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Introduction

Quandles are non associative algebraic structures which arise very naturally in
a lot of different areas of mathemathics. The most important probably are knot
theory, ([6], [9], [10] and [22]) and the study of the solution of the (set-theoretical)
Quantum Yang Baxter Equation (QYBE, [1], [14]) related to the classification of
pointed Hopf Algebras ([1], [18]).

Quandles are also an interesting variety arising in universal algebra, since its
axiomatization is given by very natural identities.

The main goal of the present work is to apply some tools of universal algebra and
elements of tame congruence theory ([19]) to quandles, since they provide a very
good example of an idempotent variety.

The core of this thesis is about extension theory of quandles, i.e., the description
of the properties of a quandle starting from the properties of its congruences and
the properties of its homomorphic images.

My work is a natural continuation of the work of Dr. Giuliano Bianco, who is a
former PhD student at the department of Mathematics and Computer Sciences of
the University of Ferrara. He was interested in the theory of quotient of quandles
and into classifying quandles of order p3 with p prime.

In the sequel we give a summary of the contents of this thesis.
Section 1 collects basic definitions, notations and known facts about universal

algebra. In particular we introduce the notion of congruence of an algebra, of Abelian,
strongly Abelian and central congruences (and algebras) and of Maltsev conditions.

The study of Maltsev conditions is one of the central topics in universal algebra,
in view of its relation to constraint satisfaction problems (CSPs).

Section 2 is about Left-Qasigroups (LQGs) and Quasigroups. In Section 2.3 we
introduce the notions of connected and homogeneous LQG and we define π0(X)
to be the set of the orbits of the action of the Left multiplication group over X
(denoted by LMlt(X) from now on), endowed with the projection LQG structure.
In Proposition 2.20 and Corollary 2.21 we show that a LQG X is connected if and
only if P-LQ2 ∉ H(X). The definition of π0(X) and these results were already known
for quandles ([13, Definition 2.28], [13, Proposition 2.30]) and we have extended them
for LQGs.

Section 3 collects some known facts about quandles with a particular focus on
homogeneous and connected quandles, which are the most studied and understood
classes of quandles ([1], [4], [14], [17], [20], [25] and [33] ).

Section 3.2 is about coset representation of homogeneous quandles (see Proposition
3.7) and in Section 3.3 we emphasize the role of the transvection group (in the
following Dis(X)) in the theory of connected quandles. In particular it provides
a minimal representation for connected quandles as has been proven in [20]. All
the results of Section 3 were already known or are minor modifications of existing
results.

Section 3.4 is about faithful quandles and collects some known facts about this
class of quandles. The only original contribution in this Section is given in Proposi-
tion 3.24, where we adopt a categorical viewpoint. We define the functor L from the
category of racks to the category of quandles and a natural transformation between
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UL and I (where U is the forgetful functor from quandles to racks and I is the
identity functor on racks).

Section 3.5 describes some interesting subclasses of the class of faithful quandles.
We give a characterization of these classes by using universal algebra and we discuss
the relations between them. These classes are:

(1) Latin quandles, defined as idempotent left-distributive quasigroups (already
known and studied in literature, see [16], [27]).

(2) Maltsev quandles, defined as quandles admitting a Maltsev term. This is a
class of algebras which can be defined in any variety (it was defined for the
first time in [24], which is the first paper showing a connection between the
congruence lattice of an algebra and the clones of the term operations). In
the case of quandles there is no literature about it.

(3) Taylor quandles, defined as quandles admitting a Taylor term. The class
of Taylor algebras arises very naturally in universal algebra, since it can be
defined in any variety as the class of algebras which satisfy a non-trivial
idempotent Maltsev condition ([26]).

(4) Strongly faithful quandles, defined as quandles such that any subquandle is
faithful. This class has been defined for the first time by the author.

Note that the class of Latin quandles is a variety.
The class of strongly faithful quandles has been characterized in Proposition 3.33

in which we denote by P-LQ2 the projection LQG of size 2.

Proposition (3.33). Let X be a quandle. Then the following are equivalent:

(1) X is strongly faithful;
(2) Fix(Lx) = {x} for every x ∈X;
(3) P-LQ2 ∉ S(X).

In the finite case, we have the following characterization of Taylor quandles in
Theorem 3.36.

Theorem (3.36). Let X be a finite quandle. Then the following are equivalent:

(1) X is a Taylor quandle;
(2) all the subquandles of X are connected.

So, finite Taylor algebras have a really nice and natural characterization in the
variety of quandles, since the class of quandles which has been studied deeper in the
literature is for sure the class of connected quandles. The relations between these
properties is the following

Latin ⇒ Maltsev ⇒ Taylor ⇒ strongly faithful ⇒ faithful

We also pointed out that the variety of Latin quandles is a proper subclass of the class
of Maltsev quandles and that Taylor quandles form a proper subclass of strongly
faithful quandles. This analysis yields to the following problems.

Problem. Give a characterization of Maltsev quandles.
Does the condition P2 ∉ S(X) have some characterization in universal algebra?

Section 4 investigates the classes of principal and affine quandles. These classes
correspond to quandles admitting a regular group of automorphisms (Proposition
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4.1). In particular connected principal quandles correspond to quandles with regular
transvection group (Proposition 4.2).

In Section 4.2 we prove that the subclasses of principal Latin quandles is a variety
(Theorem 4.8), and therefore an equational class. This is a new result which leads
to the following open problem.

Problem. Find a equational axiomatization for the variety of principal Latin quan-
dles.

In Section 4.3, we go back to the classes studied in Section 3.5, and we show that
under the assumption of principality, faithful and strongly faithful quandles coincide
(Proposition 4.11). If we add finiteness to the picture, we get that all the classes
defined above coincide (Proposition 4.14). In the affine case they also coincide with
the class of connected quandles (Proposition 4.15).

We also prove that the class of Taylor quandles coincides with the class of Latin
quandles in the affine case (Proposition 4.13). Therefore it coincides also with the
class of affine Taylor quandles. Hence we formulate the following question.

Question. Does the class of Taylor quandles and the class of Maltsev quandles
coincide?

We define extensions for LQGs in Section 5.1. This notion was already known for
quandles and we performe the same construction of [1] in this more general setting
and we reformulate some known results in this framework (Propositions 5.3 and 5.7).
An extension of a LQG X by a set S is a LQG (X × S, ⋅) such that the canonical
projection onto X is a morphism. The structure of (X × S, ⋅) is determined by the
structure of X and by a map

β ∶ X ×X × S Ð→ Sym(S)
since the multiplication is necessarily defined by

(x, s) ⋅ (y, s) = (xy, β(x, y, s)(t)).
This structure is denoted by X ×β S. Whenever you have a uniform congruence of
a LQG X (i.e. a congruence with all the blocks with the same cardinality), then X
is an extension of X/α, up to isomorphism (Proposition 5.5). Moreover in the class
of connected LQGs all the congruences are uniform and therefore, any LQG is an
extension of any of its factors.

In the variety of quandles, β has to satify some further conditions, called cocycle
condition (C) and quandle condition (Q), which reflect left-distributivity and idem-
potency. The maps satisfying (C) and (Q) are called dynamical cocycles and the set
of dynamical cocycles of X is denoted by Z2(X, S) (see Section 5.2).

In Section 5.3 we present the idea of non-Abelian Cohomology, which was already
defined in Section 2 of [1]. The same extension can be described by different cocycles.
Given two different cocycles, they are said to be cohomologous if the structure of the
correspondent extension are obtain just by different labelling of the elements belong-
ing to the same block. This condition define an equivalence relation on Z2(X, S),
therefore it is enough to consider the correspondent quotient. The quotient is called
the second Cohomology set of X and denoted by H2(X, S) (defined in 5.15).
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Section 5.4 introduces a particular family of extensions of a quandle X which
was studied indipendently and with different approaches in [1] and [13]. In [13] the
elements of this family are called coverings and they are defined as pairs (Y, ρ),
where Y is a quandle and ρ ∶ YÐ→X a surjective morphism, such that

ρ(x) = ρ(y) ⇒ Lx = Ly.
In [1] the family of constant cocycles is defined. Namely a cocycle β is constant if

β(x, y, s) = β(x, y, t), for every x, y ∈X and every s, t ∈ S,
i.e. β is defined by a map from X ×X to Sym(S). For this family of maps, cocycle
condition and quandle condition are expressed by (CC) and (CQ).

The subset of constant cocycles is denoted by Z2
c (X, S) and it is closed under

the relation to be cohomologous. Therefore the correspondent subset of the second
Cohomology set, is denoted by H2

c (X, S).
Note that constant cocycle can be defined as mapping β ∶ X ×X Ð→ Γ, where Γ

is an arbitrary group and all the definitions above still make sense.
We show that the the family of coverings of a connected quandle X and the family

of its extension by constant cocycles coincide. We also provide some examples of
quandle coverings in the class of homogeneous quandles (Proposition 5.25).

In the variety of quandles there is a strong interplay between normal subgroups
of the transvection group which are normal in the left multiplications group and
congruences (see Lemma 4.2 of [4]). Section 6 is a further development of the
subject of Section 4 of [4] and we claim that the results of this Section are brand
new.

As a new contribution in Section 6.1, we show that there is a Galois connection
between the congruence lattice of a quandle and the congruence lattice of subgroup of
the transvection group which are normal in the left multiplication group. For every
congruence α of a quandle X we define the subgroup Disα(X) as the subgroups
generated by LxL−1

y where x α y. This definition leads to the following Theorem.

Theorem (6.9). Let X be a quandle and [{1},Dis(X)] be the interval between
{1} and Dis(X) in the lattice of the normal subgroups of LMlt(X). Then the
assignment

Con(X) Ð→ [{1},Dis(X)]
α ↦ Disα(X)

αN ↤ N

is a Galois connection.

Moreover, every normal subgroup N ∈ [{1},Dis(X)] sits in between DisαN (X)
and DisαN (X). This condition together with the Galois connection is a powerful tool
to infer informations about the congruence lattice of a quandle when the structure
of the transvection group is known and vice versa. In order to exploit this interplay
it is necessary to understand which is the relation between the subgroups Disα(X)
and Disα(X).

Problem. Under which assumption on X and α we have that Disα(X) =Disα(X)?
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In Section 6.2 we give a characterization of Abelian, central and strongly Abelian
congruences by group-theoretical properties of the correspondent subgroups of the
transvection group. This result suggests that the role of this family of subgroups is
very important. Moreover, we find that the definition of covering correspond to the
universal algebraic concept of strong Abelianness.

Proposition (6.16). Let X be a quandle and α be its congruence. The following
are equivalent:

(1) α is Abelian;
(2) Disα(X) is Abelian and α-semiregular.

Proposition (6.19). Let X be a quandle and α its be congruence. Then the following
are equivalent:

(1) α is central;
(2) Disα(X) is central in Dis(X) and Dis(X) is α-semiregular.

Proposition (6.20). Let X be a quandle and α be its congruence. The following
are equivalent:

(1) α is strongly Abelian;
(2) Disα(X) = 1;
(3) (X, πα) is a covering of X/α.

In Section 6.3 we develop the ideas of Section 6.2 in connection to Abelian exten-
sions. This family of extensions was already defined in [10]. In [1] and [6] the same
construction was carried out under the name of quandle modules. We point out that
this construction is a special case of a universal algebraic concept, i.e. we prove
that Abelian congruences with connected blocks correspond to Abelian extensions
(Proposition 6.30).

The largest central congruence of an algebra is said to be the center of the algebra.
Thanks to Proposition 6.19, the center of a quandle is well understood (Corollary
6.34).

Solvable and nilpotent algebras are important subclasses of every variety. In
Section 6.4 we show that solvable (nilpotent) quandles have solvable (nilpotent)
transvection group (Propositions 6.36 and 6.37). Moreover solvable (nilpotent) Tay-
lor quandles are completely characterized by the solvability (nilpotency) of their
transvection groups (Theorems 7.14 and 6.40).

Since the class of Taylor quandles has a natural characterization and it behaves
nicely with respect to solvability and nilpotency, one can be interested in their
classification.

Problem. Classify all the finite Taylor quandles (up to some size).

The main future direction of research we want to follow is to understand better the
features of the Galois correspondence between congruences and normal subgroups,
and the characterization of Abelian and central congruences in order to solve some
open problems as the following ones.

Problem. Characterize connected quandles of size pq with p and q prime.
Is any connected quandle of order 3p Latin?
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Finally in Section 6.5 we characterize the connected extensions of a given quandle
which preserve the transvection group (Proposition 6.42).

The original result of Section 7 is to show that no finite quandle satisfies meet-
semistributivity. This is an interesting property of the congruence lattice of an
algebra than can be characterized by a Maltsev condition ([2]).

First we show some general features of quandles with doubly transitive automor-
phism group (Section 7.1) and then we characterize minimal quandles (i.e. quandles
with no proper subquandles) among the simple ones by several different conditions
in Theorem 7.18 (references about simple and minimal quandles can be find in [22],
[1] and [16]). This characterization leads to Theorem 7.19.

Section 8 is dedicated to define a combinatorial approach to the computation of
the second cohomology set of Latin quandles. This is a brand new approach to
this problem and our mail goal is to use it to extend Lemma 5.1 of [17], i.e., to
provide some more examples of quandles with trivial cohomology, i.e. satisfying
H2
c (X,Γ) = {1} for every group Γ (where 1 denotes the constant map (x, y) ↦ 1 for

every x, y ∈X).
First we define a special representative for each class of H2

c (X,Γ) with some
special properties, called normalized cocycle. Namely, given an element u ∈ X, the
normalization condition with respect to u is given by

β(x,u) = 1, for every x ∈X.

Showing that a quandle has trivial cohomology is equivalent to show that any nor-
malized cocycle is trivial (Proposition 8.7).

It turns out that a u-normalized cocycle is invariant under the diagonal action of
Lu (Proposition 8.9) and with respect to the action of the permutations f and ω
acting on X ×X (defined as in Propositions 8.10 and 8.11).

Section 8.3 is a technical Section about the properties of this action in general.
The actions of f and ω on X ×X induce an action on the set of the orbits with
respect to the diagonal action of Lu.

In Section 9 we discuss several particular cases. In Section 9.1 we restrict to
principal Latin quandles. In definition 9.7 we define a condition for the length of
the orbits of f , called condition (F), namely

of all the (non-trivial) orbits of the action under f have size ∣X ∣ − 1.

We came up to it by virtue of the reasoning in Remark 9.6, which shows that it is
not arbitrary as it may seem at a first glance.

This condition turns out to be sufficient for a non-affine principal Latin quandle
to have trivial cohomology (Proposition 9.8).

Section 9.2 collects some reformulation of the results of 9.1 for finite affine con-
nected quandles. Moreover in the affine case we can compute explicitly the length of
the orbits of f and ω (Propositions 9.12 and 9.13) and we can characterize quandles
satisfying condition (F) (Proposition 9.18).

Then we apply the previous results to the class of affine quandles over cyclic groups
and to the family of quandles with doubly transitive left multiplication group (for
which there exists a characterization in [33]). It turns out that all quandles belonging
to these families except those of size 4 have trivial cohomology.
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Theorem (9.26). Let X = Q(Zm, λn) be a connected quandle. Then X has trivial
cohomology.

Theorem (9.31). Let X = Q(Znp , α) be a doubly transitive quandle with p ≥ 3 and
n > 1. Then X has trivial cohomology.

Theorem (9.32). Let X = Q(Zn2 , α) be a doubly transitive quandle with n ≠ 2. Then
X has trivial cohomology.

The previous theorems show that the condition (F) is sufficient to have trivial
cohomology for principal Latin quandles with size different than 4.

Corollary (9.34). Let X be a finite principal Latin quandle with ∣X ∣ ≠ 4. If X
satisfies condition (F) then it has trivial cohomology.

We claim that this combinatoral approach has some potential and that may be
used to characterize Latin quandles with trivial cohomology.

Problem. Give a characterization of Latin quandles with trivial cohomology.
Is there any combinatorial characterization of this class in terms of the properties

of the actions of f and ω?

In Section 10 we briefly present the categorical approach to coverings carried
out by Eisermann in [13]. His approach relies on the properties of the Adjoint
group (see [13] and [18]) and points out the relationship between coverings and
central extensions of groups. Section 10.1 collects the main results from the paper
of Eisermann and we just observe that in the finite case it is enough to deal with a
proper finite quotient of the Adjoint group.

As new contributions, in Section 10.2 we show a characterization of simply con-
nected quandles (i.e. quandles such that H2

c (X, S) = {1} for every S in the termi-
nology of Eisermann) as a subclass of principal quandles (Theorem 10.17) and in
Section 10.3 we show that the functor L preserves coverings (Corollary 10.24).

Finally, Section 11 collects all the questions and open problems we have already
stated above with some more details.

In the development of the present work we used the software GAP in order to
produce specific examples or non-examples of quandles.
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Notations

In the present work the following notations will be used. If G is a group acting
on a set X, the stabilizer of a point x under this action will be denoted by Gx and
its orbit by OG(x). The centralizer of an element g ∈ G will be denoted by CG(g)
and the automorphism group of G by Aut(G). The unit element of a group and the
identity mapping will be denoted by 1.

The nth element of the lower central series will be denoted by Gn, and the nth

element of the derived series by G(n). The order of an element g ∈ G will be denoted
by o(g).

Groups defined by generators and relations are denoted by ⟨X ∣ R⟩ and the sur-
jective morphism from the free group generated by X and ⟨X ∣ R⟩ by πR.

The least common multiple of a and b will be denoted by L.C.M.{a, b} and the
greatest common divisor of a and b by G.C.D.{a, b}.

Further notations will be introducted whenever needed.

1. Universal Algebra

1.1. Basics and Definitions. There are many definitions of what is an algebra
structure on a set X. The most natural way is to define it as a set endowed with
a set of operations. In the sequel the universal algebraic viewpoint is adopted and
in this Section some basics notions are summarized. For further references about
universal algebra, see [3] and [5].

Definition 1.1. An n-ary operation f on a set X, is a function

f ∶Xn Ð→X

The number n is called the arity of f . An algebra is a pair (X,F ) where X is a set
and F is a set of operations together with a map ρ ∶ F Ð→ N, which assigns to every
f ∈ F its arity. The map ρ is called the type or signature of X.

The algebra (X,F ) will be denoted by X and the underlying set just by X.

Example 1.2. A set X is just an algebra with no operation. The one element set
is called trivial algebra.

Any algebra has projection operation defined by setting

πni ∶Xn Ð→X, (x1, . . . , xi, . . . , nn) ↦ xi

for every n ∈ N and every i ≤ n. An algebra on a set X with only projection operation
is called projection algebra and denoted P∣X ∣.

A subset Y ⊆ X closed under every operation is called subuniverse of X. This
means

y1, . . . , yn ∈ Y Ô⇒ f(y1, . . . , yn) ∈ Y
for every n-ary operation f ∈ F . A subalgebra of X is a pair (Y,FY ) where Y is a
subuniverse and FY denote the set of the restrictions of the elements of F to Y .

Definition 1.3. Let X be an algebra and S a subset of X. Then the smallest
subalgebra containing X is called the subalgebra generated by S and denoted by
Sg(S).
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Note that 0-ary operations are allowed, and they are constant mappings. An
algebra with a finite number of operations is usually denoted by (X,f1, . . . , fn) and
its type by (ρ(f1), . . . , ρ(fn)).

For instance a group is an algebra (G, ⋅, −1,1) of type (2,1,0), a monoid is an
algebra (M, ⋅,1) of type (2,0) and so on.

The elements of F are usually called basic operations. Whenever it makes sense,
they can be composed as functions.

Definition 1.4. [5, Definition 10.1] The set of term operations of the algebra X
is the smallest set T (X) such that it contains X and 0-ary operations on X and
for every f ∈ F an n-ary basic operation and every t1, . . . , tn ∈ T (X), we have
f(t1, . . . , tn) ∈ T (X).

A term operation is then an arbitrary finite well defined composition of basic
operations and therefore it is a function

t ∶Xn Ð→X

where n is its arity. Two n-ary term operations t and s are the same if and only if

t(x1, . . . , xn) = s(x1, . . . , xn)
for every x1, . . . , xn ∈ X, or shortly t ≈ s. The subalgebra generated by a subset is
obtained by applying term operations to tuples of element of the subset.

Fact 1.5. Let X be an algebra and Y ⊆X. Then

Sg(Y ) = {t(y1, . . . , yn), yi ∈ Y for every 1 ≤ i ≤ n, t ∈ T (X)}

In order to compare algebras of the same type the notion of language is needed. It
is nothing but a labelling of basic operations which allows to identify corresponding
operations of different algebras of the same type.

Definition 1.6. A language is a pair (L,ar), where L is a set of symbols, ar is a
map from L to N. An algebra in a given language L is an algebra X = (X,F ) of
type ρ, together with a bijection

LÐ→ F, λ↦ fX
λ

such that ar(λ) = ρ(fX
λ ). The symbol λ is called n-ary symbol.

This is essential in order to define morphisms between two algebras of the same
type.

Definition 1.7. Let X and Y be algebras of the same type in a given language L.
A map φ ∶X Ð→ Y is a algebra morphism if

φ(fX
λ (x1, . . . , xn)) = fY

λ (φ(x1), . . . φ(xn))
for every n-ary symbol λ ∈ L and every x1, . . . , xn ∈ X. If φ is bijective then it is
called isomorphism.

The image of an algebra morphism is a subalgebra of the codomain and it is called
homomorphic image of X.
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It is easy to verify that invertible morphisms of algebra from X to X form a
group under composition. They are called automorphisms and the group is denoted
by Aut(X).

Let {Xi, i ∈ I} be a family of algebras of a given type. The cartesian product
of the underlying sets of the family has a natural structure of algebra, given by
operations defined component-wise. An element of the cartesian product will be
denoted by (xi) and its j-th components by xj.

