4 quadrics are Q1, singular along the line 〈y12, y34〉, Q2, singular along the
line 〈y14, y23〉, and Q3, singular along the line 〈y13, y24〉.

Although Y3 is a complete intersection, in general the same does not hold
for Yn. By Lemma 2.10, for instance, deg Y4 = 24 − 5 = 11 is a prime number,
so Y4 can not be a complete intersection. However, quadrics containing Y4 play
a central role in understanding its equations.

Example 2.13. Let us work out the case n = 4. By Lemma 2.10, Y4 ⊂ P9

is a degree 11 rational fourfold, and it is contained in a system of quadrics of
dimension at least 10. By the same argument as in Example 2.12, we can explic-
itly write the ideals IV3,2 , IΦ4(E1), . . . , IΦ4(E5). By using the software Macaulay2
[43], we observe that the intersection ideal has exactly 10 degree two generators.
The ideal of those 10 quadrics defines a variety of dimension 4 and degree 11,
thus Y4 is defined by the 10 quadrics containing V3,2 ∪ Φ4(E1) ∪ . . . ∪ Φ4(E5).

In a similar way, Y5 ⊂ P14 is a degree 26 rational 5-fold, contained in a system
of quadrics of dimension at least 30. The ideal IV4,2 ∩IΦ5(E1)∩ . . .∩IΦ5(E6) has
30 degree 2 generators. Those 30 quadric define a variety of dimension 5 and
degree 26, so Y5 is defined by those 30 quadrics.

Proposition 2.9 characterizes the quadrics in the limit ideal. In order to fully
describe the limit Z0 of n + 2 collapsing simple points, it would be enough to
show that it is defined by quadrics. Unfortunately this is not true in general.

Example 2.14. Consider the collision of 4 simple points in the affine plane. In
the notations of Construction 1.10, we consider the sections

σ1(t) = (0, 0),

σ2(t) = (t, 0),

σ3(t) = (0, t),

σ4(t) = (2t, 3t2 + t).

Then an explicit computation with the software Macaulay2 shows that H0IZ0,A2

is not generated by quadrics.

Despite the previous Example, the ideal of Z0 is always generated in low
degree. Moreover, we can completely describe it if we make a mild assumption
on the sections σi.
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Proposition 2.15. Let V be a n-dimensional variety, and q ∈ V a smooth
point. Let U ∼= An be an open affine neighbourhood of q in S. Let

σ0, . . . , σn+1 : ∆→ U ×∆

be sections as in Construction 1.10, and let Z0 be the corresponding limit of
n+ 2 collapsing simple points onto q.

1. IZ0
is generated in degree at most 3.

2. If σn+1(t) is the barycenter of σ0(t), . . . , σn(t) for every t ∈ ∆ \ {0}, then
IZ0 is generated by quadric.

3. If V = Pn, then IZ0 is generated by quadrics. In particular, Proposition
2.9 describes the limit of n+ 2 collapsing points in Pn.

Proof. 1. In order to prove that IZ0 is always generated by cubics, it is
enough to show that hZ0(2) = degZ0. Let µ : X = Blq A → A be the
blow-up of the limit point. Recall that X0 = W ∪ V , where W = Pn is
the exceptional divisor and V = Blq A0. Let [H] be the hyperplane of
P(H0OR(2)) defining IZ0

(2). A quadric Q ⊂ A0 contains the limit Z0 if
and only if Q̃|R ∈ H. Since multZ0 = 2, Q is singular and therefore a

cone. Q̃|R is a quadric of R = Pn−1, hence it is determined by
(
n+1

2

)
− 1

points of R, that is by
(
n+1

2

)
− 1 tangent direction to the limit point.

Those tangent directions are
(
n+1

2

)
− 1 lines of Q through q, and they cut

the same number of points on a general hyperplane L of An, defining a
quadric D of L. So Q = Cq(D) is uniquely determined by q and Q̃|R, and

h0IZ0(2) = dimH = h0OR(2)− 1 =
(
n+1

2

)
− 1. Thus

hZ0(2) = h0OPn(2)−h0IZ0(2) =

(
n+ 2

2

)
−
(
n+ 1

2

)
+1 = n+2 = degZ0.

2. Up to an isomorphism of U , it is not restrictive to assume that

σ0(t) = (0, . . . , 0),

σ1(t) = (f1(t), 0, . . . , 0),

...

σn(t) = (0, . . . , 0, fn(t)).

Then σn+1(t) = (f1(t), . . . , fn(t)) by hypothesis. In the general fiber At,
the ideals of the n+ 2 points are

I0(t) = (x1, . . . , xn),

I1(t) = (x1 − f1(t), x2, . . . , xn),

...

In(t) = (x1, . . . , xn−1, xn − fn(t))

In+1(t) = (x1 − f1(t), . . . , xn − fn(t)).

The set of n+ 2 points has ideal I(t) = I0(t) ∩ I1(t) ∩ . . . ∩ In(t). Notice
that xi(xi − fi(t)) ∈ I(t) for every i and for every t. Then the limit ideal
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I(0) = IZ0
contains x2

0, . . . , x
2
n+1. By Proposition 2.9, IZ0

(2) contains all
quadrics of the basis but one, and we checked that no square monomial
is absent. It is easy to observe that such a set of quadrics generates any
cubic.

3. In Pn every (n + 2)-tuple of points is equivalent, so we can assume that
σn+1(t) is the barycenter of σ0(t), . . . , σn(t).

Before moving to higher multiplicity collisions, let us remark that the prob-
lem of collisions of h ≥ n+ 3 simple points in Pn is still open. It is possible to
argue as in the case of n+2 points, but it is much more difficult to understand the
rational map and the associated linear system. Nevertheless, Ciliberto-Miranda
([30]) and Nesci ([62]) provided partial answers for the case n = 2.

2.2 Double points

In this section we assume that all the collapsing points have multiplicity 2. First
we can easily generalize Example 2.4.

Proposition 2.16. Let m ≥ 2, (n,m) /∈ {(2, 3), (2, 5), (4, 4), (4, 5)}. Define

h =
(n+m−1

n )
n+1 . If h ∈ N, then the limit of h colliding double points in Pn is an

m-ple point.

Proof. First we check that

vdimLn,m−1(2h) =

(
n+m− 1

n

)
− 1− (n+ 1)h = −1,

while

dimLn,m(2h) ≥ vdimLn,m(2h) =

(
n+m

n

)
− 1− (n+ 1)h ≥ 0.

By our numerical assumption, together with Theorem 1.5, Ln,m−1(2h) is non-
special and therefore empty. By Proposition 2.3, Z0 has multiplicity m. Then
it is enough to check that the degree of an m-ple point is the same as degZ1

and conclude by Proposition 1.2.

As we already noticed, in most cases the limit is not just a point with
multiplicity. As Example 2.5 shows, once we understand the minimum degree
k of a divisor containing Z1, we need informations on the base locus of such
divisors.

Dealing with double points, it is convenient to work in the case h > n.
Indeed, under this assumption we have multZ0 = 3, at least for n big enough,
and the base locus of cubics with assigned double points is very well understood.
On the other hand, h ≤ n yields multZ0 = 2, and Ln,2(2h) has a nonreduced
base locus and it is more difficult to describe the conditions it gives to the limit
linear system.

First we need a technical result.
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Lemma 2.17. Let n ≥ 2, let A = {a1, . . . , al} be a set of l general points in Pn
and let R be a hyperplane such that A ∩R = ∅. Let

B = {pij := 〈ai, aj〉 ∩R | 1 ≤ i < j ≤ l}.

Assume that l ≤ n+ 2. Then Ln−1,2(B) and Ln−1,3(B) are non special, that is
the points of B impose independent conditions to quadrics and cubics.

Proof. It is enough to prove the claim for l = n+ 1 for quadrics and l = n+ 2
for cubics.

First assume that l = n+1. In this case B is a set of
(
n+1

2

)
points, therefore it

is enough to prove that there are no quadrics containing B. We prove the claim
by induction on n. For n = 2 it is easy. Let Πi = 〈a1, . . . , âi, . . . , an+1〉 ∩R. By
induction, there are no quadrics in Πi containing Πi∩B. Therefore any quadric
containing B has to contain the hyperplanes Πi for any i. This is enough to
conclude, because n+ 1 ≥ 3.

Now assume that l = n + 2. We prove that the points of B are general for
cubics by induction on n. It is easy to check that the thesis holds for n = 2, so
we assume n ≥ 3. Specialize a1, . . . , an+1 on a general hyperplane L = Pn−1.
Define

B1 = {pij | 1 ≤ i < j ≤ n+ 1} and B2 = {p1,n+2, . . . , pn+1,n+2}.

Observe that the points of B2 are in general position on R, and B = B1 ∪ B2.
Let H = L ∩R = Pn−2. Castelnuovo exact sequence reads

0→ IB2,R(2)→ IB,R(3)→ IB1,H(3)→ 0.

Since B2 is a set of general points of R, h1IB2,R(2) = 0. If we set

A1 = {a1, . . . , an+1},

then A1 is a set of general points in L and H is an hyperplane of L such that
A1 ∩H = ∅. By induction hypothesis, h1IB1,H(3) = 0. Hence h1IB,R(3) = 0
and so B imposes independent conditions on cubics of R.

Remark 2.18. Note that even if B imposes independent conditions, the points
of B are not in linear general position. Indeed there are

(
n+1
t

)
linear spaces of

dimension t− 2 each containing
(
t
2

)
points of B. For every choice of t points of

A, their span is a Pt−1, so the corresponding
(
t
2

)
points of B lie on a Pt−2.

The next two Propositions completely solve the cases h = n+1 and h = n+2.

Proposition 2.19. The limit of n+ 1 collapsing double points in Pn is a triple
point with

(
n+1

2

)
tangent directions. The infinitely near simple points are in the

special position described by Remark 2.18.

Proof. There are no quadrics singular along n + 1 general points of Pn, while
Ln,3(2n+1) has non negative dimension, so the multiplicity of the limit scheme
is 3 by Proposition 2.3. Note that the degree of a triple point is

(
n+2

2

)
.

The base locus of cubics in Pn with n+1 general double points consists of the(
n+1

2

)
lines joining the points. Each of them cuts a simple point on R ∼= Pn−1.
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By Lemma 2.17 these points impose independent conditions to cubics. A simple
computation shows that(

n+ 2

2

)
+

(
n+ 1

2

)
= (n+ 1)2 = degZ0.

Hence the triple point, together with
(
n+1

2

)
tangent directions, is the limit

scheme.

Proposition 2.20. Let Z0 be the limit of n+ 2 collapsing double points.

1. If n = 2, then Z0 is a 4-ple point with the involution described by Ciliberto-
Miranda in [30].

2. If n = 3, then Z0 is a 4-ple point.

3. If n ≥ 4, then Z0 is a triple point with
(
n+2

2

)
tangent directions. In this

case the infinitely near simple points are in the special position described
by Remark 2.18.

Proof. For n = 2, see [30, Proposition 3.1].
The length of Z1 is (n + 1)(n + 2). For n = 3, there are no cubics singular

at 5 general points, so Z0 contains a fourtuple point. Since degZ0 = 20, and
since a 4-ple point in P3 has degree 20, we conclude by Proposition 1.2.

For n ≥ 4, the linear system Ln,3(2n+2) has positive dimension, hence
multZ0 = 3 by Proposition 2.3. It is easy to see, via reducible cubics, that
the base locus of Ln,3(2n+2) consists of

(
n+2

2

)
lines joining the points. Each line

cuts a simple point on R = Pn−1, and they impose independent conditions by
Lemma 2.17. In order to conclude we check(

n+ 2

2

)
+

(
n+ 2

2

)
= (n+ 1)(n+ 2) = degZ0.

Again the thesis follows by Proposition 1.2.

Despite the previous results, the limit scheme can be more complicated than
a fat point with a bunch of infinitely near points. Such problems may occur
even in low dimension and when all the multiplicities are 2.

Example 2.21. Exceptions of Theorem 1.5 always yield a 0-dimensional linear
system. In these cases it is easy to compute the multiplicity, but we can not
argue as before to describe the limit. For instance, the limit of 5 colliding double
points in P2 is described in [30, Proposition 3.1] as a fourtuple point with a pair
of infinitely near tacnodal points.

We could try to apply the argument of Propositions 2.19 and 2.20 to an
higher number of colliding double points. Anyway, we can not expect the same
proof to work. One of the reasons is that Lemma 2.17 does not hold for l ≥ n+3

Example 2.22. Consider a set A = {a1, . . . , a7} ⊂ P4 of general points. As in
the setting of Lemma 2.17, let R be a hyperplane such that A ∩R = ∅ and

B = {pij := 〈ai, aj〉 ∩R | 1 ≤ i < j ≤ 7}.
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Indeed in that case ]B = 21 and h0OR(3) = 20. We know there is exactly one
cubic C singular at a1, . . . , a7. C contains all the lines joining pairs of points of
A, so in particular C|R ⊃ B. Moreover, consider the Castelnuovo exact sequence

0→ L4,2(27)→ L4,3(27)→ IB,R(3)→ 0.

Since L4,2(27) has no global sections, the restriction L4,3(27) → IB,R(3) is
injective and therefore L4,3(27) ⊂ IB,R(3). This means there is at least one
cubic of R containing B. Since h0OP3(3) = 20, the 21 points of B impose
at most 19 independent conditions on cubics of R. An easy software-aided
computation shows that B actually imposes exactly 19 independent conditions.

More generally, let Z1 be a scheme of n + 3 double points, with n ≥ 5.
Observe that degZ1 = (n + 1)(n + 3) and multZ0 = 3. It is easy to see that
BsLn,3(2n+3) consists of the double points and of the

(
n+3

2

)
lines joining the

pair of points. Then we have
(
n+3

2

)
simple points infinitely near to the limit

triple point. However, these simple points are not independent. Indeed, if they
were, degZ0 ≥

(
n+2

2

)
+
(
n+3

2

)
= n2 + 4n + 4 = 1 + degZ1. Hence those

(
n+3

2

)
simple points impose at most

(
n+3

2

)
− 1 conditions on Z0. On the other hand,

at least
(
n+2

2

)
of the simple points impose independent conditions by Lemma

2.17.

Remark 2.23. Let Z be an m-ple point with an infinitely near simple point,
and let l be the line through Z corresponding to the infinitely near point. The
restriction of Z to a general line is an m-ple point, while Z|l has multiplicity
m+1. This suggest a possible description of the limit of n+k collapsing double
points. Assume that multZ0 = 3, and let l1, . . . , l(n+k

2 ) be the base lines, all

passing through the limit point q. Let S4
i be the multiplicity 4 subscheme of

li supported at q. We know that Z0 contains the union of the S4
i ’s, and we

conjecture that they coincide. Now we want to precisely formulate the problem
and to provide a solution for small k.

Union of fourtuple schemes

Definition 2.24. Let n,m ≥ 2, and let l1, . . . , lt be t lines in An meeting at
the origin. Let Smi be the 0-dimensional degree m subscheme of li supported at
the origin, and let In,Sm

i
be the ideal defining Smi is An. Define Zn(l1, . . . , lt)

to be the union scheme defined by the ideal

In(l1, . . . , lt) = In,Sm
1
∩ . . . ∩ In,Sm

t
.

If l1, . . . , lt are general lines and m = 4, then we define

Zn,t = Zn(l1, . . . , lt) and In,t = In(l1, . . . , lt).

When multZn,t = 3 we can think of this scheme as a triple point with t infinitely
near simple points, representing the directions corresponding to l1, . . . , lt.

Remark 2.25. Consider n + k colliding double points in An and assume the
limit has multiplicity 3. Then the limit triple point has

(
n+k

2

)
infinitely near

simple points, in special position, giving possibly dependent conditions on cubic.
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Nevertheless, the restriction of the limit scheme to one of the
(
n+k

2

)
correspond-

ing lines l1, . . . , l(n+k
2 ) has degree strictly greater than 3. In particular the limit

scheme contains Zn

(
l1, . . . , l(n+k

2 )

)
. So if we prove that they have the same

degree, then we get an explicit description of the limit scheme.

We aim to identify the limit of a bunch of colliding double points with a
scheme of the form Z(l1, . . . , lt). For this reason, our next task is to study such
schemes. First we compute the multiplicity of the scheme Zn(l1, . . . , lt).

Lemma 2.26. Let R = An−1 be a general hyperplane in An, and pi = li ∩ R.
Define P = {p1, . . . , pt} and set

k = min{m ∈ N | IP,R(m) 6= 0}.

Then multZ(l1, . . . , lt) = min(4, k).

Proof. First note that multZn(l1, . . . , lt) is nondecreasing with respect to t.
Moreover, multZn(l1, . . . , lt) ≤ 4 by construction. Indeed, once multiplicity 4 is
reached, the restriction to any line has degree at least 4, so by adding another
S4
i we do not change anything. Now let D ⊂ R be a degree m divisor containing
p1, . . . , pt. The cone C over D with vertex the origin is a degree m divisor in
An containing l1, . . . , lt, and therefore C ⊃ S4

1 ∪ . . . ∪ S4
t . Hence the ideal of

Zn(l1, . . . , lt) contains a generator of degree m and so multZn(l1, . . . , lt) ≤ m.
This implies multZn(l1, . . . , lt) ≤ min(4, k).

On the other hand, if multZn(l1, . . . , lt) = 4 ≥ min(4, k), then there is
nothing else to prove. Suppose that m := multZn(l1, . . . , lt) ∈ {1, 2, 3}. Then
it is contained in a degree m divisor C ⊂ An. Since it has an m-ple point, C is
a cone. Moreover the restriction of Zn(l1, . . . , lt) to each li has degree 4 > m so
C contains each li, and in particular C|R is a degree m divisor in R containing
p1, . . . , pt.

Corollary 2.27. Let t ∈ N and let R = An−1 be a general hyperplane in An.
Set

k = min{m ∈ N | h0OR(m) > t}.

If l1, . . . , lt are general lines, then multZn,t = min(4, k).

Proof. Apply Lemma 2.26 in the case p1, . . . , pt ∈ R are general.

Now we want to determine the length of Zn(l1, . . . , lt). The next Lemma
provides a way to compute it inductively.

Lemma 2.28. Let n ≥ 2. Then

1. degZn(l1) = 4,

2. degZn (l1, . . . , lt, lt+1) = degZn(l1, . . . , lt) + 4− deg
(
Zn(l1, . . . , lt)|lt+1

)
,

3. degZn,t+1 = degZn,t + 4−multZn,t.

Proof. 1. The length of Zn(l1) does not depend on the immersion. Regarding
Zn(l1) = S4

1 as a divisor in l1 = P1, it has degree 4 by construction.
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2. Let µ = deg
(
Zn(l1, . . . , lt)|lt+1

)
. Of course Zn(l1, . . . , lt) ⊃ Sµt+1, so

Zn(l1, . . . , lt) = S4
1 ∪ . . . ∪ S4

t = S4
1 ∪ . . . ∪ S4

t ∪ S
µ
t+1.

Hence the difference degZn (l1, . . . , lt, lt+1) − degZn(l1, . . . , lt) coincides
with the difference degS4

t+1 − degSµt+1 = 4− µ.

3. When l1, . . . , lt, lt+1 are general, the restriction of Zn,t to lt+1 has degree
equal to multZn,t, so it is enough to apply (2).

Example 2.29. Corollary 2.27 and Lemma 2.28 allow us to compute multiplic-
ity and degree of the scheme Zn,t for every n and t. As an example, here is the
table for n = 2.

t degZ2,t multZ2,t

1 4 1
2 7 2
3 9 3

t ≥ 4 10 4

Now we consider what happens when the lines are not general, in particular
when they have the configuration described in Remark 2.18.

Definition 2.30. Let {lij | 1 ≤ i < j ≤ m} be a set of
(
m
2

)
lines in An

meeting at the origin, such that lab, lbc and lac lie on the same plane for every
{1 ≤ a < b < c ≤ m}. Define Z̃n,(m

2 ) = Zn(lij | 1 ≤ i < j ≤ m).

Remark 2.31. Let n,m ≥ 2. The following simple observations will be useful.

1. Z2,(m
2 ) = Z̃2,(m

2 ).

2. Z̃n,1 = Z2,1 and Z̃n,3 = Z2,3.

3. More generally, if n ≥ m, then 〈l1, . . . , l(m
2 )〉 = Am−1. This implies

mult Z̃n,(m
2 ) = 1 and Z̃n,(m

2 ) = Z̃m−1,(m
2 ).

We are now ready to compute the multiplicity and degree of Z̃n,(m
2 ). By

Remark 2.31, we know the multiplicity and degree of Z̃2,(m
2 ) from Lemma 2.28.

