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Among the many effort s done by the scientific community to help coping with the COVID-19 pandemic, 

one of the most important has been the creation of models to describe its propagation, as these are ex- 

pected to guide the deployment of containment and health policies. These models are commonly based 

on exogenous information, as e.g. mobility data, whose limitedness always compromise the reliability 

of obtained results. In this contribution we propose a different approach, based on extracting relation- 

ships between the evolution of the disease in different regions through information theoretical metrics. 

In a way similar to what is commonly done in neuroscience, propagation is understood as information 

transfer, and the resulting propagation patterns are represented and studied as functional networks. By 

applying this methodology to the dynamics of COVID-19 in several countries and regions thereof, we 

were able to reconstruct static and time-varying propagation graphs. We further discuss the advantages, 

promises and open research questions associated with this functional approach. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The severe acute respiratory syndrome coronavirus 2 (SARS-

oV-2) emerged in December, 2019, possibly at a wildlife trad-

ng market in Wuhan, China [5] , and spread globally by the end

f April, infecting more than 6 million individuals by the end of

ay, 2020. The resulting coronavirus disease 2019 (COVID-19) has

ade appearance in almost every country of the world, and has

aused more than 350,0 0 0 deaths as of end of May 2020 [38] . In

arallel of effort s to improve clinical treatment, the research com-

unity has focused on developing models able to describe and

redict the propagation of the disease [16,26,35,49] . Understanding

he spreading patterns of the COVID-19 outbreak, and in fact of any

arge-scale epidemics, is critical to predicting its spatio-temporal

ynamics and ultimately devising effective public health policies

o control it. 

Two main approaches are available to support such modelling.

n one hand, the spatial characterisation of spreading can be dealt

ith in a completely data-driven approach, wherein the spread-

ng map is analysed as a static image. For instance, recent stud-

es addressed spatial spreading of COVID-19 [22] and compara-

le diseases, including severe acute respiratory syndrome (SARS)
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17,28] and Middle East respiratory syndrome coronavirus (MERS-

oV) [1,2] , by quantifying static spatial correlations in spreading

aps. 

On the other hand, a different approach involves modelling the

preading process dynamics [13] . This typically involves subdivid-

ng the studied population into subpopulations, e.g. susceptible, in-

ected and recovered compartments in the SIR model [24] . Epi-

emic dynamics is then modelled by taking the continuous-time

imit of difference equations for the evolution of the average num-

er of individuals in each compartment. This approach is pred-

cated upon a homogenous mixing approximation, according to

hich individuals are well mixed and interact in a random fashion,

o that individuals in a given subpopulation are indistinguishable

nd the spreading probability is simply proportional to the num-

er of infected individuals [6,21] . This approach neglects the diffu-

ion of individuals and assumes random and homogeneous mixing,

.e. all members of a given compartment are indistinguishable, a

ather unrealistic assumption. This limitation can be overcome by

odelling the space in which the spreading process takes place

s a network. Early modelling in this vein mainly focused on a

lass of random networks entirely characterised by their degree

istribution, all other properties being essentially random. How-

ver, disease spreading is typically spatially inhomogeneous with

onlocal interactions, so that a nonlocal mechanism must be taken

nto account for a realistic picture of the situation. The spread-

ng process as a whole is affected by geographical heterogene-

https://doi.org/10.1016/j.chaos.2020.109993
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109993&domain=pdf
mailto:mzanin@ifisc.uib-csic.es
https://doi.org/10.1016/j.chaos.2020.109993
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ity in demographic, economic and sociological terms, so that spa-

tially uniform models typically fail to give a realistic picture of

disease diffusion. Thus, the space in which the spreading process

takes place differs rather drastically from a random uncorrelated

network, and higher-order properties of real networks have been

shown to play an important role in theoretical models of epidemic

spreading [33] . In more recent studies [23,29,32] , the importance

of interconnected groups with high numbers of contacts and long-

range connections (linking otherwise distant parts of the network)

in disease transmission has been highglighted. 