Definition 1.8. Let {Xi, i ∈ I} a family of algebras of a given type ρ, in a language
L. For every n-ary symbol λ ∈ L, define

(fλ((x1
i ), . . . , (xni )))j = f

Xj

λ (x1
j , . . . , x

n
j )

for every j ∈ I and every (xki ) ∈ ∏i∈IXi. Then ∏i∈I Xi is an algebra of type ρ and it
is called the product of the family {Xi, i ∈ I}.

Some classes of algebras play a central role in universal algebra. They are defined
as the classes closed with respect to the class operators H,S and P.

Definition 1.9. Let K be a class of algebras of a given type. The class operators
H,S and P are defined by setting:

(a) X ∈ S(K) if X is isomorphic to a subalgebra of some algebra K ∈ K;
(b) X ∈ H(K) if X is a homomorphic image of some algebra K ∈ K;
(a) X ∈ P(K) if X is isomorphic to a product of a family of algebras of K;

Definition 1.10. A class of algebra of a given type K is a variety if and only if

H(K) = S(K) = P(K) = K.
Let K be a class of algebras of a given type. The smallest variety containing K is
called variety generated by K and it will be denoted by V(K).

Classes of algebras of the same type are often identified by a set of identities in-
volving term operations (axioms). This turns out to be (one of) the characterizations
of varierties.

Theorem 1.11. A class of all algebras of a given type ρ is a variety if and only
if it is the class of algebras of type ρ satisfying a certain set of identities for term
operations.

For instance the variety of groups is given by all algebras (G, ⋅,−1 ,1) of type
(2,1,0), satisfying

x ⋅ (y ⋅ z) ≈ (x ⋅ y) ⋅ z
x ⋅ 1 ≈ 1 ⋅ x ≈ x

x ⋅ x−1 ≈ x−1 ⋅ x ≈ 1

Remark 1.12. Any variety of algebras of a given type and its algebra morphisms
form a category.

For this reason some categorical notions and constructions will be used in the
sequel for sake of convenience.
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1.2. Congruences. A congruence of an algebra X is an equivalence relation which
respects the algebra structure. Let α be an equivalence relation on X, an α-related
pair of element x, y ∈X will be denoted by x α y and given x̄ and ȳ n-tuples, x̄ α ȳ
means xi α yi for every 1 ≤ i ≤ n. The class of x will be denoted by [x]α (or simply
by [x]). Classes are called blocks.

Definition 1.13. Let X be an algebra. An equivalence relation α on X is a
congruence if

(1) x̄ α ȳ Ô⇒ t(x1, . . . , xn) α t(y1, . . . , yn)

for every n-ary term operation t. A congruence is called uniform if all the blocks
have the same cardinality. The set of all congruences of an algebra X will be denoted
by Con(X).

Obviously it is enough to check the implication (1) just for basic operations. The
next is a very well know fact.

Fact 1.14. The poset (Con(X),⊆) is a bounded algebraic lattice.

In the sequel the biggest congruence, namely X ×X, will be denoted by 1X, the
smallest one, namely {(x,x), x ∈ X}, by 0X and the set {γ ∈ Con(X), α ≤ γ ≤ β}
by [α,β].

The quotient of X with respect to a congruence has a natural structure of algebra.
This is uniquely determined by claiming that the canonical projection is an algebra
morphism.

Lemma 1.15. [5, Theorem 6.10] Let α be a congruence of the algebra X in a given
language L. Then

(fX/α
λ )([x1]α, . . . , [xn]α) = [fX

λ (x1, . . . , xn)]α
is well defined for every n-ary symbol λ ∈ L. Then X/α, is an algebra of the same
type of X and

πα ∶XÐ→X/α, xÐ→ [x]α
is an algebra morphism.

The following Proposition shows another very well known fact about congruences.

Proposition 1.16. Let X be an algebra and α,β be its congruences. Then the
following are equivalent:

(1) α ≤ β;
(2) there exists a unique surjective morphism π such that the following diagram

is commutative

X
πβ //

πα

��

X/β

X/α

π

77 .
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Proof. The map π has to be necessarily defined as follows

π([x]α) = π(πα(x)) = πβ(x) = [x]β
This map is well defined if and only α ≤ β. Let λ ∈ L be a n-ary symbol, then

π((fX/α
λ ([x1]α, . . . , [xn]α)) = π(πα(fX

λ (x1, . . . , xn)) =
= πβ(fX

λ (x1, . . . , xn)) =
= f

X/β
λ ([x1]β, . . . , [xn]β) =

= f
X/β
λ (π([x1]α), . . . , π([xn]α))

Therefore, π is a morphism. �

Algebras defined as in Lemma 1.15 are usually called factor algebras. It turns
out that, up to isomorphism, factor algebras are all the homomorphic images of
X. Hence, there is a one to one correspondence between the set of congruences
Con(X) and the set of isomorphism classes of homomorphic images of X, denoted
by H(X)/ ∼.

Proposition 1.17. [5, Theorem 6.12] Let X be an algebra and Y its homomorphic
image under the morphism φ. Then ker(φ) = {(x, y) ∈ X ×X, f(x) = f(y)} is a
congruence and Y ≃X/ker(φ).

Corollary 1.18. Let X be an algebra. Then

Con(X) ←→ H(X)/ ∼
α ↦ [X/α]

ker(φ) ↤ [Im(φ)]
is a bijection.

In some cases congruences correspond to subnormal objects, as for groups and
modules, but it is just a special feature of some varieties.

The congruence lattice of a factor algebra X/α is determined by the congruence
lattice of X.

Lemma 1.19. [5, Lemma 6.14] Let X be an algebra and α ≤ β be its congruences.
The relation β/α defined by setting

[x]α β/α [y]α ⇐⇒ x β y

is a congruence of X/α.

The following theorem is called the corrispondence theorem.

Proposition 1.20. [5, Theorem 6.20] Let X be an algebra and α ≤ β be its con-
gruences. Then

[α,1X] Ð→ Con(X/α), β ↦ β/α
is a lattice isomorphism.

As for normal subgroups of a group, congruences can be Abelian and central.

Definition 1.21. A congruence α of an algebra X is called



16

(a) Abelian if, for every term t, x α y, ū α v̄,

(2) t(x, ū) = t(x, v̄) ⇐⇒ t(y, ū) = t(y, v̄)
(b) central if, for every term t, x α y, ui, vi ∈X,

(3) t(x, ū) = t(x, v̄) ⇐⇒ t(y, ū) = t(y, v̄)
(c) strongly Abelian if, for every term t, x α y, ū α v̄ α w̄,

(4) t(x, ū) = t(y, v̄) Ô⇒ t(x, w̄) = t(y, w̄)
An algebra is said to be

(d) Abelian if 1X is Abelian;
(e) strongly Abelian if 1X is strongly Abelian.

Remark 1.22. It is enough to check condition 2, 3 and 4 just for certain type of
terms operations. A term operation t is called slim with respect to a variable if there
is only one occurrence of it in t, if this occurrence is in the lowest level of t, and if
every node of t has at most one branch of length greater than 1.

By Lemma 4.1 of [28], α is Abelian (central, strongly Abelian) if and only if
formula 2 (3, 4) holds for every slim term operation with respect to the first variable.

Both centrality and strongly Abelianness are stronger than Abelianness.

Lemma 1.23. Let X be an algebra and α be its congruence.

(i) If α is central, then it is Abelian.
(ii) If α is strongly Abelian then it is Abelian.

Proof. Let assume that x α y, ū α v̄ and t(x, ū) = t(x, v̄) for some n-ary term.
(i) By centrality, t(y, ū) = t(y, v̄) for every ū, v̄ ∈ Xn−1. So it holds in particular

whenever ū α v̄.
(ii) It follows by Proposition 3.11 of [19]. �

The following Lemma will be useful in the sequel.

Lemma 1.24. Let α ≤ β ≤ γ be congruences of an algebra X.

(i) γ/β is Abelian if and only if (γ/α)/(β/α) is Abelian.
(ii) γ/β is central if and only if (γ/α)/(β/α) is central.
(iii) γ/β is strongly Abelian if and only if (γ/α)/(β/α) is strongly Abelian.

Proof. Note that t([x]α,[u]α) = [t(x, ū)]α and that

[t(x, ū)]α β/α [t(x, v̄)]α ⇐⇒ t(x, ū) β t(x, v̄)
(i) Let ū γ v̄ and x γ y. Abelianness of γ/β, given by the condition

t(x, ū) β t(x, v̄), ⇐⇒ t(y, ū) β t(y, v̄)
is therefore equivalent to condition

t([x]α,[u]α) β/α t([x]α,[v]α) ⇐⇒ t([y]α,[u]α) β/α t([y]α,[v]α)
which states Abelianness of (γ/α)/(β/α).

(ii) - (iii) The very same argument applies. �
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1.3. Maltsev Conditions. A strong Maltsev condition S consists of a finite set of
function symbols {fi, i ∈ I} of various arities along with a finite set of equations Σ,
involving terms over the fi. A Maltsev condition is said do be trivial if any algebra
satisfies it.

A Maltsev condition is said to be idempotent if it involves idempotent terms, i.e.,
terms satisfying

t(x, . . . , x) ≈ x
For instance, some properties of the congruence lattice of an algebra X are defineable
by strong Maltsev conditions.

Theorem 1.25. [24] Let V be a variety algebra. Then the following are equivalent:

(1) αβ = βα for every α,β ∈ Con(X) and every X ∈ V;
(2) there exists an idempotent ternary term m, such that

m(x, y, y) ≈m(y, y, x) ≈ x
called Maltsev term.

Algebras satisfying a non trivial idempotent Maltsev condition have a Taylor term,
defined as follows.

Definition 1.26. [2, Definition 1.2.2] An n-ary idempotent term t is a Taylor term
if, for every coordinate i ≤ n, t satisfies an identity of the form

t(x1, ..., xn) ≈ t(y1, ..., yn),
where x1, ..., xn, y1, ..., yn ∈ {x, y} and xi = x, yi = y.

An algebra with a Taylor term is called Taylor algebra. If it has a Maltsev term,
then it is called Maltsev algebra.

Note that if X is Taylor (Maltsev) algebra, then Y is Taylor (Maltsev) for every
Y ∈ V(X). More generally if X satisfies any Maltsev condition, then any algebra in
V(X) does.

Some strong Maltsev conditions have been characterized in [2] for finite idempo-
tent algebras.

Theorem 1.27. [2, Theorem 1.1] Let X be a finite idempotent algebra. Then the
following are equivalent:

(1) X has a Taylor term;
(2) P2 ∉ HS(X).

The class of Taylor algebras in a variety contains all algebras satisfying some non
trivial idempotent Maltsev condition.

Corollary 1.28. [19, Lemma 9.4] Let X be a finite idempotent algebra satisfying
a non trivial idempotent Maltsev condition. Then X has a Taylor term.

Proof. Assume that P2 ∈ HS(X). Then P2 satisfies the same non trivial Maltsev
condition. Therefore, it is given by identities involving just projection operations,
hence it is trivial. �

Another property which is defineable by a strong Maltsev condition is meet-
semidistributivity.
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Definition 1.29. Let X be an algebra. Then X satisfies the meet-semidistributivity
property (SD(∧)) if

α ∧ β = γ ∧ β Ô⇒ (α ∨ γ) ∧ β = α ∧ β
for every α,β, γ ∈ Con(X). A variety V satisfies SD(∧) if every algebra in V does.

This property is characterized by the following Proposition which shows that it is
a strong Maltsev condition.

Proposition 1.30. Let X be a finite idempotent algebra. Then the following are
equivalent:

(1) V(X) satisfies SD(∧);
(2) V has an n-ary term t which, for every i ≤ n, satisfies an identity

t(xi,1, xi,2, . . . , xi,n) ≈ t(yi,1, yi,2, . . . , yi,n)
where (xi,j) and (yi,j) are {x, y}-matrices such that xi,j = yi,j for every i ≠ j,
and xi,i = x, yi,i = y for every i;

(3) HS(X) does not contain any simple Abelian algebra.

The equivalence between (1) and (2) follows by Theorem 1.3 of [2] and the equiva-
lence between (1) and (2) follows by the characterization of a meet-semidistributive
variety ([19, Theorem 9.10]) by virtue of Proposition 3.1 of [31].

2. Left-Qasigroupss and Quasigroups

2.1. Left-Quasigroups. The variety of Quandles is a variety of algebras of type
(2,2) which is contained in the variety of Left-Qasigroups (LQGs). Some of the
results shown in this thesis will be developed in this bigger variety. Dually, quandles
can be defined as Right-quasigroups (RQGs), as often happens in the literature. All
the following statements about LQGs have a dual version holding for RQGs.

There are many equivalent ways to define LQGs. We start with a universal
algebraic definition.

Definition 2.1. Let X be a set

(a) A LQG (LQG) is an algebra X = (X, ⋅, /) of type (2,2) such that

(5) x ⋅ (x/y) ≈ y, x/(x ⋅ y) ≈ y
(b) A Right-quasigroup (RQG) is an algebra X = (X, ⋅, /) of type (2,2) such that

(6) (y ⋅ x)/x ≈ y, (y/x) ⋅ x ≈ y

The operation ⋅ is called multiplication, /, / respectively left and right division.

Remark 2.2. Equation (5) is equivalent to have unique solution to the equation

a ⋅ x = b
for every a, b ∈X. This property is called unique left-division.

Another equivalent way to characterize LQGs is claiming that left multiplications
are bijections.
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Proposition 2.3. Let X = (X, ⋅, /) be an algebra of type (2,2). Then the following
are equivalent:

(1) X is a LQG;
(2) X has the unique left-division property;
(3) the map

Lx ∶X Ð→X, y ↦ x ⋅ y
is bijective for every x ∈X.

The map Lx is called left multiplication by x. Note that L−1
x (y) = x/y for every

x, y ∈X and in order to define a LQG structure on X it is enough to specify the set
of left multiplications.

Example 2.4. (a) Let X be a set. Then P-LQ
∣X ∣

= (X,π2
2) is a LQG, where

xy = y for every x, y ∈X. It will be called projection LQG.
(b) Let X be a set and L ∶X Ð→ Sym(X) be any map. Then X = (X, ⋅, /) where

x ⋅ y = L(x)(y), x/y = L(x)−1(y)
is a LQG.

Notation 2.5. In the sequel the multiplication will be denoted just by juxtaposition.
In order to avoid the use of parenthesis the following notation will be used

x(yz) ≈ x ⋅ yz
x ⋅ y/z ≈ x(y/z)

(xy)/(zu) ≈ xy/zu
Let us introduce some interesting subclasses of LQGs.

Definition 2.6. A LQG X is called

(a) left-distributive if
x ⋅ yz ≈ xy ⋅ xz

(b) right-distributive if
xy ⋅ z ≈ xz ⋅ yz

(c) distributive if it is both left and right-distributive;
(d) idempotent if

x ⋅ x ≈ x
(e) medial if

xy ⋅ zt ≈ xz ⋅ yt
(e) involutory if

x ⋅ xy ≈ y
All these classes are subvarieties of the variety of LQGs, since they are defined by

term identities.
Item (3) of Proposition 2.3, allows to define a subgroup of Sym(X) by using the

left multiplications.

Definition 2.7. Let X be a LQG. The group LMlt(X) = ⟨Lx, x ∈X⟩ is called the
left multiplication group of X.
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Note that X is left-distributive if and only if all the left multiplications are auto-
morphisms. It follows by the following very well known fact.

Fact 2.8. Let X be a LQG. Then α ∈ Aut(X) if and only if

Lα(x) = αLxα−1

for every x ∈X.

Lemma 2.9. A LQG X is left-distributive if and only if LMlt(X) is a normal
subgroup of Aut(X).

Proof. By Fact 2.8, Lx ∈ Aut(X) if and only if Lxy = LxLyL−1
x for every y ∈X. This

identity is equivalent to have
xy ⋅ xz = x ⋅ yz

for every x, y, z ∈X, which is the definition of left-distributivity.
Let α ∈ Aut(X), then Lα(x) = αLxα−1 for every x ∈ X, therefore LMlt(X) is a

normal subgroup of Aut(X). �

Corollary 2.10. Let X be a left-distributive LQG. Then {Lx, x ∈ X} is a union
of conjugacy classes in Aut(X).

In the next Lemma we show that a surjective morphisms of LQGs induces a map
between the respective left multiplication groups. This construction was already
known in the quandle setting ([4, Theorem 1.27]), and it can be easily extended to
LQGs.

Lemma 2.11. Let X be a LQG and α be its congruence. Then the mapping

π∗α ∶ LMlt(X) Ð→ LMlt(X/α), La1x1 . . . L
an
xn ↦ La1

[x1]
. . . Lan

[xn]

is a surjective group morphism.

Proof. If the map is well defined then the claim follows by definition.
Let assume that La1x1 . . . L

an
xn = Lb1x′1 . . . L

bm
x′m

. Then

[La1x1 . . . Lanxn(y)] = [Lb1x′1 . . . L
bm
x′m

(y)]

La1
[x1]

. . . Lan
[xn]

[y] = Lb1
[x′1]

. . . Lbm
[x′m]

[y]

for every [y] ∈ X/α. Therefore, the map is well defined. �

2.2. Quasigroups. Quasigroup are algebras which have a structure of LQG and of
RQG at the same time.

Definition 2.12. Let X be a set. A Quasigroup (QG) is an algebra X = (X, ⋅, /, /)
of type (2,2,2) such that (X, ⋅, /) is a LQG and (X, ⋅, /) is a RQG.

A characterization of quasigroups follows by Proposition 2.3.

Proposition 2.13. Let X = (X, ⋅, /, /) be an algebra of type (2,2,2). The following
are equivalent:

(1) X is a quasigroup;
(2) X has the unique left-division and the unique right-division properties;
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(3) the maps defined by setting

Lx ∶X Ð→X, y ↦ xy

Rx ∶X Ð→X, y ↦ yx

are bijections for every x ∈X.

Finite quasigroups arise from well known combinatorial objects, called Latin
squares.

Fact 2.14. A finite algebra X = (X, ⋅, /, /) of type (2,2,2) is a quasigroup if and
only if the table of ⋅ is a Latin square.

There is a set of permutations that can be defined for any quasigroup X. These
maps are defined both in [28] and [12] and we denote them as in [28].

Definition 2.15. [12, Section 1] Let X be a finite quasigroup. Let x ∈ X, Then
the map Mx defined by setting

Mx ∶X →X, y ↦ L−1
y (x) = y/x

is called right middle translation.

Remark 2.16. It is easy to see that the map Mx is a permutation. Its inverse is
given by

M−1
x ∶X →X, y ↦ R−1

y (x) = y/x
and it is called left middle translation (see Proposition 1.1 of [12]).

Proposition 2.17. [12, Proposition 2.3] Let X be a finite quasigroup. Then the
map MxM−1

y has no fixed points whenever x ≠ y.

2.3. Homogeneous and Connected LQGs. Any LQG X partitions in the dis-
joint union of the orbits under the natural action of Aut(X) or of LMlt(X). The
orbits under LMlt(X) are subalgebras of X and in order to describe the structure
of X we need to study the structure of these subalgebras and the way they act one
on each other. For this reason a good starting point is to study LQGs for which this
actions is transitive.

The original contribution of this Section is to extend Proposition 2.20, already
known for quandles, to LQGs, and to give an universal algebraic characterization of
connected LQGs (Corollary 2.21).

Definition 2.18. Let X be a LQG. Then

(a) it is homogeneous if Aut(X) acts transitively;
(b) it is connected if LMlt(X) acts transitively;
(c) the connected component of x is the orbit of x under the action of LMlt(X).

The orbits with respect to these two groups can be very different. Let P-LQn be
the projection LQG of size n, then Aut(P-LQn) = Sym(n) and LMlt(P-LQn) =
{1}. Hence, it is homogeneous but totally disconnected. Examples of connected
LQGs come from quasigroups.

Lemma 2.19. Let X = (X, ⋅, /, /) be a quasigroup. Then XL = (X, ⋅, /) is a con-
nected LQG.
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Proof. Let x, y ∈ X. Then there exists a unique z ∈ X such that y = Rx(z) = Lz(x),
since Rx is a bijection for every x ∈X. Therefore, X is connected. �

The set of the connected components endowed with the projection LQG structure
will be denoteby by π0(X). The map π0 which assigns to every element x its
connected component is a morphism. Indeed,

π0(xy) = π0(y) = π0(x) ⋅ π0(y)
π0(x/y) = π0(y) = π0(x)/π0(y)

Therefore, π0(X) ≃ X/ker(π0). An analogous categorical construction was already
known in Proposition 2.30 of [13] for quandles, but left-distributivity is not necessary.

The congruence ker(π0) is the smallest congruence of X with projection factor.

Proposition 2.20. Let X be a LQG and α be its congruence. Then X/α is a
projection LQG if and only if ker(π0) ≤ α.

Proof. Let ker(π0) ≤ α. By Proposition 1.16, there exists π ∶ X/ker(π0) Ð→ X/α
and then X/α is a projection LQG.

Let X/α be a projection LQG and x ker(π0) y, i.e. there exists h ∈ LMlt(X)
such that y = h(x) ∈ X. Then

πα(y) = πα(h(x)) = π∗α(h)(πα(x)) = πα(x)
since LMlt(X/α) is trivial. Therefore, ker(π0) ≤ α. �

Corollary 2.21. Let X be a LQG. Then the following are equivalent

(1) X is connected;
(2) ∣π0(X)∣ = 1;
(3) P-LQ2 ∉ H(X).

Proof. (1) ⇔ (2) It follows by definition of π0(X).
(2) ⇔ (3) By Propositions 1.16 and 2.20, P-LQ2 ∈ H(X) if and only if P-LQ2 ∈
H(π0(X)), which is equivalent to have ∣π0(X)∣ ≥ 2. �

As a Corollary we get that the class of connected LQGs is closed under H.

