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Introduction

Vicenç PUIG1 and Silvio SIMANI2
1Institute for Robotics and Industrial Informatics, Polytechnic University of

Catalonia, Barcelona, Spain
2Department of Engineering, University of Ferrara, Emilia-Romagna, Italy

I.1. Introduction

There is an increasing interest in the theory and applications of model-based fault

detection and fault diagnosis methods, because of economical and safety-related

matters. In particular, well-established theoretical developments can be seen in many

contributions published in the IFAC (International Federation of Automatic Control)

Congresses and IFAC Symposium SAFEPROCESS (Fault Detection, Supervision

and Safety of Technical Processes) since the seminal editions (Isermann and Ballé

1997; Isermann 1997; Patton 1999; Frank et al. 2000).

The developments began at various places in the early 1970s. Beard (1971) and

Jones (1973) reported, for example, the well-known “failure detection filter” approach

for linear systems.

A summary of this early development is given by Willsky (1976). Then, Rault et al.
(1971) considered the application of identification methods to the fault detection of jet

engines. Correlation methods were applied to leak detection (Siebert and Isermann

1976).

The first book on model-based methods for fault detection and diagnosis with

specific application to chemical processes was published by Himmelblau (1978).

Diagnosis and Fault-tolerant Control 1,

coordinated by Vicenç PUIG and Silvio SIMANI. © ISTE Ltd 2021.
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Sensor failure detection based on the inherent analytical redundancy of multiple

observers was shown by Clark (1978).

The use of parameter estimation techniques for fault detection of technical

systems was demonstrated by Hohmann (1977), Bakiotis et al. (1979), Geiger (1982)

and Filbert and Metzger (1982).

The development of process fault detection methods based on modeling, parameter

and state estimation was then summarized by Isermann (1984, 1997).

Parity equation-based methods were developed initially by Chow and Willsky

(1984) and then further developed by Patton and Chen (1994), Gertler (1991) and

Höfling and Pfeufer (1994).

Frequency domain methods are typically applied when the effects of faults as well

as disturbances have frequency characteristics that differ from each other and thus the

frequency spectra serve as criterion to distinguish the faults (Massoumnia et al. 1989;

Ding and Frank 1990; Ding et al. 2000; Frank et al. 2000).

The developments of fault detection and isolation (FDI) methods to the present

time are summarized in books by Pau (1981), Patton et al. (2000), Basseville and

Nikiforov (1993), Chen and Patton (1999), Gertler (1998) and Isermann (1994b) as

well as in survey papers by Gertler (1988), Frank (1990) and Isermann (1994a).

Within IFAC, the increasing interest in this field was taken into account by

creating first in 1991 a SAFEPROCESS (Fault Detection Supervision and Safety for

Technical Processes) Steering Committee, which then became a Technical

Committee in 1993. The first IFAC SAFEPROCESS Symposium was held in

Baden–Baden (Germany) in 1991 (Isermann and Freyermuth 1992). The last edition

was organized in 2018 in Warsaw (Poland). Another triennial series of IFAC

workshops exist for “Fault detection and supervision in the chemical process

industries”. Many other thematic workshops have been organized between 1992 and

2020.

Most contributions in fault diagnosis rely on the analytical redundancy principle.

The basic idea consists of using an accurate model of the system to mimic the real

process behavior. If a fault occurs, the residual signal (i.e. the difference between the

real system and model behavior) can be used to diagnose and isolate the malfunction.

Model-based method reliability, which also includes false alarm rejection, is

strictly related to the “quality” of the model and measurements exploited for fault

diagnosis, as model uncertainty and noisy data can prevent an effective application of

analytical redundancy methods.

This is not a simple problem, because model-based fault diagnosis methods are

designed to detect any discrepancy between the real system and model behaviors. It
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is assumed that this discrepancy signal is related to (has a response from) a fault.

However, the same difference signal can respond to model mismatch or noise in real

measurements, which are erroneously detected as a fault. These considerations have

led to research in the field of “robust” methods, in which particular attention is paid to

the discrimination between actual faults and errors due to model mismatch.

However, the availability of a “good” model of the monitored system can

significantly improve the performance of diagnostic tools, minimizing the probability

of false alarms.

This book explains what a good model is, one that is suitable for robust diagnosis

of system performance and operation. The book also explains how robust models can

be obtained from real data. A large amount of attention is paid to the “real system

modeling problem”, with reference to either linear or nonlinear model structures.

Special treatment is given to the case in which noise affects the acquired data. The

mathematical description of the monitored system is obtained by means of a system

identification scheme based on equation error and errors-in-variables models. This is

an identification approach that leads to a reliable model of the plant under

investigation, as well as the estimation of the variances of the input–output noises

affecting the data.

The purpose of this book is also to provide guidelines for the modeling and

identification of real processes for fault diagnosis and fault-tolerant control (FTC).

Hence, significant attention is paid to the practical application of the methods

describing real system studies, as reported in the last chapters of Volume 2.

In particular, this introduction of the book outlines a new common terminology

in the fault diagnosis framework and provides some discussion and a summary of

developments in the field of fault detection and diagnosis as well as FTC based on

papers selected during 1991–2020.

I.2. Nomenclature

By going through the literature, one immediately recognizes that the terminology

in this field is not consistent. This makes it difficult to understand the goals of the

contributions and to compare the different approaches.

