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PREFACE

This volume contains the Proceedings of the HYP2012 International Conference
devoted to Theory, Numerics and Applications of Hyperbolic Problems, held in
Padova, June 24–29, 2012. This was the fourteenth in a highly successful series
of bi-annual meetings, which brought together several leading experts in the field,
practitioners, and young researchers, discussing the latest theoretical advances and
the most relevant applications.1

Hyperbolic conservation laws is a mathematical discipline deeply rooted in the
tradition of classical continuum mechanics, and yet replenished with challenging
open problems. It has experienced continued growth in recent years, thanks to the
introduction of new ideas and techniques, and a wealth of new applications. The
HYP2012 meeting highlighted a number of topics where recent progress has been
particularly significant: singular limits and dispersive equations in mathematical
physics, nonlinear wave patterns in several space dimensions, particle dynamics,
multiphase flow and interfaces, transport in complex environments, control prob-
lems for hyperbolic PDEs and related Hamilton-Jacobi equations, general relativity
and geometric PDEs.

The conference was attended by 340 participants from 30 different countries.
The social program included a boat excursion to the historical Villa Pisani and
to Villa Foscari - La Malcontenta, and a conference banquet in the great hall of
the 13-th century building “Palazzo della Ragione” in Padova, which was once the
seat of the City Council, with frescoes from the Giotto school. During the dinner,
Professor Constantine Dafermos, Professor James Glimm, and Professor Tai Ping
Liu were honored with the “Galileo medal” for scientific excellence conferred by the
Mayor of Padova, Flavio Zanonato. A keynote speech was delivered by Professor
James Glimm. Professor Glimm is credited with many pioneering contributions in
the general area of the theory and numerics of hyperbolic equations. His speech
provided an overview of the field, from its early days to the present time, with an
outlook toward the role of hyperbolic PDE models in interdisciplinary science. The
conference banquet also featured the brilliant performance of the Marco Castelli
quartet, one of the most talented Italian jazz groups, introduced by Silvia Faggian
from the University of Venice.

The present volume of proceedings contains 7 papers from plenary speakers, 9
from invited speakers, and 100 papers related to contributed talks. These contri-
butions cover a wide range of topics. A very partial list includes: new methods for
constructing turbulent solutions to multi-dimensional systems of conservation laws
based on Baire category, transport equations with non-Lipschitz velocity fields, rel-
ative entropy functionals and the stability of fluid systems, numerical methods for
hyperbolic systems with stiff relaxation terms and for multiphase flow, new advances

1The detailed program and the slides of all speakers as well as most of the video of the plenary
speakers of the HYP2012 conference can be found on the website http://www.hyp2012.eu/ .The
HYP2012 website will be accessible at this address untill 2020.
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in homogenization theory, optimal sensor location for solutions to multidimensional
wave equations, singularities in general relativity.

We believe that this volume will provide a timely survey of the state of the art,
and a stimulus for further progress in this exciting field.

We take this opportunity to thank the members of the HYP2012 Scientific Com-
mittee (listed at http://www.hyp2012.eu/organization/scientific-committee)
for their expertise in the selection of the plenary and invited speakers of the confer-
ence and for their contribution in reviewing the papers of the volume. We would like
also to express our warm appreciation to all other members of the HYP2012 Orga-
nizing Committee (listed at http://www.hyp2012.eu/organization/organizing-
committee) that in various ways have contributed to the successful realization of
this event. Finally, we are extremely thankful to the many graduate students and
post-docs of the Dipartimento di Matematica of Università di Padova, coordinated
by Khai T. Nguyen and Fabio S. Priuli, for their assistance and dedicated work
throughout the conference.