Corollary 2.22. Every homomorphic image of a connected LQG is connected.

Remark 2.23. It is straightforward to see that the class of connected LQGs is also
closed under P.

3. Racks and Quandles

3.1. Definitions and Examples. In this Section some well known facts about
racks and quandles are shown. In particular we give a brief summary of the theory
of connected quandles, which is the most studied class of quandles ([1], [4], [14], [17],
[22], [20], [25] and [33]).

The class of racks and the class of quandles are subvarieties of the variety of LQGs
defined as follows.

Definition 3.1. A LQG X is said to be

(a) a rack if it is left-distributive;
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(b) a quandle if it is an idempotent rack;
(c) a crossed set if it is a quandle X and

xy = y ⇐⇒ yx = x
for every x, y ∈X;

(d) a Latin quandle if it is an idempotent left-distributive quasigroup.

All the previous classes but (c) are varieties (they are equational classes).
Remarkable examples of quandles arise from groups setting.

Example 3.2. (i) Let X be a set and σ ∈ Sym(X). Define

x ⋅ y = Lx(y) = σ(y)
for every x, y ∈ X. Then X = (X, ⋅) is a rack called permutation rack. Note
that X is a quandle if and only if σ = 1, therefore, X = P-LQ

∣X ∣
.

(ii) Let G be a group and H ⊆ G a subset closed under conjugation. Let us
define

x ⋅ y = xyx−1

for every x, y ∈H. Then H is a quandle. It will be called conjugation quandle
and denoted by Conj(H). Note that every conjugation quandle is a crossed
set.

(iii) Let G be a group, α ∈ Aut(G) and H ≤ Fix(α). Consider the set G/H of
left cosets with respect to H and define the multiplication by setting

xH ⋅ yH = xα(x−1y)H
The algebra G/H is a quandle. It will be called coset or Galkin quandle and
denoted by Q(G,H,α).
If H = {1G}, the quandle is called principal coset quandle and denoted by
Q(G,α).

(iv) Let X be a rack and let L(X) be the set of all the left multiplications of X.
Then Conj(L(X)) is a quandle (see Corollary 2.10). Moreover the map

LX ∶ XÐ→ L(X), x↦ Lx

is a surjective morphism of racks.

Properties of an algebra depend on its term operations. Quandle term operations
have a standard representation.

Lemma 3.3. Let t(x1, . . . , xn) be a quandle term operation. Then there are y1, . . . , ym, y ∈
{x1, . . . , xn} and ki ∈ {±1} such that

t(x1, . . . , xn) = Lk1y1 . . . Lkmym(y)
is an identity valid in every quandle.

Proof. Let n be the number of occurrences of variables in the term t. If n = 1, then
t(x) = x. Let t(x1, . . . , xn) be a quandle term. Then there exists terms s, r such that

t(x1, . . . , xn) = L±1
s(xi1 ,...xik)

(r(xj1 , . . . , xjl))
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and the number of occurrences of the variables in r and s is less then n and
{xi1 , . . . xik , xj1 , . . . , xjl} ⊆ {x1, . . . , xn}. By induction,

s(xi1 , . . . xik) = La1xs1 . . . L
ap
xsp(xs)

r(xj1 , . . . , xjl) = Lb1xr1 . . . L
bq
xrq (xr)

where {xs1 , . . . xsp , xs, xr1 , . . . , xrq , xr} ⊆ {x1, . . . , xn} and ai and bj are ±1. Therefore,

t(x1, . . . , xn) = L±1
s(xi1 ,...xik)

(r(xj1 , . . . , xjl)) =

= La1xs1 . . . L
ap
xspL

±1
xs(La1xs1 . . . L

ap
xsp)−1Lb1xr1 . . . L

bq
xrq (xr)

�

The previous Lemma shows that every quandle term can be written as the fol-
lowing one

f1

x1 f2

x2 f3

x3 x4

where fi ∈ {⋅, /}.

3.2. Homogeneous and Connected Quandles. The classes of homogeneous quan-
dles and of connected quandles has been studied a lot in the literature.

The most important result we show in this Section is that any homogeneous
quandle is isomorphic to a coset quandles, as has been proved by Joyce in Theorem
7.1 of [22].

All properties but labels are shared by elements belonging to the same orbits of
Aut(X).
Proposition 3.4. Let X be a rack and let x, y ∈X belong to the same orbit under the

action of Aut(X). Then Lx and Ly have the same cycle structure as permutations.
If X is a homogeneous, then all the left multiplications have the same cycle struc-

ture.

The main examples of homogeneous quandles are given by coset quandles.

Remark 3.5. Let X = Q(G,H,α) be a coset quandle and λ be the canonical left
action of G on G/H. Note that

λ(g)(xH ⋅ yH) = g(xH ⋅ yH) = gxα(x−1y)H =
= gxα(x−1g−1gy)H = gxH ⋅ gyH
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= λ(g)(xH) ⋅ λ(g)(yH)
Then λ is an action by automorphisms and it is transitive. Therefore, X is homo-
geneous. Left and right multiplications are determined by the automorphism α and
by the action λ:

LxH = λ(x)LHλ(x)−1, RxH = λ(x)RHλ(x)−1

for every x ∈ G, where

LH(xH) = α(x)H, RH(xH) = xα(x−1)H = t(x)H
for every x ∈ G.

The following theorem shows how a transitive action by automorphisms on a
quandles provides a representation of the quandle as a coset quandle.

Theorem 3.6. [22, Theorem 7.1] Let X be a quandle, x ∈ X and G be a group
acting transitively on X and such that LxGL−1

x = G. Then

X ≃ Q(G,Gx, L̂x)
where L̂x(g) = LxgL−1

x .

The existence of a coset representation is actually a characterization of homoge-
nous quandles, since any coset quandles is homogeneous as we have seen in Remark
3.5.

Proposition 3.7. A quandle X is homogeneous if and only if X ≃ Q(G,H,α) for
some group G, α ∈ Aut (G) and H ≤ Fix (α).

Because of this characterization, a coset representation is also called homogenous
representation.

Remark 3.8. Canonical representations for a homogeneous quandle X is given
by X ≃ Q(Aut(X),Aut(X)x, L̂x) for every x ∈ X. If X is connected then X ≃
Q(LMlt(X), LMlt(X)x, L̂x) for every x ∈X.

A homogeneous representation allows us to do concrete computations as follows.

Proposition 3.9. Let X = Q(G,H,α), then

x0H ⋅ (x1H ⋅ (. . . ⋅ (. . . ⋅ (xn−1H ⋅ xnH)))) = x0∏
n

k=1
αk (x−1

k−1xk)H
for every x0, . . . , xn ∈ G.

Proof. It follows easily by an inductive argument. �

A homogeneous representation is called principal if the coset quandle is principal
and affine if the group G is Abelian.

Definition 3.10. Let X be a quandle. It is said to be

(a) principal if it has a principal coset representation;
(b) affine if it has an affine coset representation.

The homogeneous representation is not unique. For instance, any connected
quandles have at least two homogeneous representions, given by Aut(X) and by
LMlt(X).
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Remark 3.11. By Lemma 3.3 of [4], Q(G,H,α) is somorphic to Q(G/N,H/N,αN),
for every N ⊴ G, N ≤ H, where αN(xN) = α(x)N for every x ∈ G. If G is Abelian
then

Q(G,H,α) ≃ Q(G/H,αH)
The previous remark says that normal subgroups of G in H can be factored out

in order to get a new homogeneous representation. This fact shows that every affine
quandle is principal and leads to the following definition of reduced representation.

Definition 3.12. [4, Definition 3.4] Let X = Q(G,H,α) be a homogeneous quandle.
If CoreG(H) = {1}, then the representation is called reduced.

Lemma 3.13. Every homogeneous quandle has a reduced representation.

Proof. Let Q(G,H,α) be a homogeneous representation and K = CoreG(H). By
Remark 3.11,

Q(G/K,H/K,αK) ≃ Q(G,H,α)
and H/K is core-free. �

3.3. Transvection group and Minimal Homogeneous Representation. A
subgroup of the left multiplications group which play a very important role in the
theory is the transvection group. Its most important feature is to provide a minimal
homogeneous representation for connected quandles (see Theorem 4.1 of [20]). The
minimality of this representation yields to the characterization of several classes of
connected quandles through the properties of the transvection group (see for instance
Proposition 4.2 and Corollary 4.4).

The transvection group is a powerful tool in the theory of quandles in general. A
lot of quandle-theoretical properties can be translated to group-theoretical properties
of the transvection group. For instance mediality has been characterized through
Abelianness of the transvection group in Proposition 2.1 of [21].

The transvection group is defined as follows.

Definition 3.14. Let X be a rack, then

Dis(X) = ⟨LxL−1
y , x, y ∈X⟩

is called transvection group or displacements group of X.

The main features of the transvection group are summarized in the next Propo-
sition.

Proposition 3.15. [20, Proposition 2.1] Let X be a rack then:

(i) Dis(X) = ⟨L−1
y Lx, y ∈X⟩ for every x ∈X;

(ii) Dis(X) = {La1x1 . . . Lanxn , xi ∈X, n, ai ∈ N such that ∑n
i=1 ai = 0};

(iii) Dis(X) is a normal subgroup of Aut(X);
(iv) LMlt(X) =Dis(X)⟨Lx⟩ for every x ∈X;
(v) Dis(X) and LMlt(X) have the same orbits;

(vi) if X is connected then Dis(X) = LMlt(X)(1).
The induced morphism of groups showed in Proposition 2.11, restricts to a mor-

phism of groups between transvection groups.
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Proposition 3.16. [4, Theorem 1.27] Let X be a rack and α be its congru-
ence. Then π∗α restricts to a surjective morphism of groups between Dis(X) and
Dis(X/α).

Remark 3.17. By item (v) of Proposition 3.15, the transvection group provides a
homogeneous representation for connected quandles. Then

X ≃ Q(Dis(X),Dis(X)x, L̂x)

for any connected quandle X.

This representation allows to characterize some classes of quandles. Furthermore
it fulfils a minimality condition among the homogeneous representations in the fol-
lowing sense.

Proposition 3.18. [20, Theorem 4.1] Let X ≃ Q(G,H,α) be a connected quandle.
Then Dis(X) embeds in a quotient of G.

The homogeneous representation of a connected quandle given by the transvection
group is then called minimal.

Corollary 3.19. Let X be a finite connected quandle. Then the minimal homoge-
neous representation is reduced.

Proof. Let K ≤Dis(X)x be a normal subgroup of Dis(X). Then

Q(Dis(X)/K,Dis(X)x/K, (L̂x)K)

is a homogeneous representation of X. By Corollary 3.18, Dis(X) embeds into a
quotient of Dis(X)/K, hence K is trivial. �

In the sequel, the following notation will be used

Notation 3.20. Let G be a group and α ∈ Aut(G), then

[G,α] = ⟨xα(x−1), x ∈ G⟩

Proposition 3.21. Let G be a group, α ∈ Aut(G) and Fix(α) be a core-free
subgroup. Then Dis(Q(G,H,α)) ≃ [G,α] for every H ≤ Fix(α).

Proof. If Fix(α) is core-free, then Q(G,H,α) is a reduced homogeneous represen-
tation for every H ≤ Fix(α). Then by Proposition 3.12 of [4], it follows that

Dis(Q(G,H,α)) ≃ [G,α]

for every H ≤ Fix(α). �

Remark 3.22. Accordingly to Lemma 3.11 of [4], the action of the transvection
group of a coset quandle X = Q(G,H,α) is given by the left action of [G,α] on

the set G/H. Therefore, if X = Q(Dis(X),Dis(X)x, L̂x) is connected, then YH =
Q(Dis(X),H, L̂x) is connected for every H ≤Dis(X)x.
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3.4. Faithful Quandles. The class of faithful quandles is an important class of
quandles and its definition is quite natural in quandle setting. All the results of this
Section but Lemma 3.23 and Proposition 3.24 are just a restatement of some known
facts about faithful quandles.

Every variety of algebras of a given type with its algebra morphisms form a
category. So racks together with morphisms of racks form a category, and quandles
with morphisms of quandles form a subcategory of it.

The set of the left multiplications of a LQG is a subset of a permutations group.
In general it has no natural algebraic structure. If X is a rack, as noticed in example
3.2 (iv), the set of all left multiplications has a structure of conjugation quandle and
the map LX is a surjective morphism of rack. Therefore, Conj(L(X)) ≃ X/ker(LX)
and it will be denoted simply by L(X).

Lemma 3.23. Let X and Y be racks and φ ∶ Y Ð→ X be a rack morphism.
Then there exists a unique quandle morphism L(φ) ∶ L(Y) Ð→ L(X) such that the
following diagram is commutative

(7) Y

LY

��

φ // X

LX

��
L(Y) L(φ)

// L(X)

Proof. In order to make the diagram to commute, L(φ) has to be defined by setting
L(φ)(Ly) = Lφ(y) for every x ∈ Y . This map is a quandle morphism, since

L(φ)(Lx ⋅Ly) = L(φ)(Lxy) = Lφ(xy) = Lφ(x)φ(y) =
= Lφ(x) ⋅Lφ(y) = L(φ)(Lx) ⋅L(φ)(Ly)

for every x, y ∈ y. �

This Lemma allows to define the following functor between the category of racks
(Racks) and the category of quandles (Qnd). Let U be the forgetful functor from
Qnd to Racks and I be the identity functor on Racks. Then we can define a
natural transformation from I to UL.

Proposition 3.24. Let L ∶RacksÐ→Qnd, defined by setting

X↦ L(X), φ ∶YÐ→X↦ L(φ) ∶ L(Y) Ð→ L(X)

is a covariant functor and the family of morphisms {LX, X ∈ Racks} is a natural
transformation from I to UL.

Proof. It is easy to show that L(φ ○ ψ) = L(φ) ○L(ψ) and that L(idX) = idL(X).
The second claim follows by the commutativity of diagram (7). �

The map defined in Lemma 3.23 in general does not extend to a group morphism
between LMlt(Y) and LMlt(X) (which means that the functor L does not lift to
a functor from Racks to Grps). Let X be a quandle and P-LQ1 be the trivial
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quandle. Let x ∈X such that Lx ≠ 1. The map ix ∶ P-LQ1 Ð→X, with range {x} is
a quandle morphism, but

{1} Ð→ LMlt(X), Lx ↦ Li(x)

is not a group morphism.

Remark 3.25. Proposition 2.11 shows that this assignment is well defined for
surjective morphism. Then we can define a functor LMlt between the categories of
racks (LQGs) and surjective morphisms and the category of groups and surjective
morphisms, given by

X ↦ LMlt(X)
πα ∶XÐ→X/α ↦ π∗α ∶ LMlt(X) Ð→ LMlt(X/α)

In general the map LX is not injective.

Definition 3.26. A quandle X is said to be faithful if ker(LX) = 0X.

Since LX is always surjective, faithful quandles are those for which it is injective.
The definition is restricted to quandle, since any faithful rack would necessarily be a
quandle. Actually, since any faithful quandle is isomorphic to a conjugation quandle,
it is also a crossed sets.

Proposition 3.27. Any faithful quandle is a crossed set.

Let X be a quandle and h ∈ LMlt(X)x. Then

hLxh
−1 = Lh(x) = Lx

Hence, LMlt(X)x ≤ CLMlt(X)(Lx) for every x ∈ X. The equality holds for faithful
quandles.

Proposition 3.28. Let X be a faithful quandle. Then LMlt(X)x = CLMlt(X)(Lx)
for every x ∈X and LMlt(X) has trivial center.

Proof. Let h ∈ LMlt(X), then Lh(x) = hLxh−1. So h centralizes Lx if and only if
Lh(x) = Lx. Since X is faithful this is equivalent to have h(x) = x. Central elements
of LMlt(X) are given by

Z(LMlt(X)) = ⋂x∈X CLMlt(X)(Lx) = ⋂x∈X LMlt(X)x = {1} .
�

Remark 3.29. The last Proposition holds for the automorphism group. Let X be
a faithful quandle, then Aut(X)x = CAut(X)(Lx) for every x ∈X.

The converse is not true. For instance the quandle SmallQuandle(12,1) from the
GAP database has centerless left multiplication group but it is not faithful. The
following Proposition gives a criterion for faithfulness of reduced representation.

Proposition 3.30. [4, Proposition 3.9] Let X = Q(G,H,α) be a reduced homoge-
neous representation. Then X is faithful if and only if H = Fix(α).

Connected faithful quandles are characterized by the properties of the stabilizers
in LMlt(X). Note that stabilizers of the points (and centralizers of generators of
LMlt(X)) are pairwise conjugate whenever X is connected.
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Proposition 3.31. Let X be a connected quandle. Then the following are equivalent

(1) X is faithful;
(2) LMlt(X)x = CLMlt(X)(Lx) for every x ∈X;
(3) Dis(X)x = CLMlt(X)(Lx) ∩Dis(X) for every x ∈X.

Proof. (1) ⇔ (2) The right implication follows from Proposition 3.28.
Let assume that LMlt(X)x = CLMlt(X)(Lx) for every x ∈ X and that Lx = Ly.

Since X is connected, y = h(x) for some h ∈ LMlt(X). Hence,

Lx = Ly = hLxh−1 ⇐⇒ h ∈ CLMlt(X)(Lx) = LMlt(X)x
and therefore x = y.

(1) ⇔ (3) It follows by Proposition 3.30, since the minimal representation is
reduced. �

3.5. Some subclasses of Faithful quandles. This Section is about some sub-
classes of faithful quandles which can be captured by universal algebraic definition.
All the contents of the Section are original contributions of the author. In any va-
riety the class of Taylor algebras and the class of Maltsev algebra are worthy of
attention. Every quasigroup has a Maltsev term ([19, Lemma 4.6]), then it has a
Taylor term. In particular it is true for Latin quandles.

Fact 3.32. Latin quandles are Maltsev (and thefore Taylor).

The class of connected quandles is not a variety since it is not closed under S. For
instance, there are many examples of connected quandles with projection subquan-
dles. The class of quandle with no projection subquandles can be characterized as
follows.

Proposition 3.33. Let X be a quandle. Then the following are equivalent:

(1) Fix(Lx) = {x} for every x ∈X;
(2) every projection subquandle of X is trivial;
(3) P-LQ2 ∉ S(X);
(4) all the subquandles of X are faithful.

Proof. (1)⇒ (2) Let Q be a projection subquandle and x, y ∈ Q. Since xy = y implies
y = x, then Q = {x}.

(2) ⇒ (3) It follows since every subset of a projection quandle is a projection
subquandle.

(3)⇒ (4) Let Y ∈ S(X) be non faithful. Then the blocks of ker(LY) are projection
subquandles, i.e. P-LQ2 ∈ S(Y) ⊂ S(X), contradiction.

(4) ⇒ (1) The quandle X is faithful , therefore it is a crossed set by Lemma 3.27.
If there exists x, y ∈ X such that xy = y, Then {x, y} is a projection subquandle,
since it X is a crossed set. Therefore {x, y} is not faithful, contradiction. �

Definition 3.34. A quandle X is said to be a strongly faithful quandle if any
subquandle of X is faithful.

Corollary 3.35. Let X be a strongly faithful quandle. Then LMlt(X)x is a self-
normalizing subgroup.
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Proof. Let assume that h normalizes LMlt(X)x. Then hLxh−1 = Lh(x) ∈ LMlt(X)x.
By Proposition 3.33, h(x) = x. �

Note that the class of strongly faithful quandles is closed under S and it is a
proper subclass of faithful quandles. For instance, the quandle SmallQuandle(6,1)
in the database of the RIG package of software GAP, is faithful but it has projection
subquandles of size 2 (more generally any non-simple connected quandle of size 2p
for some prime p is faithful but have subquandles of size 2 which are projection).

Finite Taylor Quandles have a nice characterization is terms of the properties of
subquandles.

Theorem 3.36. Let X be a finite quandle. Then the following are equivalent:

(1) X is a Taylor quandle;
(2) all the subquandles of X are connected.

Proof. Item (1) is equivalent to have P-LQ2 ∉ HS(X), by Theorem 1.27.
By Proposition 2.20, P-LQ2 ∈ HS(X) if and only if some subquandle of X is not

connected. �

This Theorem holds also for idempotent LQGs, since Theorem 1.27 holds for every
finite idempotent algebra and the construction of π0(X) can be carried out in this
setting.

Remark 3.37. An idempotent algebra X is Taylor if and only if P2 does not belong
to the variety generated by X ([26, Corollary 5.3]). Then in particular P2 ∉ HS(X).
Therefore, if a quandle is Taylor, then all its subquandles are connected, without
any finitess assumption. Moreover P-LQ2 ∉ S(X), hence all subquandles of X are
faithful.

By virtue of the previous Remark, the class of Taylor quandles is intermediate
between Maltsev quandles and strongly faithful quandles. Therefore, for any quandle
X, we have

Latin ⇒ Maltsev ⇒ Taylor ⇒ strongly faithful ⇒ Faithful ⇒ Crossed Set

The class of Latin quandles is a proper class of Maltsev quandles and Taylor
quandles form a proper subclass of strongly faithful quandles.

Remark 3.38. Let X = Q(Z, α), where α(x) = −x for every x ∈ Z. It satisfies
the property Fix(Lx) = {x} for every x ∈ Z but it is not even connected, since
Im(1 − α) = 2Z.

SmallQuandles (28,3), (28,4), (28,5) and (28,6) from the RIG database are Taylor
and solvable. Then they are Maltsev but not Latin, by virtue of Corollary 1.6 of [2].

From the analysis of these classes of quandles some natural questions arise.

Problem 1. Give a characterization of Maltsev quandles.