Now we tackle the cases n = 3 and n = 4.

Lemma 2.32. The next table shows the values of deg Z̃3,(m
2 ) and mult Z̃3,(m

2 ).

m t deg Z̃3,t mult Z̃3,t

2 1 4 1
3 3 9 1
4 6 16 3

m ≥ 5 t ≥ 10 20 4

Degrees and multiplicities of Z̃4,(m
2 ) are presented in the following one.
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m t deg Z̃4,t mult Z̃4,t

2 1 4 1
3 3 9 1
4 6 16 1
5 10 25 3
6 15 30 3
7 21 34 3

m ≥ 8 t ≥ 28 35 4

Proof. We already observed that Z̃n,1 = Z2,1 has multiplicity 1 and degree 4 for
every n.

If (n,m) = (3, 3), then we have 3 coplanar lines meeting at the origin. Let
R be a general plane and let pij = R∩ lij . Then p12, p13, p23 are collinear, hence

mult Z̃3,3 = 1 by Lemma 2.26. To compute the degree, observe that Z̃3,3 = Z2,3,

so deg Z̃3,3 = 9. By Remark 2.31.3, Z̃4,3 = Z̃3,3, so the first two lines of both
tables are filled.

Consider now (n,m) = (3, 4), with 6 lines through the origin. Let R be a
general plane. Then {pij | 1 ≤ i < j ≤ 4} are 6 points in P2 in the special
position described by Remark 2.18. By Lemma 2.17, they lie on a cubic but
they do not lie on a conic, hence mult Z̃3,6 = 3 by Lemma 2.26. To compute
the degree, observe that multZ3(l12, l13, l23) = 1, so

degZ3(l12, l13, l23, l14) = 3 + degZ3(l12, l13, l23) = 12

by Lemma 2.28. But now multZ3(l12, l13, l23, l14) = 2, so

deg Z̃3,6 = degZ3(l12, l13, l23, l14, l24, l34)

= 2 + degZ3(l12, l13, l23, l14, l24)

= 2 + 2 + degZ3(l12, l13, l23, l14) = 16.

In a similar way we deal with the case m = 5. By Lemma 2.17, the 10 points
lie on a quartic but they do not lie on a cubic, hence mult Z̃3,10 = 4. More

precisely, Z̃10 is the whole fourtuple point and so Z̃(m
2 ) is the fourtuple point for

every m ≥ 5. In particular, it has degree 20.
Now we consider n = 4. By Remark 2.31.3, deg Z̃4,6 = deg Z̃3,6 = 16 and

mult Z̃4,3 = mult Z̃4,6 = 1, so the third line is filled. Moreover by Lemma 2.26

and Lemma 2.17, mult Z̃4,10 = mult Z̃4,15 = 3. The case m = 7 is an exception

of Theorem 1.5. Notice that Z̃4,21 is a subscheme of the limit of 7 colliding
double points in P4, which has multiplicity 3 by Proposition 2.3. Therefore
mult Z̃4,21 = 3.

Note that Z̃4,10 is obtained from Z̃4,6 ⊂ A3 = H by adding S4
15, . . . , S

4
45.

When we add S4
15, by Lemma 2.28 the degree increases by 3 because S4

15 6⊂ H;
the resulting scheme Z̃4,6∪S4

15 has multiplicity 2. When we add S4
25, the degree

increases by 2 unless deg(Z̃4,6 ∪ S4
15)|l25 ≥ 2, i.e. unless Z̃4,6 ∪ S4

15 contains the
infinitely near point corresponding to l25. This would imply that all quadrics of
R through {pij | 1 ≤ i < j ≤ 4} ∪ {p15} contain p25, and this is false by Lemma
2.17. Repeating this argument we see that all the lines increase the degree by 2
and so deg Z̃4,10 = 16 + 3 + 2 + 2 + 2 = 25.

The same observations allow us to conclude that adding each S4
i6 increases

the degree of Z̃10 by 1 and then deg Z̃4,15 = 25+5 = 30. Now we focus on m = 7.
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By Example 2.22, the 21 points impose exactly 19 independent conditions. This
means that each S4

i7 we add increases the degree by 1, except for the last two,
so deg Z̃4,21 = 30 + 4 = 34. Finally, when we add S4

18 the degree jumps to 35,

so Z̃4,28 is the whole fourtuple point.

Remark 2.33. If we look at Z̃3,6 and Z̃3,10, we see that their multiplicities and
degrees are consistent with the cases of 4 and 5 collapsing double points in A3.

In the same way, the numbers we found about Z̃4,10 and Z̃4,15 are consistent
with the case of 5 and 6 colliding double points in A4.

We will try now to find a general statement about the degree and the mul-
tiplicity of Z̃n,(m

2 ). The situation is easy when m ≤ n.

Proposition 2.34. Let n ≥ 2. If 3 ≤ m ≤ n, then mult Z̃n,(m
2 ) = 1 and

deg Z̃n,(m
2 ) = m2.

Proof. If m ≤ n, then mult Z̃n,(m
2 ) = 1 by Remark 2.31.3.

We prove the statement about the degree by induction on m. We saw that
deg Z̃n,3 = 9. Let us assume deg Z̃n,(m

2 ) = m2 and let us compute deg Z̃n,(m+1
2 ).

Z̃n,(m+1
2 ) is obtained from Z̃n,(m

2 ) ⊂ Am = H by adding S4
1,m+1, . . . , S

4
m,m+1.

Observe that S4
1,m+1 6⊂ H, so it increases the degree by 3; the resulting scheme

is contained in some P = Am+1, and by adding S4
1,m+1, . . . , S

4
m−1,m+1, we

remain inside P . As a subscheme of P , Z̃n,(m+1
2 ) has multiplicity 2, because

there are only
(
m
2

)
+m− 1 < h0OAn−1(2) lines. But we know that, even if they

are in special position, they are general for quadrics, so each new addition of
S4

2,m+1, . . . , S
4
m,m+1 increases the degree by 4− 2 = 2. Hence

deg Z̃n,(m+1
2 ) = deg Z̃n,(m

2 ) + 3 + 2(m− 1) = m2 + 2m+ 1 = (m+ 1)2,

and therefore the thesis holds.

Before we move to the more interesting case m > n ≥ 5, we need some
technical results. We already observed that Lemma 2.17 does not hold in the
case of more than n + 2 points in Pn, so our next goal is to understand what
happens with larger numbers of points. In particular, we are looking for a
suitable generalization of Lemma 2.17.

Lemma 2.35. For r ∈ N, let Ak = {a1, . . . , ar} ⊂ Pr be a set of r general
points, and let R be a hyperplane such that Ar ∩R = ∅. Let

Br = {〈ai, aj〉 ∩R}i,j∈{1,...,r}.

Now fix k ∈ N and define

nk = min

{
t ≥ 2 |

(
n+3

3

)
n+ 1

− n > k

}
.

Assume that Bnk+k imposes
(
nk+k

2

)
−
(
k−1

2

)
independent conditions to cubics

of R. Then Bn+k impose exactly
(
n+k

2

)
−
(
k−1

2

)
independent conditions to cubics

of R for every n ≥ nk.
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Proof. We prove the statement by induction on n ≥ nk. The first step of
induction is granted by hypothesis. In order to lighten the notation, throughout
this proof we will write A and B instead of An+k and Bn+k.

Suppose that n > nk. Specialize a1, . . . , an+k−1 on L = Pn−1. Define
B1 = {pij | 1 ≤ i < j ≤ n + k − 1} and B2 = {p1,n+k, . . . , pn+k−1,n+k}. Let
H = L ∩R = Pn−2. When we restrict to H, Castelnuovo exact sequence reads

0→ IB2,R(2)→ IB,R(3)→ IB1,H(3)→ 0.

First observe that the points of B2 are general on R, so

h0IB2,R(2) =

(
n+ 1

2

)
− (n+ k − 1) and h1IB2,R(2) = 0.

Now we want to compute the dimension of the right hand side of the sequence.
Note that A1 := {a1, . . . , an+k−1} is a set of general points in L = Pn−1, H is a
hyperplane of L with A1∩H = ∅ and B1 = {〈ai, aj〉∩H | 1 ≤ i < j ≤ n+k−1},
so by induction hypothesis

h0IB1,H(3) =

(
n+ 1

3

)
−
(
n+ k − 1

2

)
+

(
k − 1

2

)
.

Therefore

h0IB,R(3) = h0IB2,R(2) + h0IB1,H(3)

=

(
n+ 1

2

)
− (n+ k − 1) +

(
n+ 1

3

)
−
(
n+ k − 1

2

)
+

(
k − 1

2

)
=

(
n+ 2

3

)
−
(
n+ k

2

)
+

(
k − 1

2

)
.

Since points of B impose
(
n+k

2

)
−
(
k−1

2

)
conditions in this specialized configura-

tion, they impose at least
(
n+k

2

)
−
(
k−1

2

)
conditions in the original configuration.

We already noticed they can not impose more than
(
n+k

2

)
−
(
k−1

2

)
conditions.

Lemma 2.35 provides an inductive way to prove that B imposes the suitable
number of conditions on cubic of R. However, in order to apply it we need
the first step of induction for every k. While we are not able to prove this
first step in general, we believe this is the right way to compute the number of
independent conditions imposed by B.

Conjecture 2.36. Assume k <
(n+3

3 )
n+1 − n. Let A = {a1, . . . , an+k} be a set of

n+ k general points in Pn and R a hyperplane such that A ∩R = ∅. Let

B = {〈ai, aj〉 ∩R}i,j∈{1,...,n+k}.

Then the points of B impose exactly
(
n+k

2

)
−
(
k−1

2

)
independent conditions to

cubics of R.

It is quite easy to prove that Conjecture 2.36 holds for k ∈ {0, 1, 2}, and in
this way we recover some of the results of Lemma 2.17. Moreover, the software
Macaulay2 allows us to prove the first step for k ≤ 4 as well.

When Conjecture 2.36 is true, then we have a way to compute degree and
multiplicity of Z̃n,(m

2 ) for every n and m.
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Proposition 2.37. Let n ≥ 2 and assume that Conjecture 2.36 holds. If

1 ≤ k < (n+3
3 )

n+1 − n and (n, k) 6= (4, 3), then

mult Z̃n,(n+k
2 ) = 3 and deg Z̃n,(n+k

2 ) = (n+ 1)(n+ k).

Proof. By our assumption we can forget about exceptions of Theorem 1.5. Ob-
serve that Z̃n,(n+k

2 ) ⊃ Z̃n,(n+1
2 ) for every k ≥ 1. By Lemma 2.26 and Lemma

2.17, mult Z̃n,(n+1
2 ) = 3, hence mult Z̃n,(n+k

2 ) ≥ 3. In order to see it can not be 4,

it is enough to recall that, by Remark 2.23, Z̃n,(n+k
2 ) is a subscheme of the limit

of n + k double points in An, which has multiplicity 3 because by hypothesis
(n+ k)(n+ 1) <

(
n+3

3

)
.

Now that we know the multiplicity is 3, we compute the degree by induc-
tion ok k. If k = 1, we can argue as in Proposition 2.34. Z̃n,(n+1

2 ) is obtained

from Z̃n,(n
2)

by adding S4
1,n+1, . . . , S

4
n,n+1. By Proposition 2.34, Z̃n,(n

2)
has mul-

tiplicity 1 and degree n2. By adding S4
1,n+1 the degree increases by 3 and the

multiplicity becomes 2. Moreover the multiplicity stays 2 until we add S4
n,n+1,

because
(
n
2

)
+ n− 1 < h0

An−1(2). So

deg Z̃n,(n+1
2 ) = n2 + 3 + 2(n− 1) = (n+ 1)2.

Assume then k ≥ 2. Z̃n,(n+k+1
2 ) is obtained from Z̃n,(n

2)
by adding the

schemes S4
1,n+k+1, . . . , S

4
n+k,n+k+1. By induction hypothesis mult Z̃n,(n+k+1

2 ) =

3, so every S4
i,n+k+1 increases the degree by at most 1. More precisely, it in-

creases the degree if and only if the corresponding point pi,n+k+1 is not a base
point for the cubics of R containing {pjl | 1 ≤ j < l ≤ n+k}. We want to under-

stand how many of them give their contribution. By Conjecture 2.36, the
(
n+k

2

)
points {pjl | 1 ≤ j < l ≤ n+ k} give

(
n+k

2

)
−
(
k−1

2

)
conditions on cubic. On the

other hand, all the
(
n+k+1

2

)
points {pjl | 1 ≤ j < l ≤ n+k+1} give

(
n+k+1

2

)
−
(
k
2

)
independent conditions. This means that exactly

(
k
2

)
−
(
k−1

2

)
= k − 1 among

S4
1,n+k+1, . . . , S

4
n+k,n+k+1 increase the degree, so

deg Z̃n,(n+k+1
2 ) = deg Z̃n,(n+k

2 ) + n+ k − (k − 1).

By induction hypothesis, the latter equals

(n+ k)(n+ 1) + n+ k − k + 1 = (n+ k + 1)(n+ 1).

Finally, we can give a description of the limit scheme of n+k colliding double
points in Pn.

Corollary 2.38. Let n ≥ 2 and let 1 ≤ k <
(n+3

3 )
n+1 − n, with (n, k) 6= (4, 3). If

Conjecture 2.36 holds, then the limit of n+ k collapsing double points in Pn is
Z̃n,(n+k

2 ).

Proof. The limit scheme has degree (n + 1)(n + k), and by Proposition 2.37 it
coincides with deg Z̃n,(n+k

2 ). In Remark 2.23 we observed that the limit scheme

contains Z̃n,(n+k
2 ), so we conclude by Proposition 1.2.
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Before we move on, we want to remark a few important facts. First, we know
Corollary 2.38 holds for small values of k. In particular, it improves Propositions
2.19 and 2.20. However, this approach only works in the range

1 ≤ k <
(
n+3

3

)
n+ 1

− n. (2.4)

When k ≤ 0, the limit scheme has multiplicity 2. As we already pointed out, the
linear system Ln,2(2n+k) has nonreduced base locus, and this makes it difficult
to understand the first order neighbourhood of the limit point. On the other

hand, when k + n ≥ (n+3
3 )

n+1 , the limit scheme has multiplicity at least 4 and the
base locus may not give us information. It is enough to consider (n, k) = (3, 3)
to bump into the linear system L3,4(26), which has no base locus outside the
imposed singularities. Our work on infinitely near points gives us no clue in this
type of cases.

One could argue in a similar way with higher multiplicities, and hope to
find other cases in which there are base lines. For instance, we could work with
triple points, and we know that the lines joining a pair of triple points are in
the base locus of quintics. Unfortunately, this strategy works only if we know
the degree of the linear system we are dealing with. By Proposition 2.3, this is
equivalent to compute the smallest degree of a divisor in Pn containing a bunch
of general multiple points. This is a hard problem, and the answer is unknown
in its generality even in the planar case. For n ∈ {2, 3}, there are partial results,
and we will deal with them in Section 2.3.

It is also worth mentioning that we can not produce any scheme X ⊂ Pn
made by a triple point with t tangent direction as a limit of double points.
Indeed, first we need that t =

(
n+k
n

)
for some k in the range (2.4). Moreover,

the tangent directions have to be in the special position described in Remark
2.18. It is legitimate to wonder if there are more conditions to be met in order to
express X as a limit of double points. In other words, can we lift X to a bunch
of double points in such a way that X is the limit of those colliding points,
under the previous assumptions? We will now give an answer to this question.

Lifting problem

Remark 2.18 describes the configurations of the points in the exceptional divisor
and suggests the following definition.

Definition 2.39. Let n ≥ 2, t ≥ 3. Define

Wn,t =
{

(xij)1≤i<j≤t ∈ (Pn)(
t
2) | xbc ∈ 〈xab, xac〉 ∀ 1 ≤ a < b < c ≤ t

}
.

Fixed a hyperplane R = Pn not containing any of the points xij , there is a
rational map

πn,t : (Pn+1)t 99KWn,t ⊂ (Pn)(
t
2)

defined by sending (p1, . . . , pt) to (xij)1≤i<j≤t, where xij is the intersection of
the line 〈pi, pj〉 with R.

For k ≤ 4, we know that the limit of n+k double points in Pn is a triple point
with

(
n+k

2

)
infinitely near simple points. The simple points form a

(
n+k

2

)
-tuple
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(xij)1≤i<j≤n+k ∈ Wn,n+k. We want to understand whether all such schemes
can be obtained as limits of double points. This is equivalent to ask if πn,n+1

is dominant, and our next task is to give a positive answer, by proving the
following result.

Theorem 2.40. πn,t is dominant for every n ≥ 2 and every t ≥ 3. The general
fiber has dimension n+ 2.

Let us start with some simple observations.

Observation 2.41. 1. We have dimWn,t = n(t−1)+ t−2. Indeed, one can
choose freely t−1 general points x12, . . . , x1t ∈ Pn. Then, for i ∈ {3, . . . , t},
it is possible to choose the t−2 points x2i general on 〈x12, x1i〉. After that,
for 3 ≤ j < k ≤ t, the other points xjk are defined by 〈x1j , x1k〉∩〈x2j , x2k〉.

2. Assume that n ≥ 3 and let (xij)1≤i<j≤t ∈ Wn,t. For 1 ≤ a < b < c ≤ t,
let labc be the line containing xab, xac, xbc. Note that labc and lbcd meet
at xbc, so they span a plane containing lacd and labd as well. This plane
therefore passes through the 6 points {xij | i, j ∈ {a, b, c, d}, i < j}. By
the same argument, for every choice of m indexes 1 ≤ i1 < . . . < im ≤ t,
the

(
m
2

)
points {xij | 1 ≤ i1 < . . . < im ≤ t} lie on the same Pm−2.

3. In particular, if t ≤ n+ 1, then p1, . . . , pt ∈ Pn+1 lie on a linear subspace
L = Pt−1. Hence the

(
t
2

)
points 〈pi, pj〉 ∩R all lie on L∩R = Pt−2. Then

Wn,t = Wt−2,t, and πn,t restricts to πt−2,t : Lt = (Pt−1)t 99K Wt−2,t. For
this reason, from now on we will assume t ≥ n+ 2.

Next Lemma is the first step towards the proof of Theorem 2.40.

Lemma 2.42. πn,n+2 : (Pn+1)n+2 99K Wn,n+2 is dominant for every n. The
general fiber has dimension n+ 2.

Proof. Let x = (xij)1≤i<j≤n+2 ∈ Wn,n+2 be general. For i ∈ {1, . . . , n + 2},
let Li = 〈xjk | j, k 6= i〉 be the dimension n − 1 linear subspace of R = Pn ob-
tained by choosing all indexes except i. Let Πi ⊂ Pn+1 be a general hyperplane
containing Li. For j ∈ {1, . . . , n+ 2}, define the point

pj =
⋂
i 6=j

Πi.

If k, h ∈ {1, . . . , n+ 2} and h 6= k, then pk and ph are distinct points of the line⋂
i 6=k,h Πi, so

〈ph, pk〉 ∩R =
⋂
i6=k,h

Πi ∩R =
⋂
i 6=k,h

Li,

which is one of the xij ’s. Then, up to reorder, (p1, . . . , pn+2) is a preimage of
(xij)1≤i<j≤n+2.

To determine the dimension of the general fiber, we can either note that
for each of the n + 2 points pi we chose a hyperplane Πi in the pencil of those
containing Li, or we can compute the difference dim(Pn+1)n+2−dimWn,n+2.

It is worth to note that one could give the definition of W1,t and π1,t as well.
However, we are computing limits under the assumption that n = 2. Moreover,

35



W1,t coincides with (P1)(
t
2), so the case n = 1 is not very interesting for our

purpose.
We are now ready to prove the result we claimed.

Proof of Theorem 2.40. As we noticed in Observation 2.41, we may assume that
t ≥ n + 2. We argue by induction on t. The case t = n + 2 is the content of
Lemma 2.42, so we focus on the case t > n+ 2.

Let (xij)1≤i<j≤t ∈ Wn,t be general. By induction hypothesis exist t − 1
general points p1, . . . , pt−1 ∈ Pn+1 such that 〈pi, pj〉 ∩R = xij . Define

pt = 〈p1, x1t〉 ∩ 〈p2, x2t〉.

In order to conclude, we have to make sure that 〈pi, pt〉 meets R at xit for every
i ∈ {3, . . . , t− 1}. First observe

〈x1i, x1t〉 = 〈p1, x1i, x1t〉 ∩R = 〈p1, pi, pt〉 ∩R,

because pt ∈ 〈p1, x1t〉 by construction. Hence

〈pi, pt〉 ∩R = (〈p1, pi, pt〉 ∩ 〈p2, pi, pt〉) ∩R
= (〈p1, pi, pt〉 ∩R) ∩ (〈p2, pi, pt〉 ∩R)

= 〈x1i, x1t〉 ∩ 〈x2i, x2t〉 = xit.