We gratefully acknowledge financial support from the following sponsors:

- ERC Starting Grant 2009 “Hyperbolic Systems of Conservation Laws: singu-
lar limits, properties of solutions and control problems”

- Research Project MIUR PRIN 2009 “Systems of Conservation Laws and Fluid
Dynamics: methods and Applications”

- GDRE CONEDP European Research Group on PDE control
- FP7-PEOPLE-2010-ITN European Research Network “Sensitivity Analysis

for Deterministic Controller Design”
- Progetto di Eccellenza Fondazione Cariparo 2009-2010 Nonlinear PDEs: mod-

els, analysis, and control-theoretic problems
- ERC Starting Grant 2010 Traffic Management by Macroscopic Models
- Dipartimento di Matematica, Università di Padova
- Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila
- University of Padova
- University of Zurich
- University of Basel
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Université Paul Sabatier, Toulouse, France

Lorenzo Pareschi and Vittorio Rispoli

Department of Mathematics and Computer Science
University of Ferrara, Italy

Abstract. The main concern of this paper is to derive numerical schemes for

the solution of kinetic equations with diffusive scaling which works efficiently
for a wide range of the scaling parameter ε. We will concentrate on the simple

Goldstain-Taylor model from kinetic theory and propose a resolution method

based on the reformulation first introduced in [8]. We show how this refor-
mulation corresponds to the use of interpolated fluxes and then we adopt the

penalized implicit-explicit Runge-Kutta approach recently introduced in [1] to

overcome the parabolic time step restriction in the diffusive regime. The re-
sulting schemes permit to choose a time step ∆t = O(∆x), independent from

ε, in all regimes. Some numerical examples show the efficiency and accuracy
of the proposed methods.

1. Introduction. Kinetic theory of rarefied gases has been used for studies in
various and very important fields of research and nowadays it still represents one of
the most powerful tools for simulations and applications for cutting edge sectors of
academic and industrial research.

The aim of this paper is to derive a numerical scheme for the solution of kinetic
equations with diffusive scaling which works efficiently for a wide range of the scaling
parameter ε. The Goldstain-Taylor model, despite its simplicity, is a prototype
kinetic equation which contains some of the major difficulties encountered when
dealing with more sophisticated kinetic models in the diffusive scaling. For this
reason it is often used for the derivation and the analysis of robust numerical schemes
for the diffusion limit [2, 4, 10, 11]. In particular, for small values of the scaling
parameter, the kinetic model is well approximated by a standard heat equation for
the mass density. This is the rationale behind the use of the terminology hyperbolic
heat equation when considering the Goldstain-Taylor model in the diffusive scaling.

More in general when dealing with kinetic equations in the diffusive scaling, it
is necessary to perform numerical simulations in both resolved (when spatial grid
size is smaller than the mean free path) and under-resolved (when spatial grid size
is larger than the mean free path) regimes. In the former case, standard numerical
methods for kinetic equations work effectively. In the latter case, one expects that
the best possible numerical solution is the approximation of the diffusion equation.
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However, even to achieve this goal is nontrivial for standard numerical methods
when applied to kinetic equations. Earlier studies on numerical methods for trans-
port or kinetic equations indicate that, in order for the under-resolved numerical
approximation to capture the correct diffusive behavior, the scheme should be as-
ymptotic preserving (AP), in the sense that the asymptotic limit that leads from
the transport or kinetic equations to the diffusion equations should be preserved at
the discrete level [6]. Moreover, an efficient method should be able to numerically
go along with the physics of the system which goes from an hyperbolic behavior
underlying the kinetic regime to a parabolic behavior in the limiting regime.

Here we described a general approach to tackle this kind of problems. For the
construction of the method first we rely on the problem reformulation presented in
[8] and show that the method can be seen as a natural way to construct interpolated
fluxes for the transport part. It is well-known that this reformulation in combination
with a splitting method or an Implicit-Explicit (IMEX) time discretization provides
a consistent way to approximate the kinetic model in the different regimes avoiding
the time constraints ∆t = O(ε∆x) for small values of ε.

In fact, since the characteristic speeds of the hyperbolic part are of order 1/ε,
standard approaches developed for hyperbolic systems with stiff relaxation be-
come useless in such parabolic scaling, because the CFL condition would require
∆t = O(ε∆x). Of course, in the diffusive regime where ε � ∆x, this is too much
restrictive since also for an explicit method a parabolic condition ∆t = O(∆x2)
would suffice.