Problem 2. Does the class of Taylor quandles and the class of Maltsev quandles
coincide?
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4. Principal and Affine Quandle

4.1. Connected principal quandles. A subclass of homogeneous quandles is given
by principal quandles. They can be found in the literature under different names as
generalized Alexander quandles ([9]). In this Section we characterize connected prin-
cipal quandles (Proposition 10.16) which generalizes Corollary 3.20 of [4] dropping
the finiteness assumption.

In the following the quandle operation is denoted by ⋅ and the group operation
just by juxtaposition.

Principal representations correspond to regular actions by automorphism groups
invariant under L̂x.

Proposition 4.1. Let X be a quandle and G ≤ Aut(X). Then the following are
equivalent:

(1) G acts regularly and it is invariant under L̂x;

(2) X ≃ Q(G, L̂x).

Proof. (1)⇒ (2) The group G is regular and provides a homogeneous representation

given by X ≃ Q(G, L̂x), since Gx = {1}.
(2) ⇒ (1) The canonical left action of G on X is regular. �

The transvection group gives also a characterization of principal and affine con-
nected quandles.

Proposition 4.2. Let X be a connected quandle. Then the following are equivalent:

(1) Dis(X) is regular;
(2) X is principal.

Proof. (1) ⇒ (2) If Dis(X) is regular, then X ≃ Q(Dis(X), L̂x).
(2) ⇒ (1) Let X ≃ Q(G,α). The left action of G on G is regular. The action of

Dis(X) is given by the left action of [G,α] ≤ G, then it is semiregular. Since X is
connected, then Dis(X) is regular. �

Remark 4.3. Let X be a connected quandle. Up to isomorphism, the only regular
automorphism group is Dis(X). Indeed, let X ≃ Q(G,α) and Dis(X) ≃ [G,α] ≤ G.
The left action of [G,α] is regular if and only if [G,α] = G. Hence Dis(X) ≃ G.

Corollary 4.4. [4, Corollary 3.21] A connected quandle X is affine if and only if
Dis(X) is Abelian.

4.2. Principal Latin quandles. The structure of principal quandles is determined
by the underlying group structure and by the properties of the automorphism α.

In this Section we investigate the interplay between the group structure and the
quandle structure in the Latin case. We investigate the nature of subquandles of
principal Latin quandles and the structure of the automorphism group. The results
of this Section are original. The main one is Theorem 4.8, which states that the
class of principal Latin quandles is a variety.

Lemma 4.5. Let X be a Latin quandle. Then the following are equivalent:

(1) X is principal;
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(2) Dis(X) = {LyL−1
x , y ∈X} for every x ∈X.

Proof. (1) ⇒ (2) Assume that X is principal and let x ∈X. The assignment

X Ð→Dis(X), y Ð→ Ly/xL
−1
x

is bijective. Its inverse is given by h↦ h(x).
(2) ⇒ (1) Assume that Dis(X) = {LyL−1

x , y ∈ X}, and that LyL−1
x (x) = yx = x

for some y. Since X is Latin, y = x, therefore LyL−1
x = 1. Thus, X is principal by

Proposition 4.2. �

Corollary 4.6. Let X be a principal Latin quandle, β be its congruence. Then
X/β is a principal Latin quandle.

Proof. It follows by Lemma 4.5, since Dis(X/β) = {L[y]L
−1
[x]
, [y] ∈ X/β} and since

X/β is Latin. �

Lemma 4.7. Let X = Q(G,α) be a principal Latin quandle. Then the following
are equivalent:

(1) Q ⊂X is a subquandle;
(2) Q is a coset with respect a subgroup invariant under α.

Proof. The quandles multiplication is defined by x ⋅y = xα(x−1y). It is easy to check
that

(8) xy = x/1 ⋅ 1/y, x−1 = 1 ⋅ ((x/1)/1)
for every x, y ∈ G.

Since X is principal and Latin, then every subquandle is given by xQ where x ∈ G
and Q is a subquandle containing 1. Therefore it is enough to consider a subset Q
containing 1.

By virtue of formulas (8) and the definition of the quandle multiplication, Q is a
subquandle containing 1 if and only if it is subgroup invariant under α. �

Theorem 4.8. The class of principal Latin quandle is a variety.

Proof. It is easy to see that that it is closed under P. Corollary 4.6 implies that it
is is closed under H and Lemma 4.7 implies that it is closed under S. �

The automorphism group of principal Latin quandles have a nice structure. The
following Proposition, was already known for finite connected affine quandles (see
Corollary 1.25 of [1]). It can be extended to principal Latin quandles.

Proposition 4.9. Let X = Q(G,α) be a principal Latin quandle, then

Aut(X) ≃ G ⋊CAut(G)(α)
LMlt(X) ≃ G ⋊ ⟨α⟩
Dis(X) ≃ G

Proof. Let f be an automorphism of X, such that f(1) = b. In general b ≠ 1. Define:

g = λb−1f
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where λb−1 is the translation by b−1. It is an automorphism of quandle and g(1) = 1.
Therefore

g(xy) = g(x/1 ⋅ 1/y) = g(x)/g(1) ⋅ g(1)/g(y) =
= g(x)/1 ⋅ 1/g(y) =
= g(x)g(y)

and then g is a group automorphism. Moreover g ∈ Aut(X)1∩Aut(G) = CAut(G)(α),
by Remark 3.29. Moreover, CAut(G)(α) ≤ Aut(X).

Let f, g ∈ Aut(X), then there exists a, b ∈ G and f ′, g′ ∈ CAut(G)(α) such that
f = λaf ′ and g = λbg′, then

fg (x) = λaf
′λbg

′ (x) = λaf ′(b)f ′g′ (x) =
= λa (f ′λbf ′−1) f ′g′ (x)

Then, the map Φ defined by setting,

Φ ∶ Aut (X) Ð→ G ⋊CAut(G)(α), f ↦ (f (1) , λ−1
f(1)f)

is a surjective morphism of groups. Moreover f ∈ ker (Φ) if and only if f (1) = 1 and
λf(1)−1f = 1. So that Φ is an isomorphism.

Since X is principal and connected, then by Remark 4.3, Dis(X) ≃ G. Since X
is principal, Dis(X) ∩ ⟨α⟩ = {1}, hence LMlt(X) ≃ G⋊ ⟨α⟩ by virtue of Proposition
3.15 (v). �

Remark 4.10. Note that if X is principal, then Aut(X)(1) ≤ Dis(X) ≃ G. In
particular Aut(X) is solvable or rank n + 1 if and only if G is solvable of rank n.
Therefore, if X is affine Aut(X) is two-step solvable.

4.3. Some subclasses of principal quandles. Some of the classes defined in
the previous Section coincide for principal quandles. In this Section we investigate
the classes defined in Section 3.5, as subclasses of the class of (finite) principal
quandles or of the class of (finite) affine quandles. It turns out that under different
assumptions some of these classes are actually the same.

Proposition 4.11. Let X = Q(G,α) be a principal quandle. Then it is a crossed
set. Moreover X is faithful if and only if it is strongly faithful.

Proof. It is easy to see that

x ⋅ y = t(x)α(y) = y ⇔ t(x) = t(y) ⇔ Lx = Ly
Therefore, X is a crossed set and if it is faithful then it is strongly faithful. �

In the class of affine quandles the subclass of Latin quandles coincide with the
class of Taylor quandles.

Lemma 4.12. Let X an affine quandle. Then it is Latin if and only if it is faithful
and connected.

Proof. The quandle X is homogeneous, then it is enough to show that R0 = 1 −α is
bijective.

Since X is faithful if and only if 1 − α is injective and it is connected if and only
if it is surjective, these conditions together are equivalent to latinity. �
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Proposition 4.13. Let X be an affine quandle. Then the following are equivalent

(1) X is Taylor;
(2) X is Maltsev;
(3) X is Latin.

Proof. If X is Taylor, then in particular it is connected and faithful. Therefore it is
Latin. �

If we consider the class of finite principal quandles, all the classes defined in
Section 3.5 are actually the same class.

Proposition 4.14. Let X = Q(G,α) a principal finite quandle, then the following
are equivalent:

(1) t = R1 is a permutation;
(2) Fix(L1) = Fix(α) = {1};
(3) X is faithful;
(4) X is strongly faithful;
(5) X is Taylor;
(6) X is Maltsev;
(7) X is Latin.

Proof. The implications (7) ⇒ (6) ⇒ (5) ⇒ (4) ⇒ (3) hold in general.
(1) ⇔ (2) ⇔ (3) Since

α(x−1y) = x−1y ⇐⇒ t(x) = t(y) ⇐⇒ Lx = Ly
then t is injective if and only if Fix(L1) = {1} if and only if X is faithful.

(1) ⇒ (6) Let t = R1 be a permutation and λx denote the left action of x ∈ G on
G. Then Rx = λxR1λ−1

x is a permutation for every x ∈X. �

Propositions 4.11 and 4.14 show that there exist non faithful crossed sets (any
principal quandle Q(G,α) with Fix(α) ≠ {1}). Moreover any of items of Proposi-
tion 4.14 implies connectedness. For affine quandles connectedness is equivalent to
Latinity.

Proposition 4.15. [1, Section 1.3.8] Let X = Q(A,α) be a finite affine quandle.
Then the following are equivalent:

(1) X is connected;
(2) X is Latin.

Proof. It is straightforward to see that OLMlt(X)(x) = x + Im(1 − α). Then X is
connected if and only if 1 − α is surjective. Since X is finite, X is connected if and
only if it is an automorphism of A. �

5. Extensions

5.1. Extensions of LQGs. This Section is about extensions of LQGs. All these
results have been inspired by Section 2 of [1], where the same constructions are
performed for racks and quandles.

Proposition 5.1. Let X be a LQG and α be its congruence.
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(i) The blocks of α are subalgebras if and only if X/α is idempotent.
(ii) If X/α is connected then α is uniform.
(iii) If X is a quandle and X/α is connected, then the blocks are pairwise isomor-

phic subalgebras of X.

Proof. (i) Let x, y ∈ [x], then the block [x] is a subalgebra if and only if

[L±1
x (y)] = L±1

[x]([x]) = [x].
So it holds for every block if and only if X/α is idempotent.

(ii) Let [x], [y] ∈ X/α, then there exists h ∈ LMlt(X/α) such that [y] = h([x]).
By Lemma 2.11, there exists h′ ∈ LMlt(X) such that h = π∗α(h′) and

[h′(z)] = h([z])
for every z ∈ X. So h′ maps the [x] to the block h([(x)]) = [y], and its restriction
to the block [x] is bijective.

(iii) It follows from the previous items using the fact that left multiplications are
automorphisms. �

Remark 5.2. Item (i) of Proposition 5.1 holds for algebras of any type. Indeed, if
x1 α x2 α . . . α xn, then

[tX(x1, . . . , xn)] = tX/α([x1], . . . , [x1]) = [x1]
for every term t if and only if X/α is idempotent.

Let X be a LQG and let S be a non-empty set. Then the set X × S can be
endowed by a LQG structure such that the canonical projection

π ∶X × S Ð→X, (x, s) z→ x

is an algebra morphism. Note that in such a case ker(π) is uniform.

Proposition 5.3. Let S be a non-empty set and X, (X ×S, ⋅) be LQGs. Then the
projection onto X is an algebra morphism if and only if there exists

β ∶X ×X × S Ð→ Sym(S), (x, y, s) ↦ β(x, y, s)
such that

(9) (x, s) ⋅ (y, t) = (xy, β(x, y, s)(t))
for every x, y ∈X and s, t ∈ S.

Proof. If the operation ⋅ is defined as in formula (9), then (X ×S, ⋅) is a LQG and π
is a morphism.

Let assume that

π ((x, s) ⋅ (y, t)) = π ((x, s))π ((y, t)) = xy
Then (x, s) ⋅ (y, s) = (xy, u) for some u ∈ S, for every x, y ∈ X and every s, t ∈ S. In
order to define a bijection on X ×S, L(x,s) has to be a bijection between {y}×S and
{xy} × S for every x, y ∈ X and every s ∈ S, Then there exists β(x, y, s) ∈ Sym(S)
such that

(x, s) ⋅ (y, t) = (xy, β(x, y, s)(t)
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for every t ∈ S. Then a map β is defined by setting

β ∶X ×X × S Ð→ Sym(S), (x, y, s) ↦ β(x, y, s)
for every x, y ∈X and every s ∈ S. �

The LQG structure defined in Proposition 5.3 will be denoted by X ×β S.

Definition 5.4. A LQG isomorphic to X×β S for some non-empty set S and some
map β ∶X ×X × S Ð→ Sym(S) is said to be an extension of X.

Extensions correspond to uniform congruences.

Proposition 5.5. Let X be a LQG and α be its congruence. Then X is an extension
of X/α if and only if α is a uniform congruence.

Proof. If X ≃ X/α ×β S then the blocks and S have the same cardinality.
If the blocks of α have all the same size, there exists a set S and a family of

bijections h[x] ∶ [x] Ð→ S. The map β is defined by setting

(10) β(x, y, s) = h[xy]Lh−1[x](s)h
−1
[y]

The mapping

(11) XÐ→X/α × S, x↦ ([x], h[x](x))
is an isomorphism. �

Remark 5.6. Let X be a LQG, and α be its congruence such that X/α is connected.
Then X is an extension of X/α since by Proposition 5.1 (ii), α is uniform.

If X is connected LQG, then any congruence α ∈ Con(X) is uniform and X is an
extension of X/α.

Connectedness of an extension X ×β S of a connected quandle X depends on the
properties of the preimage of the stabilizers of X under the map π∗

ker(π)
.

Proposition 5.7. Let X be a LQG and α be its congruence. Then X is connected
if and only if X/α is connected and

Dis(X)[x] = {h ∈Dis(X), such that [h(x)] = [x]} = (π∗α)−1(Dis(X/α)[x])
is transitive on [x] for every x ∈X.

Proof. Let X be connected, then X/α is connected and clearlyDis(X)[x] is transitive
on [x] for every x ∈ X.

Let ([x], s), ([y], t) ∈ X ≃ X/α ×β S. Since X/α is connected, then there exists
h = ∏n

i=1L
ai
[xi]

such that [y] = h([x]). Therefore,

∏n

i=1
Lai

([xi],s)
([x], s) = ([y], t′)

for some t′ ∈ S. By transitivity of Dis(X)[x] on [x], there exists g ∈Dis(X)[x] such
that gh([x], s) = g([y], t′) = ([y], t). Therefore, X is connected. �

Remark 5.8. Note that Dis(X)[x] and Dis(X)[y] are conjugate whenever X/α is
connected. Then it is enough to have that one of them is transitive.
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5.2. Extensions for Racks and Quandles. In this Section we just restate some
of the results given in Section 2 of [1].

Let X be a rack and X ×β S an extension of X as LQG. In order to define a rack
structure on X×S, the map β has to satisfy one more condition, which corresponds
to left-distributivity. This condition is given in the following definition.

Definition 5.9. [1, Definition 2.2] Let β be a map:

β ∶X ×X × S → Sym(S)
The map β is called a (dynamical) cocycle if it satisfies the following condition

(C) β(xy, xz, β(y, z, s)(t))β(x, z, s) = β(x, yz, s)β(y, z, t)
for every x, y, z ∈X, s, t ∈ S. This condition is called cocycle condition.

In addition, if X is a quandle, β is a quandle cocycle if it satysfies following
condition

(Q) β(x,x, s)(s) = s
for every x ∈X and every s ∈ S. This condition is called quandle condition.
Then

Z2(X,Sym(S)) = {β ∶X ×X × S → Sym(S), such that (C) and (Q) hold}
is the set of the non-Abelian dynamical 2-cocycles.

A result analogous to Proposition 5.3 holds for racks and quandles.

Proposition 5.10. [1, Lemma 2.1] Let S be a non-empty set and X, (X × S, ⋅) be
quandles. Then the canonical projection onto X is a quandle morphism if and only
if (X × S, ⋅) ≃X ×β S for some β ∈ Z2(X,Sym(S)).

Proof. The map β is defined as in formula 10. It has to be necessarily a dynamical
cocycles in order to satisfy left-distributivity. �

Remark 5.11. Proposition 5.10 can be stated for racks, and in this case β need to
satisfy just condition (C).

Proposition 5.5 and Remark 5.6 hold for racks and quandles, too.

Example 5.12. The map defined by setting

1 ∶X ×X Ð→ Sym (S) , (x, y) ↦ 1

is a cocycle. It is called the trivial cocycle. It is easy to see that X×1S =X×P-LQ
∣S∣.

The extension Y = X×1S is called trivial extension of X and OLMlt(Y)(x, s) = X×{s}.
Therefore Y is connected if and only if ∣S∣ = 1.

5.3. Non Abelian Cohomology. The contents of this Section are again taken
from Section 2 of [1]. The same construction can be develop in a more general
setting but we focus on quandles.

Let X be an extension of X/α. The isomorphism defined in formula (11) is
defined up to the choice of a family of bijections between S and the blocks of α.
Cohomologous cocycles, defined as follows, correspond to different choices of family
of bijections in (11).
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Definition 5.13. [1, Definition 2.6] Let X be a rack, β, β′ be dynamical cocycles.
They are said to be cohomologous if there exists

γ ∶X → Sym(S), x↦ γ (x)
such that

(12) β′(x, y, s) = γ(xy)β(x, y, γ(x)−1(s))γ(y)−1

for every x, y ∈X and every s ∈ S.

Remark 5.14. The map defined in formula (12) is a quandle cocycle whenever β
is a quandle cocycle. So the relation defined in 5.13 is an equivalence relation on
Z2(X,Sym(S)).

Definition 5.15. Let X be a rack, S be a non empty set, then

H2(X,Sym(S)) = Z2(X,Sym(S))/ ∼
is called second cohomology set of X.

Proposition 5.16. [1, Section 2] Let β, β′ ∈ Z2(X,Sym(S)) be dynamical cocycles.
Then the following are equivalent:

(1) there exists an isomorphism φ ∶X ×β S Ð→X ×β′ S such that

X ×β S π //

φ

��

X

X ×β′ S

π

77

is commutative;
(2) β and β′ are cohomologous.

5.4. Quandle Coverings. The goal of this Section is to show that the categorical
approach to coverings given in [13] and the construction of extensions by constant
cocycles given in Section 2.2 of [1] are equivalent.

Definition 5.17. [13, Definition 1.4], [13, Definition 4.1] Let X,Y be racks and
φ ∶ Y Ð→ X be a surjective morphism such that ker(φ) ≤ ker(LY). Then the pair
(Y, φ) is said to be a covering of X.

Let X be a quandle and (Y, φ), (Z, ρ) be coverings of X. They are said to
be isomorphic if there exists an isomorphism ψ such that the following diagram is
commutative

Y
φ //

ψ

��

X

Z

ρ

88

Remark 5.18. The property ker(φ) ≤ ker(LY) can be written as

(13) φ(x) = φ(y) ⇒ Lx = Ly



40

Note that if (X, φ) is a covering then the blocks of ker(φ) are projection subquandles,
since the blocks of ker(LX) are projection subquandles. Moreover X is not faithful,
unless φ is an isomorphism.

Extensions satisfying the property (13) correspond to cocycles such that β(x, y, s) =
β(x, y, t) for every x, y ∈ X and every s, t ∈ S. Cocycles satisfying this property are
called constant cocycle.

Definition 5.19. [1, Definition 2.2] Let X be a quandle and S be a non-empty set.
A map β ∶ X ×X → Sym(S), is called a constant quandle cocycle if it satisfies the
following conditions

(CC) β(xy, xz)β(x, z) = β(x, yz)β(y, z)

(CQ) β(x,x) = 1

for every x, y, z ∈X, s, t ∈ S. The set

Z2
c (X,Sym(S)) = {β ∶X ×X → Sym(S), such that (CC) and (CQ) hold}

is the set of the constant non-Abelian 2-cocycles with coefficients in Sym(S). Two
constant cocycles β and β′ are cohomologous if

β′ (x, y) = γ (xy)β (x, y)γ (y)−1

for every x, y ∈X, for some γ ∶X Ð→ Sym(S). The set

H2
c (X,Sym(S)) = Z2

c (X,Sym(S))/ ∼
is the second constant cohomology set of X with coefficient in Sym(S).

Remark 5.20. The constant cocycle condition implies that

(WCC) β (xy, xz) = β (x, yz) ⇐⇒ β (x, z) = β (y, z)
for every x, y, z ∈X. This condition will be called weaker cocycle condition.

Remark 5.21. Constant cocycles with coefficients in groups different from permu-
tation groups still make sense and they have applications to other problems (see [1]
Section 5). So the sets Z2

c (X,Γ) and H2
c (X,Γ) can be defined for any group Γ in

the very same way.
We say that X has trivial cohomology if H2

c (X,Γ) for every group Γ.

Remark 5.22. A quandle X has trivial cohomology if and only if

β (yx, y) = β (y, xy)
for every x, y ∈X, since from (CC) you can obtain that

β (x, y) = 1Γ ⇐⇒ β (yx, y) = β (y, xy)

The correspondence between coverings and constant cocycles is given by the fol-
lowing Proposition.

Proposition 5.23. Let X be a quandle, S be a non-empty set. Then (X ×β S,π)
is a covering of X if and only if β ∈ Z2

c (X,Sym(S)).
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Proof. The pair ((X ×β S, ⋅), π) a covering if and only if

(x, s) ⋅ (y, t) = (xy, β(x, y, s)(t)) = (xy, β(x, y, r)(t)) = (x, r) ⋅ (y, t)
for every x, y ∈X and r, s, t ∈ S. This condition holds if and only if

β(x, y, s) = β(x, y, r)
for every x, y ∈X and every s, r ∈ S, i.e. if and only if β ∈ Z2

c (X,Sym(S)). �

Remark 5.24. Proposition 5.23 shows that the notion of covering and the notion of
constant cocycles are basically the same. The only difference is that in the definition
of a covering is not claimed that the correspondent congruence to be uniform. In the
class of connected quandles, they are actually the very same thing.