In this latter modelling approach, mobility data are typically in-

corporated exogenously. Network information is gathered either by

resorting to fundamental biological information, viz. genetic mu-

tation analysis, or by using techniques such as infection tracing,

complete contact tracing, diary-based studies, or detailed general

statistical mobility data. This has recently been revolutionised by

the availability of large-scale real data sets on mobility, for in-

stance gathered through cell phones positioning, opening the door

to unprecedented opportunities [7,8] . However, such information is

not always available, and may be outdated and lacunary. Even in

the best conditions, individual people can be located with a lim-

ited resolution, and interactions (and hence contagios) can only be

modelled in a statistical way. 

In this contribution we explore a third approach, involving the

extraction of spreading patterns from the local dynamics. It is

based on the idea that the local dynamics of the disease, e.g. of

the number of cases in a region or in a province, is the result of

two contributions: an internal component, due to all cases already

present in the region; and inputs from other regions. While the for-

mer contribution is expected to dominate, the second should also

be reflected in the dynamics of each region, e.g. of the daily evo-

lution of the number of cases. In a way similar to what is now

common in neuroscience [12,18] , pairwise interactions between re-

gions can then be made explicit by applying information theoretic

metrics to the associated time series, the latter being a function of

the former. Disease spreading is then described as an information

process, in which information about cases is spread between and

process at discrete spatial locations. 

This third approach has some important advantages. First, the

description of propagation patterns only relies on macro-scale in-

formation, dispensing with the reliance on mobility data. Secondly,

insofar as it is not based on a model, but only relies on real data,

no free parameter needs to be tuned. As a consequence, results va-

lidity does not depend on the quality and quantity of micro-scale

mobility data, on the choice of model parameters, or on subjec-

tive hypotheses; but only on the availability of good representa-

tions of the macro-scale dynamics, something nowadays common.

Thirdly, results can conveniently take the form of functional net-

works , which can then be analysed using the vast array of tools

provided by complex networks theory [3,11,43] . 

Using daily data about the number of new cases and deaths,

we here study the dynamics of COVID-19 in some of the coun-

tries most affected by the epidemics. We first show how these

time series of macroscopic disease-related variables can be used

to detect temporal relationships describing the evolution of pa-

tients, and how these could be related to national health policies.

We then describe their spatial dynamics, by reconstructing func-

tional networks representing disease spreading in Portugal, Spain,

Italy and England. Finally, we show how the temporal evolution of

this spatial dynamics can be sketched providing a more real-time

description of the process. 

Though standard in many scientific fields, including neuro-

science [12,18] , economics [4] and transportation [47] , to the best

of our knowledge functional networks have never been applied to

the problem of modelling epidemic processes. In synthesis, this

contribution is a first test case, showing some basic applications
nd discussing some open problems that will have to be tackled

n the future, which should hopefully motivate further research

ffort s. 

. Data and methods 

.1. Global data 

Global data about the evolution of the pandemic, in terms of

umber of confirmed cases and number of death, have been ob-

ained from the COVID-19 Data Repository [15] , made public by the

enter for Systems Science and Engineering (CSSE) at Johns Hop-

ins University, and retrieved from github.com/CSSEGISandData/

OVID-19 . This data set included information from January 22nd to

ay 15th at a country level - when a higher resolution was avail-

ble, the time series corresponding to different regions of a coun-

ry have been merged. The six countries with the higher number

f cases per capita (as of mid March 2020) have here been consid-

red, i.e. US, United Kingdom, Italy, France, Spain and Belgium. 

Additionally, data about the day with the highest number of

onfirmed cases and deaths for each country have been obtained

rom the corresponding Wikipedia webpages - see en.wikipedia.

rg/wiki/COVID-19 _ pandemic _ by _ country _ and _ territory . 

.2. Local evolution 

The regional propagation patterns of COVID-19 have been stud-

es in four countries, i.e. Portugal, Spain, Italy and England. The

rst three have been chosen because of their similar cultural

ackground, while displaying a substantially different evolution -

0.13 deaths per thousands people for Portugal, as opposed to

0.57 and ≈ 0.55 for Spain and Italy. Additionally, England has

een chosen for its clear propagation pattern, which started from

he province of London. 