The IFAC SAFEPROCESS Technical Committee therefore discussed this matter

and tried to find commonly accepted definitions. Some basic definitions can be

found, for example, in the RAM (Reliability, Availability and Maintainability)

dictionary (Omdahl 1988) and in contributions to the IFIP (International Federation

for Information Processing) (IFI 1983).

Some of the terminology used in this book is given below. These are based on

information obtained from the IFAC SAFEPROCESS Technical Committee and are
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considered “on-going” in the sense that new definitions and updates are still being

made.

1) States and signals

- Fault: an unpermitted deviation of at least one characteristic property or

parameter of the system from the acceptable, usual or standard condition.

- Failure: a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.

- Malfunction: an intermittent irregularity in the fulfillment of a system’s

desired function.

- Error: a deviation between a measured or computed value of an output

variable and its true or theoretically correct value.

- Disturbance: an unknown and uncontrolled input acting on a system.

- Residual: a fault indicator based on a deviation between measurements and

model-equation-based computations.

- Symptom: a change of an observable quantity from normal behavior.

2) Functions

- Fault detection: determination of faults present in a system and the time of

detection.

- Fault isolation: determination of the kind, location and time of detection of

a fault. It follows fault detection.

- Fault identification: determination of the size and time-variant behavior of

a fault. It follows fault isolation.

- Fault diagnosis: determination of the kind, size, location and time of

detection of a fault. It follows that fault diagnosis includes fault detection and

identification.

- Monitoring: a continuous real-time task of determining the conditions of a

physical system by recording information, recognizing and indicating anomalies in

the behavior.

- Supervision: monitoring a physical system and taking appropriate actions to

maintain the operation in the case of a fault.

3) Models

- Quantitative model: use of static and dynamic relationships among system

variables and parameters in order to describe a system’s behavior in quantitative

mathematical terms.

- Qualitative model: use of static and dynamic relationships among system

variables in order to describe a system’s behavior in qualitative terms such as

causalities and IF–THEN rules.



Introduction xiii

- Diagnostic model: a set of static or dynamic relationships that link specific

input variables, the symptoms, to specific output variables, the faults.

- Analytical redundancy: use of more (not necessarily identical) ways to

determine a variable, where one way uses a mathematical process model in an

analytical form.

4) System properties

- Reliability: ability of a system to perform a required function under stated

conditions, within a given scope, during a given period of time.

- Safety: ability of a system to operate without causing danger to persons,

equipment or the environment.

- Availability: probability that a system or equipment will operate

satisfactorily and effectively at any point of time.

5) Time dependency of faults

- Abrupt fault: fault modeled as step-wise function. It represents bias in the

monitored signal.

- Incipient fault: fault modeled by using ramp signals. It represents drift of

the monitored signal.

- Intermittent fault: combination of impulses with different amplitudes.

6) Fault terminology

- Additive fault: it influences a variable by an addition of the fault itself. It

may represent, for example, offsets of sensors.

- Multiplicative fault: it is represented by the product of a variable with the

fault itself. It can appear as parameter changes within a process.

I.3. Fault diagnosis methods based on analytical redundancy

A traditional approach to fault diagnosis in the wider application context is based

on hardware or physical redundancy methods, which use multiple sensors, actuators

and components to measure and control a particular variable. Typically, a voting

technique is applied to the hardware redundant system to decide if a fault has

occurred and its location among all the redundant system components. The major

problems encountered with hardware redundancy are the extra equipment and

maintenance costs, as well as the additional space required to accommodate the

equipment (Isermann 1997; Isermann and Ballé 1997).

In view of the conflict between reliability and the cost of adding more hardware,

it is possible to use the dissimilar measured values together to cross-compare with

each other rather than replicating each hardware individually. This is the meaning of



xiv Diagnosis and Fault-tolerant Control 1

analytical or functional redundancy. It exploits redundant analytical relationships

among various measured variables of the monitored process (Patton et al. 1989; Chen

and Patton 1999). Figure I.1 illustrates the concepts of hardware and analytical

redundancy.

In the analytical redundancy scheme, the resulting difference generated from the

comparison of different variables is called a residual or symptom signal. The residual

should be zero when the system is in normal operation and should be different from

zero when a fault has occurred. This property of the residual is used to determine

whether faults have occurred (Patton et al. 1989; Chen and Patton 1999).

Consistency checking in analytical redundancy is normally achieved through a

comparison between a measured signal and estimated values. The estimation is

generated by a mathematical model of the plant considered. The comparison is done

using the residual quantities that are computed as differences between the measured

signals and the corresponding signals generated by the mathematical model (Patton

et al. 1989; Chen and Patton 1999).
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Figure I.1. Comparison between hardware and analytical redundancy schemes

In practice, the most frequently used diagnosis method is to monitor the level (or

trend) of the residual and take action when the signal reaches a given threshold. This

method of geometrical analysis, while simple to implement, has a few drawbacks.

The most important is that, in the presence of noise, input variations and change of

operating point of the monitored process, false alarms are possible.
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The major advantage of the model-based approach is that no additional hardware

components are required to implement an FDI algorithm as well as FTC. A

model-based FDI algorithm can be implemented via software on a process control

computer. In many cases, the measurements necessary to control the process are also

sufficient for the FDI algorithm, so no additional sensors have to be installed (Patton

et al. 1989; Basseville and Nikiforov 1993; Chen and Patton 1999).