Some examples of coverings can be found in the class of homogeneous quandles.

Proposition 5.25. Let G be a group, H1 ≤ H2 ≤ G and X1 = Q(G,H1, α), X2 =
Q(G,H2, α). Then (X1, π) is a covering of X2, where

π ∶X1 Ð→X2, xH1 ↦ xH2

Proof. The map π is a morphism, since

π(xH1 ⋅ yH1) = π(xα(x−1y)H1) = xα(x−1y)H2 =
= xH2 ⋅ yH2 = π(xH1) ⋅ π(yH1)

for every x, y ∈ G. Let xH1 and yH1 be such that xH2 = yH2. Therefore x = yh for
some h ∈H2. Then

xH1 ⋅ zH1 = yhH1 ⋅ zH1 = yhα (h−1y−1z)H1 =
= yhh−1α (y−1z)H1 = yα (y−1z)H1 =
= yH1 ⋅ zH1

for every z ∈ G. Hence ker(π) ≤ ker(LX1), so (X1, π) is a covering. �

Moreover isomorphic coverings correspond to cohomologous constant cocycles.

Proposition 5.26. Let X be a connected quandle, (Y, φ) ≃ X ×β S and (Z, ρ) ≃
X ×β′ S be coverings of X. Then the following are equivalent:

(1) (Y, φ) ≃ (Z, ρ);
(2) β ∼ β′.

Proof. Let φY be the isomorphism defined by setting φY(y) = (φ(y), fy(y)) where
fy is a bijection between [y]ker(φ) and S and let φZ be defined in analogously (as in
Proposition 5.5). Since the following diagram is commutative,

Y
φ //

φY

��

X Zρ
oo

φZ

��
X ×β S

π

77

X ×β′ S
π

gg

then (1) and (2) are equivalent. �
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6. Congruences and transvection group

6.1. Galois Connection. In the variety of quandles there is a strong interplay
between normal subgroups of the transvection group which are normal in the left
multiplications group and congruences (see Lemma 4.2 of [4]). This Section is a
further development of the subject of Section 4 of [4]. As a new contribution we
show that there is a Galois connection between the congruence lattice of a quandle
and the congruence lattice of subgroup of its transvection group which are normal
in the left multiplication group.

In the sequel the kernel of π∗α∣Dis(X) will be denote by Disα(X). It has the
following characterization.

Lemma 6.1. Let X be a quandle and α be its congruence. Then

Disα(X) = {h ∈Dis(X), [h(x)]α = [x]α, for every x ∈X} = ⋂x∈XDis(X)[x]
If X/α is connected, then

Disα(X) = CoreLMlt(X)(Dis(X)[x])
Proof. Since

[h(x)]α = π∗α(h)[x]α = [x]α
holds for every x ∈ X if and only π∗α(h) = 1, then

Disα(X) = {h ∈Dis(X), [h(x)]α = [x]α, for every x ∈ X} = ⋂x∈XDis(X)[x]
Assume that X/α is connected. Then for every [x], [y] there exists π∗α(h) such that
[y] = π∗α(h)([x]) and Dis(X)[y] = hDis(X)[x]h−1. Therefore

Disα(X) = ⋂h∈LMlt(X)
hDis(X)[x]h−1 = CoreLMlt(X)(Dis(X)[x])

�

Remark 6.2. Note that if X/α is a principal quandle then Dis(X/α)[x] = {1}.
Therefore

Disα(X) = (π∗α)−1({1}) =Dis(X)[x]
The group Disα(X) embeds in the product of the automorphism groups of the

blocks with respect to α, as a Corollary of this general result.

Lemma 6.3. Let G be a group of permutations acting on a set X. Let X = ⋃i∈IXi

where {Xi, i ∈ I} is a family of invariant subsets with respect to the action of G.
Then G embeds in ∏i∈I G∣Xi.
Proof. The map

GÐ→∏i∈I
G∣Xi , h↦ {h∣Xi , i ∈ I}

is a injective group morphism. �

Corollary 6.4. Let X be a quandle and α be its congruence. Then Disα(X) embeds
in ∏[x]∈X/αAut([x]).

Proof. It follows by Lemma 6.3, since every block is invariant under the action of
Disα(X) and it acts by automorphism. �
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Every subgroup of Dis(X) normal in LMlt(X) defines a congruence. The follow-
ing result was already known (see Proposition 4.6 of [4]).

Lemma 6.5. Let X be a quandle and Dis(X) ≥ N ⊴ LMlt(X). The relation

x αN y ⇐⇒ LxL
−1
y ∈ N

is a congruence.

Proof. Let x αN y and z ∈X. Then

LL±1z (x)L
−1
L±1z (y) = L±1

z LxL
−1
y L

∓1
z ∈ N

since it is normal. Therefore L±1
z (x) αN L±1

z (y). Since LyL−1
x = (LxL−1

y )−1 ∈ N and
L−1
x Ly = L−1

x LyL
−1
x Lx ∈ N , then

LxzL
−1
yz = LxLzL−1

x LyL
−1
z L

−1
y = LxL−1

y LyLzL
−1
x LyL

−1
z L

−1
y ∈ N

Therefore, xz αN yz and then αN is a congruence. �

On the other hand, to any congruence α corresponds a subgroup of Dis(X) which
is normal in LMlt(X).
Definition 6.6. Let X be a quandle and α be its congruence. Then

Disα(X) = ⟨LxL−1
y , x α y⟩

Proposition 6.7. Let X be a quandle and α be its congruence. Then Disα(X) is
a normal subgroup of LMlt(X) and

Disα(X) = {L−amxm . . . L−a1x1 L
a1
y1 . . . L

am
ym , x̄, ȳ ∈Xm, x̄ α ȳ, ai = ±1, m ∈ N}

Proof. Since α is a congruence, then xy α xz whenever y α z. Then

LxLyL
−1
z L

−1
x = LxyL−1

xz ∈Disα(X)
for every x ∈X. Therefore Disα(X) is normal in LMlt(X).

Let h = L−anxn . . . L−a1x1 L
a1
y1 . . . L

an
yn and g = L−bmzm . . . L−b1z1 L

b1
u1 . . . L

bm
um such that, x̄ α ȳ

and z̄ α ū. Let f = L−bmzm . . . L−b1z1 , then

hg = L−anxn . . . L−a1x1 L
a1
y1 . . . L

an
ynL

−bm
zm . . . L−b1z1 L

b1
u1 . . . L

bm
um

= L−bmzm . . . L−b1z1 L
−an
f−1(xn) . . . L

−a1
f−1(x1)

La1
f−1(y1)

. . . Lan
f−1(yn)L

b1
u1 . . . L

bm
um

h−1 = L−anyn . . . L−a1y1 L
a1
x1 . . . L

an
xn

Since α is a congruence then f−1(xi) α f−1(yi) for every 1 ≤ i ≤ n, so the right
handside is a subgroup. Clearly it contains Disα(X) since it contains its generators.

For the other inclusion, let proceed by induction on k = ∑m
i=1 ∣ai∣. If k = 1 then it

holds, since L−1
x Ly = Lx/yL−1

x ∈Disα(X) and x/y α x. Let

h = L±1
xn+1 . . . L

−a1
x1 L

a1
y1 . . . L

∓1
yn+1 =

= L−an
L±1xn+1(xn)

. . . L−a1
L±1xn+1(x1)

La1
L±1xn+1(y1)

. . . Lan
L±1xn+1(yn)

L±1
xn+1L

∓1
yn+1 =

= gL±1
xn+1L

∓1
yn+1

By induction, g and L±1
xn+1L

∓1
yn+1 belong to ∈Disα(X), since L±1

xn+1(xi) α L±1
xn+1(yi) for

every 1 ≤ i ≤ n. Therefore, h ∈Disα(X). �
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Remark 6.8. Note that ker(LX) ≤ αN for every N , since 1 ∈ N . And moreover

α ≤ α ∨ ker(LX) ≤ αDisα(X)

since both α and ker(LX) are contained in αDisα(X).
The correspondence between congruences and subgroups is monotone, since

N ≤H Ô⇒ αN ≤ αH
α ≤ β Ô⇒ Disα(X) ≤Disβ(X)

The previous remark suggests that there exists a Galois connection between con-
gruences and normal subgroups of the left multiplication group contained in the
transvection group.

Theorem 6.9. Let X be a quandle and [{1},Dis(X)] be the interval between {1}
and Dis(X) in the lattice of the normal subgroups of LMlt(X). The assignment

Con(X) Ð→ [{1},Dis(X)]
α ↦ Disα(X)

αN ↤ N

is a Galois connection.

Proof. Let Disα(X) ≤ N . Then α ≤ αDisα(X) ≤ αN , since the assignment N ↦ αN is
monotone.

If α ≤ αN , then LxL−1
y ∈ N whenever x α y. Thus Disα(X) ≤ N . �

Remark 6.10. Note that these mapping are neither injective nor surjective in
general. For instance no congruence α ≤ ker(LX) is given by a normal subgroup.

Any normal subgroup inducing a congruence α sits in between the group Disα(X)
and Disα(X). This is a powerful result in order to understand the structure of
Con(X) given the structure of Dis(X) and vice versa.

Proposition 6.11. Let X be a quandle, Dis(X) ≥ N ⊴ LMlt(X). Then

DisαN (X) ≤ N ≤DisαN (X).

Proof. Clearly since x αN y if and only if LxL−1
y ∈ N , then DisαN (X) ≤ N .

Let x ∈ X and h ∈ N . Since N is normal, then

Lh(z)L
−1
z = hLzh−1L−1

z ∈ N
therefore [h(x)]αN = [x]αN . By Proposition 6.1, N ≤DisαN (X). �

Lemma 6.12. Let X be a quandle. Then DisαN (X) is a normal subgroup of
LMlt(X), and X/αDisα(X) = L(X/α).

Proof. The subgroup Disα(X) is normal since it is the intersection of Dis(X) and
ker(π∗α) which are normal subgroups. Moreover

x αDisα(X) y ⇐⇒ LxL
−1
y ∈Disα(X) ⇐⇒ L[x] = L[y]

And then X/αDisα(X) = L(X/α). �
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Remark 6.13. Let X be a quandle and α be its congruence Then X/α is faithful if
and only if α = αDisα(X) = αDisα(X). Indeed, by Lemma 6.12, X/α is faithful if and
only if

x αDisα(X) y ⇐⇒ L[x] = L[y] ⇐⇒ [x] = [y] ⇐⇒ x α y

This is equivalent to α = αDisα(X) = αDisα(X). Therefore we have that

LxL
−1
y ∈Disα(X) ⇐⇒ LxL

−1
y ∈Disα(X).

If X is a Taylor quandle, then α = αDisα(X) since all its homomorphic images are
Taylor and therefore faithful.

If X is a principal Latin quandle then Disα(X) =Disα(X) for every α ∈ Con(X)
by virtue of Lemma 4.5.

The following Lemma restates Lemma 4.10 of [4] by using the subgroup Disα(X).

Lemma 6.14. Let X be a quandle and α be its congruence. Then LMlt(X),Disα(X)] ≤
Disα(X). In particular Disα(X)/Disα(X) is Abelian.

Proof. Let h = La1x1 . . . Lanxn ∈ LMlt(X), g ∈Disα(X). Then

[h, g] = hgh−1g−1 = La1x1 . . . LanxnL
−an
g(xn)

. . . L−a1
g(x1)

Since g ∈ Disα(X) then g(xi) α xi for every 1 ≤ i ≤ n, hence [h, g] ∈ Disα(X). In
particular [Disα(X),Disα(X)] ≤Disα(X). �

Problem 3. The groups Disα(X) and Disα(X) in general induce different con-
gruences, but even when the respective congruences are the same (as for Taylor
quandles), they can be different.

Under which assumptions on X and α the equality holds?
A partial answer is given in Lemma 4.10 of [4], since it concernes just congruences

corresponding to normal subgroups.

6.2. Abelian, central and strongly Abelian congruences. The properties of
the group Disα(X) determines the nature of the congruence α. In this Section we
show an original characterization of Abelian, central and strongly Abelian congru-
ences through the properties of the correspondent subgroups (see Propositions 6.16,
6.19 and 6.20). In particular it turns out that coverings correspond to strongly
Abelian congruences, and then they have a natural universal algebraic characteri-
zation.

Definition 6.15. Let X be a quandle and α be its congruence. A group G is called
α-semiregular if it acts semiregularly on each of the blocks of α, i.e. for every h ∈ G
and every x α y, then

h(x) = y ⇔ h(y) = y.

Proposition 6.16. Let X be a quandle and α be its congruence. The following are
equivalent:

(1) α is Abelian;
(2) Disα(X) is Abelian and α-semiregular.
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Proof. Let t be a term operation given by t(x̄) = Lk1x1 . . . Lkmxim(xm+1) and let x̄ α ȳ.

According to Lemma 6.7, ω = L−kmxim . . . L−k1xi1
Lk1yi1 . . . L

km
yim ∈ Disα(X). Note that the

following equations are equivalent

t(x0, x̄) = t(x0, ȳ)(14)

ω(xm+1) = ym+1(15)

By Remark 1.22, it is enough to consider just slim terms with respect to the first
variable to check Abelianness of α, hence without loss of generality x0 ∈ {xm, xm+1}.

Case x0 = xm+1: by the equivalence between (14) and (15), we have

ω(x0) = x0 ⇐⇒ t(x0, x̄) = t(x0, ȳ).
Then Disα(X) is semiregular if and only if t satisfies formula (2) of definition 1.21.

Case x0 = xm: note that L−1
x0ωLx0 ∈ Disα(X), then L−1

x0ωLx0(x) = y α x for every
x ∈X.

Hence, let s(x0, x̄) = Lk1x1 . . . LkmximLx0(x) = L
k1
x1 . . . L

km
ximLx0(y) = s(x0, ȳ). Therefeore

s satysfies formula (2) of definition 1.21 if and only if L−1
x0ωLx0(x) = y = L−1

y0ωLy0(x)
for every x ∈ X. Thus, Ly0L

−1
x0ω(Ly0L−1

x0)−1 = ω, for every x0 α y0 and ω ∈ Disα(X),
i.e. Disα(X) is Abelian.

Therefore, α is Abelian if and only if Disα(X) is Abelian and α-semiregular.
�

Corollary 6.17. Let X be a quandle. Then X is Abelian if and only if it Dis(X)
is Abelian and semiregular. If X is connected, then it is affine.

Corollary 6.18. Let X be a connected quandle and α be its congruence. Then the
following are equivalent:

(1) X/α is Abelian;
(2) αDis(X)

(1) ≤ α.

Proposition 6.19. Let X be a quandle and α be its congruence. Then the following
are equivalent:

(1) α is central;
(2) Disα(X) is central in Dis(X) and Dis(X) is α-semiregular.

Proof. The proof is the same of Proposition 6.16. Let x̄ and ȳ be any n-tuples and
x0 α y0. The same argument shows that formula (3) of definition 1.21 for slim terms
is now equivalent to centrality of Disα(X) and α-semiregularity of Dis(X). �

The following Proposition shows that coverings correspond to strongly Abelian
congruences. As a Corollary, the only strongly Abelian quandles are the projection
quandle.

Proposition 6.20. Let X be a quandle and α be its congruence. The following are
equivalent:

(1) α is strongly Abelian;
(2) Disα(X) = 1;
(3) (X, πα) is a covering of X/α.
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Proof. (1) ⇒ (3) Let x α y and z ∈X. Then u = L−1
x Ly(z) α z. This is equivalent to

t(x, z) = xz = yu = t(y, u)
Then, by strongly Abelianness

t(x, z) = t(y, u) Ô⇒ t(x, z) = xz = xu = t(x,u)
i.e. u = z. Therefore Lx = Ly, whenever x α y.

(2) ⇔ (3) The group Disα(X) is trivial if and only if LxL−1
y = 1 whenever x α y.

This is equivalent to have α ≤ ker(LX) and therefore (X, πα) is a covering of X/α.
(3) ⇒ (1) Let t(x0, x̄) = Lk1x1 . . . Lkmxim(xm+1) and let x̄ α ȳ. Since

t(x0, x̄) = t(y0, ȳ) ⇐⇒ xm+1 = ym+1

formula (4) of definition 1.21 holds for every z̄ α x̄. �

Corollary 6.21. Let X be a quandle. Then X is strongly Abelian if and only if it
is projection. If X is connected, then it is trivial.

Proof. By definition 5.17, X is strongly Abelian if and only if 1X ≤ ker(LX). This is
equivalent to have L(X) = {1} i.e. X is a projection quandle. A projection quandle
is connected if and only if it is trivial. �

By the characterization of congruences through the properties of Disα(X), we
can get some informations on the subgroup Disα(X).
Corollary 6.22. Let X be a quandle and α be its congruence.

(i) If α is Abelian, then Disα(X) is solvable of rank 2.
(ii) If α is central, then Disα(X) is nilpotent of rank 2.

(iii) If α is strongly Abelian, then Disα(X) is central in LMlt(X).

Proof. (i) By Proposition 6.16, Disα(X) is Abelian. Accordingly to Lemma 6.14,

we have Disα(X)(2) ≤Disα(X)(1) = {1}.
(ii) By Proposition 6.19, Disα(X) is central. Accordingly to Lemma 6.14, we

have Disα(X)2 ≤Disα(X)1 = {1}.
(iii) By Proposition 6.20, Disα(X) = {1}. Accordingly to Lemma 6.14, we have

[LMlt(X),Disα(X)] = {1}. �

If the quandle X is faithful, then α-regularity of the action on blocks of certain
subgroups of the transvection group is for free.

Remark 6.23. Let X be a faithful quandle and Dis(X) ≥ N ⊴ LMlt(X). by
Proposition 3.28, h(x) = x ⇐⇒ hLxh−1 = Lx. Assume that h(x) = x, i.e.

Lx = hLxh−1 = hLxL−1
y Lyh

−1

for some h ∈ N . If N is Abelian, then it is αN -regular.
The same argument show that if N is central, then Dis(X) is αN -regular.
Thus, since α ≤ αDisα(X) for every α ∈ Con(X)

(i) α is Abelian if and only if Disα(X) is Abelian;
(ii) α is central if and only if Disα(X) is central.

whenever X is faithful.
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6.3. Abelian Extensions. Some examples of Abelian congruences are given by
Abelian extensions. This family of extensions was already defined in [10]. In [1]
and [6] the same construction was carried out under the name of quandle modules.
This family of extensions describes the structure of quandles admitting an Abelian
congruence with connected blocks (Theorem 6.30). Therefore, they characterize
Abelian congruences in the case of Taylor quandles (Corollary 6.31). All the contents
of this Section are new results.

Let X be a quandle and A be an Abelian group. Then consider the algebra
(X ×A, ⋅) defined by setting

(x, a) ⋅ (y, b) = (xy,φ(x, y)(a) + ψ(x, y)(b) + θ(x, y)) = (xy, β(x, y, a)(b))
for every x, y ∈X and a, b ∈ A, where

φ ∶X ×X Ð→ End(A,+)
ψ ∶X ×X Ð→ Aut(A,+)
θ ∶X ×X Ð→ A

The following Lemma gives the conditions under which (X × S, ⋅) is a quandle (i.e.
the conditions under which the triple β = (φ,ψ, θ) defines a quandle cocycle).

Lemma 6.24. Let X be a quandle and A an Abelian group. Then the triple (φ,ψ, θ)
defines a quandle cocycle if and only if

ψ(x, yz)(θ(y, z)) + θ(x, yz) = ψ(xy, xz)(θ(x, z)) + φ(xy, xz)(θ(x, y)) + θ(xy, xz)
ψ(x, yz)ψ(y, z) = ψ(xy, xz)ψ(x, z)
ψ(x, yz)φ(y, z) = φ(xy, xz)ψ(x, y)

φ(x, yz) = φ(xy, xz)φ(x, y) + ψ(xy, xz)φ(x, z)
θ(x,x) = 0

φ(x,x) + ψ(x,x) = 1

for every x, y, z ∈X.

Proof. They follow from left-distributivity and idempotency. �

Extensions defined in this way are called Abelian.

Definition 6.25. Let X be a quandle, A an Abelian group and the maps

φ ∶X ×X Ð→ End(A,+)
ψ ∶X ×X Ð→ Aut(A,+)
θ ∶X ×X Ð→ A

The extension X ×β A, where β is defined by setting

(16) β(x, y, a)(b) = φ(x, y)(a) + ψ(x, y)(b) + θ(x, y)
for every x, y ∈ X and every a, b ∈ A, is called Abelian extension of X. The cocycles
β will be denoted by (φ,ψ, θ).
Remark 6.26. Modules over a rack, introduced in Definition 2.16 of [1], correspond

to quandle cocycles given by β = (φ,ψ,0).
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Remark 6.27. An Abelian extension X×βA is Latin if and only if X is Latin and

φ ∶X ×X Ð→ Aut(A)
Indeed, right division has to be defined necessarily by

(x, s)/(y, t) = (x/y, φ−1
x/y,x(s − ψx/y,y(t) − θx/y,x))

for every x, y ∈X and every s, t ∈ A.

The blocks of an Abelian congruences are Abelian quandles and to Abelian ex-
tensions correspond Abelian congruences.

Lemma 6.28. Let X be a quandle and α its Abelian congruence. Then the blocks
are Abelian quandles.

Proof. It follows directly from formula (2), choosing all the variables from the same
block of α. �

Lemma 6.29. Let X be a quandle, X ×β A be an Abelian extension and π the
canonical projection over X. Then ker(π) is an Abelian congruence.

Proof. It is enough to prove that Disα(X) is Abelian and α-semiregular by virtue
of 6.16 (ii). Since

L(x,a)L
−1
(x,b)(y, c) = (y, c + φ(x,x/y)(a − b))

for every x, y ∈ X and every a, b ∈ A, Disα(X) acts by translations on every block.
Therefore, it is Abelian and α-semiregular. �

The blocks of an Abelian congruences α are Abelian quandles. If they are con-
nected, they are affine (Corollary 6.17), and therefore, they have an induced struc-
ture of Abelian group. In this case X is an Abelian extension of X/α.