The general fiber has dimension dim(Pn+1)t − dimWn,t = n+ 2.

In terms of collision, this means that if t ∈ {n + 1, . . . , n + 4}, then every
scheme in Pn made by a triple point with

(
t
2

)
infinitely near simple points xij

such that (xij)1≤i<j≤t is a general point of Wn,t can be obtained as a limit of t
collapsing double points in Pn+1. If Conjecture 2.36 is true, the same holds for
the collision of t points, where

n+ 1 ≤ t <
(
n+3

3

)
n+ 1

.

2.3 Homogeneous collisions in low dimension

Degenerations are widely used in interpolation theory to compute the dimension
of linear systems. The most studied cases are dimension 2 and 3, where there are
conjectures about the reasons why a linear system is special. For n ∈ {2, 3}, all
known special linear systems L = Ln,d(m1, . . . ,mr) have a base locus containing
a particular variety, with precise properties. Roughly speaking, what those
conjectures state is that the only known geometric reason for a linear system
to be special is the existence of such a special effect variety in its base locus.
The precise definition about special effect varieties can be found in [11] and [12].
Some examples of special effect varieties are known, see [14] and [15], and the
hard problem is to classify all of them.

In this Section we will not look into special effect varieties, but we will exploit
part of the results of interpolation theory in low dimension to try to describe
some limits of colliding multiple points.
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Collisions in P2

For linear systems of plane curves there is a very precise conjecture about spe-
ciality. Since we are going to use some of its known cases, we collect here the
necessary notation and statement.

Let p1, . . . , pr ∈ P2 be general points, and let P̃2 be the blow-up of P2 at
p1, . . . , pr. Set

L := L2,d(m1, . . . ,mr)(p1, . . . , pr).

We put a tilde to indicate the strict transform of curves on P̃2.

Definition 2.43. A (−1)-curve C ⊂ P2 is a curve such that C̃ is a smooth
rational curve with self intersection −1.

The linear system L on P2 is (−1)-reducible if

L =

k∑
i=1

NiCi +M,

where Ni ∈ N, C1, . . . , Ck are (−1)-curves, M̃ · C̃i = 0 for all i = 1, . . . , k, and
vdim(M) ≥ 0.

The system L is called (−1)-special if, in addition, there exists an index
i ∈ {1, . . . , k} such that Ni > 1.

The leading conjecture for linear systems of plane curves was first formulated
by Segre in [75]. Later on, other versions of the conjecture were proposed by
Gimigliano ([42]), Harbourne ([45]) and Hirschowitz ([48]). Forty years after
Segre’s first formulation, Ciliberto-Miranda showed in [29] that all previous
versions are in fact equivalent, so now we can present the statement of the
celebrated SHGH conjecture. It basically predicts that, for n = 2, the special
effect varieties are the (−1)-curves.

Conjecture 2.44 (Segre-Harbourne-Gimigliano-Hirschowitz). A linear system
of plane curves Ln,d(m1, . . . ,mr) is special if and only if it is (−1)-special.

While this conjecture was proven true in a number of cases, and most experts
believe it is true, a complete proof still seems to be out of grasp. However, we
will use some of the known cases to describe limits of fat points in the plane.
First we need a definition.

Definition 2.45. A linear system L2,d(m1, . . . ,mr) is called homogeneous if
all the multiplicities are the same, i.e. if m1 = . . . = mr. It is called quasi-
homogeneous if all the multiplicities but one are the same, i.e. if m2 = . . . = mr.

We collect now some results about Conjecture 2.44.

Proposition 2.46. Let L := L2,d(m1, . . . ,mr). Let gL be the geometric genus
of L. Conjecture 2.44 holds in the following cases:

1. r ≤ 9 (Castelnuovo [21], Nagata [61], Gimigliano [42], Harbourne [44]),

2. r = h2 is a square (Evain [40]),

3. r = 4t is a power of four (Evain [39]),

4. vdimL ≥ 0 and gL ≤ 4 (Mignon [58]),

37



5. mi ≤ 11 for every i ∈ {1, . . . , r} (Dumnicki-Jarnicki [38]),

6. L = L2,d(m
r) is homogeneous and m ≤ 42 (Dumnicki [37]),

7. L = L2,d(m
r) is homogeneous and r ≥ 4m2 (Roè [73]),

8. L = L2,d(n,m
r) is quasi-homogeneous and m ≤ 5 (Ciliberto-Miranda [28],

Laface [50], Laface-Ugaglia [51]).

Since homogeneous (−1)-special systems have been classified (see for in-
stance [27, Theorem 4.9]), Conjecture 2.44 has a simpler form for homogeneous
systems with more than 9 points.

Conjecture 2.47. If r ≥ 10, then L2,d(m
r) is nonspecial.

With these tools, we can consider the scheme Z1 made by r points of multi-
plicities m1, . . . ,mr. Under the assumption that they satisfy one of the known
cases listed in Proposition 2.46, we can compute the multiplicity d of the limit
of the collision of such points via Proposition 2.3. However, in general this is
not enough to completely determine the limit scheme. Usually we need infor-
mation on the base locus of L2,d(m1, . . . ,mr), and in some cases even that is
not enough. Hence this method can not give a general and unified degeneration
working for every linear system, but rather it can provide concrete degenera-
tions in many specific cases. As an example, we can easily extend Proposition
2.16 to higher multiplicity.

Proposition 2.48. Let m,n ≤ 42, let h =
(m+1

2 )
(n+1

2 )
. If h ∈ N and h ≥ 10, then

the limit of h collapsing n-ple points in P2 is an m-ple point.

Proof. First observe that L2,m−1(nh) is a homogeneous system whose multiplic-
ity does not exceed 42, so it satisfies Conjecture 2.44 by Proposition 2.46. Since
all multiplicities are the same and h ≥ 10, L2,m−1(nh) is nonspecial. Note that
it has virtual dimension

(
m+1

2

)
− 1 − h

(
n+1

2

)
< 0, so it is empty. By Proposi-

tion 2.3, the limit has multiplicity m. To conclude we observe that the scheme
made by h n-ple points has length h

(
n+1

2

)
, which is the same as the length of a

m-tuple point.

Collisions in P3

Now we consider systems of surfaces in P3. Before we state the main conjecture
about the speciality of such systems, we need a definition.

Definition 2.49. A linear system L3,d(m1, . . . ,mr) is Cremona reduced if

2d ≥ mi1 + . . .+mi4 for every {i1, . . . , i4} ⊂ {1, . . . , r}.

This means the degree of the system can not be decreased by applying a Cre-
mona transformation.

The following conjecture about the speciality of linear systems in P3 was
stated by Laface-Ugaglia in [52, Conjecture 4.1].
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Conjecture 2.50 (Laface-Ugaglia). A Cremona reduced linear system

L = L3,d(m1, . . . ,mr)

is special if and only if either

i) there exists a line l through two base points such that l · L ≤ −2, or

ii) there exists a quadric Q such that Q · (L −Q) · (KP3 −Q) < 0.

Like Conjecture 2.44, Laface-Ugaglia conjecture was proven true in several
cases.

Proposition 2.51. Let L := L3,d(m1, . . . ,mr). Conjecture 2.50 holds in the
following cases:

1. m1 = . . . = mr ≤ 5 (Ballico-Brambilla-Caruso-Sala [8]);

2. r ≤ 8 (De Volder-Laface [34]);

3. r ≤ 9 and m ≤ 8 (Brambilla-Dumitrescu-Postinghel [15]).

By exploiting some of this known cases, we can prove a result which is the
analogous of Proposition 2.48 in dimension 3.

Proposition 2.52. Let n,m ∈ N such that n ≤ 5 and m ≥ 2n + 1. Define

h =
(m+2

3 )
(n+2

3 )
= m(m+1)(m+2)

n(n+1)(n+2) . If h ∈ N, then the limit of h collapsing n-ple points

in P3 is an m-ple point.

Proof. By hypothesis L3,m(nh) is not empty. By Proposition 2.3, in order to
prove multZ0 = m we need to show that L3,m−1(nh) is empty. Since it has
negative virtual dimension, it is enough to prove it is nonspecial. By hypothesis
m ≥ 2n+1, hence it is Cremona reduced, and since n ≤ 5 it satisfies Conjecture
2.50. Now we will check the cases.

(n = 1) L3,m−1(1h) is clearly nonspecial.

(n = 2) We only have to observe that the only exception of Theorem 1.5 in P3 is

h = 9. But there is no m such that
(m+2

3 )
4 = 9.

(n = 3) h ∈ N⇔ m ≡ 0, 3, 4, 8, 10, 14, 15, 18, 19 mod 20. Since m ≥ 7, either m =
8 or m ≥ 10, and in this range Conjecture 2.50 predicts that L3,m−1(3h)
is nonspecial.

(n = 4) By hypothesis m ≥ 9. Moreover, m can not be 9, otherwise h /∈ N. So
m ≥ 10 and in this range Conjecture 2.50 predicts that L3,m−1(3h) is
nonspecial.

(n = 5) By hypothesis m ≥ 11, and in this range Conjecture 2.50 predicts that
L3,m−1(3h) is nonspecial.

Now we know multZ0 = m. In order to conclude, it is enough to note that an
m-ple point in P3 has length

(
m+2

3

)
= degZ1.
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Observe the assumption m ≥ 2n + 1 is necessary. Indeed, if we consider
n = 4, m = 8 and h = 6, then by applying Cremona transformations we can
check L3,7(46) ∼= L3,5(42, 24) ∼= L3,3(24) is not empty, so multZ0 = 7.

Our approach relies on a length counting, and therefore it needs a good
behaviour of the numbers involved. This makes difficult to prove general results.
However, there are other specific examples in which it is easy to compute the
limit.

Example 2.53. 1. Let Z1 ⊂ P3 be the scheme consisting of 4 fourtuple
points p1, . . . , p4. Then degZ1 = 80. We want to prove that multZ0 = 6.
Let H1, . . . ,H4 be the planes generated by three of our four points. Since
there are no plane quintics through three general fourtuple points,

L3,5(44) = H1 + . . .+H4 + L3,1(14)

is empty. On the other hand, h0OP3(6) = 84, so multZ0 = 6. The
base locus of L3,6(44) consists of the 6 double lines 〈pi, pj〉, which cut 6
double points on R, in special positions as described in Remark 2.18. Our
candidate limit scheme is a 6-ple point with these 6 infinitely near double
points. It is easy to show that the latter impose independent conditions
on sextics of R, for instance we can pick a line l containing three of them
and use Castelnuovo exact sequence by restricting our systems to l. Then
our candidate scheme has lenght

(
5+3

3

)
+ 6 · 4 = degZ1. Since the degrees

coincide, this is the limit scheme.

2. Let Z1 ⊂ P3 be the scheme consisting of 5 points p1, . . . , p5 of multiplic-
ity 5. Then degZ1 = 175. We want to prove that multZ0 = 9. Let
H1, . . . ,H10 be the planes generated by three of our five points. Since
there are no plane 8-ics through three general points of multiplicity 5,
L3,8(54) should contain the 10 planes, and that is not possible. On the
other hand, h0OP3(9) = 220, so multZ0 = 9. The base locus of L3,9(54)
consists of the 10 lines 〈pi, pj〉, which cut 10 simple points on R, in special
positions as described in Remark 2.18. Anyway, those 10 simple points
impose independent conditions on 9-ics of R by Lemma 2.17. Since(

8 + 3

3

)
+

(
5

2

)
= 175 = degZ1,

the limit scheme is a 9-ple point with 10 infinitely near simple points.

2.4 Other collisions

Up to now we focused on homogeneous collisions, but of course there are many
other cases in which we can try to determine the limit Z0.

When one of the collapsing points has multiplicity much larger than the
others, it is easy to compute the limit scheme.

Proposition 2.54. Let m,m1, . . . ,ms ∈ N, and assume Ln−1,m(m1, . . . ,ms)
is not empty. Then the limit scheme of s + 1 collapsing points of multiplicity
m,m1, . . . ,ms is an m-ple point with s infinitely near points of multiplicity
m1, . . . ,ms.
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Proof. Clearly Ln,m−1(m,m1, . . . ,ms) is empty. On the other hand,

Ln,m(m,m1, . . . ,ms) ∼= Ln−1,m(m1, . . . ,ms)

is not empty by hypothesis, so multZ0 = m by Proposition 2.3. The base locus
of Ln,m(m,m1, . . . ,ms) contains the s lines joining the m-ple point with each
of the others, counted with multiplicities m1, . . . ,ms. They cut s points on R,
of multiplicities m1, . . . ,ms. To conclude, observe that the scheme made by an
m-ple point with s infinitely near points of multiplicity m1, . . . ,ms has the same
length as Z1.

The next two Propositions will deal with the quasihomogeneous case of a fat
point colliding together with a bunch of low multiplicity points.

Proposition 2.55. Let m,n ≥ 2 and let s =
(
n+m−1

n

)
. Then the limit of s

simple points and a point of multiplicity m colliding in Pn is a (m+1)-ple point.

Proof. By our assumption on s, Ln,m(m, 1h) is empty while Ln,m+1(m, 1h) is
not, so multZ0 = m+ 1 by Proposition 2.3. To conclude, observe a (m+ 1)-ple
point has degree

(
n+m
m

)
= degZ1, so Z0 is a (m+ 1)-ple point.

Proposition 2.56. Let m,n ≥ 3 and (m,n) /∈ {(4, 3), (3, 5)}. Suppose s =
(m+n−1

n−1 )
n ∈ N. Then the limit of s double points and a point of multiplicity m

colliding in Pn is a (m+ 1)-ple point with s infinitely near simple points.

Proof. By hypothesis(
n+m+ 1

n

)
−
(
n+m− 1

n

)
− s(n+ 1)

=

(
n+m+ 1

n

)
−
(
n+m− 1

n

)
−
(
m+n−1
n−1

)
n

(n+ 1)

=

(
n+m+ 1

n

)
−
(
n+m− 1

n

)
−
(
m+ n− 1

n− 1

)
−
(
m+n−1
n−1

)
n

=
(n+m+ 1)!

n!(m+ 1)!
− (n+m− 1)!

n!(m− 1)!
− (m+ n− 1)!

(n− 1)!m!
− (m+ n− 1)!

m!n!

=
(n+m− 1)!

(n− 1)!(m− 1)!

[
(n+m+ 1)(n+m)

(m+ 1)mn
− 1

n
− 1

m
− 1

mn

]
=

(n+m− 1)!

(n− 1)!(m− 1)!

[
n2 +mn−m− 1

(m2 +m)n

]
> 0,

hence Ln,m+1(m, 2s) is not empty. On the other hand(
n+m− 1

n− 1

)
− sn =

(
n+m− 1

n− 1

)
−
(
m+ n− 1

n− 1

)
= 0,

so Ln,m(m, 2s) ∼= Ln−1,m(2s) is expected to be empty. The latter is nonspecial
by Theorem 1.5, so multZ0 = m + 1 by Proposition 2.3. The s lines joining
the m-ple point and one of the double points are contained in the base locus of
Ln,m+1(m, 2s), and they cut s general simple points on R. The candidate limit
scheme is a (m + 1)-ple point with s infinitely near simple points, which has
length

(
n+m−1

n

)
+ s = degZ1.
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When we use limits to specialize a linear system, the most effective result
would be a description of Z0 as a fat point of some multiplicity. Unluckily,
we saw many examples showing that this is often impossible, but the following
result will be useful in such applications.

Proposition 2.57. Let n ≥ 2, m1,m2 ∈ N. Then exist h,m ∈ N, depending
on n,m1,m2, such that the limit of 2 points of multiplicity m1 and m2 and h
simple points in Pn is an m-ple point.

Proof. Define
m := m(n,m1,m2) = m1 +m2 + 1 (2.5)

and

h := h(n,m1, . . . ,ms) =

(
m+ n

n

)
−
(
m1 + n− 1

n

)
−
(
m2 + n− 1

n

)
−1. (2.6)

By construction expdimLn,m(m1,m2, 1
h) ≥ 0, hence Ln,m(m1,m2, 1

h) is not
empty. Since an m-ple point has degree equal to the length of the starting
scheme, it is enough to show that Ln,m−1(m1,m2, 1

h) is nonspecial, and there-
fore empty. Since the h simple points always give independent conditions, it
suffies to prove that Ln,m(m1,m2) is nonspecial. By [14, Corollary 4.8], such
system is linearly nonspecial, so we just need to observe that there are no base
linear cycles, and so it is nonspecial.

2.5 First applications of limits

Proposition 2.3 shows that, in order to determine the multiplicity of the limit,
we need to understand the speciality of the systems of divisors containing the
starting scheme Z1, or equivalently its Hilbert function hZ1

. If we want to get
the first clues about what the limit is, we must study the interpolation problem
for linear systems Ln,d(m1, . . . ,mh). Indeed, in Section 2.3 we used known
results in interpolation theory to provide such clues. Therefore it is just fair to
try to return the favour, using the limits we constructed as tools to specialize
linear systems in order to prove their nonspeciality or nonemptiness.

In Proposition 2.46 we recalled some of the known cases of Conjecture 2.44.
Now we aim to provide further examples in which it holds. We can exploit
Proposition 2.48 to prove the following result.

Proposition 2.58. Let m,n1, . . . , ns ∈ N. For i ∈ {1, . . . , s}, set hi = m(m+1)
ni(ni+1) .

Assume hi ∈ N and hi ≥ 10 for every i ∈ {1, . . . , s}. If m,n1, . . . , ns ≤ 42, then
L2,d(m

k, nt1h1
1 , . . . , ntshs

s ) is nonspecial.

Proof. By Proposition 2.48, we can collapse h1 of the n1-ple points into an m-ple
point, thereby degenerating L2,d(m

k, nt1h1
1 , . . . , ntshs

s ) to

L2,d(m
k+1, n

(t1−1)h1

1 , . . . , ntshs
s ).

By performing t1 of these collisions, we obtain the system

L2,d(m
k+t1 , nt2h2

2 , . . . , ntshs
s ).
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Then we apply Proposition 2.48 again to collapse h2 of the n2-ple points into
an m-ple point. By performing t2 of these collisions, we specialize the system
to

L2,d(m
k+t1+t2 , nt3h3

3 , . . . , ntshs
s ).

We iterate the argument till the s-th step. At the end we are dealing with the
specialized system L2,d(m

k+t1+...+ts). The latter is nonspecial by Proposition

2.46, and this implies L2,d(m
k, nt1h1

1 , . . . , ntshs
s ) is nonspecial.

The next results shows how collisions can prove nonspeciality when the sys-
tem has a very large expected dimension.

Proposition 2.59. Let d,m, k ∈ N be such that k > m and(
d+ 3

3

)
≥
(

(m+ 1)(a− 8) + k + 4

3

)
+ 8

(
m+ 2

3

)
.

Then L := L3,d(k,m
a) is nonspecial.

Proof. If a ≤ 7, then Conjecture 2.50 is known to be true for L. First observe
that L is Cremona reduced. Since there are only 8 imposed singularities, there
can not be a special effect quadric. Moreover our assumption implies d >
max{2m− 1, k} so there are no special effect lines. Hence L is nonspecial.

If a = 8, then L is nonspecial by [15, Theorem 3.1], because d ≥ 2m and
k > m.

Assume then a ≥ 9. Now we can no longer rely on Conjecture 2.50, and
we will exploit the large expected dimension of L. First observe that, for every
h ∈ N, it suffies to show that L := L3,d(k,m

a, 1h) is nonspecial. Set L0 = L,
k0 = k and k1 = k +m+ 1. By Proposition 2.57, exists

h0 := h(m, k0) =

(
k1 + 3

3

)
−
(
m+ 2

3

)
−
(
k + 2

3

)
− 1

such that the limit of an m-ple point, a k-ple point and h0 simple points is a k1-
ple point. We need expdimL3,d(k,m

a) ≥ h0 to guarantee L′0 := L3,d(k,m
a, 1h0)

is not empty, that is(
d+ 3

3

)
≥
(
k0 +m+ 4

3

)
+ (a− 1)

(
m+ 2

3

)
.