Portugal. Data for Portugal were obtained from the Wikipedia

age “Pandemia de COVID-19 em Portugal” ( pt.wikipedia.org/

iki/Pandemia _ de _ COVID-19 _ em _ Portugal ), which in turns recom-

iles data from relatórios de situação (situation reports) pub-

ished by the Direção-Geral da Saúde ( covid19.min-saude.pt/

elatorio- de- situacao/ ). Two time series were extracted for each

ne of the seven Portuguese regions (Norte, Lisboa e Vale do Tejo,

entro, Alentejo, Algarve, Açores and Madeira), i.e. the number of

onfirmed cases and the number of deaths per day. These time se-

ies span from March 23rd to May 15th - the first 20 days were

iscarded, as too few cases were for them reported. 

Spain. Data for Spain were obtained from the Ministerio de

anidad, and are available at cnecovid.isciii.es/covid19/resources/

gregados.csv . They include daily numbers of confirmed cases and

eath for 19 regions (17 “comunidades autónomas”, plus the two

ities of Ceuta and Melilla), and span from March 10th to May 15th

 as in the previous case, the first days have been excluded due to

ow numbers. 

Italy. Data for Italy were recompiled from the reports pub-

ished by the Ministero della Salute, available at www.salute.gov.

tnuovocoronavirus . Number of confirmed cases and deaths are re-

orted on a daily basis at regional and province levels - here only

he former has been considered. Data were extracted from March

0th to May 15th. 

England. Data for England and its 9 regions were obtained from

he Public Health England, at coronavirus.data.gov.uk . They cover

rom January 30th to May 15th; as in the previous cases, data for

he first 30 days have been discarded due to the low number of

eported cases. 

https://www.github.com/CSSEGISandData/COVID-19
https://www.en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory
https://www.pt.wikipedia.org/wiki/Pandemia_de_COVID-19_em_Portugal
https://www.covid19.min-saude.pt/relatorio-de-situacao/
https://www.cnecovid.isciii.es/covid19/resources/agregados.csv
https://www.salute.gov.itnuovocoronavirus
https://www.coronavirus.data.gov.uk
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Fig. 1. Example of the process for obtaining stationary time series. The three pan- 

els, from top to bottom, depict respectively the evolution of D ( t ), �D and ˜ �D for 

the Spanish region of Catalunya. See main text for definitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.3. Data pre-processing and causality assessment 

For each country and region, two time series have been cre-

ted: �C and �D , respectively representing the daily variation in

he number of confirmed cases and deaths. The former one is cal-

ulated as: 

C(t) = log 2 C(t) /C(t − 1) , (1)

C ( t ) being the cumulative number of cases reported until day

 . Positive values of �C ( t ) thus indicate an increase in the number

f cases, and specifically �C(t) = 1 implies a duplication in such

umber between the day t − 1 and the day t . Note that negative

alues for �C can rarely been found, indicating a change in the

ay cases are accounted for. The same equation applies for �D ,

he only difference being that it is calculated over the cumulative

umber of deaths. 

The relationships present between the extracted time series are

fterward tested through the celebrated Granger causality (GC) test

19,20] . This test is held to be one of the few tests able to detect

he presence of causal relationships, i.e. beyond correlation or co-

ccurrence, between time series. It is an extremely powerful tool

or assessing information exchange between different elements of

 system, and understanding whether the dynamics of one of them

s led by the other(s). Given two time series X and Y, X is said to

ranger-cause Y if X values provide statistically significant informa-

ion about future values of Y . This is usually calculated by means of

nivariate autoregressions, and tested through t -tests and F-tests.

ote that here the term causality is used lato sensu , as Wiener’s

rinciple of observational causality [45] , upon which the GC test is

ased, should be strictly interpreted as an improvement of the pre-

ictive capacity [27] ; assessing true causal interactions ultimately

equire interventions [34] . 