Analytical redundancy uses a mathematical model of the system under

investigation and therefore it is often referred to as the model-based approach to fault

diagnosis.

I.4. Model-based fault diagnosis

This diagnosis task detects faults in the technical process, including actuators,

components and sensors by measuring the available input and output variables u(t)
and y(t). The principle of model-based fault diagnosis is depicted in Figure I.2.
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r(t)
Fault alarm

Residual
generator

Residual
evaluation

Plant
model

Residuals
Input-output
measurements

Model-based fault diagnosis

Figure I.2. Scheme for the model-based fault diagnosis

Basic process model-based FDI methods have been described by Patton et al.
(1989, 2000), Basseville and Nikiforov (1993), Gertler (1998) and Chen and Patton

(1999), which include the following steps:

1) output observers (OO, estimators, filters);

2) parity equations;

3) identification and parameter estimation.
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These methods generate residuals for output variables with fixed parametric

models using step 1, fixed parametric or non-parametric models using step 2 and

adaptive non-parametric or parametric models using step 3.

An important aspect of these methods is the kind of fault to be detected. As noted

above, one can distinguish between additive faults, which influence the variables of

the process by summation, and multiplicative faults, which are products of the process

variables. The basic methods show different results, depending on the type of fault.

If only output signals y(t) can be measured, signal model-based methods can be

applied, for example, vibrations can be detected, which are related to rotating

machinery or electrical circuits. Typical signal model-based methods of fault

detection are as follows:

1) bandpass filters;

2) spectral analysis (FFT);

3) maximum-entropy estimation.

The characteristic quantities or features from fault detection methods show

stochastic behavior with mean values and variances. Deviations from the normal

behavior must then be detected by methods of change detection (residual analysis,

Figure I.2), such as:

1) mean and variance estimation;

2) likelihood-ratio test, Bayes decision;

3) run-sum test.

I.5. Model uncertainty and fault detection

Model-based FDI makes use of mathematical models of the system. However, a

perfectly accurate mathematical model of a physical system is not possible. Usually,

the parameters of the system may vary with time, and the characteristics of the

disturbances and noises are unknown, so they cannot be modeled accurately. Hence,

there is always a mismatch between the actual process and its mathematical model,

even under no fault conditions. Such discrepancies cause difficulties in FDI

applications, in particular, since they act as sources of false alarms and missed

alarms. Therefore, the effect of modeling uncertainties, disturbances and noise is the

most crucial point in the model-based FDI concept, and the solution to this problem

is the key for its practical applicability (Chen and Patton 1999).

To overcome these problems, a model-based FDI scheme has to be insensitive to

modeling uncertainty. Sometimes, a reduction of the sensitivity to modeling
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uncertainty does not solve the problem, because the sensitivity reduction may be

associated with a reduction of the sensitivity to faults (Gertler 1998; Chen and Patton

1999). A more meaningful formulation of the FDI problem is to increase the

insensitivity to modeling uncertainty in order to provide increasing fault sensitivity.

The difficulties introduced by model uncertainties, disturbances and noises in

model-based FDI have been widely considered during the last 10 years by both

academia and industry (Gertler 1998). A number of methods have been proposed to

tackle this problem, for example, the Unknown Input Observer (UIO), eigenstructure

assignment and parity relation methods.

An important task of the model-based FDI scheme is to be able to diagnose

incipient faults in a system. With respect to abrupt faults, incipient faults may have a

small effect on residuals and can be hidden by disturbances. On the other hand, hard

faults can be detected more easily because their effects are usually larger than

modeling uncertainties and a simple fixed threshold is usually enough to diagnose

their occurrence by residual analysis.

The presence of incipient faults may not necessarily degrade the performance of

the plant, however, they may indicate that the component should be replaced before

the probability of more serious malfunctions increases. The successful detection and

diagnosis of incipient faults can therefore be considered a challenge for the design and

evaluation of FDI algorithms.

I.6. Robust fault diagnosis

In the context of automatic control, the term robustness is used to describe the

insensitivity or invariance of the performance of control systems with respect to

disturbances, model–plant mismatches or parameter variations. Fault diagnosis

schemes, on the other hand, must, of course, also be robust to the mentioned

disturbances, but, in contrast to automatic control systems, they must not be robust to

actual faults. On the contrary, while generating robustness to disturbances, the

designer must maintain or even enhance the sensitivity of fault diagnosis schemes to

faults. Furthermore, the robustness, as well as the sensitivity properties, must be

independent of the particular fault and disturbance mode. Generally, the problem of

robust FDI can be divided into the tasks of robust residual generation followed by

robust residual evaluation.

In many cases, the disturbances and model–plant mismatches to which robustness

must be generated are due to the use of linear models for describing dynamic behavior

of nonlinear processes. Modeling errors can be avoided from the very beginning by

focusing on robust residual generation methods using linear and nonlinear process

models. This, in turn, simplifies the problem of residual evaluation without reducing

the sensitivity to actual faults.
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Effective tools for robust residual generation and even complete decoupling from

external disturbances and unknown system parameters can be provided, for example,

by UIOs, which are introduced and applied to industrial processes. It is shown that the

proposed solution to the disturbance decoupling problem also provides the solution to

both the fault detection and fault isolation problems.