If so, by Proposition 2.57 we can degenerate L′0 to L1 := L3,d(k1,m
a−1). Then

we apply the same argument to L1. Set k2 = k1 +m+ 1, we know there exists

h1 := h1(m, k1) =

(
k2 + 3

3

)
−
(
m+ 2

3

)
−
(
k1 + 2

3

)
− 1

such that we can make a k1-ple point, an m-ple point and h1 simple points onto
a k2-ple point. This time we need(

d+ 3

3

)
≥
(
k1 +m+ 4

3

)
+ (a− 2)

(
m+ 2

3

)
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to guarantee L′1 := L3,d(k,m
a, 1h0) is not empty. If so, by Proposition 2.57 we

can degenerate L′1 to L2 := L3,d(k2,m
a−2). We keep iterating until we are left

with less than 9 points. At the i-th step we require(
d+ 3

3

)
≥
(
ki−1 +m+ 4

3

)
+ (a− i)

(
m+ 2

3

)
. (2.7)

The most restrictive among all the requirements (2.7) is the last one, that is(
d+ 3

3

)
≥
(
ka−9 +m+ 4

3

)
+ 8

(
m+ 2

3

)
=

(
(a− 8)(m+ 1) + k + 4

3

)
+ 8

(
m+ 2

3

)
.

After a−8 steps we obtain the specialized linear system La−8 = L3,d(ka−8,m
8)

which again is nonspecial by [15, Theorem 3.1].

The bound provided by Proposition 2.59 is far from being sharp. Anyway,
combinations of the results in Section 2.4 may prove more effective.
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Chapter 3

On the number of
decompositions of generic
polynomials

The content of this Chapter comes from a paper written in collaboration with
Elena Angelini, Massimiliano Mella and Giorgio Ottaviani, now published as
[5].

We will address the Waring problem for polynomials. After giving the main
definitions about identifiability and recalling some of the known results in this
topic, we will present the geometric interpretation of general identifiability. Next
we move to what we call the Nonabelian Apolarity lemma, which will allow us
to prove the existence of a new identifiable case. Then we consider the software-
aided computational approach, and we show how it was useful in the search of
identifiable polynomials. Finally, we work out the decompositions of a general
pair of ternary forms of degrees a and b, and we prove that there can not be
identifiability if b = a+ 1, unless (a, b) = (2, 3).

Let f1, f2 be two general quadratic forms in n + 1 variables over C. A
well known theorem, which goes back to Jacobi and Weierstrass, says that f1,
f2 can be simultaneously diagonalized. More precisely there exist linear forms
l0, . . . , ln and scalars λ0, . . . , λn such that f1 =

∑n
i=0 l

2
i

f2 =
∑n
i=0 λil

2
i

(3.1)

An important feature is that the forms li are unique (up to order) and their
equivalence class, up to multiplication by scalars, depends only on the pencil
〈f1, f2〉, hence also the scalars λi are uniquely determined after f1, f2 have been
chosen in this order. The canonical form (3.1) allows us to write easily the basic
invariants of the pencil, like the discriminant which takes the form

∏
i<j(λi −

λj)
2. We call (3.1) a (simultaneous) Waring decomposition of the pair (f1, f2).

The pencil (f1, f2) has a unique Waring decomposition with n+ 1 summands if
and only if its discriminant does not vanish. In the tensor terminology, (f1, f2)
is generically identifiable.
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We generalize now the decomposition (3.1) to r general forms, even allowing
different degrees. For symmetry reasons, it is convenient not to distinguish f1

from the other fj ’s, so we will allow scalars λji in the decomposition of each
fj , including f1. Throughout this Section, sometimes it will be convenient to
identify the vector space of degree d homogeneous polynomials

C[x0 . . . , xn]d

with the d-th symmetric power of C, that is, with the space

SymdCn+1.

To be precise, let f = (f1, . . . , fr) be a vector of general homogeneous forms of
degree a1, . . . , ar in n+1 variables over the complex field C, i.e. fi ∈ SymaiCn+1

for all i ∈ {1, . . . , r}. Let us assume that 2 ≤ a1 ≤ . . . ≤ ar.

Definition 3.1. A Waring decomposition of f = (f1, . . . , fr) is given by linear
forms l1, . . . , lk ∈ P(C[x0, . . . , xn]1) and scalars (λj1, . . . , λ

j
k) ∈ Ck \ {0}, with

j ∈ {1, . . . , r}, such that

fj = λj1l
aj
1 + . . .+ λjkl

aj
k (3.2)

for all j ∈ {1, . . . , r} or, in vector notation,

f =

k∑
i=1

(
λ1
i l
a1
i , . . . , λ

r
i l
ar
i

)
. (3.3)

The geometric argument in Section 3.1 shows that every f has a Waring
decomposition. We consider two Waring decompositions of f as in (3.3) being
equal if they differ just by the order of the k summands. The rank of f is
the minimum number k of summands appearing in (3.3). This definition coin-
cides with the classical one in the case r = 1 (the vector f given by a single
polynomial).

Due to the presence of the scalars λji , each form li depends essentially only
on n conditions. So the decomposition (3.2) may be thought of as a nonlinear
system with

∑r
i=1

(
ai+n
n

)
data (given by fj) and k(r + n) unknowns (given by

kr scalars λji and k forms li). This is a very classical subject, see for example
[70, 54, 72, 74, 78], although in most of classical papers the degrees ai were
assumed equal, with the notable exception of [72].

Definition 3.2. The space Syma1Cn+1 ⊕ . . . ⊕ SymarCn+1 is called perfect if
there exists k ∈ N such that

r∑
i=1

(
ai + n

n

)
= k(r + n), (3.4)

i.e. when (3.2) corresponds to a square polynomial system.

The arithmetic condition (3.4) means that r + n divides
∑r
i=1

(
ai+n
n

)
. In

particular, the number of summands k in the system (3.2) is uniquely deter-
mined.

46



The case with two quadratic forms described in (3.1) corresponds to

r = a1 = a2 = 2 and k = n+ 1,

and it is perfect. The perfect cases are important because, by the above di-
mension count, we expect finitely many Waring decompositions for the generic
polynomial vector in a perfect space Syma1Cn+1 ⊕ . . .⊕ SymarCn+1.

It may happen that general elements in perfect spaces have no decompo-
sitions with the expected number k of summands. The first example, besides
the one of a single plane conic, was found by Clebsch in the XIX century and
regards ternary quartics, where r = 1, a1 = 4 and n = 2. Equation (3.4) gives
k = 5 but in this case the system (3.2) has no solutions and indeed 6 summands
are needed to find a Waring decomposition of the general ternary quartic. It is
well known that all the perfect cases with r = 1 when the system (3.2) has no
solutions have been determined by Alexander and Hirschowitz, while more cases
for r ≥ 2 have been found in [19], where a collection of classical and modern
interesting examples is listed.

Still, perfectness is a necessary condition to have finitely many Waring de-
compositions. So two natural questions, of increasing difficulty, arise.

Question 1 Are there other perfect cases for a1, . . . , ar, n, beyond (3.1),
where a unique Waring decomposition (3.3) exists for generic f , namely where
we have generic identifiability?

Question 2 What is the number of Waring decompositions (up to order of
summands) for a generic f in any perfect case?

The above two questions are probably quite difficult, but we feel it is worth-
while to state them as guiding problems. While Question 2 is open even in the
case r = 1 of a single polynomial, limits of fat points will allow us to provide an
answer to Question 1 for r = 1, see Chapter 4. This improves previous results
in [56, 57]. The birational technique used in these papers has been generalized
to our setting in Section 3.4. In the case r = 1, some numbers of decomposi-
tions for small a1 and n have been computed (with high probability) in [46] by
homotopy continuation techniques, with the numerical software Bertini [9].

Before stating our contributions, we need to review other known results on
this topic.

In the case n = 1 (binary forms) there is a result by Ciliberto and Russo
[31] which completely answers our Question 1.

Theorem 3.3 (Ciliberto-Russo). Let n = 1. In all the perfect cases there is a
unique Waring decomposition for generic f ∈ Syma1C2 ⊕ . . .⊕ SymarC2 if and
only if

a1 + 1 ≥
∑r
i=1(ai + 1)

r + 1
.

Note that the fraction
∑r

i=1(ai+1)

r+1 equals the number k of summands.

We will provide an alternative proof of Theorem 3.3 by using Apolarity, see
Theorem 3.12.

As widely expected, for n > 1 generic identifiability is quite a rare phe-
nomenon. It has been extensively investigated in the XIX century and at the
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beginning of the XX century, and the following are the only discovered cases
that we are aware of:

(i) (Sym2Cn)⊕2, rank n,Weierstrass [79], as in (3.1),
(ii) Sym5C3, rank 7,Hilbert [47], see also [71] and [66],
(iii) Sym3C4, rank 5,Sylvester Pentahedral Theorem [76],
(iv) (Sym2C3)⊕4, rank 4,
(v) Sym2C3 ⊕ Sym3C3, rank 4,Roberts [72].

(3.5)

The interest in Waring decompositions was revived by Mukai’s work on 3-
folds, [59, 60]. Since then, many authors have devoted their energy to un-
derstand, interpret and expand the theory. Cases (ii) and (iii) in (3.5) were
explained by Ranestad and Schreyer in [69] by using syzygies, see also [55] for an
approach via projective geometry and [63] for a vector bundle approach (called
in this paper “Nonabelian Apolarity”, see Section 3.2). Case (v) was reviewed
in [65] in the setting of Lüroth quartics. (iv) is a classical and “easy” result,
there is a unique Waring decomposition of a general 4-tuple of ternary quadrics.
There is a very nice geometric interpretation for this latter case. Four points
in P5 define a P3 that cuts the Veronese surface in 4 points giving the required
unique decomposition. See Remark 3.8 for a generalization to arbitrary (d, n).

Our main contribution with respect to unique decompositions is the following
new case.

Theorem 3.4. A general f ∈ Sym3C3⊕Sym3C3⊕Sym4C3 has a unique Waring
decomposition of rank 7, namely it is identifiable.

The Theorem will be proved in the general setting of Theorem 3.12. Besides
the new example, we think it is important to stress the way it arose. We adapted
the methods in [46] to our setting, by using the software Bertini [9] and also the
package Numerical Algebraic Geometry [49] in Macaulay2 [43], with the generous
help of Jon Hauenstein and Anton Leykin, who assisted us in writing our first
scripts. The computational analysis of perfect cases of forms on C3 suggested
that the Waring decomposition is unique for Sym3C3 ⊕ Sym3C3 ⊕ Sym4C3.
Then we proved it via Nonabelian Apolarity, with the choice of a vector bundle.
This kind of technique has many advantages. For instance, we can give a unified
proof of almost all cases with a unique Waring decomposition via Nonabelian
Apolarity with the choice of a vector bundle E, see Theorem 3.12.

Also, we borrow a construction from [55] to prove, see Theorem 3.15, that
whenever we have uniqueness for rank k, the variety parametrizing Waring
decompositions of higher rank is unirational.

For r = 2 and n = 2, the space SymaC3 ⊕ Syma+1C3 is perfect if and
only if a = 2t is even. All the numerical computations we did suggested that
identifiability holds only for a = 2 (by Robert’s Theorem, see (3.5) (v)). Once
again this pushed us to prove the non-uniqueness for these pencils of plane
curves. Our main contribution to Question 2 regards this case and it is the
following.

Theorem 3.5. A general f ∈ SymaC3 ⊕ Syma+1C3 is identifiable if and only
if a = 2, corresponding to (v) in the list (3.5). Moreover f has finitely many
Waring decompositions if and only if a = 2t and in this case the number of
decompositions is at least

(3t− 2)(t− 1)

2
+ 1.
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We know by equation (3.5)(v) that the bound is sharp for t = 1 and we
verified with high probability, using [9], that it is attained also for t = 2. On the
other hand we do not expect it to be sharp in general. Theorem 3.5 is proved in
section Section 3.4. The main idea, borrowed from [56], is to bound the number
of decompositions with the degree of a tangential projection, see Theorem 3.19.
To bound the latter we use a degeneration argument, see Lemma 3.21, that
reduces the computation needed to an intersection calculation on the plane.

3.1 Secants to a projective bundle

We show a geometric interpretation of the decomposition (3.2) by considering
the k-secant variety to the projective bundle

X = P(OPn(a1)⊕ . . .⊕OPn(ar)) ⊂ P
(
H0 (⊕iOPn(ai))

)
= PN ,

where N =
∑r
i=1

(
ai+n
n

)
− 1. We denote by π : X → Pn the bundle projection.

Note that dimX = r + n − 1 and the immersion in PN corresponds to the
canonical invertible sheaf OX(1) constructed on X ([45, II, Section 7]).
Indeed X is parametrized by(

λ(1)la1 , . . . , λ(r)lar
)
∈

r⊕
i=1

H0 (OPn(ai)) ,

where λ(i) are scalars. X coincides with polynomial vectors of rank 1, recall
Definition 3. It follows that the k-secant variety to X is parametrized by

k∑
i=1

(
λ1
i l
a1
i , . . . , λ

r
i l
ar
i

)
,

where λji are scalars and li ∈ C[x0, . . . , xn]1. This construction appears already
in [33] in the case ai = i for i = 1, . . . , d. Since X is not contained in a
hyperplane, it follows that any polynomial vector has a Waring decomposition
as in (3.3). Thus, the number of decompositions by means of k linear forms of
f1, . . . , fr is equal to the k-secant degree of X.

If ai = a for all i ∈ {1, . . . , r}, then we deal with Pr−1×Pn embedded through
the Segre-Veronese map with O(1, a), as we can see in Proposition 1.3 of [35]
or in [7]. Moreover, we remark that perfectness in the sense of Definition 3.2 is
equivalent to P(OPn(a1)⊕ . . .⊕OPn(ar)) being a perfect variety, i.e. (n+ r)|N .

With this language, Theorem 3.3 has the following reformulation (compare
with Claim 5.3 and Proposition 1.14 of [31]):

Corollary 3.6. If (3.4) and a1 + 1 ≥ k hold, then P(OP1(a1)⊕ . . .⊕OP1(ar))
is k-identifiable, i.e. its k-secant degree is equal to 1.

Remark 3.7. A formula for the dimension of the k-secant variety of the rational
normal scroll X for n = 1 has been given in [22, pag. 359] with a sign mistake,
corrected in [31, Proposition 1.14].

Remark 3.8. Consider the Veronese variety Vd,n ⊂ P(d+n
n )−1, and let

s− 1 = codimVd,n.
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Then s general points determine a unique Ps−1 that intersects Vd,n in dn points.
The dn points are linearly independent only if dn = s, that is, either n = 1 or
d = n = 2. This shows that a general vector f = (f1, . . . , fs) of forms of

degree d admits
(
dn

s

)
decompositions, see the table at the end of Section 3.3

for some numerical examples. On the other hand, from a different perspective,
dropping the requirement that the linear forms giving the decompositions are
linearly independent, this shows that there is a unique set of dn linear forms that
decompose the general vector f and span a linear space of dimension s−1. Note
that this time only the forms and not the coefficients are uniquely determined.
We will not dwell on this point of view here and leave it for future work.

3.2 Nonabelian Apolarity and Identifiability

Let V be a complex vector space of dimension n + 1 and let f ∈ SymdV . For
any e ∈ Z, Sylvester constructed the catalecticant map

Cf : SymeV ∗ → Symd−eV,

which is the contraction by f . Its main property is the inequality rkCf ≤ rk f ,
where the rank on the left-hand side is the rank of a linear map, while the rank
on the right-hand side has been defined in the Introduction. In particular the
(k + 1)-minors of Cf vanish on the variety of polynomials with rank bounded
by k, which is Seck(Vd,n).

The catalecticant map behaves well with polynomial vectors. If

f ∈
r⊕
i=1

SymaiV,

then for any e ∈ Z we define the catalecticant map

Cf : SymeV ∗ →
r⊕
i=1

Symai−eV

which is again the contraction by f . If f has rank one, this means that there
exists l ∈ V and scalars λ(i) such that f =

(
λ(1)la1 , . . . , λ(r)lar

)
. It follows

that rk Cf ≤ 1, since the image of Cf is generated by
(
λ(1)la1−e, . . . , λ(r)lar−e

)
,

which is zero if and only if ar < e. Linearity implies the basic inequality

rkCf ≤ rk f.

Again the (k+1)-minors of Cf vanish on the variety of polynomial vectors with
rank bounded by k, which is Seck(X), where X is the projective bundle defined
in Section 3.1.

A classical example is the following. Assume V = C3. London showed in [54]
(see also [74]) that a pencil of ternary cubics f = (f1, f2) ∈ Sym3V ⊕ Sym3V
has border rank ≤ 5 (the border rank of f is the smallest number k such that f
is in the Zariski closure of the set of polynomial vectors in Sym3V ⊕ Sym3V of
rank k) if and only if detCf = 0 where Cf : Sym2V ∗ → V ⊕V (see [19, Remark
4.2] for a modern reference). Indeed detCf is the equation of Sec5(X), where
X is the Segre-Veronese variety

(
P1 × P2,OX(1, 3)

)
. Note that X is 5-defective
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according to Definition 1.15 and this phenomenon is pretty similar to the case
of Clebsch quartics recalled in the introduction.

The following result goes back to Sylvester.

Proposition 3.9 (Classical Apolarity). Let

f = ld1 + . . . ldk ∈ SymdV

and let Z = {l1, . . . , lk} ⊂ V . Let Cf : SymeV ∗ → Symd−eV be the contraction
by f . Assume the rank of Cf equals k. Then

Bs (ker(Cf )) ⊇ Z.

Proof. The Apolarity Lemma (see [69]) says that IZ ⊂ f⊥, which reads in degree
e as H0(IZ(e)) ⊂ ker(Cf ). Look at the subspaces in this inclusion as subspaces
of H0(Pn,O(e)). The assumption on the rank implies that

codimH0(IZ(e)) ≤ k = rkCf = codim(ker(Cf )),

hence we have the equality H0(IZ(e)) = ker(Cf ). It follows that

Bs(ker (Cf )) = BsH0(IZ(e)) ⊇ Z.

Classical Apolarity is a powerful tool to recover Z from f , hence it is a
powerful tool to write down a minimal Waring decomposition of f .

The following Proposition (compare with [63, Proposition 4.3]) is a further
generalization and it reduces to classical apolarity when (X,L) = (P(V ),O(d))
and E = O(e) is a line bundle. The vector bundle E may have larger rank
which explains the name of Nonabelian Apolarity.

We recall that the natural map H0(E)⊗H0(E∗ ⊗ L)→ H0(L) induces the
linear map H0(E)⊗H0(L)∗ → H0(E∗⊗L)∗, then for any f ∈ H0(L)∗ we have
the contraction map Af : H0(E)→ H0(E∗ ⊗ L)∗.

Proposition 3.10 (Nonabelian Apolarity). Let X be a variety, let L ∈ Pic(X)
be a very ample line bundle. If we set W = H0(X,L)∗, then L gives the

embedding X ⊂ P(W ). Let E be a vector bundle on X. Let f =
∑k
i=1 wi ∈W

with zi = [wi] ∈ X, let Z = {z1, . . . , zk} ⊂ P(W ) and let

Af : H0(E)→ H0(E∗ ⊗ L)∗

be the induced map. Assume that rkAf = k · rkE. Then Bs(ker(Af )) ⊇ Z.

In all the cases that we apply the Proposition, we will compute separately
rkAf .

Nonabelian Apolarity enhances the power of Classical Apolarity and may
detect a minimal Waring decomposition of a polynomial in some cases when
Classical Apolarity fails, see Proposition 3.11. Our main examples start with
the quotient bundle Q on Pn = P(V ). It has rank n and it is defined by the
Euler exact sequence

0→ O(−1)→ O⊗ V ∗ → Q→ 0.
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Let L = O(d) and E = Q(e). Any f ∈ SymdV induces the contraction map

Af : H0(Q(e))→ H0(Q∗(d− e))∗ ∼= H0(Q(d− e− 1))∗. (3.6)

The following was the argument used in [63] to prove cases (ii) and (iii) of
(3.5).

Proposition 3.11. Let X be a variety, let L ∈ Pic(X) be a very ample line
bundle and let E be a vector bundle on X with rkE = dimX and crkE(E) = k.

Let [f ] be a point in P(H0(L)∗), k = h0(X,L)
dimX+1 and

Af : H0(E)→ H0(E∗ ⊗ L)∗

the contraction map. Assume that for general f , rkAf = k · rkE, and there
is some f such that the base locus of kerAf is given by k points. Then the
k-secant map

πk : Seck(X)→ P(H0(L)∗)

is birational. The assumptions are verified in the following cases, corresponding
to (ii) and (iii) of (3.5).

(X,L) H0(L) rank E

(P2,O(5)) Sym5C3 7 QP2(2)

(P3,O(3)) Sym3C4 5 Q∗P3(2)

Specific f ’s in the statement may be found as random polynomials in [43].
In order to prove also cases (iv) and (v) of (3.5), and moreover our Theorem
3.4, we need to extend this result as follows.