Most previous works on asymptotic preserving schemes for hyperbolic systems
and kinetic equations with diffusive relaxation focus on schemes which, in the limit
of infinite stiffness, become consistent explicit schemes for the diffusive limit equa-
tion [2, 4, 5, 8, 11]. Such explicit (in the limit) schemes clearly suffer from the usual
parabolic stability restriction ∆t = O(∆x2). Here, following the strategy presented
in [1], we construct schemes that work uniformly in ε and that, in the diffusion limit,
originate a fully implicit solver for the diffusion equation. Therefore the resulting
schemes permit to choose a time step ∆t = O(∆x) in all regimes.

The paper is organized as follows: in the next section we present the proto-
type system we are going to solve together with the proposed techniques used to
implement our strategy. Later section is devoted to the presentation of system’s
discretization and is followed by the section of the numerical results. A concluding
section ends the paper.

2. The Goldstain-Taylor model. A two-velocity model of the Boltzmann equa-
tion describes the behavior of a fictitious gas of two kind of particles that move
parallel to the x−axis with constant and equal speed. We can consider at time t
the particles with a density f(x, t), which move in the positive x−direction, and
the particles which move in the negative x−direction with a density g(x, t). The
simplest two-velocity gas, which is in local equilibrium when f = g, is described by
the following hyperbolic system

ft + cfx = k(g − f),

gt − cgx = k(f − g),
(1)

where c > 0 and k > 0 characterize respectively the velocities and the interactions
of particles.
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In the diffusive scaling we consider the system of equations (1) in the form

ft +
c

ε
fx =

k

ε2
(g − f),

gt −
c

ε
gx =

k

ε2
(f − g).

(2)

In (2) ε is called the relaxation time and the limit problem for ε → 0 is called
diffusive limit.

Introducing the macroscopic variables u = f+g and v = c(f−g)/ε, corresponding
to the mass density and the flux, the model is rewritten in the form of a relaxation
system

ut + vx = 0,

vt +
c2

ε2
ux = −2k

ε2
v.

(3)

In the limit ε = 0 formally we obtain the local equilibrium 2kv = −c2ux and the
system reduces to the heat equation

ut =
c2

2k
uxx.

For notation simplicity in the sequel we will assume c = 1 and k = 1/2, so that the
limiting heat equation has a constant diffusion coefficient equal to one.

We will introduce the spatial grid points xi+1/2, i = . . . ,−1, 0, 1, . . . with uniform
mesh width ∆x = xi+1/2 − xi−1/2. As usual we denote by Ui+1/2(t) = U(xi+1/2, t)
the nodal values and by Ui(t) the cell averages of U in the cell [xi−1/2, xi+1/2] at
time t

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x, t) dx.

Thus we consider the following semi-discrete system in conservative form

(ui)t +
vi+1/2 − vi−1/2

∆x
= 0,

(vi)t +
1

ε2
ui+1/2 − ui−1/2

∆x
= − 1

ε2
vi.

(4)

As observed in [11] a standard upwind selection of the numerical fluxes in (4) orig-
inates a numerical dissipation which may dominate the physical one. For example,
the first order upwinding yields

ui±1/2 =
1

2
(ui + ui±1)± ε

2
(vi − vi±1),

vi±1/2 =
1

2
(vi + vi±1)± 1

2ε
(ui − ui±1) .

(5)

It is easy to verify that the use of (5) in the discrete equation (4) for small values
of ε leads to the semi-discrete approximation