On the other hand, many dynamic processes can only be described effectively

using nonlinear mathematical models. However, most of the existing observer-based

FDI techniques are limited to the use of linear process models. The methods that can

be found in the literature are based on the assumption that the system under

supervision stays, during normal operation, in a neighborhood of a certain known

operating point (Chen and Patton 1999; Patton et al. 2000)

It is clear that, as almost every process system is nonlinear, the modeling errors

almost always reduce the accuracy of the linear model and therefore the performance

of the FDI algorithm is compromised. Various methods for generating robustness to

linearization have been proposed in the literature and the reader is referred to (Patton

et al. 2000, Chapter 7) for a comprehensive treatment of this subject.

This book also surveys the state of the art of robustness methods and presents

some important ideas concerning the development of the use of nonlinear models and

predictors for FDI. For example, observer-based approaches to robust FDI and FTC

for dynamic systems are considered in more detail. The available model-based

approaches are generalized, and thus extended to a wider class of dynamic systems.

In order to accommodate the application of robust FDI concepts, disturbances and

parameter uncertainties of the monitored plants, as well as faults, are modeled in the

form of unknown input signals. It is shown that, provided certain conditions can be

met, complete decoupling of the residual from disturbances as well as from the

parameter uncertainties of the process model can be achieved, while the sensitivity of

the residual to faults is maintained. As the faults are also modeled in the form of

external signals, this method additionally provides tools for the purpose of fault

isolation. Fault isolation requires the decoupling of the effects of different faults from

the residual (Chen and Patton 1999) and this, in turn, allows for decisions on which

fault or faults out of a given set of possible faults has actually occurred.

These residual properties must be completely independent of the magnitude or

frequency of the unknown inputs and the faults. This is crucial in cases where no

a priori knowledge about these properties is available. For systems where the

complete decoupling of the remaining unknown inputs or faults from the residual

proves impossible, a threshold selection method, employing functional analytic

methods and appropriate vector and operator norms, can be exploited. This technique

provides a tool for the robust evaluation of the residuals, which have been generated
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by UIOs. Using the same functional analysis methods as employed for threshold

selection, a performance index can be defined that allows for performance evaluation

and, to a certain degree, also allows for optimal residual generator design (Patton

et al. 2000).

I.7. Data–driven approaches to robust FDI

In previous sections, we have seen that model-based FDI methods formally

require a high accuracy mathematical model of the monitored system. The better the

model is as a representation of the dynamic behavior of the system, the better the FDI

performance will be. It is difficult to develop a highly accurate model of a complex

system and hence the interesting question is: “what is a reasonable model to enable

good performance in FDI to be guaranteed?”.

It would be attractive to develop a robust FDI technique which is insensitive to

modeling uncertainty, that is, so that a highly accurate mathematical model is no

longer required. However, in order to design a robust FDI scheme, we should have a

description (i.e. some information) about the uncertainty, for example, its distribution
matrix and spectral bandwidth, and so on. Furthermore, this description should

provide assistance for a robust FDI design, that is, it can be handled in a systematic

manner. This book will show how a typical uncertainty description makes use of the

concept of “unknown inputs” acting upon a nominal linear model of the system.

These unknown disturbances describe the uncertainties acting upon the system but

disturbance distribution matrices are assumed to be known since they can be

estimated by identification schemes.

It is clear that disturbances and faults act on the system in the same way, and

thus we cannot easily discriminate between these excitation signals unless we know

the structure of the disturbance distribution matrix. Once the disturbance distribution

matrix is known, we can generate the residual with the disturbance decoupling (robust)

property, that is, the residual is decoupled from the disturbance (uncertainty). The

robust residual can then be used to achieve reliable FDI and FTC.

The theories underlying robust FDI approaches have been very well developed,

but for real applications the following problems remain unsolved:

– estimation of the reliable model for the monitored process;

– modeling accuracy of the real uncertainty by means of identified disturbance

terms when no knowledge of the uncertainty is available;

– estimation of the disturbance terms and the structure of distribution matrices.

This book addresses these unsolved problems. Some simulation and real

examples are given to test some of the theoretical results. These problems have to be
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addressed, otherwise the application domain of the disturbance decoupling approach

for robust FDI is very limited. In fact, few researchers and contributions have

presented the application results of robust fault diagnosis to real processes.

As mentioned above, a primary requirement for model-based and disturbance

decoupling approaches to robust FDI is that both the system model and disturbance

distribution matrices must be known. It is interesting that, within the framework of

international research on this subject, there have been few attempts to address the

problem by means of the identification approach. This lack of information has

obstructed the application of robust FDI in real engineering systems. Therefore, we

present the research developments surrounding the joint estimation of system and

disturbance matrices in order to solve the robust fault diagnosis problem.

Concerning the data-driven schemes developed and exploited throughout the

book, when all observed variables of a dynamic process are affected by uncertainties,

the parameter estimation task can be performed by the so-called errors-in-variables
methods. On the other hand, equation error methods can be developed in the case of

exactly known plant variables (Simani et al. 2000). It is worthwhile noting that less

attention has been paid to errors-in-variables schemes.