Theorem 3.12. Let X
π−→ Y be a projective bundle, L = OX(1) as in Section

3.1 which we assume to be very ample and embeds the fibers of π as linear
spaces. Let F be a vector bundle on Y and let E = π∗F . Let [f ] be a point in

P(H0(L)∗), k = h0(X,L)
dimX+1 and

Af : H0(E)→ H0(E∗ ⊗ L)∗

the contraction map. Let a = dimY
rkF be an integer and (crkFF )a = k. Assume

that X is not k-defective and that rkAf = k · rkE for general f . Furthermore
assume that there is some f such that the base locus of kerAf is given by k
fibers of π. Then the k-secant map

πk : Seck(X)→ P(H0(L)∗)

is birational. The assumptions are verified in the following cases.

X H0(L) rank = k F a

P (OPn(2)⊕OPn(2))
(
Sym2Cn+1

)⊕2
n+ 1 QPn(1) 1{

P (⊕ri=1OP1(ai))
if k ≤ a1 + 1

⊕ri=1SymaiC2
∑r

i=1(ai+1)

r+1 OP1(k) 1

P
(
OP2(2)4

)
(Sym2C3)⊕4 4 OP2(2) 2

P (OP2(2)⊕OP2(3)) Sym2C3 ⊕ Sym3C3 4 OP2(2) 2

P
(
OP2(3)2 ⊕OP2(4)

) (
Sym3C3

)⊕2 ⊕ Sym4C3 7 QP2(2) 1
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Proof. Let Z be as in Proposition 3.10. We get Z ⊂ Bs(kerAf ), where the
base locus can be found by the common zero locus of some sections s1, . . . , sa
of E which span kerAf . Since E = π∗F and H0(X,E) is naturally isomorphic
to H0(Y, F ), the zero locus of each section of E corresponds to the pullback
through π of the zero locus of the corresponding section of F . By the assumption
on the top Chern class of F , we expect that the base locus of kerAf contains
k = degZ fibers of the projective bundle X. The hypothesis guarantees that this
expectation is realized for a specific polynomial vector f . By semicontinuity,
it is realized for the generic f . This determines the forms li in (3.3) for a
generic polynomial vector f . It follows that f is in the linear span of the fibers
π−1(π(li)), where Z = {l1, . . . , lk}. Fix representatives for the forms li for
i = 1, . . . , k. Now the scalars λji in (3.3) are found by solving a linear system.
By assumption we have that X is not k-defective (note that this assumption
is satisfied in the setting of Proposition 3.11, since otherwise the base locus of
kerAf should be positive dimensional). In particular, the tangent spaces at
points in Z, which are general, are independent by the Terracini Lemma. Since
each π-fiber is contained in the corresponding tangent space, it follows that
the fibers π−1(li) corresponding to li ∈ Z are independent. Therefore that the
scalars λji in (3.3) are uniquely determined and we have generic identifiability.
We checked that the assumptions are verified in the cases listed with random
polynomials, with the aid of Macaulay2 package [43].

Remark 3.13. In all the cases listed in Theorem 3.12, by the projection for-
mula, we have the natural isomorphism H0(X,E∗ ⊗ L) ∼= H0(Y, F ⊗ π∗L).

Note that the second case in the list of Theorem 3.12 corresponds to Theorem
3.3 of Ciliberto-Russo. In this case H0(E) = SymkC2 has dimension k + 1,
H0(E∗⊗L) = Syma1−kC2⊕. . .⊕Symar−kC2 has dimension

∑r
i=1(ai−k+1) = k

(if k ≤ a1 + 1) and the contraction map Af has rank k, with one-dimensional
kernel.

The last case in the list of Theorem 3.12 corresponds to Theorem 3.4. A
general vector f ∈ (Sym3C3)⊕2 ⊕ Sym4C3 induces the contraction

Af : H0(Q(2))→ H0(Q)⊕H0(Q)⊕H0(Q(1))

with one-dimensional kernel. Each element in the kernel vanishes on 7 points
which give the seven Waring summands of f .

Moreover, observe that
(
P
(
OP2(2)4

)
,OX(1)

)
coincides with the Segre-Veronese

variety (P3 × P2,O(1, 2)).

Remark 3.14. The assumption a1 + 1 ≥ k in 3.3 is equivalent to

1

r + 1

r∑
i=1

(ai + 1) ≤ a1 + 1,

which means that the ai are “balanced”.

We conclude this section by showing how the existence of a unique decompo-
sition determines the birational geometry of the varieties parametrizing higher
rank decompositions. The following is just a slight generalization of [55, Theo-
rem 4.4].
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Theorem 3.15. Let X ⊂ PN be a unirational variety such that the k-secant
map πk : Seck(X) → PN is birational. If codimX ≥ h ≥ k, then the variety
π−1
h (p) is unirational for a general point p ∈ PN . In particular, it is irreducible.

Proof. Let p ∈ PN be a general point. For h > k, we have

dimπ−1
h (p) = h · dimX + h− 1−N = (h− k)(dimX + 1).

Note that, for q ∈ PN general, a general point x ∈ π−1
h (q) is uniquely associated

to a set of h points {x1, . . . , xh} ⊂ X and a h-tuple (λ1, . . . , λh) ∈ Ch with the
requirement that

q =
∑

λixi.

Thus the birationality of πk allows us to associate, to a general point q ∈ PN ,
its unique decomposition in sum of k factors. That is, π−1

k (q) = (q, [Λk(q)])
for a general point q ∈ PN , where [Λk(q)] ⊂ Grk−1 is such that q ∈ Λk(q) (see
Section 1.3). Via this identification we may define a map

ψh : (X × P1)h−k 99K π−1
h (p)

given by

(x1, λ1, . . . , xh−k, λh−k) 7→ (p, [〈x1, . . . , xh−k,Λk(p− λ1x1 − . . .− λh−kxh−k)〉]).

When codimX > h, Λh(q) intersects X in exactly h points by the Trisecant
Lemma, see for instance [23, Proposition 2.6]. Hence the map ψh is generically
finite, of degree

(
h
k

)
, and dominant. In a similar way, if codimX = h, then ψh

is generically finite of degree
(

degX
k

)
. This is sufficient to show the claim.

Theorem 3.15 applies to all decompositions that admit a unique form.

Corollary 3.16. Let f = (f1, . . . , fr) be a vector of general homogeneous forms.
Assume f has a unique Waring decomposition of rank k. If(

n+ a1

n

)
+ . . .+

(
n+ ar
n

)
− r − n ≥ h > k,

then the set of rank h decompositions of f is parametrized by a unirational
variety.

Remark 3.17. Let’s go back to our starting example (3.1) and specialize

f1 =

n∑
i=0

x2
i

to the euclidean quadratic form. Then any minimal Waring decomposition of
f1 consists of n+ 1 orthogonal summands, with respect to the euclidean form.
It follows that the decomposition (3.1) is equivalent to the diagonalization of f2

with orthogonal summands. Over the reals, this is possible for any f2 by the
Spectral Theorem.

Also Robert’s Theorem, see (v) of (3.5), has a similar interpretation. If
f1 = x2

0 +x2
1 +x2

2 and f2 ∈ Sym3C3 is general, the unique Waring decomposition
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of the pair (f1, f2) consists of four representatives of lines {l1, . . . , l4} and scalars
λ1, . . . , λ4 such that  f1 =

∑4
i=1 l

2
i

f2 =
∑4
i=1 λil

3
i

(3.7)

Denote by L the 3× 4 matrix whose i-th column is given by the coefficients of
li. Then the first condition in (3.7) is equivalent to the equation

LLt = I. (3.8)

This equation generalizes orthonormal bases and the columns of L make a
Parseval frame, according to [18] Section 2.1. So Robert’s Theorem states that
the general ternary cubic has a unique decomposition consisting of a Parseval
frame.

In general a Parseval frame for a field F is given by {l1, . . . , ln} ⊂ Fd such
that the corresponding d× n matrix L satisfies the condition LLt = I. This is
equivalent to the equation

n∑
i=1

 d∑
j=1

ljixj

2

=

d∑
i=1

x2
i ,

and again this corresponds to a Waring decomposition of the euclidean form in
Fd with n summands. This makes a connection between this Chapter and [64],
which studies frames in the setting of secant varieties and tensor decomposition.
For example equation (7) in [64] defines a solution to (3.8) with the additional
condition that the four columns have unit norm. Note that equation (8) in
[64] defines a Waring decomposition of the pair (f1, T ). Unfortunately, the
additional condition about unitary norm does not allow the results of [64] to be
directly transferred to our setting, but we believe this connection deserves to be
pushed further.

It is interesting to notice that the decompositions of moments M2 and M3

in [2, Section 3] are (simultaneous) Waring decompositions of the quadric M2

and the cubic M3.

3.3 Computational approach

In this section we describe how we can face Question 1 and Question 2 from the
point of view of computational analysis.

With the aid of Bertini [9, 10] and Macaulay2 [43] software systems, we can
construct algorithms, based on homotopy continuation techniques and mon-
odromy loops, that, in the spirit of [46], yield the number of Waring decompo-
sitions of a generic polynomial vector

f = (f1, . . . , fr) ∈ Syma1Cn+1 ⊕ . . .⊕ SymarCn+1

with high probability. Precisely, given n, r, a1, . . . , ar, k ∈ N satisfying (3.4) and
coordinates x0, . . . , xn, we focus on the polynomial system

f1 = λ1
1l
a1
1 + . . .+ λ1

kl
a1
k

...
fr = λr1l

ar
1 + . . .+ λrkl

ar
k

(3.9)
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where fj ∈ SymajCn+1 is a fixed general element, while

li = x0 +

n∑
h=1

lihxh ∈ P(C[x0, . . . , xn]1) and λji ∈ C

are unknown. By expanding the expressions on the right hand side of (3.9) and
by applying the identity principle for polynomials, the j-th equation of (3.9)
splits into

(
aj+n
n

)
conditions. Our aim is to compute the number of solutions of

F(f1,...,fr)

([
l11, . . . , l

1
n, λ

1
1, . . . , λ

r
1

]
, . . . ,

[
lk1 , . . . , l

k
n, λ

1
k, . . . , λ

r
k

])
,

the square non linear system of order k(r+n), arising from the equivalent version
of (3.9) in which in each equation all the terms are on one side of the equal sign.

In practice, to work with general fj ’s, we assign random complex values l
i

h, λ
j

i

to lih, λji and, by means of F(f1,...,fr), we compute the corresponding f1, . . . , fr,
the coefficients of which are so called start parameters. In this way, we know a
solution([

l
1

1, . . . , l
1

n, λ
1

1, . . . , λ
r

1

]
, . . . ,

[
λ
k

1 , . . . , l
k

n, λ
1

k, . . . , λ
r

k

])
∈ Ck(r+n)

of F(f1,...,fr), i.e. a Waring decomposition of f = (f1, . . . , fr), which is called
a startpoint. Then we consider F1 and F2, two square polynomial systems of
order k(n + r) obtained from F(f1,...,fr) by replacing the constant terms with
random complex values. We therefore construct 3 segment homotopies

Hi : Ck(r+n) × [0, 1]→ Ck(r+n)

for i ∈ {0, 1, 2}: H0 between F(f1,...,fr) and F1, H1 between F1 and F2, H2 be-
tween F2 and F(f1,...,fr). Through H0, we get a path connecting the startpoint
to a solution of F1, called endpoint, which therefore becomes a startpoint for
the second step given by H1, and so on. At the end of this loop, we compare
the output Waring decomposition with the starting one. If they are equal, this
procedure suggests that the case under investigation is identifiable, otherwise
we iterate this technique with these two startingpoints, and so on. If at a certain
point, the number of solutions of F(f1,...,fr) stabilizes, then, with high proba-
bility, we know the number of Waring decompositions of a generic polynomial
vector in Syma1Cn+1 ⊕ . . .⊕ SymarCn+1.
We have implemented the homotopy continuation technique both in the soft-
ware Bertini [9], in conjunction with Matlab, and in the software Macaulay2,
with the aid of the package Numerical Algebraic Geometry [49].

Before starting with this computational analysis, we need to check that
the variety P(OPn(a1) ⊕ . . . ⊕ OPn(ar)), introduced in Section 1.3, is not k-
defective, in which case (3.9) has no solutions. In order to do that, by us-
ing Macaulay2, we can construct a probabilistic algorithm based on Theorem
1.17, that computes the dimension of the span of the affine tangent spaces to
P(OPn(a1)⊕ . . .⊕OPn(ar)) at k random points and then we can apply semicon-
tinuity properties.

In the following table we summarize the results we are able to obtain by com-
bining numerical and theoretical approaches. Our technique is as follows. We
first apply the probabilistic algorithm, checking k-defectivity, described above.
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If this suggests positive k-defect δk, we do not pursue the computational ap-
proach. When δk is zero, we apply the homotopy continuation technique. If the
number of decompositions (up to order of summands) stabilizes to a number,
#k, we indicate it. If homotopy technique does not stabilize to a fixed number,
we apply degeneration techniques like in Section 3.4 to get a lower bound. If
everything fails, we put a question mark. Bold degrees are the ones obtained
via theoretical arguments.

r n (a1, . . . , ar) k δk #k

2 2 (4, 5) 9 0 3
2 2 (6, 6) 14 0 ≥ 2
2 2 (6, 7) 16 0 ≥ 8
2 3 (2, 4) 9 2
3 2 (2, 2, 6) 8 4
3 2 (3, 3, 4) 7 0 1
3 2 (3, 4, 4) 8 0 4
3 2 (5, 5, 6) 14 0 205
3 3 (3, 3, 3) 10 0 56
4 2 (2, 2, 4, 4) 7 2
4 2 (2, 3, 3, 3) 6 0 2
4 2 (4, . . . , 4) 10 0 ?
5 2 (5, . . . , 5, 6) 16 0 ?
6 2 (2, . . . , 2, 3) 5 3
6 4 (2. . . . , 2) 9 0 45
7 3 (2, . . . , 2) 7 0 8
8 2 (3, . . . , 3) 8 0 9
8 2 (2, . . . , 2, 6) 7 7
11 4 (2, . . . , 2) 11 0 4368
13 2 (4, . . . , 4) 13 0 560
15 2 (4, . . . , 4, 6) 14 6
17 3 (3, . . . , 3) 17 0 8436285
19 2 (5, . . . , 5) 19 0 177100
26 2 (6, . . . , 6) 26 0 254186856

3.4 Identifiability of pairs of ternary forms

In this Section we aim to study the identifiability of pairs of ternary forms. In
particular, we study the special case of two forms of degree a and a+1, focusing
on

X = P(OP2(a)⊕OP2(a+ 1)).

Note that X can also be seen as a special linear section of

Seg(P2 × P2,O(a, a+ 1)).

Our main result is the following.

Theorem 3.18. Let a ≥ 2 be an integer. A general pair of ternary forms of
degree a and a+1 is identifiable if and only if a = 2. Moreover there are finitely
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many decompositions if and only if a = 2t is even, and in this case the number
of decompositions is at least

(3t− 2)(t− 1)

2
+ 1.

The Theorem has two directions: on one hand we need to prove that a = 2
is identifiable, on the other we need to show that for a > 2 a general pair is
never identifiable. The former is a classical result we already recalled in (iii) of
(3.5) and in Theorem 3.12. For the latter, observe that dim Seck(X) = 4k − 1,
therefore if 4k − 1 6= N , then the general pair is never identifiable. We are left
to consider the perfect case N = 4k − 1. In this case we may assume that X
is not k-defective (we will prove that this is always the case in Remark 3.27),
otherwise the non identifiability is immediate. Hence the core of the question is
to study generically finite maps

πk : Seck(X)→ PN ,

with 4k = (a + 2)2. This yields our last numerical constraint, namely, that
a = 2t needs to be even.

The first step is borrowed from [56, 57], and it is a slight generalization of
[56, Theorem 2.1], see also [31].

Theorem 3.19. Let X ⊂ PN be an irreducible variety of dimension n. Assume
that the natural map

π1 : Seck(X)→ PN

is dominant and generically finite of degree d. Let z ∈ Seck−1(X) be a general
point. Consider the projection ϕ : PN 99K Pn from the embedded tangent space
Tz Seck−1(X). Then

ϕ|X : X 99K Pn

is dominant and generically finite of degree at most d.

Proof. Choose a general point z on a general (k−1)-secant linear space spanned
by 〈p1, . . . , pk−1〉. Let f : Y → PN be the blow-up of Seck−1(X) with excep-
tional divisor E, and fiber Fz = f−1(z). Let y ∈ Fz be a general point. This
point uniquely determines a linear space Π of dimension (k − 1)(n + 1) that
contains Tz Seck−1(X). Then the projection ϕ|X : X 99K Pn is generically finite
of degree d if and only if (Π \ Tz Seck−1(X)) ∩X consists of just d points.

Assume that {x1, . . . , xa} ⊂ (Π \ Tz Seck−1(X)) ∩ X. By the Terracini
Lemma, Theorem 1.17,

Tz Seck−1(X) = 〈Tp1X, . . . ,Tpk−1
X〉.

Consider the linear spaces Λi = 〈xi, p1, . . . , pk−1〉. The Trisecant Lemma yields
Λi 6= Λj , for i 6= j. Let ΛYi and ΠY be the strict transforms on Y . Since
z ∈ 〈p1, . . . , pk−1〉 and y = ΠY ∩Fz, ΛYi contains the point y ∈ Fz. In particular
we have

ΛYi ∩ ΛYj 6= ∅.

Let π1 : Seck(X) → PN be the morphism from the abstract secant variety,
and µ : U → Y the induced morphism, where U = Seck(X)×PN Y . Then there
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exists a commutative diagram

U

p

��

µ // Y

f

��
Seck(X)

π1 // PN

Let λi and ΛUi be the strict transforms of Λi in Seck(X) and U respectively.
By Remark 1.16 λi ∩ λj = ∅, so that

ΛUi ∩ ΛUj = ∅.

This proves that ]µ−1(y) ≥ a. But y is a general point of a divisor in the
normal variety Y . Therefore degµ, and henceforth deg π1, is at least a.

To apply Theorem 3.19 we need to better understand X and its tangential
projections. Recall that a divisor D is a monoid if it is irreducible and it is
singular in a point with multiplicity degD − 1. By definition we have

X ∼= P((OP2(−1)⊕OP2)⊗OP2(a+ 1).

Then X ⊂ PN can be seen as the embedding of P3 blown up in one point q
embedded by monoids of degree a+ 1 with vertex q. In other words, if we let

L = P (Iqa(a+ 1)) and Y = Blq P3,

then we have
X = ϕL(Y ) ⊂ PN .

It is now easy, via the Terracini Lemma (Theorem 1.17), to realize that the
restriction of the tangential projection ϕ|X : X 99K P3 is given by the linear
system

H = P
(
Iqa∪p21∪...∪p2k−1

(a+ 1)
)

on P3. We already assumed that X is not k-defective, that is, we work under
the condition

dimH = 3. (3.10)

Remark 3.20. It is interesting to note that for a = 2 the map ϕ|X is the stan-
dard Cremona transformation of P3, given by (x0, . . . , x3) 7→ (1/x0, . . . , 1/x3).

We need to degenerate the linear system H in the sense of Construction 1.8,
and so we want to understand what happens to the degree of the associated
rational map under specialization.

Lemma 3.21. Let ∆ be a complex disk around the origin, X a variety and
OX(1) a base point free line bundle. Consider the product V = X × ∆, with
the natural projections, π1 and π2. Let Vt = X × {t} and OV (d) = π∗1(OX(d)).
Fix a configuration p1, . . . , pl of l points on V0 and let σi : ∆ → V be sections
such that σi(0) = pi and {σi(t)}i=1,...,l are general points of Vt for t 6= 0. Let

P =

l⋃
i=1

σi(∆) and Pt = P ∩ Vt.
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Consider the linear system H = P(H0(OV (d) ⊗ IP 2)) on V , with Ht := H|Vt
,

and assume that

dimH0 = dimHt = dimX for every t ∈ ∆.

Let d(t) be the degree of the map induced by Ht. Then d(0) ≤ d(t).

Proof. If ϕHt is not dominant for t 6= 0, then there is nothing else to prove.
Let t 6= 0 and assume that ϕHt is dominant. Then ϕHt is generically finite and
degϕHt

(X) = 1. Let
µ : Z ×∆→ V

be a resolution of the base locus, and let VZt = µ∗Vt and HZ = µ−1
∗ H be the

strict transform linear systems on Z. Then VZt is a blow-up of Vt = X and
VZ0

= µ−1
∗ V0 + R, for some effective (possibly trivial) residual divisor R. By

hypothesis H0 is the flat limit of Ht, for t 6= 0. Hence flatness forces

d(t) = HdimX
Z · VZt = HdimX

Z · (µ−1
∗ V0 +R) ≥ HdimX

Z · µ−1
∗ V0 = d(0).