One important requirement for obtaining reliable results with

he GC test is related to the stationarity of the data. Due to the nat-

ral evolution of any pandemic, �C and �D are not expected to be

tationary. To illustrate, let us consider a very simplified scenario,

n which the number of daily confirmed cases reaches a maximum

t some point in time t peak , and then decreases. This means that

C will have large values until t peak , and smaller values afterwards.

s a consequence, the result of the GC test applied on two time

eries of this type will be dominated by the difference in time be-

ween the two transition points. To solve this issue, we make the

ime series stationary by calculating the deviation with respect to

he expected value of the evolution of the time series: 

˜ C (t) = �C (t) − �C (t − 1) + �C(t + 1) 

2 

. (2)

In other words, � ˜ C is a time series indicating, at each time

oint t , how the evolution of the number of confirmed cases devi-

tes from the trend defined by the previous and the following days.

he same transformation is applied to �D to obtain � ˜ D . A graphi-

al example of the pre-processing process is reported in Fig. 1 , de-

icting the evolution of D , �D and 

˜ �D for one Spanish region. In

ll analyses reported below, the GC test is applied to � ˜ C and � ˜ D . 

.4. Functional networks reconstruction and topological metrics 

In order to obtain a representation of the spatial propagation

atterns of COVID-19, functional networks have been reconstructed

or the four countries previously listed. For each one of them, an

djacency matrix A of size n × n has been calculated, with n being

he number of regions. Each element a i,j is set to one if the GC test

etween the time series of regions i and j yields a statistically sig-

ificant result ( α = 0 . 01 , with a Šidák correction for multiple test-

ng), and zero otherwise. The resulting networks have then been

epresented using the Cytoscape software [40] , and their topologi-

al properties have been studied through the following metrics: 
• Link density . Fraction of active links, over the total number of

possible links in the network: 

l d = 

1 

n (n − 1) 

∑ 

i, j � = i 
a i, j . (3) 

The higher the link density, the more dense is the propagation

of the disease between the considered regions. 

• Maximum k out . The maximum out-degree is defined as the

number of outbound links of the node with the maximum

number of links coming out of it. A larger than expected k out 

implies that a node is mostly responsible for the propagation

of the disease, by acting like a hub. 

• Assortativity. Pearson correlation coefficient of the degrees of

nodes at either ends of the links of the network [31] . Positive

values are associated to assortative networks, in which nodes

tend to connect to their connectivity peers; on the contrary,

negative values are found in disassortative networks, where

nodes with low degree are more likely connected with highly

connected ones. 

• Transitivity . The transitivity, also known as the clustering coeffi-

cient , measures the presence of triangles in the network [30] . It

is defined as the relationship between the number of triangles

in the network (i.e. sets of three vertices with edges between

each pair of them) and the number of connected triples (i.e.

sets of three vertices where each vertex can be reached from

each other, directly or indirectly). A large number of triangles

implies that different regions are strongly inter-connected, with

feedbacks and amplification of the number of cases. 

• Efficiency . The efficiency of a network represents how easily in-

formation can move between its nodes [25] . It is defined as the

inverse of the harmonic mean of the distances between pairs if

nodes: 

E = 

1 

N(N − 1) 

∑ 

i � = j 

1 

d i, j 

, (4) 

d i,j being the distance between nodes i and j . A high efficiency

indicates that the network is especially well-suited to the prop-

agation of the disease, with a low number of bottlenecks that

could be used to stop it. 

• Information Content (IC). Metric assessing the presence of regu-

larities in the adjacency matrix of the network, i.e. of mesoscale
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Fig. 2. Analysis of the global relationship between number of confirmed cases and deaths. (Top left panel) Evolution of the p -value of the GC test between �C and �D , for 

the six considered countries, as a function of the lag τ between both time series. (Top right panel) Scatter plot of the number of deaths per 10 4 as a function of the value 

of τ minimising the p -value of the previous GC test. (Bottom panels) Scatter plots of �D as a function of �C , when the former is shifted τmin points forward in time. 
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structures. It is calculated as the amount of information en-

coded in the adjacency matrix, such that small values corre-

spond to regular topologies, and large values to random-like

structures [46,48] . Low IC values thus indicate the presence of

non-trivial structures, and can thus be used to confirm the sta-

tistical significance of the resulting network. 