Theorem 6.30. Let X be a quandle and α its Abelian congruence such that X/α is
connected. If the blocks of α are connected quandles, then X is an Abelian extension
of X/α.

Proof. Let α be Abelian and let the blocks of α be connected. By Corollary 6.17,
the blocks are isomorphic to some connected affine quandle Q(A,α). Let e ∈ [x],
then ([x],+) is an Abelian group, where

x + y = x/e ⋅ e/y
So + is a term operation and moreover the maps

h[x] ∶ AÐ→ [x]
can be chosen to be group isomorphisms by Corollary 4.2 of [21].

It is enough to prove that the cocycle β defined as in formula (10), splits as in
formula (16) of definition 6.25.

The first step is to prove that

(17) β(x, y)(a, b) = β(x, y)(a,0) + β(x, y)(0, b) − β(x, y)(0,0),
which is equivalent to the identity involving term operations given by

(18) h[x](a)h[y](b) + h[x](0)h[y](0) = h[x](a)h[y](0) + h[x](0)h[y](b).
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Equation (18) holds for a = 0, therefore, by Abelianness, it holds for every a ∈ A.
Let define ψ(x, y)(b) = β(x, y)(0, b) − β(x, y)(0,0), hence ψ(x, y)(0) = 0. The

identity

(19) ψ(x, y)(a + b) = ψ(x, y)(a) + ψ(x, y)(b)
is equivalent to the equality involving term operations given by

h[x](0)h[y](a + b) − h[x](0)h[y](0) = h[x](0)h[y](a) + h[x](0)h[y](b) − 2h[x](0)h[y](0).
The last equality holds for a = 0, then by Abelianness it holds for every a ∈ A.
Therefore, identity (19) holds, i.e. ψ(x, y) is a group morphism.
A similar argument shows that φ(x, y)(a) = β(x, y)(a,0)−β(x, y)(0,0) is a group

morphism. Setting β(x, y)(0,0) = θ(x, y), from equation (17) it follows that

β(x, y)(a, b) = φ(x, y)(a) + ψ(x, y)(b) + θ(x, y)
Since left multiplications are bijective, then ψ(x, y) ∈ Aut(A). �

Corollary 6.31. Let X be a Taylor quandle and α be its congruence. Then the
following are equivalent:

(1) α is Abelian;
(2) Disα(X) is Abelian;
(3) X is an Abelian extension of X/α.

Proof. By Remark 6.23 and Lemma 6.29, we just need to prove (1) ⇒ (3).
Since all the subquandles of X are connected, then the blocks of α are connected.

Therefore, by Theorem 6.30, if α is Abelian then X is an Abelian extension of
X/α. �

6.4. Solvable and Nilpotent Quandles. Connected Abelian quandles are char-
acterized by Corollary 6.17. In a variety other interesting classes of algebras are the
classes of solvable and nilpotent algebras, which are defined in an analogous way to
solvable and abelian groups.

In this Section we investigate the relationship between the solvability of a quandle
and the solvability of its transvection group. In class of Taylor quandles solvabil-
ity (nilpotency) of a quandle is characterized by the solvability (nilpotency) of its
transvection group (Theorems 6.38 and 6.40).

We also characterize the center of a quandle. All the results of this Section are
original.

Definition 6.32. [15, Lemma 5.2] Let X be a quandle. Then the center of X is
the largest central congruence. It is denoted by Z(X).

Remark 6.33. By Proposition 6.19 it follows that Z(X), as any other central
congruence, has to be contained in αZ(Dis(X)) and in the equivalence defined by

x ∼ y ⇔ Dis(X)x =Dis(X)y
Proposition 6.34. Let X be a quandle. Then

(20) Z(X) = αZ(Dis(X)) ∩ {(x, y) ∈X ×X, Dis(X)x =Dis(X)y}
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Proof. By remark 6.33, it is enough to show that the right hand side of (20) is a
central congruence. Let call it β.

Let (x, y) ∈ β and z ∈ X. Since αZ(Dis(X)) is a congruence, it is enough to check if
the second condition holds for (zx, zy), (z/x, z/y) and (xz, yz) to prove that β is a
congruence. Then

Dis(X)L±1z (x) = L±1
z Dis(X)xL∓1

z = L±1
z Dis(X)yL∓1

z =Dis(X)L±1z (y)

Note that the second condition is equivalent to

(21) ∀h ∈Dis(X), h(x) = x ⇐⇒ h(y) = y
Let h ∈Dis(X), and assume that h(xz) = xz, which is equivalent to LxhL−1

x (z) = z.
Then

LyhL
−1
y (z) = LyhL−1

y LxhL
−1
x (z) L

−1
y Lx∈Z(Dis(X))= LxhL

−1
x LxhL

−1
x (z) = z

therefore h(yz) = yz. Hence, β is a congruence and it is central by Proposition
6.19. �

Let us introduce the class of solvable and nilpotent algebras.

Definition 6.35. An algebra X is said to be

(a) solvable if there exists a chain of congruences

0X = α0 ≤ α1 ≤ . . . ≤ αn = 1X

such that αk/αk−1 is Abelian for every 1 ≤ k ≤ n;
(b) nilpotent if there exists a chain of congruences

0X = α0 ≤ α1 ≤ . . . ≤ αn = 1X

such that αk/αk−1 is central for every 1 ≤ k ≤ n.

In general, solvability and nilpotency of a quandle is a stronger property than to
have solvable or nilpotent transvection group.

Proposition 6.36. Let X be a solvable quandle. Then Dis(X) is solvable.

Proof. Let proceed by induction on the length of the chain of congruences

0X ≤ α1 ≤ . . . ≤ αk ≤ 1X

where αi+1/αi is Abelian.
If k = 1, then Dis(X) is Abelian (Corollary 6.17). If k > 1, then

0X/α1
≤ α2/α1 ≤ . . . ≤ αk/α1 ≤ 1X/α1

is a chain of congruences in X/α1 and (αi+1/α1)/(αi/α1) is Abelian by Lemma 1.24
(i). By induction, Dis(X/α1) is solvable and Disα1(X) is solvable by Corollary 6.22
(i). Since

Dis(X/α1) ≃Dis(X)/Disα1(X)
then Dis(X) is solvable. �

Proposition 6.37. Let X be a nilpotent quandle. Then Dis(X) is nilpotent.
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Proof. Let prove the statement by induction on the length of the chain of congru-
ences

0X ≤ α1 ≤ . . . ≤ αk ≤ 1X

where αi+1/αi is central.
If k = 1, by Corollary 6.17, Dis(X) is Abelian. If k > 1, then

0X/α1
≤ α2/α1 ≤ . . . ≤ αk/α1 ≤ 1X/α1

is a chain of congruences in X/α1 such that (αi+1/α1)/(αi/α1) is central by Lemma
1.24 (ii). By induction, Dis(X/α1) is nilpotent, then Dis(X)n ≤Disα1(X) for some
n. Therefore,

Dis(X)n+1 = [Dis(X)n,Dis(X)] ≤ [Disα1(X),Dis(X)] ≤Disα1(X)
Since Disα1(X) is central, then Dis(X)n+2 is trivial. �

The converse holds in the class of Taylor quandles.

Theorem 6.38. Let X be a Taylor quandle and Dis(X) be solvable. Then X is a
solvable quandle.

Proof. Let prove the statement by induction on the length of the derived series.
If the length is 1 then X is affine and then Abelian by Corollary 6.17.
Let assume that the length is n + 1, i.e. Dis(X)(n+1) = {1}. Then Dis(X)(n)

is Abelian and normal in LMlt(X). By item (i) of Remark 6.31, α = αDis(X)
(n) is

an Abelian congruence of X. Since Dis(X/α) =Dis(X)/Disα(X) and Dis(X)(n) ≤
Disα(X), then it is solvable of rank n. The factor X/α is Taylor, hence by induction
there exists a chain of congruences

0X/α ≤ β1 ≤ . . . ≤ βk ≤ 1X/α

where βi = αi/α for some congruences αi of X containing α and βi+1/βi is Abelian.
In the correspondent sequence of congruences of X,

0X ≤ α ≤ α1 ≤ . . . ≤ αk ≤ 1X

αi+1/αi is Abelian since βi+1/βi is Abelian for every 1 ≤ i ≤ k by Lemma 1.24 (i). �

Corollary 6.39. Let X be a Latin quandle. Then it is a solvable quandle.

Proof. It follows by Theorem 6.38, since X is Taylor and Dis(X) is solvable by
Theorem 1.4 of [29]. �

Theorem 6.40. Let X be a Taylor quandle and Dis(X) be nilpotent. Then X is
a nilpotent quandle.

Proof. Let prove the statement by induction on the length of the central series.
If the length is 1 then X is affine and then Abelian by Corollary 6.17.
Let assume that the length is n+1, i.e. Dis(X)n+1 = {1}. Then Dis(X)n is central

and normal in LMlt(X). By item (ii) of Remark 6.23, α = αDis(X)n is a central
congruence of X. Since Dis(X/α) = Dis(X)/Disα(X) and Dis(X)n ≤ Disαn(X),
then it is nilpotent of rank n. Since X/α is Taylor, then by induction there exists a
chain of congruences

0X/α ≤ β1 ≤ . . . ≤ βk ≤ 1X/α
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where βi = αi/α for some congruences αi of X containing α and βi+1/βi is central.
In the correspondent sequence of congruences of X

0X ≤ α ≤ α1 ≤ . . . ≤ αk ≤ 1X

αi+1/αi is central for every 1 ≤ i ≤ k, since βi+1/βi is central, by Lemma 1.24 (ii). �

6.5. Extensions preserving Transvection Group. This Section is about finite
connected extensions preserving the transvection group. First we show that an
extension preserves the transvection group only if it is a covering and then we give
a complete characterization of finite coverings with this property.

Lemma 6.41. Let X be a finite quandle and α be its congruence. If Dis(X) ≃
Dis(X/α) then (X, πα) is a covering of X/α.

Proof. If Dis(X) ≃ Dis(X/α), then they have the same size. Since π∗α is surjective
then it is an isomorphism. Therefore, Disα(X) ≤ Disα(X) = {1}. By Proposition
6.20, (X, πα) is a covering of X/α. �

The following Proposition characterizes the finite connected extensions preserving
the transvection group. By virtue of Lemma 6.41, it is not restrictive to consider
just coverings.

Proposition 6.42. Let (X, πα) be a finite connected covering of X/α. Then the
following are equivalent:

(1) Dis(X) ≃Dis(X/α);

(2) X ≃ Q(Dis(X/α),H, L̂[x]) for some H ≤Dis(X/α)[x].

Proof. (1) ⇒ (2) Let (X, πα) be a connected covering of X/α, and assume that
Dis(X) ≃Dis(X/α). Since ∣Dis(X)∣ = ∣Dis(Y)∣, the group morphism

π∗α ∶Dis(X) Ð→Dis(X/α)
is an isomorphism. Let h ∈Dis(X)x, then

π∗α(h)([x]) = [h(x)] = [x]
and then H = π∗α(Dis(X)x) ≤Dis(X/α)[x]. Then the map

φ ∶ Q(Dis(X),Dis(X)x, L̂x) Ð→ Q(Dis(X/α),H, L̂[x]), hDis(X)x ↦ π∗α(h)H
is a well defined isomorphism of quandles.

(2) ⇒ (1) Let YH = (Dis(X/α),H, L̂[x]) for some H ≤ Dis(X/α)[x]. First note
that YH is a connected covering of X/α by Remark 3.22 and Proposition 5.25.

By Proposition 3.21 Dis(YH) ≃Dis(X/α). �

7. Simple Abelian Quandles

7.1. Doubly transitive Action. This Section is about finite quandles which au-
tomorphism group is doubly transitive. We do not show a characterization of this
class of quandles but we just point out that any quandle with this property is either
projection or Latin. We show some property of quandle of this class which will be
used in the following Sections.
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A group action is k-transitive if it is transitive on k-tuples with distinct entries.
If k = 2, the group is called doubly transitive The automorphism group of non
projection quandles can be at most doubly transitive, at least if the quandle is not
very small.

Proposition 7.1. [25, Proposition 5] Every quandle with at least four elements
and a 3-transitive automorphism group is projection.

Remark 7.2. The automorphism group of finite projection quandles is the whole
permutation group of the underlying set, which is n-transitive, where n is the size of
the set. Then is is in particular doubly transitive.

Doubly transitive actions can be characterized in the following well known way.

Proposition 7.3. Let G be a group, then the following are equivalent:

(1) A group G is doubly transitive on a set X;
(2) Gx is transitive on X ∖ {x} for every x ∈X.

Quandles which automorphism group is doubly transitive are contained within
two classes: Latin quandles and projection quandles.

Lemma 7.4. Let X be a non-projection finite quandle. If Aut(X) acts doubly
transitively on X, then X is Latin.

Proof. Since X is not a projection quandle, then for every x ∈ X there exists y ∈ X
such that yx ≠ x, since it is homogeneous. Let z ∈X, then there exists f ∈ Aut(X)x
such that z = f(yx), since Aut(X) is doubly transitive. Then

z = f(yx) = f(y)x = Rx(f(y))
and then Rx is surjective. Since X is finite, Rx is a bijection for every x ∈X. �

The two-transitivity of Aut(X) allows to verify identities between binary term
operations just on an arbitrary pair of elements of X.

Proposition 7.5. Let X be quandle such that Aut(X) acts doubly transitively on
X and t and s be binary quandle term operations. Then the following are equivalent:

(1) there exists x, y ∈X, x ≠ y such that t(x, y) = s(x, y);
(2) t ≈ s.

Proof. Note that t(x,x) = x = s(x,x) for every x ∈X, since X is idempotent.
Assume that t(x, y) = s(x, y) holds for some x ≠ y ∈X. Let h ∈ Aut(X), then

t(h(x), h(y)) = h(t(x, y)) = h(s(x, y)) = s(h(x), h(y))
Since Aut(X) is doubly transitive, it holds for every pair (z, t) ∈ X ×X. Hence,
t ≈ s. �

This Proposition actually holds for any idempotent algebra X for which Aut(X)
is doubly transitive.

Corollary 7.6. Let X be a finite quandle. If Aut(X) acts doubly transitively on
X then ⟨Lx⟩ acts semiregularly on X ∖ {x}, for every x ∈X.
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Proof. Let x ≠ y ∈X and k ∈ Z such that Lkx(y) = y. By Proposition 7.5, it holds for
every x, y ∈ X since it is an identity between binary terms, i.e., Lkx = 1. Therefore,
the group ⟨Lx⟩ is semiregular on X ∖ {x}. �

A quandle is said to be semiregular whenever ⟨Lx⟩ is semiregular on X ∖ {x} for
every x ∈X.

Remark 7.7. For finite quandles this property is equivalent to have

∣O⟨Lx⟩(y)∣ = o(Lx)
for every x, y ∈ X, i.e. the cycle decomposition of Lx is given by disjoint cycles of
the same length, namely o(Lx). If X is strongly faithful then o(Lx) divides ∣X ∣ − 1.

The class of quandles with doubly transitive left multiplication group has the
following characterization.

Theorem 7.8. [33, Corollary 4] Let X be a quandle. Then the following are
equivalent:

(1) LMlt(X) is doubly transitive;
(2) X ≃ Q(Znp , α) and o(α) = ∣X ∣ − 1.

A characterization of the class of finite Latin quandles with doubly transitive
automorphism group is still unknown.

Problem 4. Find a characterization of the class of finite Latin quandles with
doubly transitive automorphism group.

7.2. Minimal Quandles. In this Section we investigate the class of finite minimal
quandles, i.e., finite quandles with no proper subquandles and we prove that this
class is given by the finite simple Abelian quandles.

In universal algebra is known that simple Abelian algebra has no proper subalge-
bras (Theorem 3.4 of [32]), so we prove that also the converse is true in the variety
of quandles.

Simple quandles has been characterized by Joyce in [23] and the first paper about
minimal left-distributive quasigroup is the paper of Galkin ([16]).

It turns out that minimal quandles are characterized by several different properties
among the simple ones, and we collect them in Theorem 7.18.

Moreover, this characterization allows us to show that there is no finite quandle
which satifies meet semidistributivity in Theorem 7.19.

Definition 7.9. A quandle X is called

(a) simple if the lattice of the congruences has just two elements 1X and 0X;
(b) minimal if every proper subquandle of X is trivial.

Proposition 7.10. Let X be a minimal quandle. Then X is simple.

Proof. Let X be minimal and α a congruence. Since every block of α is a subquandle,
then either α = 1X or α = 0X. �

The following Propositions show some properties of simple quandles.
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Proposition 7.11. [22, Lemma 1] Let X be a simple quandle and ∣X ∣ ≠ 2. Then it
is connected and faithful.

Proposition 7.12. Let X ≃ Q(Dis(X),Dis(X)x, L̂x) be a simple quandle. Then

Dis(X) has no proper normal subgroups invariant under L̂x. In particular it has no
proper characteristic subgroups.

Proof. By Lemma 4.2 of [4], any proper normal subgroup N ≤Dis(X) invariant un-

der L̂x is normal in LMlt(X). By Lemma 6.5, it provides a congruence. Therefore,
either N = {1} or N =Dis(X). �

Minimal quandles are precisely quandles generated by any pair of elements. Note
that this property characterizes minimal quandles among all quandles without any
finiteness assumption.

Proposition 7.13. Let X be a quandle. Then it is minimal if and only if it is
generated by any pair of elements x, y ∈X. Moreover, every group of automorphisms
of X is Frobenius.

Proof. If X is minimal then the subquandle generated by x, y has size at least 2,
therefore is the whole X.

Assume that X is generated by any pair of elements. Let Q be a subquandle and
x, y ∈ Q. Then X = Sg({x, y}) ≤ Q. Therefore Q = X.

Let G be a group of automorphisms and g ∈ G such that g(x) = x and g(y) = y
for some x, y ∈ X. Let z ∈ X, then z = tX(x1, . . . , xn), for some term operation tX

and xi ∈ {x, y} for every 1 ≤ i ≤ n, since X = Sg({x, y}). Therefore,

g(z) = g(tX(x1, . . . , xn)) = tX(g(x1), . . . , g(xn)) = tX(x1, . . . , xn) = z
for every z ∈X. �

Proposition 7.13 holds for every finite idempotent algebra with no proper subal-
gebras.

Any finite minimal quandles has an affine representations over an elementary
Abelian group.

Lemma 7.14. Let G be a finite solvable group with no proper charateristic group.
Then it is elementary Abelian.

Proof. The commutator subgroup G(1) is proper, since G is solvable, therefore G is
Abelian. Every p-Sylow is unique, since it is normal, and therefore it is characteristic.
Hence, G is a p-group. Finally, the Frattini subgroup of G is trivial, then it is
elementary Abelian. �

Proposition 7.15. Let X be a finite quandle and ∣X ∣ ≠ 2. Then the following are
equivalent:

(1) X is minimal;
(2) X ≃ Q(Znp , α) and α has no proper invariant subgroups.

Proof. (1) ⇒ (2) Assume that X is minimal, then it is simple and connected and
Dis(X) is a Frobenius group (Proposition 7.13). By Theorem 1 of [30], it has a
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regular nilpotent subgroup N . Since X is connected, Dis(X) = N (see Remark 4.3)
and therefore it is nilpotent.

By Lemma 7.14, Dis(X) is elementary Abelian, and it has no α-invariant sub-
groups by Proposition 7.12.

(2) ⇒ (1) Assume that X ≃ Q(Znp , α) is simple and α has no proper invariant
subgroups. Therefore, it is affine and connected, hence Latin. By Corollary 4.7, X
is minimal. �

The automorphism group of minimal quandles is doubly transitive.

Proposition 7.16. Let X be a finite minimal quandle. Then Aut(X) is doubly
transitive.

Proof. By Proposition 7.15, X ≃ Q(Znp , α). Let x ∈ X and let a = (a0, a1, . . . , an−1) ∈
Znp be a non zero vector, such that

∑n−1

i=0
aiα

i(x) = 0

Then the subgroup generated by the set Bx = {αi(x), 0 ≤ i ≤ n − 1} is invariant
under α. Therefore, the set Bx is a base for Znp , since α has no invariant subgroups.

The map

fa ∶X Ð→X, x↦∑n−1

i=0
aiα

i(x)
is an automorphism for every non-zero vector a ∈ Znp , since Bx is a base for every x ∈
X. The subgroup F = ⟨fa, a ∈ Znp ⟩ is a subgroup of Aut(X)0, since fa ∈ CAut(X)(α).

Let x ∈X and a, then

∑n−1

i=0
aiα

i(x) = x ⇐⇒ (α0 − 1)x +∑n−1

i=1
aiα

i(x) = 0

Therefore, a = (1,0, . . . ,0) and then F is semiregular on X ∖ {0}. The size of F
is pn − 1, then it is transitive on X ∖ {0}. By Proposition 7.3, Aut(X) is doubly
transitive. �

Remark 7.17. Let X = Q(Znp , α) be a minimal quandle. Since every orbit under
α generates an invariant subgroup then it has to contain a base. Then n ≤ o(α).

Moreover, by Corollary 7.6, X is semiregular, since Aut(X) is doubly transitive.
Note that if X is involutory then n = 1. Indeed,

α2 = 1 Ô⇒ α = −1

and then every subgroups would be invariant under α.

The following proposition summarizes all the contents of this Section, in order to
show several different characterization of minimal quandles among the simple ones.

Theorem 7.18. Let X be a finite simple quandle and ∣X ∣ > 2. Then the following
are equivalent:

(1) X is Abelian;
(2) X is minimal;
(3) X ≃ Q(Znp , α) and α has no proper invariant subgroups;
(4) Aut(X) is doubly transitive;
(5) X is Latin.
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Proof. (1) ⇒ (2) By Theorem 3.4 of [32], every simple Abelian algebras has no
proper subalgebras.