(ui)t −
ui+2 + ui−2 − 2ui

(2∆x)2
− ∆x

2ε

ui+1 + ui−1 − 2ui
∆x2

= 0, (6)

for which the numerical dissipation dominates the physical one unless ∆x � ε.
Note also that we obtain a wider stencil for the second order derivative in the heat
equation with respect to the classical one. There are several alternatives to deal
with this problem, see for example [4, 7, 10, 11].
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The upwind selection (5) can be modified in another way so as to capture the
proper parabolic behavior. The idea now is to apply the upwind selection only in
the hyperbolic regime and to use a standard central discretization in the parabolic
one. This can be better understood by rewriting system (3) in the form [8]

ut + vx = 0

vt + φ2ux = − 1

ε2
(
v + (1− φ2ε2)ux

)
,

(7)

where φ = φ(ε) is a suitable function such that φ = O(1) for small values of ε. The
above reformulation is equivalent to rewrite

ux = φ2ε2 ux︸ ︷︷ ︸
hyperbolic regime

+
(
1− φ2ε2

)
ux︸ ︷︷ ︸

parabolic regime

, (8)

the key point now is to combine two different discretization for the different regimes.
For example in [8] it was proposed to consider an upwind discretization on the
variables (u ± v)/2 for the first derivative combined with a central scheme for the
second term. This interpolation is also relevant in term of the time discretization
of the system, since the hyperbolic flux can be evaluated explicitly whereas for the
parabolic flux it is desirable to have an implicit integrator.

In the simplest case, taking φ ≡ 1 this idea leads to the modified fluxes

ui±1/2 =
1

2
(ui + ui±1)± ε2

2
(vi − vi±1),

vi±1/2 =
1

2
(vi + vi±1)± 1

2
(ui − ui±1) .

(9)

With these fluxes, for small values of ε, the semi-discrete system (4) gives

(ui)t −
ui+2 + ui−2 − 2ui

(2∆x)2
− ∆x

2

ui+1 + ui−1 − 2ui
∆x2

= 0, (10)

which is an approximation of the equilibrium heat equation with an accuracy of
O(∆x/2). Second order extension can be obtained easily simply increasing to sec-
ond order the choice of the flux used for the hyperbolic derivative. By combining
this with standard implicit-explicit discretizations one obtain a scheme that work
uniformly in ε with a CFL condition of the type ∆t = O(∆x2) in the limit ε→ 0.

3. Asymptotically implicit IMEX schemes. In order to write a stable dis-
cretization to system (3) we should use implicit temporal integrators on the stiff
terms. Because the stiffness of the convection term depends on the size of the two
eigenvalues ±1/ε of the Riemann invariant form (2) of system (3), both convec-
tion terms have to be implicit. However a fully implicit scheme causes global data
dependencies, a severe disadvantage if we consider second order nonlinear schemes
using slope limiters. Furthermore, the gain of stability is partially offset by the loss
of accuracy typical of implicit schemes in the context of wave-propagation phenom-
ena. The approach just introduced permits to overcome this problem since we can
apply an Implicit-Explicit discretization in the form

ut + vx︸︷︷︸
Explicit

= 0,

vt + φ2ux︸ ︷︷ ︸
Explicit

= − 1

ε2
(v + (1− φ2ε2)ux)︸ ︷︷ ︸

Implicit

(11)
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This approach was proposed in [8] and originates an explicit discretization of the
heat equation in the limit. We refer to this standard approach as asymptotically
explicit IMEX method.

Here we adopt a different technique which has been proposed recently in [1] which
permits to overcome the parabolic time step limitation for small regimes of ε. The
method is based on a penalization technique consisting in adding and subtracting
to the first equation in system (3) an appropriate term, which will establish the
correct limiting diffusion equation. This lead to the modified system

ut +
(
v + µux

)
x

= µuxx,

vt +
1

ε2
ux = − 1

ε2
v,

(12)

where µ = µ(ε) is such that µ(0) = 1. Finally, using the interpolated fluxes approach
we end up with the following system

ut +
(
v + µux

)
x

= µuxx,

vt + φ2ux = − 1

ε2
(
v + (1− φ2ε2)ux

)
,

(13)

which is now tackled with an IMEX scheme in the form

ut +
(
v + µux

)
x︸ ︷︷ ︸

Explicit

= µuxx︸ ︷︷ ︸
Implicit

,

vt + φ2ux︸ ︷︷ ︸
Explicit

= − 1

ε2
(
v + (1− φ2ε2)ux

)
︸ ︷︷ ︸

Implicit

(14)

In addition to the space discretizations of the first order derivatives described in
the last section let us specify that in (14) the second order space derivative in the
first equation is discretized using a standard second order central discretization.
Note that in the limit ε → 0 we obtain a fully implicit discretization of the heat
equation with a standard compact stencil instead of the explicit discretization on a
wider stencil described before. The only additional cost is due to the inversion of
the linear system originated by the implicit discretization of the heat equation. We
refer to this new approach as asymptotically implicit IMEX method.