Under these considerations, this book presents the robust FDI

results concerning the description of monitored plants by means of equation error

and error-in-variables identified models in the presence of variable uncertainties.

Moreover, for the examples presented, estimates obtained by the proposed

data-driven approaches and parameter estimates will be computed and compared.

I.8. Data-driven methods for fault diagnosis

If several symptoms change differently for certain faults, an initial way of

determining them is to use classification methods which indicate changes of

symptom vectors.

Some classification methods are as follows (Patton et al. 1989; Basseville and

Nikiforov 1993; Babuška 1998; Gertler 1998; Chen and Patton 1999):

1) geometrical distance and probabilistic methods;

2) artificial neural networks;

3) fuzzy clustering.

When more information about the relations between symptoms and faults is

available in the form of diagnostic models, methods of reasoning can be applied.

Diagnostic models then exist in the form of symptom–fault causalities, for example, in

the form of symptom–fault trees. The causalities can be expressed as IF–THEN rules.
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Then analytical as well as heuristic symptoms (from operators) can be processed. By

considering these symptoms as vague facts, probabilistic or fuzzy set descriptions

lead to a unified symptom representation. By using forward and backward reasoning,

probabilities or possibilities of faults are obtained as a result of diagnosis. Typical

approximate reasoning methods are as follows (Basseville and Nikiforov 1993; Chen

and Patton 1999):

1) probabilistic reasoning;

2) possibilistic reasoning with fuzzy logic;

3) reasoning with artificial neural networks.

This very short consideration shows that many different methods have been

developed over the last 30 years. It is also clear that many combinations of them are

possible.

On the basis of different contributions during the last 30 years, it can be stated

that parameter estimation and observer-based methods are the most frequently applied

techniques for fault detection, especially for the detection of sensor and process faults.

Nevertheless, the importance of neural network-based and combined methods for fault

detection is steadily growing. In most applications, fault detection is supported by

simple threshold logic or hypothesis testing. Fault isolation is often carried out using

classification methods. For this task, neural networks are being more and more widely

used.

The number of applications using nonlinear models is growing, while the trend of

using linearized models is diminishing. It seems that analytical redundancy-based

methods have their best application areas in mechanical systems where the models of

the processes are relatively precise. Most nonlinear processes under investigation

belong to the group of thermal and fluid dynamic processes. The field of applications

to chemical processes has few developments, but the number of applications is

growing. The favorite linear process under investigation is the DC motor. In general,

the trend is changing from applications to safety-related processes with many

measurements, as in nuclear reactors or aerospace systems, to applications in

common technical processes with only a few sensors. For diagnosis, classification

and rule-based reasoning methods are the most important, and the use of neural

network classification as well as fuzzy logic-based reasoning is growing.

I.9. FDI application report

Because of the many publications and increasing number of applications (IFAC

Congress and IFAC Symposia SAFEPROCESS) between 1991 and 2018, it is of

interest to show some trends (Patton et al. 1989; Basseville and Nikiforov 1993;

Gertler 1998; Chen and Patton 1999; Frank et al. 2000). Therefore, a literature study
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is briefly presented as follows. Contributions taking into account the applications

reported in Table I.1 were considered. The type of faults considered is distinguished

according to Table I.2. Among all contributions, the fault detection methods were

classified as in Table I.3. The change detection and fault classification methods are

indicated in Table I.4. The reasoning strategies for fault diagnosis are reported in

Table I.5. The contributions considered are summarized in Table I.6. The evaluation

has been limited to the fault detection and diagnosis (FDD) of laboratory, pilot and

industrial processes.

Application Number of contributions
Simulation of real processes 105

Large-scale pilot processes 94

Small-scale laboratory processes 68

Full-scale industrial processes 98

Table I.1. FDI applications and number of contributions

Fault type Number of contributions
Sensor faults 129

Actuator faults 111

Process faults 123

Control loop or controller faults 48

Table I.2. Fault type and number of contributions

Method type Number of contributions
Observer 123

Parity space 74

Parameter estimation 101

Frequency spectral analysis 57

Neural networks 79

Table I.3. FDI methods and number of contributions

Evaluation method Number of contributions
Neural networks 89

Fuzzy logic 65

Bayes classification 54

Hypothesis testing 48

Table I.4. Residual evaluation methods and number of contributions
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Reasoning strategy Number of contributions
Rule based 40

Sign directed graph 33

Fault symptom tree 32

Fuzzy logic 66

Table I.5. Reasoning strategies and number of contributions

FDD Number of contributions
Milling and grinding processes 91

Power plants and thermal processes 106

Fluid dynamic processes 67

Combustion engine and turbines 96

Automotive 68

Inverted pendulum 63

Miscellaneous 102

DC motors 121

Stirred tank reactor 77

Navigation system 75

Nuclear process 50

Table I.6. Applications of model-based fault detection

Table I.6 shows that among mechanical and electrical processes, DC motor

applications are mostly investigated. Parameter estimation and observer-based

methods are used in the majority of applications in these kind of processes, followed

by parity space and combined methods. Thermal and chemical processes are

investigated less frequently.

Table I.3 shows that parameter estimation and observer-based methods are used

in nearly 70% of all applications considered. Neural networks, parity space and

combined methods are applied notably less often.

More than 50% of sensor faults are detected using observer-based methods, while

parameter estimation, parity space and combined methods play a less important role.