3. Global disease evolution 

As an initial step towards the reconstruction of the local prop-

agation patterns of COVID-19, we here analyse its global dynamics.

Towards this aim, the top left panel of Fig. 2 depicts the evolution

of the p -value yielded by the Granger Causality test between �C̃ 

and � ˜ D , by country (see color legend in right panel) and as a func-

tion of the lag τ . As expected, all curves reach a minimum that is

always statistically significant (e.g. below α = 0 . 01 ), as clearly the

evolution of the number of death must be driven by the evolu-

tion of infected people. On the other hand, it is interesting to see

that the lags corresponding to such minima ( τmin ) are clustered

between 3 and 7 - the only exception being US, with τmin = 13 .

These numbers have to be understood in light of what currently

known about COVID-19, and especially about the survival time of

non-surviving patients, which is estimated to be around 14 - 16

days from the onset of symptoms and 3 - 5 days from hospital-

isation [36,37,41] . This thus seems to indicate that countries like
pain and Belgium mostly report “confirmed cases” as those be-

ng hospitalised; or, in other words, that few confirmatory tests are

erformed outside hospitals. 

τmin seems to be inversely correlated with the prevalence of the

isease, and specifically with the number of deaths per capita -

ee top right panel of Fig. 2 . This is confirmed by Table 1 , which

eports the time between the day with the maximum number of

eported new cases and the day with the higher number of deaths

or different countries. Once again, countries that are reported as

ositive examples of the management of the pandemic, as Ger-

any or South Korea, display larger values between peaks. These

esults thus seem to support the hypothesis that massive pop-

lation testing, and especially testing of people who do not re-

uire hospitalisation, is an important element in the control of the

preading [10,14,39,44] . 

In order to further validate the obtained τmin , and thus discard

hat they are only due to statistical fluctuations, the bottom panels

f Fig. 2 report scatter plots of �D as a function of �C , with the

ormer shifted τmin days ahead in time. In all cases points form a

traight line, more clear in the case of United Kingdom, Italy and

pain; and becoming fuzzy for extreme values of �C . 

From the point of view of this study, results of Fig. 2 and

able 1 yield two important conclusions. Firstly, they confirm that

he analysis of COVID-19 time series through causality metrics

an yield non-trivial information about how different countries are
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Fig. 3. Functional propagation networks for Portugal, Spain, Italy and England. Link’s thickness and color indicates the strength of the causality link (from yellow for the 

weakest, to red for the strongest). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Cases vs. death peaks. This table reports the approximate date of the day 

with most daily confirmed cases (second column) and with most deaths 

(third column) for different countries. The first six countries correspond 

to those that had a higher density of cases (see also Fig. 2 ; while the last 

three are examples of countries that have limited the propagation of the 

disease. 

Country Date of peak, Date of peak, Difference 

daily confirmed daily deaths 

Belgium April 10th April 12th 2 

Spain March 31st April 2nd 2 

United Kingdom April 5th April 9th 4 

Italy March 21st 27th March 6 

France March 31st April 6th 6 

US April 24th May 6th 12 

Switzerland March 23rd March 31st 8 

Germany March 28th April 16th 19 

South Korea March 1st March 23rd 22 
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anaging the pandemic, information that in this case was possible