Let us finally recall the general structure of the IMEX-RK scheme adopted. Here
we omit the space derivatives for simplicity of notation. For the internal stages for
k = 1, . . . , ν we have

U (k) = un −∆t

k−1∑
j=0

ãkj

(
V (j) + µU (j)

x

)
x

+ µ∆t

k∑
j=1

akjU
(j)
xx

V (k) = vn −∆tφ2
k−1∑
j=0

ãkjU
(j)
x −

∆t

ε2

k∑
j=1

akj

[
V (j) + (1− φ2ε2)U (j)

x

]
.

For the numerical solution we simply have un+1 = Uν and vn+1 = V ν since we
restrict to globally stiffly accurate IMEX schemes [1]. In all considered IMEX

schemes, matrix Ã is lower triangular with zero diagonal, while matrix A is lower
triangular, i.e. the implicit scheme is a Diagonally Implicit Runge-Kutta (DIRK)
scheme. This choice guarantees that implicit terms are, indeed, always explicitly
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evaluated. For more details on properties and requirements of IMEX-RK schemes
when applied to kinetic equations in the diffusion limit we refer to [1] and the
references therein.

4. Numerical results. We present some numerical results in order to show the
behavior of the proposed scheme. In the computed results second order accuracy is
obtained using a WENO scheme for the hyperbolic derivative whereas the parabolic
flux is always evaluated by central difference. First order Implicit-Explicit Euler
scheme and second order ARS(2, 2, 2) scheme are adopted for the time discretization
(see [1]). In all test cases the initial conditions are given by

u0(x) = 1 and v0(x) = 0 if x ≤ 0,

u0(x) = 0 and v0(x) = 0 if x > 0.

The space variable x ranges in the computational domain [−1, 1] and we choose Nx
grid points.

Test 1. In this case computations are performed in the hyperbolic regime for ε = 1
and consider system (13) with φ ≡ 1 and µ ≡ 0. For this test case, we assume
∆t = ∆x/2 and Nx = 100. In fig. 4 we show the results of the computation at
time Tf = 0.3 of the u component. In this non equilibrium regime we can see that
the transport term, which dominant with respect to the source term, is properly
approximated.
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Figure 1. Test 1: Hyperbolic regime. Solution for u(x) at time
Tf = 0.3 for ε = 1. Left: first order method. Right: second order
method.

Test 2. Here we consider the parabolic regime for ε = 10−3, and approximate
system (13) with φ ≡ 1 and µ ≡ 1. For this test case, we can assume ∆t = ∆x
and Nx = 100. In fig. 4 we show the result of the computation at time Tf = 0.1 of
the u component. We stop the computation before the stationary state is reached,
thus showing a plot which shows we catch the correct diffusive behavior; in this
case, the contribution given by the transport term is less important then that of
the relaxation term.
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Figure 2. Test 2: Parabolic regime. Solution for u(x) at time
Tf = 0.1 for ε = 10−3. Left: first order method. Right: second
order method.

Test 3. In the last test case we consider a mixing regime where on the left of the
computational domain for x ≤ 0 we are in the hyperbolic regime with ε = εL = 0.2
while on the right for x > 0 we are in the parabolic regime with ε = εR = 0.01. For
this last test case we consider Nx = 60 points as in [2]. We set µ ≡ 1 while we set
φ = 1/εL for x ≤ 0 and φ = 1 for x > 0 (we consider the correct “physical” velocity
in the kinetic regime). For this test case, we set ∆t = εL∆x/5. In fig. 4 we show
the result of the computation at time Tf = 0.05 of the u component.
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Figure 3. Test 3: Mixing regime. Solution for u(x) at time Tf =
0.05 for ε = 0.2 for x < 0 and ε = 10−3 for x > 0. Left: first order
method. Right: second order method.