Lemma 3.21 guarantee that when we specialize, the degree can not increase.
Therefore it allows us to work on a degenerate configuration to study the degree
of the map induced by the linear system

P(Iqa∪p21∪...∪p2k−1
(a+ 1)) ⊂ P(H0OP3(a+ 1)).

Lemma 3.22. Fix the numbers

b :=
t(t+ 3)

2
and c :=

t(t+ 1)

2
.

Let H ⊂ P3 \ {q} be a plane, B := {p1, . . . , pb} ⊂ H a set of b general points,
and C := {x1, . . . , xc} ⊂ P3 \ ({q}∪H) a set of c general points. Let a = 2t and
let

H := P(Iqa∪C2∪B2(a+ 1))

be the linear system of degree a + 1 monoids of P3 with vertex q and double
points along B ∪ C. Let ϕH be the associated map. Then dimH = 3 and

degϕH >
(3t− 2)(t− 1)

2
.

Proof. Note that the lines 〈q, pi〉 and 〈q, xi〉 are contained in the base locus of H
by construction. Let us start computing dimH. First we prove an intermediate
result.

Claim 3.23. There is a unique element in H containing the plane H.

Proof of Claim 3.23. Let D ∈ H such that D ⊃ H. Then D = H + R, with
degR = a. It follows that R is a cone with vertex q over a plane curve Γ ⊂ H.
Moreover R is singular along C and has to contain B. This forces Γ to contain
B and to be singular at 〈q, x1〉 ∩H. In other words Γ is a plane curve of degree
2t with c general double points and passing through b general points. Note that(

2t+ 2

2

)
− 3c− b = 1.
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It is well known, see for instance [1], that the c points impose independent
conditions on plane curves of degree 2t. Clearly the latter b simple points do
the same, therefore there is a unique plane curve Γ satisfying the requirements.
This shows that R is unique and the claim is proved.

We are ready to compute the dimension of H.

Claim 3.24. dimH = 3.

Proof of Claim 3.24. The expected dimension of H is 3. Consider Castelnuovo
sequence

0→ H−H → H→ H|H → 0.

By Claim 3.23, it is enough to show that dimH|H = 2. Observe that H|H is a
linear system of plane curves of degree 2t+ 1 with b general double points and c
simple general points. As in the proof of Claim 3.23, we compute the expected
dimension (

2t+ 3

2

)
− 3b− c = 3,

and conclude by [1].

Next we want to determine the base locus scheme of H|H . Let ε : S → H be
the blow-up of B and 〈q, xi〉 ∩H, with HS the strict transform linear system.
We will first prove the following.

Claim 3.25. The scheme base locus of IB2,H(2t+ 1) is B2.

Proof. Let Lij := P(IB\{pi,pj},H(t)). Then

dimLij =

(
t+ 2

2

)
− b− 2− 1 = 2.

By the Trisecant Lemma we conclude that

BsLij = B \ {pi, pj}.

Let Γi,Γj ∈ Lij such that Γi 3 pi and Γj 3 pj . By construction, we have

Dij := Γi + Γj + 〈pi, pj〉 ∈ H.

Let DijS , LijS be the strict transforms on S. Note that Γh belongs to a pencil of
curves in Lhk for any k. These pencils do not have common base locus outside
of B since LijS is base point free and dimLij = 2. Therefore the DijS have no
common base locus.

Claim 3.26. HS is base point free.

Proof. To prove the Claim it is enough to prove that the simple base points
associated to C impose independent conditions. Since C ⊂ P3 is general this is
again implied by the Trisecant Lemma.
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Then we have

degϕHS
= H2

S = (2t+ 1)2 − 4b− c =
(3t− 2)(t− 1)

2
.

To conclude, observe that, by the same argument as the claims, we can prove
that ϕH|R is generically finite. Therefore

degϕH > degϕH|H = degϕHS
= (2t+ 1)2 − 4b− c =

(3t− 2)(t− 1)

2
.

Remark 3.27. Lemma 3.22 proves that degϕH is finite. As a byproduct, we
get that condition (3.10) is always satisfied in our range. That is X is not
k-defective for a = 2t.

Proof of Theorem 3.18. We already know that the number of decompositions is
finite only if a = 2t. By Remark 3.27, we conclude that the number is finite
when a = 2t. Let d be the number of decompositions for a general pair. By
Theorem 3.19, we know that d ≥ degϕ where ϕ : X 99K P3 is the tangen-
tial projection. The required bound is obtained combining Lemma 3.21 and
Lemma 3.22.
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Chapter 4

The Waring problem for
general polynomials via
limits

The content of this Chapter is a joint work with Massimiliano Mella, now pub-
lished as [41].

As a further application of the techniques presented in Chapter 2, we exploit
limits of fat points to give new results about Waring decompositions. Namely
we will prove that the only generically identifiable cases for n > 1 are (ii) and
(iii) in list 3.5. The precise statement is the following.

Theorem 4.1. Let f be a general homogeneous form of degree d in n + 1
variables. Then f has a unique Waring decomposition with r summands if and
only if

(n, d, r) ∈ {(1, 2k − 1, k), (3, 3, 5), (2, 5, 7)}.

Like in Section 3.4, the starting point is [56, Theorem 2.1], where it is proved
that identifiability forces a particular tangential projection of the Veronese va-
riety to be birational. Since this projection is associated to a linear system
with imposed singularities, our main result is a consequence of the following
statement about Cremona modifications of Pn, which is of interest in itself.

Theorem 4.2. Let Ln,d(2h) be the linear system of degree d divisors of Pn
with h double points in general position, and ϕn,d,h the associated rational
map. Then ϕn,d,h is a Cremona transformation, i.e. dimLn,d(2h) = n and
ϕn,d,h : Pn 99K Pn is birational, if and only if

- n = 1, d = 2k + 1, and h = k,

- n = 2, d = 5 and h = 6,

- n = 3, d = 3 and h = 4.

The main difficulty in proving Theorem 4.2 is to control the singularities and
the base locus of the linear system Ln,d(2h). The first task is accomplished in
[56, Corollary 4.5]. It is proved that, for d ≥ 4, the singularities of Ln,d(2h) are
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only the double points imposed. The degree 3 case was recently completed in
[25]. This allowed to conclude in the mentioned range. Unfortunately, if d ≤ n,
then it is necessary to control not only the singularities but also the base locus of
these linear systems to bound the degree of the map. In [57] some special cases
were proved assuming a divisibility condition on the degree. Here we approach
the problem from a different perspective. Instead of trying to bound directly
the degree of the map associated to Ln,d(2h), we produce a degeneration of
the imposed singularities in such a way that the limit linear system admits a
hyperplane on which the restricted map is still expected to be non birational.
We then proceed by induction trying to bound the sectional genus of the linear
systems we are considering.

This reminds of the techniques of interpolation. Indeed the linear systems
we are interested in were studied for the interpolation problem and we profit
both of Alexander–Hirschowitz’ paper [1] and of more recent approaches due
to Postinghel [68] and Brambilla–Ottaviani [16]. The proof of Theorem 4.2 is
done by induction on n. The induction step is done via a careful choice of
numbers. This numerology is the core of the (differentiable) Horace method in
[1], where a double induction on both degree and dimension is played. We are
not able to control the sectional genus along these specialization, therefore we
have to develop a different approach based only on dimension induction. We
let some double points collapse into a triple point with tangent directions. The
latter allows us to make induction work and to study the restriction of the linear
system to a hyperplane.

This leads us to study the standard interpolation problems for linear systems
with one triple point, with tangent directions in general position, and a bunch of
double points. The first step of induction is the study of planar linear systems.
Here we benefit from the theory developed around Conjecture 2.44. In particu-
lar, we use the results Proposition 2.46.8 about quasi-homogeneous multiplicity.
As usual in interpolation problems, for low degrees d ≤ 5 and in particular for
cubics, we need special arguments. Once we work out the case with tangent
direction in general position, we extend it to the set of tangent direction arising
in the flat limit described in Proposition 2.19, thereby concluding the proof.

First we need a definition.

Definition 4.3. The sectional genus of a linear system is the geometric genus
of a general curve section.

We will prove that the linear systems we are interested in have positive sec-
tional genus, and this will imply the associated linear map can not be birational.
For this purpose the following remark is extremely useful.

Remark 4.4. The genus of any curve of an algebraic system of algebraic curves
is not greater than the genus of the generic curve of the system, [26]. Therefore,
in order to prove that a linear system L has positive sectional genus, it is enough
to exhibit a curve of positive genus in some algebraic family of curves whose
general member is a curve section of L.

We now reduce Theorem 4.1 to Theorem 4.2 following [56]. Let n, d be
integers. Then a general polynomial f ∈ C[x0, . . . , xn]d admits a unique decom-
position

f = ld1 + . . .+ lds ,
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with li ∈ C[x0, . . . , xn]1 for i ∈ {1, . . . , s}, if and only if the s-secant map

πs : Secs(Vd,n)→ PN

of the Veronese variety is dominant and birational, where N =
(
n+d
n

)
− 1. In

Section 1.3 we noted that dim Secs(Vd,n) = s(n+ 1)− 1, hence, in order for πs
to be birational, the number

k(n, d) :=

(
d+n
n

)
n+ 1

(4.1)

has to be an integer. Now let Secs(Vn,d) be the embedded s-secant variety.
For a general point z ∈ Seck(n,d)−1(Vn,d), let ϕ : PN 99K Pn be the projection
from the embedded tangent space Tz Seck(n,d)−1(Vn,d). As we did in Section
3.4, we can apply Theorem 3.19 to conclude that ϕ|Vn,d

is birational whenever
πk(n,d) is. Again, by Theorem 1.17, this map is associated to the linear system

Ln,d(2k(n,d)−1). Therefore the morphism πk(n,d) is birational only if the map

associated to Ln,d(2k(n,d)−1) is birational. It follows that Theorem 4.1 is a
consequence of Theorem 4.2.

4.1 The induction step

In this section we develop the induction argument we need to prove Theorem 4.2.
Thanks to [56] we may assume that n ≥ d. Since linear systems of cubics with a
triple point and double points are always special, a different strategy is needed
for d = 3, so we also assume that d ≥ 4.

Fix a point q ∈ Pn and a general linear space Π 3 q, of dimension 3. Let Zn
be a scheme having:

• multiplicity 3 in q together with
(
n+1

2

)
− s(3, d, n) general tangent direc-

tions in q and s(3, d, n) tangent directions on Π,

• k(n, d)− n− 2− h(3, d, n) general double points, h(3, d, n) general double
points on Π.

We will define the integers h(3, d, n) and s(3, d, n) later on.
At the linear system level let

Ln(d) := P(IZn,Pn(d)).

We aim to prove the nonspeciality of Ln(d). For this purpose, we degenerate the
scheme Zn as follows. Fix a general hyperplane H ⊂ Pn containing Π. Let ZHn
be a specialization of Zn such that H contains h(n− 1, d, n) double points and
s(n − 1, d, n) tangent directions, at the point q. Let LHn (d) be the specialized
linear system.

By Construction 1.8, the nonspeciality of Ln(d) is implied by the nonspecial-
ity of LHn (d). For the latter we can use the Castelnuovo exact sequence. Hence
we are left to prove that the restricted linear system

Ln−1,d(3[s(n− 1, d, n)], 2h(n−1,d,n))
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and the kernel of the restriction map

Ln,d−1(2[s(n, d, n)− s(n− 1, d, n)], 2k(n,d)−n−2−h(n−1,d,n), 1h(n−1,d,n))

are nonspecial, where the base points are in the described special position. To
prove the nonspeciality of these linear systems, we set up an induction argument
choosing a sequence of integer in such a way that the first linear system has a
unique divisor, and then use induction for the latter. Let us introduce the
following notation.

Definition 4.5. Let s(i, d, n) and h(i, d, n) be non-negative integers. Assume
n ≥ d ≥ 4. Fix a general flag of linear spaces

H2 ⊂ H3 ⊂ H4 ⊂ . . . ⊂ Hn−1 ⊂ Hn = Pn,

with Hi
∼= Pi, H3 = Π and q ∈ H2. For i ∈ {2, . . . , n}, consider a 0-dimensional

scheme Zi ⊂ Hi such that:

• Zi−1 is a flat limit of Zi|Hi−1
,

• Zi has multiplicity 3 in q together with s(i, d, n) infinitely near points,
s(i− 1, d, n) of which are tangent directions supported in Hi−1,

• for every i ∈ {3, . . . , n}, Zi has h(i, d, n) double points, h(i − 1, d, n) of
which are supported in Hi−1,

• Z2 has h(2, d, n) double points.

Finally, set
LHi (d) = P(IZi,Hi(d)).

In order to define s(i, d, n) and h(i, d, n) in such a way we can argue by in-
duction on n, we will need a few technical results. The first step is the following.

Lemma 4.6. Assume that for any n ≥ i ≥ 2 there are integers

h(i, d, n) ≥ h(i− 1, d, n) and s(i, d, n) ≥ s(i− 1, d, n)

such that

i) expdimLHi (d) = i,

ii) dimLHi−1(d) = i− 1,

iii) expdimLHi (d)−Hi−1 = 0,

iv) dimLHi (d)− 2Hi−1 ≤ 0,

v) there is at most one divisor D ∈ LHi (d) with multqD > 3,

vi) LHi−1(d)|Π = L3,d(3[s(3, d, n)], 2h(3,d,n)) for every i > 3,

vii) - h(i− 1, d, n)− h(3, d, n) + s(i, d, n)− s(i− 1, d, n) > (i− 4)(i+ 1) for
i ≥ 5 and d ≥ 5,

- h(i−1, 4, n)−h(3, 4, n)+s(i, 4, n)−s(i−1, 4, n) > (i+1) for 5 ≤ i ≤ 8,
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- h(i− 1, 4, n)− h(3, 4, n) + s(i, 4, n)− s(i− 1, 4, n) > (i− 7)(i+ 1) for
i ≥ 9.

Then

1. dimLHi (d)−Hi−1 = 0,

2. the divisor in LHi (d)−Hi−1 does not contain Π,

3. LHi (d) is nonspecial,

4. LHi (d)|Π = L3,d(3[s(3, d, n)], 2h(3,d,n)) for every i ≥ 3.

Proof. By assumption i), h(3, d, n) <
(d+3

3 )
4 − 1, the linear system LHi (d)−Hi−1

is
Li,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)),

and it has non negative expected dimension by iii). For i = 4, by using
Lemma 1.11, it is easy to check that the simple points on Π impose independent
conditions and the general element in LH4 (d) − Π does not contain Π. By vii)
and Lemma 1.14, for i > 4, the simple base points on Π impose independent
conditions and the general element in LHi (d) −Hi−1 does not contain Π. This
shows (2).

By assumption iv) and Lemma 1.11, the other simple base points on Hi−1

impose independent conditions to Li,d−1(2h(i,d,n)−h(i−1,d,n)+1).
Similarly assumption v) and Lemma 1.11 ensure that the tangential direc-

tions in q impose independent conditions to Li,d−1(2h(i,d,n)−h(i−1,d,n)+1). There-
fore we are left to prove that Li,d−1(2h(i,d,n)−h(i−1,d,n)+1) is nonspecial. The lat-
ter is a linear system with only double points and positive expected dimension.
Then by Theorem 1.5 we know it is nonspecial, keep also in mind Remark 1.6.
This proves (1).

Then from the Castelnuovo exact sequence and assumption ii) the linear
system LHi (d) is non special. To conclude observe that the nonspeciality of
LHi (d), (1) and vi) yield (4).

To apply Lemma 4.6, we have first to produce the sequences of integers
h(i, d, n) and s(i, d, n).

Proposition 4.7. Fix integers n ≥ d ≥ 4, and let i ∈ {3, . . . , n}. Assume
that the number k(n, d) defined in formula 4.1 is an integer. Then there are
sequences {h(i, d, n)}i∈{2,...,n} and {s(i, d, n)}i∈{2,...,n} such that

1. expdimLi,d−1(2[s(i, d, n)−s(i−1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) = 0

2. expdimLi−1,d(3[s(i− 1, d, n)], 2h(i−1,d,n)) = i− 1

and the following properties hold:
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i) we have

h(3, d, n) <

(
d+ 2

3

)
− 4,

h(n, d, n) = k(n, d)− 1− n− 1,

h(n, d, n)− h(n− 1, d, n) ≥ d− 1

(n+ 2)(n+ 1)

(
n+ d

n

)
− 3 > 0,

h(i+ 1, d, n)− h(i, d, n) ≥ d− 1

(i+ 2)(i+ 1)

(
i+ d

i

)
− 2 > 0

for every i ∈ {2, . . . , n− 2},

ii) s(n, d, n) =
(
n+1

2

)
and

s(i− 1, d, n) ∈
{
i2 − 3i− 2

2
, . . . ,

i2 − i− 4

2

}
,

iii) s(2, d, n) ≥ 0,

iv) s(i, d, n) ≥ s(i− 1, d, n) for every i ∈ {4, . . . , n− 1},

v) s(i, d, n)− s(i− 1, d, n) <
(
i+1
2

)
for every i ∈ {3, . . . , n},

vi) - h(i− 1, d, n)− h(3, d, n) + s(i, d, n)− s(i− 1, d, n) > (i− 4)(i+ 1) for
i ≥ 5 and d ≥ 5,

- h(i−1, 4, n)−h(3, 4, n)+s(i, 4, n)−s(i−1, 4, n) > (i+1) for 5 ≤ i ≤ 8,

- h(i− 1, 4, n)− h(3, 4, n) + s(i, 4, n)− s(i− 1, 4, n) > (i− 7)(i+ 1) for
i ≥ 9.

Proof. In order to simplify the notation, we set for the moment k := k(n, d),
si := s(i, d, n) and hi := h(i, d, n). Set sn =

(
n+1

2

)
and hn = k − 1− n− 1. For

i ∈ {3, . . . , n}, define

ai :=: a(i, d) :=

(
i+ d− 1

i− 1

)
− 3i

2
− i2

2
.

The linear system LHi,d−1(2[si−si−1], 2hi−hi−1 , 1hi−1) has expected dimension

expi :=

(
d− 1 + i

i

)
− 1− (i+ 1)(hi − hi−1 + 1)− (si − si−1)− hi−1.

Then assumption (1) reads expn = 0 and yields(
d− 1 + n

n

)
−1−(n+1)(k−n−2−hn−1 +1)−hn−1−

((
n+ 1

2

)
− sn−1

)
= 0.

This implies

nhn−1 + sn−1 = −
(
d− 1 + n

n

)
+ 2 + (n+ 1)k − (n+ 1)(n+ 2) + n+

(
n+ 1

2

)
= −

(
d− 1 + n

n

)
+ 2 +

(
n+ d

n

)
− (n+ 1)(n+ 2) + n+

(
n+ 1

2

)
=

(
n+ d− 1

n− 1

)
+ 2− (n+ 1)(n+ 2) + n+

(
n+ 1

2

)
= an.
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Therefore hn−1 and sn−1 satisfy the equation

nhn−1 + sn−1 = an.

Note that
n2 − n− 4

2
− n2 − 3n− 2

2
= n− 1,

therefore there is a unique t ∈
{
n2−3n−2

2 , . . . , n
2−n−4

2

}
such that an − t is a

multiple of n. Call sn−1 that number and define

hn−1 =
an − sn−1

n
.

This also settles (2), for i = n, since by construction

expdimLn,d(3[s(n, d, n)], 2h(n,d,n)) = n.

Hence

n = expn + expdimLn−1,d(3[s(n− 1, d, n)], 2h(n−1,d,n)) + 1.

In a similar fashion expn−1 = 0 gives

(n− 1)hn−2 + sn−2 =

(
n+ d− 2

n− 2

)
− n2

2
− n

2
+ 1 = an−1.

As before
n2 − 3n− 2

2
− n2 − 5n+ 2

2
= n− 2,

and there is a unique t ∈
{
n2−5n+2

2 , . . . , n
2−3n−2

2

}
such that an−1 − t is a

multiple of n− 1 Call sn−2 that number and define

hn−2 =
an−1 − sn−2

n− 1
.