For the detection of actuator faults, observer-based methods are mostly used, followed

by parameter estimation and neural network methods.

Parity space and combined methods are rarely applied. In general, there are fewer

applications for actuator faults than for sensor or process faults. The detection of

process faults is mostly carried out with parameter estimation methods. Nearly 50%
of all the applications considered use parameter estimation-based methods for
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detection of process faults. Observer-based, parity space and neural network-based

methods are used less often for this class of faults.

Among all the described processes, linear models have been used much more

than nonlinear models. In processes with nonlinear models, observer-based methods

are mostly applied, but parity equations and neural networks also play an important

role. In processes with linear or linearized models, parameter estimation and

observer-based methods are mostly used. Parity space and combined methods are

also used in several applications but not to the same extent as observer-based and

parameter estimation methods.

Taking into account the system considered, the number of nonlinear process

applications using nonlinear models is decreasing. For linear processes, no significant

change can be stated. The applications of fault-detection methods for nonlinear

processes used mostly observer-based and parameter estimation, more than parity

space methods. Also, the use of neural networks and combinations are important.

Concerning the fault diagnosis methods, in recent years, the field of classification

approaches, especially with neural networks and fuzzy logic, has steadily been

growing. Also, rule-based reasoning methods are increasingly being based on fault

diagnosis. A growing application of fuzzy rule-based reasoning can be stated.

Applications using neural networks for classification are increasing and the trends are

analogous to the increasing number of nonlinear process investigations. Nevertheless,

the classification of generated residuals seems to remain the most important

application area for neural networks.

I.10. From FDI to FTC

A conventional feedback control design for complex systems may result in

unsatisfactory performance in the event of malfunction in input–output sensors,

actuators and system components. A fault-tolerant closed-loop control system is very

attractive because it can tolerate faults while also maintaining desirable performance.

The conventional approach to the design of an FTC includes different steps and

separate modules: modeling or identification of the controlled system, design of the

controller, FDI scheme and a method for re-configuring the control system.

Identification and design of the controller can be performed separately or using

combined methods. Hence, the FDI and controller are linked through the

reconfiguration module. The fundamental problem with such a system lies in the

identification stage in the independent design of the control and FDI modules.

Significant interactions occurring among these modules can be neglected. There is

therefore a need for a research study into the interactions between system

identification, control design, the FDI stage and the FTC design strategy.
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Fault identification is the most important of all the fault diagnosis tasks. When a

fault is estimated, detection and isolation can be easily achieved since the fault nature

can improve the diagnosis process. However, the fault identification problem itself has

not gained enough research attention.

Most fault diagnosis techniques, such as parameter identification, parity space

and observer-based methods, cannot be directly used to identify faults in sensors and

actuators. Very little research has been done to overcome the fault identification

problem. The Kalman filter for statistical testing and fault identification was

proposed in Chen and Patton (1999). However, the statistical testing methods can

impose a high computational demand. A fault identification scheme solving a system

inversion problem was proposed in Chen and Patton (1999); Simani et al. (2003) and

Simani and Farsoni (2018).

In the scheme, depicted in Figure I.3, fault identification is performed by

estimating the nonlinear relationship between residuals and fault magnitudes. This is

possible because robust residuals should only contain fault information.
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Figure I.3. Fault estimation scheme FTC

Such a nonlinear function approximation and estimation can be performed by

using fuzzy systems, neural networks or an inversion of the transfer matrix between

residuals and faults (Simani et al. 2003; Simani and Farsoni 2018). The central task

in model-based fault detection is the residual generation. Most residual generation

techniques are based on linear system models. For nonlinear systems, the traditional

approach is to linearize the model around the system operating point. However, for

systems with high nonlinearity and a wide dynamic operating range, the linearized

approach fails to give satisfactory results.

One solution is to use a large number of linearized models corresponding to a

range of operating points. This means that a large number of FDI schemes

corresponding to each of the operating points is needed. Hence, it is important to

study residual generation techniques that tackle nonlinear dynamic systems directly.

There are some research studies on the residual generation of nonlinear dynamic
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systems, for example using nonlinear observers (Chen and Patton 1999; De Persis

and Isidori 2001). There have been some attempts to use nonlinear observers to solve

nonlinear system FDI problems, (Chen and Patton 1999; De Persis and Isidori 2001),

for example, nonlinear UIOs, including adaptive observers and sliding mode

observers. If the class of nonlinearities can be restricted, observers for bilinear

systems were also proposed (Chen and Patton 1999).

On the other hand, the analytical models that the nonlinear observer approaches are

based on are not easy to obtain in practice. Sometimes, it is impossible to model the

system using an explicit mathematical model. To overcome this problem, it is desirable

to find a universal approximate model that can be used to represent the real system

with an arbitrary degree of accuracy. Different approaches were proposed and they are

currently under investigation: neural networks, fuzzy models and hybrid models.

As shown in Simani et al. (2003) and Simani and Farsoni (2018), fuzzy systems

and neural networks are a powerful tool for handling nonlinear problems. One of the

most important advantages of neural networks is their ability to implement nonlinear

transformations for functional approximation problems. Therefore, neural networks

can be used in a number of ways to tackle fault diagnosis problems for nonlinear

dynamic systems. In existing publications, they were mainly exploited as fault

classifier with steady-state processes, whereas neural networks have been used as

residual generators and for modeling nonlinear dynamic systems for FDI purposes

(Chen and Patton 1999).