o validate through more descriptive approaches. Secondly, that �C

s less reliable than �D , as the former is strongly influenced by na-

ional testing protocols. Due to this, the analyses presented in the

ext section will be based on the time series of the number of

eaths. 
. Local propagation patterns 

We then move to the analysis of local patterns of propagation,

sing four countries (i.e. Portugal, Spain, Italy and England) as test

ases. More in details, time series of the number of deaths in each

egion composing those countries have been processed, and the GC

est applied between pairs of them. Fig. 3 reports the resulting net-

orks, where only links being statistically significant are plotted

significance level of α = 0 . 01 , with a Šidák correction for multi-

le testing). At a simple glance it can be appreciated that the Por-

uguese network is qualitatively different, with a sparser and sim-

ler structure. This is further confirmed in Table 2 , reporting six

lassical topological metrics for the three networks. Spain and Italy

re characterised by a stronger connectivity, thus by a stronger

ropagation of the disease between different regions; and by a

arge transitivity (see Z-Score for a comparison with random equiv-

lent networks), i.e. by a larger than expected number of triangles

etween regions. Additionally, England displays a clear propagation

attern, in which most links depart from the region of London. 

Two additional conclusions can be drawn from the networks

f Fig. 3 . Firstly, islands (with the exception of Canary islands, in

pain) have been kept outside the propagation of the disease, or

ave very weak connections with the remainder of the country.

his is to be expected, as their nature allows a simpler implemen-

ation of isolation policies. Secondly, the region of Madrid, which



6 M. Zanin and D. Papo / Chaos, Solitons and Fractals 138 (2020) 109993 

Table 2 

Topological metrics of the four networks represented in Fig. 3 . Values in parenthesis indi- 

cates the corresponding Z-Score, calculated by comparing the obtained value of the topo- 

logical metric with what expected in an ensemble of random networks with the same num- 

ber of nodes and links. 

Metric Portugal Spain Italy England 

Link density 0.0952 0.155 0.199 0.0972 

Max. k out 2 (0.570) 7 (1.24) 9 (1.05) 6 (7.16) 

Assortativity -1 0.0419 (0.699) 0.0459 (1.02) -0.645 

Transitivity 0.0 (-0.273) 0.399 (7.89) 0.434 (11.4) 0.0333 (-0.269) 

Efficiency 0.107 (-0.457) 0.280 (-5.57) 0.380 (-13.3) 0.0972 (-1.78) 

IC 4.35 (-1.68) 73.8 (-8.49) 134.1 (-11.4) 4.69 (-2.82) 

Fig. 4. Evolution of the number of inter-regional links for each of the four countries here considered, when networks are created using data from rolling windows of 3 

weeks. 
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was the most important focus of COVID-19 in Spain, seems to have

not propagated the disease to other parts of the country; this may

be due to the strong isolation policies introduced by the Spanish

government. 

We finally study how functional networks can be used to mon-

itor the progression of the epidemics on a shorter temporal scale.

35 networks were created for each country, by considering over-

lapping time windows of three weeks, with a starting point sep-

arated by one day. Fig. 4 reports the evolution of the number of

links in each one of them. It can be appreciated that the evolution

has been heterogeneous. Both Portugal and England show a static

situation, with very few links appearing in an almost random fash-

ion. Italy had most of its functional links at the beginning, for then

reducing this number to almost zero. On the other hand, Spain dis-

plays a complex dynamics with multiple local maxima - see also

Fig. 5 for a graphical representation of Spain’s networks. 

These last time-varying results should be interpreted with cau-

tion, as they are affected by two factors. First, the use of shorter

time series implies a lower statistical significance of the results

yielded by the GC test. Even though the same α = 0 . 01 thresh-

old was used here, too short time series may introduce noise in

the resulting functional structure. To illustrate this point, the four

left panels of Fig. 6 report the evolution of the number of func-

tional links for Spain according to the number of days considered

in calculating the GC test. While the main trend is already visi-

ble with 15 days, some fine details are lost. The right panel of the

same figure also depicts the correlation between the evolution of

the number of links, calculated with 21 and n days, as a function

of n ; already for n = 16 the correlation drops below 0.5, suggest-

ing important information is lost. Second, weak connectivities that

may be detected using the complete time series may disappear

on shorter time windows, as they may not pass the significance
 t  
hreshold. This is probably the reason for the lack of links for Eng-

and in Fig. 4 , while propagation patterns clearly appear at a global

evel (see Fig. 3 ). 