We iterate the argument, defining si−1 to be the only natural number in{
i2−3i−2

2 , . . . , i
2−i−4

2

}
such that i | ai − si−1. Hence we have

ihi−1 + si−1 = ai (4.2)

and conditions ii) and iv) are satisfied.
Next we check s(2, d, n) ≥ 0. By definition, s(2, d, n) ≥ −1. Assume by

contradiction that s(2, d, n) = −1. Then

a(3, d) =
(d+ 1)(d+ 2)

2
− 9 ≡ −1 (mod 3)

so (d + 1)(d + 2) = 6t + 4 ≡ 1 (mod 3), and this is impossible because 1 is
irreducible in Z3. Therefore condition iii) holds.

Let us check condition v). Assume first that i < n. Then

2(s(i, d, n)− s(i− 1, d, n)) ≤ (i+ 1)2 − i− 5− i2 + 3i+ 2

= 4i− 2 < (i+ 1)i
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for i ≥ 3. Assume that i = n. Then

2(s(n, d, n)− s(n− 1, d, n)) ≤ 2

(
n+ 1

2

)
− n2 + 3n+ 2

= 4n+ 2 < n(n+ 1)

for n ≥ 4.
Next we focus on condition i).

Claim 4.8. Set i ≥ 2. Then

hn − hn−1 ≥
d− 1

(n+ 2)(n+ 1)

(
n+ d

n

)
− 3 > 0

and

hi+1 − hi ≥
d− 1

(i+ 2)(i+ 1)

(
i+ d

i

)
− 2 > 0 for every i ≤ n− 2.

Proof of Claim 4.8. First assume that i = n − 1. Then we have, by Equa-
tion (4.2),

hn − hn−1 =

(
n+d
n

)
n+ 1

− n− 3− an − sn−1

n

≥
(
n+d
n

)
n+ 1

−
(
n+d−1
n−1

)
n

− 3

=
1

n(n+ 1)

[
n

(
n+ d

n

)
− (n+ 1)

(
n+ d− 1

n− 1

)]
− 3

=
d− 1

(n+ 1)n

(
n+ d− 1

n− 1

)
− 3.

The case i < n − 1 is similar but a bit more painful. Keeping in mind Equa-
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tion (4.2), we have

hi+1 − hi =
ai+2 − si+1

i+ 2
− ai+1 − si

i+ 1

≥
(i+ 1)ai+2 − (i+ 1) · (i+2)2−i−6

2 − (i+ 2)ai+1 + (i+ 2) · (i+1)2−3(i+1)−2
2

(i+ 2)(i+ 1)

=
(i+ 1)ai+2 − (i+ 2)ai+1

(i+ 2)(i+ 1)
− 3i2 + 7i+ 6

2(i+ 2)(i+ 1)

=
1

(i+ 2)(i+ 1)
[(i+ 1)ai+2 − (i+ 2)ai+1]− (i+ 1)(3i+ 4)

2(i+ 2)(i+ 1)
− 1

=
1

(i+ 2)(i+ 1)

[
(i+ 1)

(
i+ d+ 1

i+ 1

)
− (i+ 2)

(
i+ d

i

)]
− 1

2
− 3i+ 4

2(i+ 2)
− 1

=
1

(i+ 2)(i+ 1)

[
(i+ 1)

(
i+ d

i+ 1

)
−
(
i+ d

i

)]
− 2i+ 3

i+ 2
− 1

≥ 1

(i+ 2)(i+ 1)

[
i

(i+ d)!

(i+ 1)!(d− 1)!
+

(i+ d)!

(i+ 1)!(d− 1)!
− (i+ d)!

i!d!

]
− 2i+ 4

i+ 2
− 1

=
(i+ d)!

i!(i+ 2)(i+ 1)(d− 1)!

[
i

i+ 1
+

1

i+ 1
− 1

d

]
− 3

=
(i+ d)!(d− 1)

i!d!(i+ 2)(i+ 1)
− 3

=
d− 1

(i+ 2)(i+ 1)

(
i+ d

i

)
− 3

for every i ≥ 2. Note that hi+1 − hi increases as d does. For d = 4, we have

h(i+ 1, 4, n)− h(i, 4, n) ≥ 3

(i+ 2)(i+ 1)

(
i+ 4

4

)
− 3 =

i2 + 7i− 12

8
> 0

for every i ≥ 2.

Claim 4.8 proves i), so we are left with vi). Assume first that i ≥ 5 and
d ≥ 5. Then

h(i− 1, d, n)− h(3, d, n) + s(i, d, n)− s(i− 1, d, n)− (i− 4)(i+ 1)

≥ h(i− 1, d, n)− h(3, d, n)− (i− 4)(i+ 1)

=
a(i, d)− s(i− 1, d, n)

i
− a(4, d)− s(3, d, n)

4
− (i− 4)(i+ 1)

≥
(
i+d−1
i−1

)
− 3i

2 −
i2

2 −
i2−i−4

2

i
−
(
d+3

3

)
− 14− 1

4
− (i− 4)(i+ 1).

The latter increases as d does, so(
i+d−1
i−1

)
− 3i

2 −
i2

2 −
i2−i−4

2

i
−
(
d+3

3

)
− 14− 1

4
− (i− 4)(i+ 1)

≥
(
i+4
5

)
− 3i

2 −
i2

2 −
i2−i−4

2

i
−
(

8
3

)
− 14− 1

4
− (i− 4)(i+ 1)

=
i5 + 10i4 − 85i3 + 290i2 − 846i+ 240

120i
> 0
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for every i ≥ 5. Now assume that d = 4. For 6 ≤ i ≤ 8 we have

h(i− 1, 4, n)− h(3, 4, n) + s(i, 4, n)− s(i− 1, 4, n)− i− 1

= h(i− 1, 4, n) + s(i, 4, n)− s(i− 1, 4, n)− i− 6

≥ h(i− 1, 4, n)− i− 6

=
a(i, 4)− s(i− 1, 4, n)

i
− i− 6

≥
(
i+3
4

)
− 3i

2 −
i2

2 −
i2−i−4

2

i
− i− 6

=
i4 + 6i3 − 37i2 − 162i+ 48

24i
> 0.

For i = 5 we have

h(4, 4, n)− h(3, 4, n) + s(5, 4, n)− s(4, 4, n)− 6 = 9− 5 + 9− 5− 6 > 0.

Finally suppose that i ≥ 9. Then

h(i− 1, 4, n)− h(3, 4, n) + s(i, 4, n)− s(i− 1, 4, n)− (i+ 1)(i− 7)

≥ a(i, 4)− s(i− 1, 4, n)

i
− 5− (i+ 1)(i− 7)

≥
(
i+3
4

)
− 3i

2 −
i2

2 −
i2−i−4

2

i
− 5− (i+ 1)(i− 7)

=
i4 − 18i3 + 131i2 + 30i+ 48

24i
> 0.

Remark 4.9. There is an interesting consequence of Proposition 4.7. The
sequences h(i, d, n) and s(i, d, n) do not vary with n, as long as i < n. This is
crucial for all the computations we are going to do and opens also interesting
generalizations of our arguments that we will explore in the future.

Example 4.10. Here we present the computation in a specific case. Assume
that n = 5 and d = 4. By definition k(5, 4) = 21 ∈ N. Following the proof of
Proposition 4.7, we set s(5, 4, 5) =

(
5
2

)
= 10 and h(5, 4, 5) = 21 − 2 − 5 = 14.

Next we compute

a(5, 4) =

(
8

4

)
− 15

2
− 25

2
= 50,

a(4, 4) =

(
7

3

)
− 6− 8 = 21,

a(3, 4) =

(
6

2

)
− 9

2
− 9

2
= 6.

Now s(4, 5, 4) is the only natural number t ∈ {4, . . . , 8} such that 5 | 50−t. This
means that s(4, 5, 4) = 5 and therefore we have h(4, 5, 4) = 50−5

5 = 9. In the
same way s(3, 5, 4) is the only number t ∈ {1, . . . , 4} such that 4 | 21− t. Again
this implies that s(3, 5, 4) = 1 and h(3, 5, 4) = 21−1

4 = 5. Finally, s(2, 5, 4) is
the only number t ∈ {0, 1} such that 3 | 6− t, so we conclude that s(2, 5, 4) = 0
and h(2, 5, 4) = 3.
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From now on we fix the sequences of integers h(i, d, n) and s(i, d, n) of Propo-
sition 4.7. The following proves that assumption iv) of Lemma 4.6 is satisfied
for this choice of integers.

Lemma 4.11. Assume that n ≥ d ≥ 4 and (n, d) 6= (4, 4). Then LHi (d)−2Hi−1

is empty for every i ∈ {3, . . . , n}.

Proof. By definition, LHi (d)− 2Hi−1 is

Li,d−2(1[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n)).

First assume that d = 4 and n ≥ 5. Consider i = 3. A direct computation
shows that h(3, 4, n) = 5 and h(2, 4, 4) = 2, hence h(3, 4, n)− h(2, 4, n) ≥ 3 = i.
Consider i ∈ {4, . . . , n− 1}. By i) in Proposition 4.7, we have

h(i, 4, n)− h(i− 1, 4, n) ≥ 3

(i+ 1)i

(
i+ 3

4

)
− 2 =

i2 + 5i− 10

8
≥ i.

Consider i = n > d = 4. By i) in Proposition 4.7 we have

h(n, 4, n)− h(n− 1, 4, n) ≥ 3

(n+ 1)n

(
n+ 3

4

)
− 3 =

n2 + 5n− 18

8
≥ n

for n ≥ 6. If n = 5, we compute h(5, 4, 5) − h(4, 4, 5) = 14 − 9 = 5 = i. In
all these cases the linear system we are interested in is contained in Ln,2(1, 2n),
which is empty. Next we consider exceptions in Theorem 1.5 with d ≥ 4. In our
notation these are the cases (i, d) ∈ {(3, 6), (4, 6), (4, 5)}. A direct computation
shows that h(i, d, n) − h(i − 1, d, n) is greater than the exceptional value of
Theorem 1.5.

Assume that n ≥ d > 4. By hypothesis, Li,d−2(2h(i,d,n)−h(i−1,d,n)) is non-
special. Then, by i) in Proposition 4.7, for i < n we have

vdimLi,d−2(1[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n))

<

(
d+ i− 2

i

)
− (i+ 1)(h(i, d, n)− h(i− 1, d, n))

≤
(
d+ i− 2

i

)
− (i+ 1)

[
d− 1

(i+ 1)i

(
i+ d− 1

i− 1

)
− 2

]
=

(d+ i− 2)!

i!(d− 2)!
− d− 1

i
· (i+ d− 1)!

(i− 1)!d!
+ 2(i+ 1)

=
(i+ d− 2)!

i!(d− 2)!
− (d− 1) · (i+ d− 1)!

i!d!
+ 2(i+ 1)

=
(i+ d− 2)!

i!(d− 2)!

[
1− (d− 1) · i+ d− 1

d(d− 1)

]
+ 2(i+ 1)

=

(
i+ d− 2

d− 2

)
· 1− i

d
+ 2(i+ 1).

Note that the latter is decreasing with respect to d. For d = 5 we get

1− i
5

(
i+ 3

3

)
+ 2(i+ 1) ≤ −i

4 − 5i3 − 5i2 + 65i+ 66

30
≤ 0
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for every i ≥ 3.
To conclude, assume that i = n. Then the virtual dimension is bounded as

follows

vdimLn,d−2(1[s(n, d, n)− s(n− 1, d, n)], 2h(n,d,n)−h(n−1,d,n))

<
1− n
d

(
n+ d− 2

d− 2

)
+ 3(n+ 1).

As before it decreases as d increases. For d = 5, we have

1− n
5

(
n+ 3

3

)
+ 3(n+ 1) =

−n4 − 5n3 − 5n2 + 95n+ 96

30
< 0

for every n ≥ 5.

We are in a position to state and prove the induction step we described.

Proposition 4.12. Assume that n ≥ d ≥ 4 and (n, d) 6= (4, 4). Let i ∈
{3, . . . , n}, and suppose that

a) LHi−1(d) is nonspecial,

b) there is at most one divisor D ∈ LHi−1(d) with multqD > 3.

Then LHi (d) is nonspecial and there is at most one divisor D ∈ LHi (d) with
multqD > 3.

Proof. Recall that q ∈ Hi−1. First we check that the conditions i), ii), iii), iv),
vii) in Lemma 4.6 are satisfied. Point i) is (2) in Proposition 4.7, ii) is a) and
(2) in Proposition 4.7, iii) is (1) in Proposition 4.7, iv) is Lemma 4.11, and vii)
is vi) in Proposition 4.7.

We are left to prove that there is at most one divisor D ∈ LHi (d) with
multqD > 3. All divisors D ∈ LHi (d) with multqD > 3 either contain Hi−1

or restrict to divisors D|Hi−1
∈ LHi−1(d) with multqD|Hi−1

> 3. On the other
hand, by assumption b), if there is a pencil of these divisors, then the unique
divisor in LHi (d)−Hi−1 has multiplicity at least 4 in q. Therefore to conclude
it is enough to prove that multqD = 3 for the divisor D with D ⊃ Hi−1. The
divisor D −Hi−1 is in

Li,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)).

A straightforward computation shows that

h(i, d, n)− h(i− 1, d, n) <

⌈(
i+d−1
i

)
i+ 1

⌉
− i− 1,

so by Proposition 1.12 the system Li,d−1(3, 2h(i,d,n)−h(i−1,d,n)) is nonspecial. By
Lemma 4.11,

Li,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n))−Hi−1

is empty and so Li,d−1(3, 2h(i,d,n)−h(i−1,d,n)) − Hi−1 is empty as well. Hence,
arguing as in Proposition 4.6, we use Lemma 1.14 and Lemma 1.11 to ensure
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that the simple points on the hyperplane impose independent conditions and
the linear system Li,d−1(3, 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) is nonspecial. Point
(1) in Proposition 4.7 gives

expdimLi,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) = 0.

Point v) in Proposition 4.7 gives s(i, d, n)− s(i− 1, d, n) <
(
i+1
2

)
. Then

vdimLi,d−1(3, 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) <

< vdimLi,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) = 0.

Since Li,d−1(3, 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) is nonspecial, it is empty and any
divisor in Li,d−1(2[s(i, d, n)− s(i− 1, d, n)], 2h(i,d,n)−h(i−1,d,n), 1h(i−1,d,n)) has a
double point in q.

The next proposition proves the first step of our induction argument.

Proposition 4.13. Assume that n ≥ d ≥ 4 and (n, d) 6= (4, 4). Then the linear
system L2,d(3[s(2, d, n)], 2h(2,d,n)) is nonspecial and there is at most one divisor
D ∈ L2,d(3[s(2, d, n)], 2h(2,d,n)) with multqD > 3.

Proof. A simple check of the list in [28, Lemma 7.1] shows that the linear sys-
tems L2,d(3, 2

h(2,d,n)) and L2,d(4, 2
h(2,d,n)) are nonspecial for d ≥ 5, for the

former one can also check Proposition 1.12, while a direct computation shows
that L2,4(3, 2h(2,4,n)) is nonspecial and dimL2,4(4, 2h(2,4,n)) = 0. In particular
L2,d(4, 2

h(2,d,n)) is empty for d ≥ 5 and has dimension 0 for d = 4.
We are left to study the s(2, d, n) tangent direction. If s(2, d, n) = 0, we are

done. Suppose now that s(2, d, n) = 1. This is possible only for d ≥ 5. Since
L2,d(4, 2

h(2,d,n)) is empty and L2,d(3, 2
h(2,d,n)) has positive dimension, we con-

clude that L2,d(3[s(2, d, n)], 2h(2,d,n)) is nonspecial by Lemma 1.11. Moreover,
for d ≥ 5 any divisor in L2,d(3, 2

h(2,d,n)) has multiplicity 3 in q, while there is a
unique divisor with multiplicity 4 in L2,4(3, 2h(2,4,n)).

We conclude this Section with the nonspeciality result we were looking for.

Proposition 4.14. If n ≥ d ≥ 4 and (n, d) 6= (4, 4), then

i) the linear system LHn (d) and Ln(d) are nonspecial,

ii) there is at most one divisor D ∈ LHn (d) with multqD > 3.

Proof. By Proposition 4.13, L2,d(3[s(2, d, n)], 2h(2,d,n)) satisfies i) and ii). Then,
by Proposition 4.12, LHn (d) satisfies i) and ii). We already observed that Ln(d)
is nonspecial if LHn (d) is nonspecial.

4.2 The genus bound

The aim of this Section is to bound from below the sectional genus of the linear
systems LHn (d). We start from L2,d(3[s(2, d, n)], 2h(2,d,n)).

Proposition 4.15. The sectional genus of L2,d(3[s(2, d, n)], 2h(2,d,n)) is 0 for
d = 4, 5 and it is positive for d ≥ 6.
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Proof. The general element in L2,d(3[s(2, d, n)], 2h(2,d,n)) has a triple point at q
by Proposition 4.13, and double points at the remaining assigned points by [28,
Theorem 8.1].

Claim 4.16. If d ≥ 8, then the general element D ∈ L2,d(3[s(2, d, n)], 2h(2,d,n))
is irreducible.

Proof of Claim 4.16. Assume that the general element

D ∈ L2,d(3[s(2, d, n)], 2h(2,d,n))

is reducible. Then D = D1 +D2, set

bi = degDi ∈ {1, . . . , d− 1}

and, by monodromy, mi := multpj Di. Hence m1 + m2 = 2 so, up to order,
there are two possibilities: either m1 = 0 and m2 = 2, or m1 = m2 = 1.

Assume first that m2 = 2, that is, we are assuming that L2,b2(2h(2,d,n)) is
not empty. We work under the hypothesis d ≥ 8, so h(2, d, n) ≥ 12. Therefore
this linear system is nonspecial by Theorem 1.5, and its virtual dimension is(

b2 + 2

2

)
− 3h(2, d, n)− 1 =

(
b2 + 2

2

)
− a(3, d) + s(2, d, n)− 1.

A straightforward computation shows that this is non negative only for d < 8.
Assume now that m1 = m2 = 1. Then there are plane curves Di of degree

bi through p1, . . . , ph(2,d,n), that is Di ∈ L2,bi(1
h(2,d,n)). We may assume that

b1 ≤ b2. The virtual dimension of L2,bi(1
h(2,d,n)) is(

bi + 2

2

)
− h(2, d, n)− 1,

and this is non-negative only if

3b2i + 9bi ≥ d2 + 3d− 22.

Therefore

3b21 + 9b1 ≥ b21 + b22 + 2b1b2 + 3b1 + 3b2 − 22

2b21 + 6b1 ≥ b22 + 2b1b2 + 3b2 − 22 ≥ b21 + 2b21 + 3b1 − 22 (4.3)

b21 − 3b1 − 22 ≤ 0,

so b1 ≤ 6. But then by (4.3) we have

2b21 + 6b1 ≥ b22 + 2b1b2 + 3b2 − 22 ≥ b22 + 2b21 + 3b2 − 22

6b1 ≥ b22 + 3b2 − 22 ≥ b22 + 3b1 − 22

b22 ≤ 3b1 + 22 ≤ 18 + 22 = 40

and we conclude b2 ≤ 6.
Since h(2, 8, n) = 12, we have bi ≥ 4. Therefore the only possibilities are

b1 = 4 and 10 ≥ d ≥ 8, b1 = 5 and 11 ≥ d ≥ 10 or b1 = 6 and d = 12.
A simple computation gives: h(2, 8, n) = 12, h(2, 9, n) = 15, h(2, 10, n) = 19,
h(2, 11, n) = 23 and h(2, 12, n) = 27. The divisor D has a triple point at q.
Therefore the divisor D1 has to belong to one of the following linear systems:
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(d = 8) L2,4(2, 112),

(d = 9) L2,4(115),

(d = 10) either L2,4(119) or L2,5(2, 119),

(d = 11) L2,5(123),

(d = 12) L2,6(2, 127).

An easy check shows that they are all empty.

Set d ≥ 8. Since the general element is irreducible, the map ϕ2,d is dominant.
Assume by contradiction that the geometric genus of D is 0 and, beside the
singularities we imposed, there are l singular points of multiplicity mi and t
simple base points. Then we get

0 =
(d− 1)(d− 2)

2
− 3− h(2, d, n)−

l∑
i=1

mi(mi − 1)

2

and

1 ≤ d2 − 9− 4h(2, d, n)− s(2, d, n)− t−
l∑
i=1

m2
i .

This yields

0 ≤d2 − 10− 4h(2, d, n)− s(2, d, n)− t−
l∑
i=1

m2
i

−

(
(d− 1)(d− 2)

2
− 3− h(2, d, n)−

l∑
i=1

mi(mi − 1)

2

)

and, recall Equation (4.2),

0 ≤ d2 + 3d

2
− 8− 3h(2, d, n)− s(2, d, n)− t−

l∑
i=1

mi(mi + 1)

2

=
d2 + 3d

2
− 8− a(2, d)− t−

l∑
i=1

mi(mi + 1)

2

= −t−
l∑
i=1

mi(mi + 1)

2
,

therefore l = 0 and t = 0. To conclude we compute the genus.