Fuzzy models can be used both as a residual classifier and as a nonlinear system

parametric model (Chen and Patton 1999). In the second case, the main idea is to

build an FDI scheme based on fuzzy observers. Estimated outputs and residuals are

computed as fuzzy fusion of local observer output and residuals. The main problem of

this approach concerns the stability of the global observer. A linear matrix inequality

method was proposed in Chen and Patton (1999) using Lyapunov theorem, but this

solution can be quite conservative.

Hybrid models can describe the behavior of any nonlinear dynamic process if

they are described as a composition of several local affine models, selected according

to the process operating conditions (Chen and Patton 1999; Simani et al. 2003).

Instead of exploiting complicated nonlinear models obtained by modeling

techniques, it is possible to describe the plant by a collection of affine models. Such a

compound system requires the identification of the local models from data. Several

works (Chen and Patton 1999; Simani et al. 2003) addressed a method for the

identification and the optimal selection of the local affine models from a sequence of

noisy measurements acquired from the process. Application of these results to

model-based fault diagnosis for safety critical systems is another research area

worthy of mention.
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I.11. Structure of the book

To detect and isolate faults in a dynamic system, based on the use of an analytical

model, a residual signal has to be used. It is derived from a comparison between real

measurements and the relative estimates (generated by the model). The modeling

uncertainty problem can be tackled by designing FDI and FTC schemes, whose

residuals are insensitive to uncertainties while sensitive to faults. On the other hand, a

model with satisfactory accuracy can be estimated using identification procedures

(Norton 1986; Söderström and Stoica 1987; Ljung 1999).

The aim of the design of FDI and FTC schemes is to reduce the effects of

uncertainties on the residuals and to enhance the effects of faults acting on the

residuals. The main aim of this book is to develop a residual generator for

model-based fault diagnosis and to design an effective FTC strategy for a dynamic

process by means of input and output signals. An accurate model of the process

under investigation will be estimated using identification procedures from data

affected by noises and acquired from simulated and/or actual plants. The book

consists of an Introduction and six chapters in Volume 1 and eight chapters in

Volume 2 and the main contributions are summarized in the following.

The Introduction, provides a brief overview and critical discussion of the state of

the art of the most recent literature from 2015 to 2020, thereby introducing the field

of fault detection, fault diagnosis and fault-tolerant systems with methods, which have

proven their significance in practical applications.

Chapter 1 addresses the mathematical modeling and description of the faults most

commonly exploited for providing a proper description of the process under diagnosis,

in connection with the strategy proposed for the diagnosis and FTC designs.

By taking into account these aspects, Chapter 2 is focused on structural analysis

issues. In particular, this chapter addresses the standard tool used to identify

submodels that can be used to design model-based and data-driven diagnostic

modules. Structural approaches typically operate on models described by a set of

equations, which can also be obtained from model-free approaches.

With reference to FDI, Chapter 3 considers set-based methods. The

set-membership and interval observer approaches are introduced to deal with the

robustness problem in fault detection. The design conditions to guarantee robustness,

and at the same time fault sensitivity, are presented. Next, the extension to fault

isolation using unknown-input observer schemes is described.

Chapter 4 describes stochastic methods for FDI. In particular, the chapter revises

the existing methods for FDI using stochastic modeling of uncertainty, using both

models and data.
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As an alternative to analytical approaches, Chapter 5 proposes data-driven

schemes. It is therefore devoted to the problem of fault detection in technical systems

described by nonlinear dynamical models containing non-smooth nonlinearities. The

so-called “model-free” or “data-driven” solutions can be exploited to solve the

considered FTD and FTC problems. The feature of this method is that parameters of

the system under consideration may be unknown.

Among data-driven solutions, Chapter 6 considers the artificial intelligence (AI)

approach to fault diagnosis. After revising the evolution of fault diagnosis methods in

the AI domain, the chapter focuses on the model-based approach rooted in the logic

theory of diagnosis.

When considering analytical approaches, Chapter 1 of Volume 2 proposes the

development of nonlinear methods. This chapter gives a review of the principal

model-based fault diagnosis and fault-tolerant approaches for nonlinear systems.

Some schemes extending the well-known diagnosis methods for linear systems to the

nonlinear case are considered. The robustness of these schemes in the presence of

uncertainty is discussed. Similarities between the approaches considered are also

pointed out.

With reference to Volume 2, the problem of the FTC is addressed. In particular,

Chapter 2 of Volume 2 considers the use of linear parameter varying (LPV) methods.

In particular, this chapter considers FDI and FTC for descriptor LPV systems with

unmeasurable decision variables under actuator faults and perturbations.

A different approach is considered in Chapter 3 of Volume 2, where fuzzy

Takagi–Sugeno and neural network methods for FDI and FTC are revised. After

introducing the different types of models, their application to fault diagnosis and

estimation is presented. The extension to FTC is then described.

Chapter 4 of Volume 2 presents the model predictive control (MPC) techniques

to deal with robustness and nonlinearity. To this aim, the use of neural networks is

considered.