. Discussion and conclusions 

In this contribution we presented a first test case and exam-

le of how functional relationships and networks can be used to

escribe the dynamics of an epidemic process, with a special fo-

us on the case of COVID-19. The starting point is represented by

ime series of macroscopic variables describing the evolution of the

isease, e.g. number of cases or deaths, in a geographic area of in-

erest. After a suitable pre-processing, information theory metrics

here, the Granger Causality) can be applied to understand how

hese time series are interconnected or causally related. 

Our results suggest that the functional approach allows extract-

ng information about the propagation of a disease, a process that

ould usually require micro-scale information, e.g. following the

ovements of individual patients and their interactions. When the

C is applied to the time series of confirmed cases and deaths, it

llows extracting aspects of public policies implemented by indi-

idual countries, specifically about when a case is confirmed. The

ime between confirmation and hospitalisation seems to be related

o the effectiveness of spreading control. GC can also be applied to

ime series representing the evolution of the disease in different

egions of the same country, yielding a network representation of

he interregional propagation patterns. When these functional net-

orks are made time-dependent, it is possible to detect trends and

rifts, allowing a first evaluation of the effectiveness of contain-

ent policies. 

The present study also highlights some limitations of the func-

ional approach. The main one is related to the data temporal res-
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Fig. 5. Functional networks of propagation for Spain, using data for five three-weeks-long time windows. 

Fig. 6. Information loss when considering short time series. The four left panels depict the evolution of the number of functional links for Spain according to the number of 

days considered in calculating the GC test - from left to right, top to bottom, 12, 15, 18 and 21. The right panel depicts the correlation between the evolution of the number 

of links for Spain, calculated with 21 and n days, as a function of n (the time window length). 
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b  
lution: the small number of points in each time series is a chal-

enge for methods such as GC, and precludes the use of other

etrics e.g. Transfer Entropy [42] . Furthermore, in the presence

f short time series, the dynamics of functional connectivity can

nly be analysed with low time resolution, as shown in Fig. 4 . This

rawback could be tackled in three ways. Firstly, longer time series

ay be studied in some specific case, e.g. contagious diseases that

re endemic to a region or that do not have a seasonal evolution

like AIDS). Secondly, higher resolution time series may be used

hen available, e.g. of the number of deaths per hour; yet this in-

ormation is seldom available, and it may represent an oversam-

ling of the dynamics. Finally, tailored metrics could be devised, in

ine with what now common in neuroscience [9] . 

In parallel to the temporal resolution of data, one must be

ware of the limitations of spatial resolution. The number of con-

rmed cases and deaths for some countries are relatively small,

nd hence the resulting time series can be quite noisy. This pre-

ludes the use of this method in very small countries or regions,
r at least results ought to be interpreted with caution. Still, the

esults here obtained for countries like Spain and Italy are quite

obust, as indicated by the very low p -values. 

Finally, the quality of data also plays an important role. Differ-

nt countries, or even different regions within a same country, may

ave different policies regarding testing procedures, data reporting

r regarding when a death is attributed to the disease or to other

omorbidities. These policies can also vary with time, such that ad-

ustments can be made at any point. These factors act like noise in

he analysis, lowering the confidence in the results. 

In synthesis, we believe that the adaptation of the paradigm of

unctional analysis, a standard method in neuroscience, could yield

n alternative and effective method for studying the dynamics of

pidemic processes. By only relying on macroscopic data, nowa-

ays published on a daily basis in most newspapers, this paradigm

s impervious to the incomplete or unreliable micro-scale data at

he basis of mobility-based models. At the same time, it is capa-

le of providing synthetic descriptions of the propagation patterns,



8 M. Zanin and D. Papo / Chaos, Solitons and Fractals 138 (2020) 109993 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which could be used to assess the effectiveness of containment

policies. In order to make this functional analysis effective and use-

ful, several methodological challenges will have to be overcome, as

here highlighted. Still, the potential gains justify future effort s on

this topic. 
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