(2) ⇔ (3) It follows by Proposition 7.15.
(3) ⇒ (4) It follows by Proposition 7.16.
(4) ⇒ (5) It follows by Lemma 7.4.
(5) ⇒ (1) By Theorem 1.4 of [29], Dis(X) is solvable, so it is elementary Abelian

by Proposition 7.12 and Lemma 7.14. Therefore, by Proposition 6.17, X is Abelian.
�

The proof of Theorem 1.4 of [29] uses the classification of finite simple groups.
Any finite quandle has a simple Abelian subquandle, since any minimal non trivial

element of the lattice of the subquandles is simple Abelian, since it has no proper
subquandles. This allows us to state the following theorem.

Theorem 7.19. There are no finite quandles X satisfying meet semidistributivity.

Proof. Consider the lattice of subquandles of a finite quandle. Then minimal non
trivial elements of the lattice are subquandles with no proper subquandles. Therefore
they are simple Abelian quandles by Proposition 7.18.

Hence, S(X) ⊂ HS(X) contains simple Abelian quandles. By Proposition 1.30,
V(X) does not satisfies SD(∧). �

8. Cohomology of Latin quandle

8.1. Non-Faithful quandles. In this Section we present some further details about
the congruence lattices of non-faithful quandles. We reformulate Proposition 3.1 of
[1] in the language of universal algebra (Proposition 8.1) and we show that there
exists a minimal congruence among those with faihful factor (Proposition 8.2).

Non-faithful quandles have a particular chain of congruences, as shown in the
following Proposition.

Proposition 8.1. Let X be a finite quandle. There exists a chain of congruences

0X = α0 ≤ ker(LX) = α1 ≤ α2 ≤ . . . ≤ αn
such that αk+1/αk is strongly Abelian for every 1 ≤ k ≤ n − 1 and X/αn is faithful.

Proof. If X is faithful, then ker(LX) = 0X and therefore the length of the chain is 1.
Assume that X is not faithful, then the chain of morphism

XÐ→ L(X) ≃ X/ker(LX) Ð→ LL(X) ≃ X/α1 Ð→ . . .Ð→ Lk(X) ≃ X/αk Ð→ . . .

correspond to a chain of congruences

ker(LX) ≤ α2 ≤ . . . ≤ αk ≤ . . .
Since X is finite, the chain stops when X/αn is faithful. Moreover

Lk(X) = L(X/αk−1) ≃ X/αk ≃ (X/αk−1)/(αk/αk−1)
Therefore, αk/αk−1 = ker(LX/αk−1) and it is strongly Abelian. �

Corollary 8.2. Let X be a finite connected non-faithful quandle. Then there exists
a proper minimal congruence with faithful factor.
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Proof. By Proposition 8.1, there exists a chain of congruences

0X = α0 ≤ ker(LX) = α1 ≤ α2 ≤ . . . ≤ αn
such that αi+1/αi is strongly Abelian for every 1 ≤ k ≤ n − 1. Assume that X/αn
is trivial. Since L(X/αn−1) ∈ H(X/αn), X/αn−1 is projection and connected, hence
trivial. Therefore, X is trivial and then faithful, contradiction. Hence αn is proper
and X/αn is faithful.

Let and β ∈ Con(X) such that X/β is faithful. Then by Lemma 3.23, there exists
a morphism between Ln(X) ≃ X/αn and X/β, i.e. αn ≤ β. �

Corollary 8.3. Let X be a faithful quandle and (Y, φ) be a covering of X. Then
X ≃ L(Y).

Proof. Let α ≤ ker(LY) such that X ≃ Y/α is faithful. By Proposition 8.1,

ker(LY) ≤ α ≤ ker(LY).
Therefore, α = ker(LY). �

8.2. Normalized Cocycles. The following Sections are about cocycles describing
non-faithful quandles for which the length of the chain of congruences defined in
Proposition 8.1 is one (i.e. α = ker(LX) as shown by Lemma 8.3) and moreover the
factor is Latin.

Hence, we are interested in the computation of the cohomology of Latin quandles.
For Latin quandles it is possible to define special representatives of the elements of
H2
c (X,Sym(S)) with some nice properties, called normalized cocycles. The defini-

tion of such a cocycles has been inspired by Lemma 5.1 of [17].
In the sequel we show some properties of normalized cocycles which will be used

to show that quandles belonging to some families of Latin quandles have trivial
cohomology by using a combinatorial approach.

All the following computations work for cocycles with coefficients in any group Γ.

Definition 8.4. Let X be a Latin quandle, u ∈X and β ∈ Z2
c (X,Γ). If

(N) β (x,u) = 1

for every x ∈X, then β is said to be u-normalized. This condition will be called the
normalization condition.

Every class in H2(X,Γ) has a normalized representative.

Proposition 8.5. Let X be a Latin quandle, u ∈X and β ∈ Z2
c (X,Γ). Then there

exists a u-normalized cocycle βu, such that βu ∼ β.

Proof. We want to find a suitable γ to get a u-normalized cocycle. Hence

βu (x,u) = γ (xu)β (x,u)γ (u)−1 = 1⇐⇒ γ (xu) = γ (u)β (x,u)−1

for every x ∈ X. Then, necessarily γ (x) = γ (u)β (x/u,u)−1
for every x ∈ X. The

map γ is well defined since

γ (u) = γ (u)β (u/u,u)−1 = γ (u)β (u,u)−1 = γ (u)
So γ is unique up to the choice of γ(u), so we can choose γ(u) = 1. �
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Remark 8.6. Note that the choice of u ∈X in Proposition 8.5 is arbitrary.

Proposition 8.7. Let X be a Latin quandle, u ∈ X, β, β′ ∈ Z2
c (X,Γ) and βu, β′u

the u-normalized cocycle cohomologous to β and β′.
Then β ∼ β′ if and only if

β′u(x, y) = aβu(x, y)a−1

for some a ∈ S. Then β ∼ 1 if and only if βu = 1, for every u ∈X.

Proof. Clearly β ∼ β′ if and only if βu ∼ β′u. Then there exists γ ∶ X Ð→ Sym(S)
such that

β′u (x, y) = γ (xy)βu(x, y)γ (y)−1

for every x, y ∈X. Since βu (x,u) = β′u (x,u) = 1 for every x ∈X, we have

γ (xu) = γ (u)
for every x ∈X. Since Ru is a permutation we get that γ is a constant map.

The second claim follows since 1 is a u-normalized cocycle. �

Remark 8.8. Proving that H2
c (X,Γ) = {1} is therefore equivalent to show that

βu = 1 for every β ∈ Z2
c (X,Γ).

Normalized cocycles are invariant under an action of a permutation group on the
set X ×X.

This invariance is granted by the identities following by the normalization condi-
tion (together with the cocycle condition).

Proposition 8.9. Let X be a Latin quandle, u ∈X and β ∈ Z2
c (X,Γ) a u-normalized

cocycle, then the following equivalent identities hold

(1) β (u,x) = 1 for every x ∈X;
(2) β (ux,uy) = β (x, y) for every x, y ∈X.

Therefore, β is invariant under the diagonal action of Lu.

Proof. First we proove that (1) and (2) are equivalent and then we proove just (1).
Moreover it is easy to see that (2) is equivalent to invariance of β under the

diagonal action of Lu.
(1) ⇒ (2) It follows from (CC), since

β (ux,uy) (1)= β (ux,uy)β (u, y) CC= β (u,xy)β (x, y) (1)= β (x, y)
(2) ⇒ (1) Let x = u/y, then

β (u, y) CC= β (u (u/y) , uy)−1
β (u, (u/y) y)β (u/y, y) =

= β (u (u/y) , uy)−1
β (u,u)β (u/y, y) CQ=

= β (u (u/y) , uy)−1
β (u/y, y) (2)= 1

for every y ∈X.
The claim (1) follows since

βu (u, yu) N= βu (u, yu)βu (y, u) CC= βu (uy, u)βu (u,u)
CQ= βu (uy, u) = 1

for every y ∈X and since Ru is a bijection. �
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Proposition 8.10. Let X be a Latin quandle and u ∈X. Then the map

f ∶X ×X Ð→X ×X, (x, y) ↦ (x ⋅ y/u,xu)
is a bijection and any u-normalized cocyle is invariant under the action of f , i.e.

(22) β(f(x, y)) = β(x ⋅ y/u,xu) = β(x, y)
for every x, y ∈X.

Proof. The map f has an inverse, given by

f−1(x, y) = (y/u, (y/u)/x ⋅ u)
for evey x, y ∈ X. Moreover, since β(x,u) = β(y, u) for every x, y ∈ X, (WCC)
implies that

β(xy, xu) WCC= β(x, yu)
for every x, y ∈X. Setting yu = z we get formula (22). �

Proposition 8.11. Let X be a finite Latin quandle and u ∈X. Then the map

ω ∶X ×X Ð→X ×X, (x, y) ↦ (MyM
−1
u (x) ⋅ x, y) = (y/(x/u) ⋅ x, y)

is a bijection and any u-normalized cocycle is invariant under the action of ω, i.e.

(23) β(ω(x, y)) = β(y/(x/u) ⋅ x, y) = β(x, y)
for every x, y ∈X.

Proof. Let us denote x/u = a, z/u = b, ux = MyM−1
u (x) and uz = MyM−1

u (z). The
map x↦ ux is bijective by Proposition 2.3 of [12]. Let x, z ∈X such that uxx = uzz,
then

ux(xa) = uxu

ux(xa) = uxx ⋅ uxa = uxx ⋅ y =
= uzz ⋅ y = uzz ⋅ uzb =
= uz ⋅ zb = uzu

Therefore ux = uz, hence x = z. The map ω is injective and then bijective.
Let x, y ∈X, then

β(u/y, y) N= β(u/y ⋅ x,u/y ⋅ y)β(u/y, y) CC= β(u/y, xy)β(x, y)
β(u/y, y) N= β(x,u/y ⋅ y)β(u/y, y) CC= β(x ⋅ u/y, xy)β(x, y)

Therefore, β(u/y, xy) = β(x ⋅ u/y, xy) for every x, y ∈X. Setting u/y = z and xy = v,
we have x = v/y = v/ (z/u). So that

β (z, v) = β (v/ (z/u) ⋅ z, v)
for every z, v ∈X. �

Notation 8.12. We will use the following notation

∆(x, y) = {(Lnu(x), Lnu(y), n ∈ Z}
∆ = {∆(x, y), x, y ∈X}

F (x, y) = {fn(x, y), n ∈ Z}
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l(x) = ∣{Ln0(x), n ∈ Z}∣
The element of ∆ will be called diagonals.

Remark 8.13. Let X be a finite quandle. Then ∆ (x, y) ⊆ O⟨Lu⟩(x)×O⟨Lu⟩(y) and
∣∆(x, y)∣ = L.C.M.{l(x), l(y)} for every (x, y) ∈X ×X.

Moreover if X is semiregular then ∣∆∣ = ∣X ∣
2
−1
l + 1. where l is the order of the left

multiplication Lu.

Several different identities can be derived from the normalization condition to-
gether with condition (CC) and (CQ). In the present work we will use just the
following one.

Lemma 8.14. Let X be a Latin quandle, and let β be a u-normalized cocycled,
then

β (u/ (u/x) , x) = β (u/x,x)
for every x ∈X. Moreover u/(u/x) ⋅ x = u if and only if x = u.

Proof. Setting x = u/y and y = u/z in (CC), we get β (u/ (u/z) , z) = β (u/z, z) for
every z ∈X. Moreover

u/(u/x) ⋅ x = u ⇔ u/(u/x) = u/x ⇔ u/x = u ⇔ x = u
�

8.3. Orbits of the action preserving normalized cocycles. In the previous
Section we have seen that normalized cocycle are invariant under the action of the
group ⟨Lu ×Lu, f, ω⟩, where Lu ×Lu denotes the diagonal action of Lu.

In this Section we show that f and ω acts on ∆ and we show some features of
this action using the properties of the action of f and ω on X ×X.

First of all you can see that the point (u,u) is the only fixed point by this action.

Lemma 8.15. Let X be a Latin quandle and let x, y ∈X. Then

fk (x, y) = (xk, xk−1u)
where

xk =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x−1 = y/u
(LxLy/u)

k
2 (x), if k is even

(LxLy/u)
k+1
2 (y/u), if k is odd

for every k ∈ Z.

Proof. Set x−1 = y/u = z and fk(x, y) = (xk, yk). By definition,

fk+1(x, y) = f(xk, yk) = (xk ⋅ yk/u,xku) = (xk+1, yk+1)
and then yk+1 = xku and xk+1 = xkxk−1 for every k > 0. Moreover

x0 = x = (LxLz)0 (x)
x1 = xz = (LxLz)1 (z)
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Assume by induction that

xk = { (LxLy/u)
k
2 (x), if k is even

(LxLy/u)
k+1
2 (y/u), if k is odd

for every k ≤ n. Without loss of generality n = 2k is even. Hence,

x2k+1 = x2kx2k−1 = (LxLz)k(x) ⋅ (LxLz)k (z) =
= (LxLz)k(xz) = (LxLz)kLxLz (z) =
= (LxLz)k+1 (z)

In the very same way you can proove that x2k+2 = (LxLz)k+1(x). �

Let us denote the product map (x, y) ↦ xy by p. The map f preserves the
product.

Lemma 8.16. Let X be a Latin quandle, then

p(x, y) = p(f(x, y))
for every x, y ∈X.

Proof. We have that

p(f(x, y)) = p(x ⋅ y/u,xu) = x(y/u) ⋅ xu = x ⋅ (y/u)u = xy = p(x, y)
for every x, y ∈X. �

Remark 8.17. Note that if X is finite, then ∣F (x, y)∣ ≤ ∣X ∣. Indeed, the product is
constant along the orbits of f and there at ∣X ∣ pair of elements with a given product.

By this property follows that the length of the orbits under f are determined just
by one of the two components.

Proposition 8.18. Let X be a Latin quandle and x, y ∈X. Then the following are
equivalent:

(1) fk(x, y) = (x, y);
(2) xk = x;
(3) xk−1 = y/u.

Therefore, (x, y) ∈ Fix(f) if and only if y = xu.

Proof. Clearly (1) implies (2) and (3) and (2) and (3) together imply (1). Hence it
is enought to show that (2) and (3) are equivalent.
By Proposition 8.16, we have that

xy = xk ⋅ xk−1u

for every k ∈ N. Since X is a Latin quandle, then xk = x if and only if xk−1u = y.
Therefore, (2) and (3) are equivalent. �

The length of the orbit under f of (x, y) depends on the length of the cycle of the
map LxLy/u.

Proposition 8.19. Let X be a finite Latin quandle, x, y ∈X and g = LxLy/u. Then

∣F (x, y)∣ = { 2∣Og(x)∣, if ∣F (x, y)∣ is even
∣Og(x)∣, if ∣F (x, y)∣ is odd
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Proof. Let assume that ∣F (x, y)∣ = 2r for some natural r. Then by Proposition 8.18,

x2r = gr(x) = x

and r is the minimum integer which satysfies this equation. Therefore 2r = 2∣Og(x)∣.
Let assume that ∣F (x, y)∣ = 2r + 1 for some natural r. Then

{ x2r+1 = gr+1(y/u) = x
x2r = gr(x) = y/u

Therefore Og(x) = Og(y/u) and both r and r+1 are the minimum naturals satisfying
these equations. Therefore, 2r + 1 = ∣F (x, y)∣ = ∣Og(x)∣. �

Corollary 8.20. Let X be a finite Latin quandle, then ∣Og(x)∣ = ∣Og(y/u)∣.

Proof. If ∣F (x, y)∣ is odd, by Proposition 8.19, Og(x) = Og(y/u) and therefore they
have the same size.

If ∣F (x, y)∣ = 2r for some natural r, then

{ x2r = gr(x) = x
x2r−1 = gr(y/u) = y/u

and r is the minimum natural satisfying these equations, therefore r = ∣Og(x)∣ =
∣Og(y/u)∣. �

Let us show some properties of the map ω.

Lemma 8.21. Let X be a finite Latin quandle and x, y ∈ X. Then the following
are equivalent

(1) ω(x, y) = (x, y);
(2) p(ω(x, y)) = (x, y);
(3) y = u.

Proof. Note that ω(x,u) = (x,u) for every x ∈ X. Therefore, (3) implies (1) and
clearly (1) implies (2).

(2) ⇔ (3) Since X is a Latin quandle, then

p(ω(x, y)) = (y/(x/u))x ⋅ y = xy ⇔ y/(x/u) = x ⇔ y = u

�

Actually, the action of the group G = ⟨f, g⟩ on X ×X induces an action on the set
∆. We will use the following notation

∆f = {∆(x,xu), u ≠ x ∈X}
∆u = {∆(u/x,x), u ≠ x ∈X}

Proposition 8.22. Let X be a Latin quandle and G = ⟨f,ω⟩. Then

(24) g(∆ (x, y)) = ∆ (g (x, y))

defines a group action of G on ∆.
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Proof. It is enough to show that f and ω commutes with Lu×Lu. Let x, y ∈X, then

f((Lu ×Lu)(x, y)) = f(ux,uy) = (ux ⋅ (uy)/u,uxu) =
= (ux ⋅ u(y/u), uxu) = (u ⋅ x(y/u), uxu) =
= (Lu ×Lu)(x(y/u), xu) = (Lu ×Lu)(f (x, y))

Moreover

ω((Lu ×Lu)(x, y)) = ω(ux,uy) =
= (LR−1

L−1ux(u)
(uy)(ux), uy) = (LLuR−1

L−1x (u)L
−1
u (uy)(ux), uy)

= (LuLR−1
L−1x (u)(y)

L−1
u (ux), uy) = (LuLR−1

L−1x (u)(y)
(x), uy) =

= (uωy(x), uy) = (Lu ×Lu)(ω(x, y))
Then the action in formula (24) is well defined. �

On the other hand, the maps f and ω do not commute.

Proposition 8.23. Let X be a Latin quandle, then

(fω) (x, y) = (ωf) (x, y)
if and only if x = y = u.

Proof. Let us denote ω(x, y) = (ωy(x), y) for every x, y ∈X. Assume that fω(x, y) =
ωf(x, y), i.e.

fω (x, y) = (ωy(x) ⋅ y/u,ωy(x)u)
ωf (x, y) = (ωxu (x ⋅ y/u) ⋅ x (y/u) , xu) .

By Proposition 8.21, ωy(x) = x implies y = u . So it follows that ωxu(xu) = xu.
Then, by Proposition 8.21, we have xu = u and therefore x = u. �

Corollary 8.24. Let X be a Latin quandle then

(1) ω(∆(u/x,x)) ∉ ∆u;
(2) ω(∆(x,xu)) ∉ ∆f ;
(3) f(∆(x,xu)) = ∆(x,xu);
(4) f(∆u) = ∆u;

for every u ≠ x ∈X.

Proof. (1) It follows by Lemma 8.21.
(2) It follows by Proposition 8.23.
(3) If follows since f and the diagonal action of Lu commutes.
(4) If follows by Lemma 8.16 (f preserves the product). �

The length of the orbits of the action on f and ω on ∆ might be different from
the size of the orbits of their action on X ×X. This actually coincides under some
further assumption on the quandle X.

Lemma 8.25. Let X be a Latin semiregular quandle. Then the length of the orbit
of (x, y) and ∆(x, y) under the action of f and ω are the same.
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Proof. Under this assumption, ∣∆(x, y)∣ = o(Lu). Clearly the size of the orbit of
∆(x, y) under f (ω) divides the size of the orbits of (x, y) under f (ω).

Assume that fk(∆(x, y)) = ∆(x, y), then

fk(x, y) = (Lur(x), Lur(y))
for some r ∈ N. Therefore, p(x, y) = xy = Lur(xy) = p((Lur(x), Lur(y)). Hence, r
divides o(Lu) = ∣∆(x, y)∣, therefore fk(x, y) = (x, y).

Assume that ωk(∆(x, y)) = ∆(x, y), then

ωk(x, y) = (z, y) = (Lur(x), Lur(y))
for some r ∈ N and some z ∈X, i.e., Lru(y) = y. Therefore, ωk(x, y) = (x, y). �

Remark 8.26. Let O(∆(x, y)) denotes the orbit of ∆(x, y) under the action of
⟨f,ω⟩. Then if ∆ = ⋃x∈X O(∆(x,x)) then X has trivial cohomology. It follows since

f(u, y) = f(u,xu) = (ux,uu) = (ux,u)
f 2(u, y) = (ux ⋅ u,ux ⋅ u) = (uxu,uxu)

and since β(x,x) = 1 for every x ∈X.

9. Some particular cases

9.1. Cohomology of principal Latin Quandles. A principal representation al-
lows us to exploit the underlying group structure to understand better the behaviour
of the orbits under the action of f and ω.

In the whole Section we make the choice u = 1 ∈ G, the group operation is denoted
by juxtaposition.

Proposition 9.1. Let X = Q(G,α) be a finite principal Latin quandle, x, y ∈ X.
Then

∣F (x, y)∣ =min{n ∈ N, ∏n−1

k=0
αk (x−1

k−1xk) = 1}
where

xk = { x, if k is even
y/1, otherwise

Let n = ∣F (x, y)∣. Then αn (x−1
n xn−1) = x−1z

Proof. By Proposition 8.18, it is enough to consider just one of the coordinates of
f . By Proposition 3.9, we have that

xn = x∏
n

k=1
αk (x−1

k−1xk)
for every n ∈ N, where xk = x if k is even and xk = y/1 if k is odd. Hence xn = x if
and only if

∏n

k=1
αk (x−1

k−1xk) = 1 ⇐⇒ ∏n−1

k=0
αk (x−1

k−1xk) = 1

Let n = ∣F (x, y)∣. The second claim follows by Proposition 8.18, putting together
the equivalent equations

xn = x∏n

k=1
αk (x−1

k−1xk) = x
xn−1 = x∏n−1

k=1
αk (x−1

k−1xk) = z.
�
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Corollary 9.2. Let X = Q(G,α) be a finite principal faithful quandle, x, y ∈X and
n = ∣F (x, y)∣. If n is even, then l (x−1(y/1)) divides n. If n is odd then l (x−1(y/1))
divides 2n.