Chapter 5 of Volume 2 considers nonlinear methods for FTC. This chapter

presents a methodology for detecting, isolating and accommodating faults in a class

of nonlinear dynamic systems. On the basis of the fault information obtained by the

fault-diagnosis procedure, an FTC component is designed to compensate for the

effects of faults.

Chapter 6 of Volume 2 proposes virtual sensor and actuator development. The

problem of FTC for dynamic processes is considered by using virtual sensor/actuator

approaches to deal with sensor and actuator faults. This chapter also presents the

extension to LPV systems using the Linear Matrix Inequality (LMI) approach.
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Finally, Chapters 7 and 8 of Volume 2 complete the book by providing some

concluding remarks and open research directions.

In particular, Chapter 7 of Volume 2 summarizes the main achievements of the

book by highlighting the key features of the proposed diagnosis and fault-tolerant

solutions when applied to safety critical systems.

Finally, Chapter 8 of Volume 2 analyzes some perspectives in the field of

diagnosis and FTC by exploring open problems and future issues that could require

further investigation. Future possible research directions are also outlined.

Therefore, the book reviews the state of the art of the data-driven and

model-based FDI and FTC. The FDI and FTC problems are formalized in an uniform

framework by presenting the mathematical description and definitions. The

fundamental issue of model-based methods is the generation of residuals using the

mathematical model of the monitored system. By analyzing residuals, fault diagnosis

and FTC can be performed. Some structures of the residual generator are recalled to

give ideas as to how to implement the residual generation. A residual generator can

be designed for achieving the required diagnosis performances, for example, fault

isolation and disturbance decoupling.

In order to design the residual generator, some assumptions about the modeling

uncertainties need to be made. The most frequently used hypothesis is that the

modeling uncertainty is expressed as a disturbance term in the system dynamic

equation. The disturbance vector is unknown, while its distribution matrix can be

estimated by using identification procedures. On the basis of this assumption, the

disturbance decoupling residual generator can be designed by using UIO

methods Chen and Patton (1999); Liu and Patton (1998).

The book also demonstrates how to apply dynamic system identification methods

and more general data-driven approaches in order to estimate an accurate model of the

monitored system.

The FDI and FTC methods presented can, in fact, require a mathematical model

of the process under investigation, either in a state–space or an input–output form.

In particular, since state–space descriptions provide general and mathematically

rigorous tools for system modeling, they may be used in the residual generator

design, both for the deterministic case (generalized observers, such as UIOs and

output dynamic observers) (Chen and Patton (1999); Frank (1990); Luenberger

(1979); Watanabe and Himmelblau (1982)) and the stochastic case (such as Kalman

filters and unknown input Kalman filters) (Jazwinski (1970); Xie et al. (1994); Xie

and Soh (1994)).

In such a manner, the suggested FDI and FTC tools may not require any physical

knowledge of the process under observation since the linear models are obtained by
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means of an identification scheme, which can, for example, exploit equation error (EE)

and errors-in-variables (EIV) models. In this situation, the identification technique

is based on the rules of the Frisch scheme (Frisch 1934), traditionally exploited to

analyze economic systems. This approach, modified to be applied to dynamic system

identification (Kalman 1982b, 1990; Beghelli et al. 1990), gives a reliable model of the

plant under investigation, as well as the variances of the input–output noises affecting

the data.

For the nonlinear case, fuzzy models and neural networks can be used as

prototypes for the identification. In particular, the multiple-model approach, using

several local affine submodels each describing a different operating condition of the

process, is exploited.

Under these considerations, this book aims to define a comprehensive

methodology for actuator, process component and sensor fault detection. It is based

on an output estimation approach, in conjunction with residual processing schemes,

which include simple threshold detection, in a deterministic case, as well as

statistical analysis when data are affected by noise. The final result consists of a

strategy based on fault diagnosis methods well known in the literature for generating

redundant residuals.

In particular, this work studies different approaches to residual generation and fault

compensation with the aid of several methodologies. In general, the residual is defined

as the output estimation error, obtained by the difference between the measurement

of one output and the relative estimate. This work also presents the design of such

estimators both in the deterministic and stochastic environment.

The diagnosis procedure may be further specialized for actuators, input or output

sensors and process components. In fact, the fault diagnosis of input sensors and

actuators uses banks of estimators in high signal-to-noise ratio conditions, or filters,

otherwise. The general principle designs the ith reconstructor to be insensitive to the

ith signal of the system. On the other hand, output sensor and process component

faults affecting a single residual can be detected by means of output observer or

filters, driven by a single output and all the inputs of the system.

The book shows how the proposed algorithms can be applied to the FDI and FTC

of actuators, process components and input–output sensors of industrial plants.

In particular, the different techniques presented in this book have been tested on

time series of data acquired from different simulated and realistic industrial

processes, energy conversion systems, power plants, and more general safety critical

systems, whose linear mathematical description is obtained by using data-driven and

model-based procedures.
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Results from simulation show that minimum detectable faults are perfectly

compatible with the industrial target of this application.

Finally, the book concludes the proposed research and application topics by

summarizing its contributions and achievements, providing some suggestions for

possible further research topics as an extension of this work.

I.12. Summary

This Introduction has provided a common terminology in the fault diagnosis

framework in order to comment on some developments in the field of fault detection

and diagnosis based on papers selected from the last 30 years. The structure of the 14

chapters and their main contributions have also been outlined briefly.
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