0 = 2g(D) = (d− 1)(d− 2)− 6− 2h(2, d, n) = d2 − 3d− 4− 2h(2, d, n)

≥ d2 − 3d− 4− 2

3
a(2, d) =

2

3
(d2 − 6d+ 2).

This contradicts the assumption d ≥ 8.
Assume that d = 7. Then h(2, 7, n) = 9 and s(2, 7, n) = 0. Consider a cubic

C1 ∈ L2,3(1, 18) through q and {p1, . . . , p8}, and let C2 ∈ L2,4(2, 17, 2) be a
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quartic singular at q and p9 and passing through {p1, . . . , p8}. The reducible
curve D = C1 +C2 is an element of positive genus in L2,7(3, 29), so we conclude
by Remark 4.4.

Assume that d = 6. In this case h(2, 6, n) = 6 and s(2, 6, n) = 1. Consider
two curves C1 ∈ L2,3(2, 16) and C2 ∈ L2,3(1[1], 16). Then D = C1 + C2 is a
reducible element in L2,6(3[1], 26). The curve C2 is not rational, therefore the
sectional genus of L2,6(3[1], 26) is positive by Remark 4.4.

For d = 4 and d = 5 it is an easy computation to see that the movable part
of L2,d(3[s(2, d, n)], 2h(2,d,n)) is given respectively by L2,2(13) and L2,3(2, 14),
which have genus 0.

For d ∈ {4, 5}, we bound the genus of L3,d(3[s(3, d, n)], 2h(3,d,n)).

Proposition 4.17. If n ≥ 4, then L3,5(3[s(3, 5, n)], 2h(3,5,n))has positive sec-
tional genus.

Proof. A direct computation gives s(3, 5, n) = 2, h(3, 5, n) = 10, s(2, 5, n) = 0
and h(2, 5, n) = 4. Let H + S ∈ LH3 (5) be the unique divisor containing H. By
Remark 4.4, it is enough to prove that L3,5(3[s(3, 5, n)], 2h(3,5,n))|S has positive
sectional genus.

The surface

S ∈ L3,4(2[2], 26, 14)(q[t1, t2], p1, . . . , p6, z1, . . . , z4)

is a quartic in P3, the points pi are general and the points zi are general on
H. By [56, Theorem 4.1], L3,4(27) is nonspecial and the general element has
7 ordinary double points as unique singularities. The points zi are in general
position on H, therefore the general element in

L3,4(27, 14)(q, p1, . . . , p6, z1, . . . , z4)

has only 7 ordinary double points. The linear system L3,4(3, 25)(q, p1, . . . , p5) is
nonspecial of dimension 4 by Proposition 1.12 and L3,3(2, 25) is empty, therefore

L3,4(3, 25, 15)(q, p1, . . . , p5, p6, z1, . . . , z4)

and henceforth L3,4(3, 26, 14) are empty. This shows that for a general choice
of 2 tangent directions the surface

S ∈ L3,4(2[2], 26, 14)(q[t1, t2], p1, . . . , p6, z1, . . . , z4)

has 7 ordinary double points as unique singularities. In particular S is a (sin-
gular) K3 surface and it is not uniruled. Therefore L3,5(3[s(3, 5, n)], 2h(3,5,n))|S
has positive sectional genus.

Proposition 4.18. If n ≥ 4, then L3,4(3[s(3, 4, n)], 2h(3,4,n)) has positive sec-
tional genus.

Proof. Our choice of integers is s(3, 4, n) = 1, h(3, 4, n) = 5, s(2, 4, n) = 0
and h(2, 4, n) = 2. Let S + H be the unique element in LH3 (4) containing the
hyperplane H. Then

S ∈ L3,3(2[1], 23, 12)(q[t], p1, p2, p3, p4, p5)
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is a cubic surface with 4 double points. It is easy to prove, with reducible
elements, that the scheme base locus of LH3 (4) is given by the assigned singu-
larities and the lines spanned by q and {p1, p2, p3}. Hence the fixed component
of LH3 (4)|S is given by the 3 lines spanned by q and p1, p2, and p3. Then the
general element in the movable part of LH3 (4)|S has a triple point in p1 and a
double point in p4, and therefore positive genus. This is enough to conclude by
Remark 4.4.

We conclude the section by collecting all the results we need.

Proposition 4.19. The sectional genus of L3,d(3[s(3, d, n)], 2h(3,d,n)) is positive
for every n, d ≥ 4.

Proof. For d = 4, 5 this is the content of Propositions 4.18 and 4.17. For d ≥ 6,
observe that by construction a general curve section of L2,d(3[s(2, d, n)], 2h(2,d,n))
is a curve section of LH3 (d), hence the sectional genus of L3,d(3[s(3, d, n)], 2h(3,d,n))
is bounded by the sectional genus of L2,d(3[s(2, d, n)], 2h(2,d,n)). Thus we con-
clude by Proposition 4.15.

4.3 Cubics and proof of Theorem 4.2

Fix a pair (n, d), with n ≥ d ≥ 4, a linear space Π ∼= P3 and a point q ∈ Π.
Let Z0 be the 0-dimensional scheme obtained as a limit of k(n, d) − 1 double
points, n+ 1 of which collapse to the point q with s(3, d, n) tangent directions,
and h(3, d, n) double points on Π. Such a degeneration always exists since
s(3, d, n) ≤ 4. Let

L0(n, d) := P(IZ0,Pn(d))

be the associated linear system.

Lemma 4.20. If n ≥ d ≥ 4 and (n, d) 6= (4, 4), then the linear system L0(n, d)
is non special and its sectional genus is positive.

Proof. Thanks to Proposition 4.14, for the nonspeciality we have only to worry
about the tangent directions. Let T be the set of

(
n+1

2

)
tangent directions.

Set Ti := {y1, . . . , yi} ⊂ T , a subset of i tangent directions. Assume that
Ln,d(3[i], 2h) is nonspecial and Ln,d(3[i+1], 2h) is special for a general choice of h
double points. Let ϕ be the map associated to the linear system Ln,d(3[i], 2h−1).

Since the set T imposes independent conditions on cubics, we may assume
that yj 6∈ BsLn,d(3[i], 2h−1) for j > i. The speciality of Ln,d(3[i+ 1], 2h) forces
ϕ(yj) to be a vertex of ϕ(Pn) for j > i. Hence the general D ∈ Ln,d(3[i+ 1], 2h)
is singular at yj for j > i. By a monodromy argument, the general divisor in

Ln,d(3[
(
n+1

2

)
], 2h) is singular along T . Since Ln−1,3(2(n+1

2 ))(T ) is empty, this
yields

Ln,d
(

3

[(
n+ 1

2

)]
, 2h
)
⊆ Ln,d(4, 2h)

and contradicts Proposition 4.14 ii) for h ≤ k(n, d)− n− 2.
We are left to bound the sectional genus of L0(n, d). Let T̃i a set of

(
n+1

2

)
− i

general tangent directions. Let

L(Ti) := Ln,d
(

3

[(
n+ 1

2

)]
, 2k(n,d)−n−2

)(
q
[
Ti ∪ T̃i

]
, p1, . . . , pk(n,d)−n−2

)
.
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By definition, we have L(T1) = LHn (d). Fix D1, . . . , Dn−3 ∈ LHn (d) general divi-
sors containing Π and Y1, Y2 ∈ LHn (d) general divisors. By Lemma 4.6 (2), Π is
an irreducible component of D1 ·. . .·Dn−3 and, by Lemma 4.6 (4), an irreducible
component of Y1·Y2·D1·. . .·Dn−3 is a curve section of L3,d(3[s(3, d, n)], 2h(3,d,n)).
Hence, by Proposition 4.19 and Remark 4.4, the claim is true for i = 1.

To conclude, we increase i recursively. Fix D1, . . . , Dn−3 ∈ L(Ti+1) general
divisors containing Π and Y1, Y2 ∈ L(Ti+1) general divisors. By construction, we
have s(3, n, d) > 0 and therefore we may assume that L(Ti+1) is a specialization
of L(Ti) moving a tangent direction in Π. In this degenerations all sections
in L(Ti) containing Π are also sections of L(Ti+1). This shows that Π is an
irreducible component of D1 · . . . · Dn−3. Next we may consider L(Ti+1) as a
specialization of L(Ti) moving a point outside Π. Via this degeneration we prove
that L(Ti+1)|Π = L(Ti)|Π and therefore an irreducible component of Y1 ·Y2 ·D1 ·
. . . ·Dn−3 is a curve section of L3,d(3[s(3, d, n)], 2h(3,d,n)). Then Proposition 4.19
and Remark 4.4 allow us to conclude.

The case d = 3

The argument we used for forms of degree d ≥ 4 does not work for cubics.
Linear systems of cubics with a triple point and at least a double point are
always special. This forces us to apply a different strategy to study the degree
of the map associated to Ln,3(2k). This is inspired by the proof of Alexander–
Hirschowitz’ Theorem in [16] and [68]. Note that we are interested in integers
n such that

k(n) := k(n, 3) =

(
n+3

3

)
n+ 1

is an integer. This is equivalent to say that n ≡ 0, 1 (mod 3). This property is
preserved by codimension 3 linear spaces. This simple observation suggests the
following induction procedure.

Assume that k(i) is an integer. Let Z1 ⊂ Pi be a 0-dimensional scheme
of k(i) − 1 general double points. Fix a general codimension 3 linear space
Π ⊂ Pi and let Z0 be a specialization of Z1 with k(i− 3)− 1 double points on
Π. Therefore the linear system Li,3(2k(i)−1) specializes to a linear system L0

and we may split L0 as a direct sum of

L̃ and Li−3,3(2k(i−3)−1),

where L̃ is the system of cubics containing Π and singular in i+1 = k(i)−k(i−3)
general points of Pi and in k(i − 3) general points of Π. The linear system L̃
is known to be nonspecial by [16, Proposition 5.4], see also [68, subsection 5.2],
and Li−3,3(2k(i−3)−1) is nonspecial by Theorem 1.5. Let gi be the sectional
genus of Li,3(2k(i)−1), for i ≡ 0, 1 (mod 3). Let D1, D2, D3 be three general
cubics containing Π. Considering the spaces P3 spanned by 4 double points, it
is easy to check that Π is an irreducible component of D1 ·D2 ·D3, hence

gi ≥ gi−3 (4.4)

for i ≥ 6.
We are left to prove that cubics in P6 and P7 do not define a birational map.

In particular, we will show that g6 and g7 are positive.
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Lemma 4.21. We have g6 > 0.

Proof. The number k(6) is 12. Let Z0 = {p1, . . . , p8, z1, z2, z3} ⊂ P6 be a spe-
cialization with the points pi on a hyperplane H and the points zj general. Then
L6,3(211) specializes to a linear system LH6,3 = L+L5,3(28, 13), with dimLH6,3 = 6.
It is easy to see that dimL = 1 and L = H + Λ, with Λ a pencil of quadrics of
rank 4 with vertex 〈z1, z2, z3〉. Then M := Bs Λ is a cone over a normal elliptic
curve in P3. In particular M is not rationally connected and therefore LH6,3 has
positive sectional genus. Then, by Remark 4.4, we conclude that g6 > 0.

Lemma 4.22. We have g7 > 0.

Proof. The number k(7) is 15. Let Z0 = {p1, . . . , p11, z1, z2, z3} ⊂ P7 be a
specialization with the points pi on a hyperplane H and the points zj general.
Then L7,3(214) specializes to a linear system LH7,3 = L + L6,3(211, 13), with

dimLH7,3 = 7. It is easy to see that dimL = 3 and L = H + Λ, with Λ a linear
system of quadrics of rank 5. Then M := Bs Λ is a union of 16 P3 meeting in
〈z1, z2, z3〉. Let Πi = 〈z1, z2, z3, pi〉. Then Πi ∩ Πj = 〈z1, z2, z3〉 and Πi ⊂ M .
By construction, we have LH7,3|Πi

⊂ L3,3(24). On the other hand, specializations
can only increase the dimension of a linear systems, therefore

dim(LH7,3)|Πi
≥ dimL7,3(214)|Πi

= 4,

where the last equality is proved in [68, Section 5.4]. Let D1, D2 ∈ LH7,3 be two
general elements. Then (D1 · D2)|Πi

contains a twisted normal curve passing
through {z1, z2, z3, pi}. Let Q1, . . . , Q4 ∈ Λ be general elements. Then the 1-
cycle Q1 ∩ . . .∩Q4 ∩D1 ∩D2 contains rational curves intersecting in {z1, z2, z3}
and it has positive genus. This, by Remark 4.4, shows that g7 > 0.

We collected all the results we need to prove Theorem 4.2.

Proof of Theorem 4.2. By [56, Theorem 4.3, Proposition 2.4] and [6, Theorem
3.2], we may assume that d ≤ n and n ≥ 4. If d = 2 and dimLn,2(2h) = n, then
the map associated to Ln,d(2h) is always of fiber type.

If d = 3, n ≥ 6 and n ≡ 0 (mod 3), then Theorem 1.5 forces h = k(n) − 1.
Then, by Equation (4.4) and Lemma 4.21, the sectional genus of Ln,3(2h) is
positive. If d = 3, n ≥ 7 and n ≡ 1 (mod 3), then we conclude as before via
equation (4.4) and Lemma 4.22 that the sectional genus is positive. It is known
that L4,3(26) induces a fiber type map that contracts the rational normal curves
through the 6 points. This analysis proves the theorem for d ≤ 3.

Assume that n ≥ d ≥ 4. By Theorem 1.5, h = k(n, d) − 1. If n = d = 4,
then h = 13. There is a pencil of quadrics in P4 through 13 general points,
so L4,4(213) admits a linear subsystem of reducible divisors with base locus in
codimension 2, hence the associated map can not be birational. Suppose then
that (n, d) 6= (4, 4). By Lemma 4.20, L0(n, d) is a specialization of Ln,d(2h)
and it has positive sectional genus. This shows that Ln,d(2h) does not define a
Cremona transformation.

81



Bibliography

[1] J. Alexander, A. Hirschowitz, The blown-up Horace method: application to
fourth-order interpolation, Invent. Math. 107 (1992), no. 3, 585–602.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, M. Telgarsky Tensor Decom-
positions for Learning Latent Variable Models, Journal of Machine Learning
Research 15 (2014), 2773–2832.

[3] A. Anandkumar, D. Hsu, M. Janzamin, S. Kakade, When are overcomplete
topic models identifiable? Uniqueness of tensor Tucker decompositions with
structured sparsity, J. Mach. Learn. Res. 16 (2015), 2643-2694.

[4] E. Angelini, C. Bocci, L. Chiantini, Real identifiability vs
complex identifiability, Linear and multilinear Algebra (2017),
https://doi.org/10.1080/03081087.2017.1347137.

[5] E. Angelini, F. Galuppi, M. Mella, G. Ottaviani, On the number of Waring
decompositions for a generic polynomial vector, Journal of Pure and Applied
Algebra (2017), https://doi.org/10.1016/j.jpaa.2017.05.016.

[6] E. Arbarello, M. Cornalba, Footnotes to a paper of Beniamino Segre: On the
modules of polygonal curves and on a complement to the Riemann existence
theorem (Italian) [Math. Ann. 100 (1928), 537-551; Jbuch 54, 685], Math.
Ann. 256 (1981), n. 3, 341–362.

[7] E. Ballico, A. Bernardi, M. V. Catalisano, L. Chiantini, Grassmann se-
cants, identifiability, and linear systems of tensors, Linear Algebra and its
Applications 438 (2013), 121–135.

[8] E. Ballico, M. C. Brambilla, F. Caruso, M. Sala, Postulation of general
quintuple fat point schemes in P3, J. Algebra 363 (2012), 113-139.

[9] D. J. Bates, J. D. Hauenstein, A. J. Sommese, C. W. Wampler, Bertini:
Software for numerical algebraic geometry, available at bertini.nd.edu.

[10] D. J. Bates, J. D. Hauenstein, A. J. Sommese, C. W. Wampler, Numerically
Solving Polynomial Systems with Bertini, SIAM, Philadelphia 2013.

[11] C. Bocci, Special effect varieties in higher dimension, Collectanea Mathe-
matica 56 (2004), n. 3, 299–326.

[12] C. Bocci, Special effect varieties and (−1)-curves, Rocky Mountain J. Math.
40 (2010), n. 2, 397-419.

[13] C. Bocci, L. Chiantini, G. Ottaviani, Refined methods for the identifiability
of tensors, Ann. Mat. Pura Appl. 193 (2014), 1691-1702.

[14] M. C. Brambilla, O. Dumitrescu, E. Postinghel, On a notion of speciality
on linear system of Pn, Transactions of the American Mathematical Society
367 (2015), n. 8, 5447-5473.

82



[15] M. C. Brambilla, O. Dumitrescu, E. Postinghel, On linear systems of P3

with nine base points, Annali di Matematica Pura ed Applicata 195 (2015)
n. 5, 1551-1574.

[16] M. C. Brambilla, G. Ottaviani, On the Alexander-Hirschowitz Theorem, J.
Pure Appl. Algebra, 212 (2008), 1229–1251.

[17] J. Bronowski, The sum of powers as canonical expression, Mathematical
Proceedings of the Cambridge Philosophical Society 29 (1933), 69-82.

[18] J. Cahill, D. Mixon, N. Strawn, Connectivity and irreducibility of algebraic
varieties of finite unit norm tight frames, SIAM J. Appl. Algebra Geometry
1 (2017), 38-72.

[19] E. Carlini, J. Chipalkatti, On Warings problem for several algebraic forms,
Comment. Math. Helv. 78 (2003), n. 3, 494–517.

[20] E. Carlini, N. Grieve, L. Oeding, Four Lectures on Secant Varieties, Connec-
tions Between Algebra, Combinatorics, and Geometry / Susan M. Cooper,
Sean Sather-Wagstaff. Springer New York, New York (2014), 101-146.

[21] G. Castelnuovo, Ricerche generali sopra i sistemi lineari di curve piane,
Mem. Accad. Sci. Torino, II 42 (1891).

[22] M. Catalano-Johnson, The possible dimensions of the higher secant vari-
eties, Amer. Journ. of Math. 118 (1996), no. 2, 355–361.

[23] L. Chiantini, C. Ciliberto, Weakly defective varieties, Trans. Amer. Math.
Soc. 354 (2002), n. 1, 151–178.

[24] L. Chiantini, G. Ottaviani, N. Vannieuwenhoven, An algorithm for generic
and low-rank specific identifiability of complex tensors, SIAM J. Matrix
Anal. Appl. 35 (2014), n. 4, 1265-1287.

[25] L. Chiantini, G. Ottaviani, N. Vannieuwenhoven, On generic identifiabil-
ity of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369
(2017), n. 6, 4021-4042.

[26] W. Chow, On the genus of curves of an algebraic system, Trans. Amer.
Math. Soc. 65 (1949), 137-140.

[27] C. Ciliberto, Geometric aspects of polynomial interpolation in more vari-
ables and of Waring’s problem, Proceedings of the European Congress of
Mathematics 1, Barcelona (2000), Progress in Math. 201, Birkhäuser, Basel
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[54] F. London, Über die Polarfiguren der ebenen Kurven dritter Ordnung, Math.
Ann. 36 (1890), 535–584.

[55] A. Massarenti, M. Mella, Birational aspects of the geometry of varieties of
sums of powers, Adv. Math. 243 (2013), 187-202.

84



[56] M. Mella, Singularities of linear systems and the Waring problem, Trans.
Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.

[57] M. Mella, Base loci of linear systems and the Waring problem, Proc. Amer.
Math. Soc. 137 (2009), no. 1, 91-98.

[58] T. Mignon, Systémes linéaires de courbes planes, PhD thesis, Univ. de Nice
(1997).

[59] S. Mukai, Fano 3-folds in: Complex Projective Geometry, Trieste,
1989/Bergen, 1989, in: London Math. Soc. Lecture Note Ser. 179, Cam-
bridge Univ. Press, Cambridge (1992), 255–263.

[60] S. Mukai, Polarized K3 surfaces of genus 18 and 20, in: Complex Projec-
tive Geometry, in: LMS Lecture Notes Series, Cambridge University Press
(1992), 264–276.

[61] M. Nagata, On rational surfaces II, Mem. Coll. Sci. Univ. Kyoto, Ser. A,
Math. 33 (1960), 271-293.

[62] M. Nesci, Collisions of fat points, PhD thesis, Università Roma III (2009).
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