We observe that our scheme is able to efficiently compute the solution, with a
good behavior also at the interface between the two regimes. We refer to [2] for
comparisons.

5. Conclusions. We have presented a general approach to tackle kinetic equations
in the diffusive scaling which leads to a fully implicit discretization of the limiting
diffusion terms. The method is based on combining the strategies presented in [8]
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for the space derivatives together with the time discretization presented in [1]. We
emphasize that different choices of the space discretizations may originate schemes
with different stability properties. In particular the optimal choice of the schemes
parameters φ and µ which permits to switch between the hyperbolic and the para-
bolic flux and the explicit and implicit integrators deserves further investigations.
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STEADY SELF-SIMILAR INVISCID FLOW
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Abstract. We consider admissible L∞ solutions to 2-dimensional m×m sys-

tems of hyperbolic conservation laws that are steady in time, constant along
rays emanating from the origin, and sufficiently small perturbations of a con-

stant background state. We classify the possible structures of these solutions
and prove that they must be BV . As a special case, we obtain uniqueness

in this class of L∞ functions for admissible forward in time solutions to 1-

dimensional Riemann problems and show that backward in time solutions also
must be BV .

1. Introduction. We consider a 2-dimensional system of conservation laws

Ut + fx(U)x + fy(U)y = 0. (1)

Here the unknown U and the flux functions fx and fy take values in Rm. The

fluxes are assumed to be smooth and possess an entropy-entropy flux pair (η, ~ψ) =
(η, ψx, ψy) with uniformly convex η on some open nonempty set in state space. The
entropy inequality is then

η(U)t + ψx(U)x + ψy(U)y ≤ 0. (2)

In multidimensional inviscid Euler flow, there are well studied cases in which
there exists a distinguished point around which the flow is, to first order, constant
along rays starting at this point. These include regular reflection (four shock waves
meeting at a point) (see [7], [6], [3]) and Mach reflection (three shocks and a contact
meeting at a point) (see [1]). However, other configurations such as triple points
(three shocks with no other waves in between) cannot occur for most commonly
used equations of state (see [13],[4], [12]). Beyond these and some other special
cases, the possible configurations of such waves meeting at a point have not been
classified.

The flow is steady from the point of view of an observer moving with the distin-
guished point described above. Therefore, we consider solutions of the form

U(t, x, y) = U(φ), with φ = ∠(x, y) ∈ [0, 2π). (3)

We are also motivated by a possible nonuniqueness result found in [5], in which an
unsteady numerical solution was observed which took a steady self-similar solution
as initial data. Perhaps analysis of the steady problem will lead to an analytical
example of nonuniqueness of this form.
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The International Conference devoted to Theory, Numerics and 
Applications of Hyperbolic Problems, HYP2012, was held in Padova on 
June 24–29, 2012. The conference was the fourteenth in a highly 
successful series of bi-annual meetings that has become one of the most 
important international events in Applied Mathematics. The volume 
contains more than 110 contributions that were presented in this 
conference, including plenary presentations by C. De Lellis, E. Feireisl, N. 
Masmoudi, S. Mishra, G. Russo, J. Sethian, E. Zuazua, and a contribution by 
the keynote speaker J. Glimm. These contributions cover a wide range of 
topics. A very partial list includes: new methods for constructing 
turbulent solutions to multi-dimensional systems of conservation laws 
based on Baire category, transport equations with non-Lipschitz velocity 
fields, relative entropy functionals and the stability of fluid systems, 
numerical methods for hyperbolic systems with stiff  relaxation terms 
and for multiphase flow, new advances in homogenization theory, 
optimal sensor location for solutions to multidimensional wave 
equations, singularities in general relativity. The volume should appeal to 
researchers, students and practitioners with general interest in 
time-dependent problems governed by hyperbolic equations.
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