Proof. Let z = y/1. By Proposition 9.1, if n = ∣F (x, y) ∣ is even, αn (x−1z) = x−1z
and then l (x−1z) divides n. Otherwise, αn (z−1x) = x−1z. Hence, α2n (x−1z) =
αn (x−1z)−1 = x−1z. Therefore, l (x−1z) divides 2n. �

For principal quandles ω has a nice form.

Lemma 9.3. Let X = Q(G,α) be a finite principal Latin quandle and β a quandle
constant cocyle. Then

(25) ω(x, y) = (yx, y)
for every x, y ∈ G.

Proof. Assume that u = 1, then

y/(x/1) ⋅ x = RxR
−1
L−1x (1)(y) = λxtλ−1

x L
−1
x t

−1Lx(y) =
= λxtα

−1λ−1
x t

−1λxαλ
−1
x (y) = xtα−1(x−1t−1(xα(x−1(y))) =

= xtα−1(x−1x)x−1yx = yx
Then ω is a permutation also if X is infinite. �

Remark 9.4. Formula ( 25) states that the orbit of (x, y) under the action of ω is
given by

O⟨ω⟩ (x, y) = {(ynx, y) , n ∈ Z}
i.e. the first component is nothing but the geometric progression of ratio y with
scale factor x. The length of the orbit under ω of (x, y) is given by the order of y.
Moreover,

(26) β(ynx, y) = β(x, y)
for every x.y ∈ G and n ∈ N.

Corollary 9.5. Let X = Q(G,α) a principal finite Latin quandle and β a constant
cocyle. Then

(27) βu (xn, x) = 1

for every n ∈ Z, x ∈ G.

Proof. It is enough to set x = y in formula (26). �

Remark 9.6. Let X = Q(G,α) be a finite Latin quandle. Assume that the map

g ∶X ×X Ð→X ×X, x↦ x ⋅ xu = xα2(x)−1

is bijective. Then f -fixed points belong to different subsets of the partition given by
the product map, i.e.

X ×X = ⋃c∈X{(x, y), xy = c} = ⋃c∈X Pc

This condition is equivalent to have no cycle of length two for α.
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Under this assumption ∣F (x, y)∣ ≤ ∣X ∣ − 1. If the equality is realized by any pair
x, y ∈ X, then any subset Pc is given by one orbit under f of size ∣X ∣ − 1 and one
trivial orbit. It c ≠ u, then there is an element of the form (x,u) ∈ Pc.

Therefore β∣∆(x,y) = 1 for every ∆(x, y) ∉ ∆u ∪∆f . By virtue of Proposition 8.24,
if either β∣∆(x,y) = 1 for some ∆(x, y) ∈ ∆u∪∆f or if ω does not decompose ∆u∪∆f ,
then β = 1.

We will show that this condition is sufficient for having trivial cohomology for any
finite principal Latin quandle with size different from 4 (see Corollary 9.34).

Definition 9.7. Let X be a Latin quandle X. If

(F) ∣F (x, y)∣ = ∣X ∣ − 1, for every x, y ∈X
then we say that X satisfies condition (F).

Proposition 9.8. Let G be a finite non-Abelian group and let X = Q(G,α) be a
Latin quandle. If X satisfies condition (F) then X has trivial cohomology.

Proof. Note that

ω(∆(x,x ⋅ 1)) = ∆(xα(x−1)x,xα(x−1)) ∈ ∆u ⇐⇒ o(xα(x−1)) = o(t(x)) = 2

Since G is not Abelian and t is surjective, then there exists an element t(x) with
order different from 2. Then ω does not decompose ∆u ∪∆f and by Remark 9.6, X
has trivial cohomology. �

9.2. Cohomology of Connected Affine Quandles. This Section is about non-
abelian cohomology of finite affine quandles. By virtue of Proposition 4.15, we can
apply all the results about cocycles showed in the previous Sections.

For affine quandles we can compute the length of the orbits of f and this allows
us to extend Lemma 5.1 of [17] to all connected affine quandles over cyclic groups
and to quandles with doubly transitive left multiplication group.

Fact 9.9. Let A be an Abelian group, α,1 − α ∈ Aut (A) and x ∈ A. Then

αn (x) = x ⇐⇒ ∑n−1

k=0
αk (x) = 0

Remark 9.10. Let X = Q(A,α) be a finite connected affine quandle and x, y ∈X.
By virtue of Proposition 9.1 we have that

∣F (x, y)∣ =min{n ∈ N, ∑n−1

j=0
(−1)jαj(x − y/0) = 0}(28)

(−1)nα∣F (x,y)∣ (x − y/0) = x − y/0.(29)

If ∣F (x, y)∣ is even, then l (x − y/0) divides ∣F (x, y)∣, otherwise l (x − y/0) divides
2∣F (x, y)∣ (see Corollary 9.2). Furthermore, by Lemma 9.3,

ω(x, y) = (y + x, y)(30)

β(ny + x, y) = β(x, y)(31)

β(nx,x) = 1(32)

for every x, y ∈ A and every 0-normalized cocycle.

In the finite affine case it is possible to compute the length of the orbits of f from
the length of the cycle of α and the order of the elements of the underlying group.
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Corollary 9.11. Let X = Q(A,α) be a finite connected affine quandle and x, y ∈X.
If o(x − y/0) = 2 then ∣F (x, y)∣ = l(x − y/0).

Proof. It follows by formula (28, in view of Fact 9.9). �

Lemma 9.12. Let X = Q(A,α) be a finite connected affine quandle and x, y ∈ A
such that l (x − y/0) is odd. Then

∣F (x, y)∣ = { l (x − z) , if o (x − y/0) = 2
2l (x − y/0) , otherwise

Proof. Let l = l (x − y/0) and n = ∣F (x, y)∣.
If n is even, then by Corollary 9.2, n = rl for some even r. Therefore, by formula

(28), r is the minimum even natural for which

(33) ∑rl−1

j=0
(−1)−1αj(x − 1/0) = 0

holds. Since l is odd then r = 2 satisfies formula (33). Hence r = 2 and so n = 2l.
If n is odd, then by Corollary 9.2, l divides 2n and since l is odd then l divides n.

Then, by formula (29), o(x − y/0) = 2 and by Corollary 9.11, n = l. �

Lemma 9.13. Let X = Q(A,α) be a finite connected affine quandle and let x, y ∈X.
Assume that l = l (x − y/0) is even, then

∣F (x, y)∣ = { kl, if ∣F (x, y)∣ is even
k′ l2 , otherwise

where k = o (∑l
k=1 (−1)k αk (x − y/0)), k′ = o(∑

l
2

k=1 (−1)k αk (x − y/0)).

Proof. Let l = l (x − y/0) and n = ∣F (x, y)∣.
If n is even the by formula (28), n = rl for some r. Since l is even, we have that

(34) ∑rl

k=1
(−1)k αk (x − y/0) = r∑l

k=1
(−1)k αk (x − y/0) = 0

and r is the minimum for which equation (34) holds. Then by definition r is the

order of ∑l
k=1 (−1)k αk(x − y/0).

Let n be odd, then by formula (28), n = (2s + 1) l2 for some s, and α
l
2 (x − y/0) =

−(x − y/0). Hence we get that

(35) ∑(2s+1) l
2

k=1
(−1)k αk (x − y/0) = (2s + 1)∑

l
2

k=1
(−1)k αk (x − y/0) = 0

and s is the minimum for which equation (35) holds. By definition 2s+1 is the order

of ∑
l
2

k=1(−1)kαk(x − z). �

Remark 9.14. Note that if l = l(x − y/0) is even and ∣F (x, y)∣ is odd, then the

order of ∑
l
2

k=1(−1)kαk(x − z) and l
2 need to be odd.

The following Lemma is needed to extend Proposition 9.8 to the affine case.

Lemma 9.15. Let X = Q(A,α) be a connected affine quandle.

(1) ω(∆(0/x,x)) ∈ ∆f if and only if o (x) = 2.
(2) ∆(0/(0/x), x) ∈ ∆f if and only if (α2 + α − 1) (x) = 0.
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Proof. (1) We have that

(0/x + x) ⋅ 0 = (1 − α)(2x − (1 − α)−1(x)) = x
if and only if 2x = 0.

(2) We have that

(0/ (0/x)) ⋅ 0 = (1 − α) (x − 2 (1 − α)−1 (x) + (1 − α)−2 (x)) = x
if and only if (α2 + α − 1) (x) = 0. �

Proposition 9.16. Let X = Q(A,α) be a finite connected affine quandle. If
exp (A) ≠ 2 and X satisfies condition (F), then X has trivial cohomology.

Proof. By Lemma 9.15 (1), it follows that there exists x ∈ A such that ω(∆(x,x/u)) ∉
∆u ∪∆f . Therefore β∣∆u = 1. �

Proposition 9.17. Let X = Q(Zn2 , α) be a connected affine quandle. If o (α) ≠ 3
and X satisfies condition (F), then X has trivial cohomology.

Proof. By Lemma 9.15 (2), if o(α) ≠ 3 we have that there exists x ∈X such that

(α2 + α − 1)(x) exp(A)=2= (α2 + α + 1)(x) ≠ 0

By Proposition 8.14, (u/(u/x), x) ∉ ∆f ∪ ∆u and β(u/x,x) = β(u/(u/x), x) = 1.
Thus, β∣∆u = 1. �

The next Proposition shows which are the finite affine quandles satisfying the
condition (F).

Proposition 9.18. Let X = Q(A,α) be a finite connected affine quandle.

(i) If ∣X ∣ is even then,

X satisfies (F) ⇐⇒ X = Q(Zn2 , α) and o(α) = ∣X ∣ − 1.

(ii) If ∣X ∣ is odd and o(α) is odd, then

X satisfies (F) ⇐⇒ X = Q(Znp , α) where p ≥ 3 and o(α) = ∣X ∣ − 1

2
is odd;

(iii) If ∣X ∣ is odd and o(α) is even, then

X satisfies (F) Ô⇒ X = Q(Znp , α) where p ≥ 3and o(α) = ∣X ∣ − 1.

Proof. (i) Assume that condition (F) holds and o(α) be odd. Since there exists
x ∈ A, such that o(x) = 2, then by Proposition 9.10

∣F (x,0)∣ = l(x) = ∣X ∣ − 1

By Theorem 7.8, X ≃ Q(Zn2 , α).
If X = Q(Zn2 , α) and o (α) = ∣X ∣ − 1, Lemma 9.12 applies and condition (F) holds.
(ii) Let assume that condition (F) holds and that o(α) is odd. By Lemma 9.12,

∣F (x, y)∣ = 2l(x − y/0) = ∣X ∣ − 1

for every x, y ∈X. Hence, l(x) = ∣X ∣−1
2 = o(α) for every x ∈X and it need to be odd.

Let assume that there are x, y ∈ A of prime orders p and q. Therefore o (x + y) = pq.
Since α has just two non-trivial orbits then p = q and A ≃ Znp × Zm

p2
for some prime
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integer p ≥ 3 and some naturals n,m. Let x = x1 + . . . + xn + xn+1 + . . . + xn+m ∈ A.
Then o(x) = p if and only if xn+i ∈ {0, p} for every 1 ≤ i ≤m. Therefore

∣{x ∈ A, o(x) = p}∣ = pn2m − 1 = ∣X ∣ − 1

2
= p

n+2m − 1

2

which implies p = 1. Hence if ∣X ∣ ≥ 1, then A ≃ Znp .

If X = Q(Znp , α) for some p ≥ 3 and o (α) = ∣X ∣−1
2 is odd, X satisfies condition (F)

by Lemma 9.12.
(iii) Assume that condition (F) holds. By Lemma 9.13,

∣F (x, y)∣ = l(x − y/0)o (∑l(x−y/0)−1

j=0
(−1)k α (x − y/0)) = ∣X ∣ − 1

Then k = o(∑l(x−y/0)−1
j=0 (−1)kαk(x − y/0)) divides ∣X ∣ and divides ∣X ∣ − 1. Therefore

k = 1 and l (x) = ∣X ∣ − 1 for every x ∈ X. By Theorem 7.8, X = Q(Znp , α) for some
p ≥ 3 and o (α) = ∣X ∣ − 1. �

Corollary 9.19. Let p > 3 be a prime integer, X = Q(Znp , α) such that o(α) = ∣X ∣−1
2

is odd. Then X has trivial cohomology.

Now we are ready to extend Lemma 5.1 of [17] to all the connected affine quandles
over cyclic groups. The Lemma is the following.

Proposition 9.20. [17, Lemma 5.1] H2
c (Q(Zp, α) ,Γ) = {1} for every Γ.

This result has a very useful Corollary, which was stated in Proposition 2.10 of [17]
just for the case p = q. It follows by using the classification of connected quandles
of prime size given in [14].

Proposition 9.21. [14, Lemma 3] Let p be a prime integer and X be a connected
quandle of size p. Then X ≃ Q(Zp, α).

Corollary 9.22. [17, Proposition 2.10] Let p, q be prime integers. Every connected
quandle of order pq is faithful.

Proof. Let X be a connected quandle of order pq. Assume that (X, LX) is a proper
covering of L(X), hence L(X) has size p or q. In view of Proposition 9.20, X would
be a trivial covering of LX, which is connected if and only if the blocks are trivial
(by Proposition 5.12), contradiction. �

Remark 9.23. It is a very well known fact that the automorphisms of a cyclic
group are given by Aut(Zm) = {λn, G.C.D.{n,m} = 1} where λn is the give by the
map k ↦ nk. Therefore, X = Q(Zm, λn) is connected if and only if G.C.D.{m,n} =
G.C.D.{m,1 − n} = 1. Then m has necessarily to be odd.

In the following U(Zm) will denoted the invertible elements of Zm with respect to
the ring structure.

Proposition 9.24. Let X = Q(Zm, λn) be a connected quandle and β be a 0-
normalized cocycle. Then β is a u-normalized for every u ∈ U(Zm) and therefore

(1) β (k, u) = 1, for every u ∈ U (Zm) and k ∈ Zm.
(2) β(u, k) = 1, for every u ∈ U (Zm) and k ∈ Zm.
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(3) β is invariant under the diagonal action of Lu for every u ∈ U .

Proof. In view of Proposition 8.9, it is enough to prove (1). Since every invertible
elements u generates the whole group, by formula (32), we have

β (k, u) = β(nu,u) = 1.

for every u ∈ U(Zm) and every k ∈ Zm. Thus β is u-normalized for every u ∈
U(Zm). �

Lemma 9.25. Let m be a odd natural number. Then every element x ∈ Zm can be
written as x = u ⋅ v for some u, v ∈ U (Zm).

Proof. Since u+v = u/0⋅0/v = (1−α)−1(u)⋅α−1(v) and α and 1−α are automorphisms,
it is enought to prove that x = u + v for some u, v ∈ U(Zm).

Let m = ∏k
i=1 p

ai
i and x = x1 + . . . + xk be the canonical decomposition of x ∈ Zm.

with xi ∈ Zpaii .

Any non invertible element of Zpiai can be written as sum of two invertible, since
it is nilpotent. Since m is odd, then any invertible elements u ∈ Zpiai can be written
as u = 2u − u, which is a sum of invertible elements. In any case, we can write
xi = ui + vi with ui, vi ∈ U(Zpaii ). By the Chinese remainder theorem, u = u1 + . . .+uk
and v = v1 + . . . + vk belong to U(Zm). Finally, we have that x = u + v. �

Theorem 9.26. Let X = Q(Zm, λn) be a connected quandle. Then X has trivial
cohomology.

Proof. Let x ∉ U(Zm) and β a 0-normalized cocycle. By Proposition 9.25, we have
that x = u ⋅ v for some invertible elements u, v. By Proposition 9.24, it follows that

β(x, y) = β(u ⋅ v, u ⋅ y′) = β(v, y′) = 1

for every x, y ∈X. �

Now we show that all doubly transitive quandles but the one of size 4 have trivial
cohomology. First we show some results about cohomology of minimal quandles.

Remark 9.27. Let X = Q(A,α) be a finite connected affine quandle, then the
following are equivalent:

(1) 1 + α ∈ Aut (A);
(2) ∣Ou (x)∣ ≠ 2 for every x ∈X;
(3) the map x↦ x ⋅ (x ⋅ 0) is bijective.

Note that if one of the previous condition holds, then ∣F (x, y)∣ ≤ ∣X ∣ − 1 for every
x, y ∈ A. In view of Remark 7.17, minimal quandles satisfies these conditions.

Proposition 9.28. Let X = Q(Znp , α) be a minimal quandle and n > 1. Then all
non trivial f -orbit have the same length and it divides ∣X ∣ − 1. All the non trivial
ω-orbits have size p.

Proof. By Proposition 8.15, the length of the orbits under the action of f is deter-
mined by identities involving binary terms. By Proposition 7.5, non trivial orbits
have all the same length. By Remark 9.27, then F divides ∣X ∣ − 1.

The second claims follows since every element has order p. �
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Notation 9.29. The length of the non trivial f -orbits will be denoted by Lf .

By virtue of the previous results we can compute Lf .

Lemma 9.30. Let X = Q(Znp , α) be minimal quandle for some n > 1. Then:

(i) If p = 2 then Lf = o(α);

(ii) if p ≥ 3 then Lf = { o(α), if it is even
o(α)

2 , otherwise

In particular if X is doubly transitive, then:

(i) if p = 2 then Lf = ∣X ∣ − 1, i.e. it satifies (F);

(ii) if p > 2, then Lf = ∣X ∣ − 1, i.e. it satifies (F), or Lf = ∣X ∣−1
2 .

Proof. (i) The first statement follows by Lemma 9.12, since l(x) = o(α) for every
x ∈X.

(ii) If p ≥ 3, then o(α) is even, since it divides ∣X ∣ − 1. By Lemma 9.13, since Lf
divides ∣X ∣ − 1, necessarily Lf = o(α) when it is even and Lf = o(α)

2 otherwise. �

By Lemma 8.25, we have that for doubly transitive quandles Lf coincides with le
length of the orbits of the action of f on ∆. Moreover ∆0 and ∆f are one element
sets.

Theorem 9.31. Let X = Q(Znp , α) be a doubly transitive quandle with p ≥ 3 and
n > 1. Then X has trivial cohomology.

Proof. If X satisfies condition (F), then X has trivial cohomology by Proposition
9.16.

Let us assume Lf = ∣X ∣−1
2 , then the map f decomposes ∆∖(∆u∪∆f) in two orbits

∆0 and ∆1 of size ∣X ∣−1
2 , such that ∆(0, x) ∈ ∆0 for x ≠ 0.

By Proposition 8.24, it is enought to show that ω(∆(0, x)) ∉ ∆0. Let x ≠ 0 and

assume that it does not hold, i.e. there exists k < ∣X ∣−1
2 and r < ∣X ∣ − 1 such that

(36) ω (0, x) = (x,x) = fk (αr(0), αr (x)) = fk (0, αr (x)) .
Therefore,

p (x,x) = x = p(fk(0, αr(x)) = p(0, αr(x)) = αr+1(x),(37)

i.e., x = αr+1(x). So ∣X ∣ − 1 divides r + 1 and since r + 1 < ∣X ∣, then necessarily
r + 1 = ∣X ∣ − 1. Hence by equation (36), we get

(38) { x = α−1 (x +∑k
j=1 (−1)j+1

αj (1 − α)−1 (x))
x = (1 − α)α−1 (x +∑k−1

j=1 (−1)j+1
αj (1 − α)−1(x))

Taking the difference between the two equations of (38), we have

(39) x = (−1)kαk−2(x).
If k is even, then ∣X ∣ −1 ≤ k−2 < ∣X ∣−1

2 , contradiction. If k is odd, then ∣X ∣−1
2 ≤ k−2 <

∣X ∣−1
2 , contradiction. �

Theorem 9.32. Let X = Q(Zn2 , α) be a doubly transitive quandle with n ≠ 2. Then
X has trivial cohomology.
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Proof. It follows from Proposition 9.17, since o (α) = 3 if and only if n = 2. �

Proposition 9.33. Let X be a connected quandle of size 4. Then H2
c (X, S) =

{[βσ], σ2 = 1} where

(40) βσ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 σ σ
1 σ 1 σ
1 σ σ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and βσ ∼ βτ if and only if σ and τ are conjugated.

Proof. It is a very well known fact that there is only one isomorphism class of con-
nected quandles of order 4. One of its representative is given by X = Q(Z2

2, α) where
o(α) = 3. Every non trivial cocycle β ∈ Z2

c (X, S) is equivalent to a 0-normalized
cocycle of the form (40) where σ2 = 1. By Proposition 8.7, βσ and βτ are equivalent
if and only σ and τ are conjugated. �

The following Corollary puts together Proposition 9.8 and Theorems 9.32, 9.31
and Corollary 9.19.

Corollary 9.34. Let X be a finite principal Latin quandle and ∣X ∣ ≠ 4. If X
satisfies condition (F) then it has trivial cohomology.

10. A categorical approach to Coverings

10.1. Coverings and the Adjoint group of a quandle. In this Section we want
to show an alternative approach to quandle coverings. It basically summarizes the
contents of the paper of Eisermann [13], whose approach is categorical and relies
on the properties of the Adjoint group of a quandle (which was also introduced in
Section 2.2 of [18]). We just point out that for finite quandles it is enough to consider
an appropriate finite quotient of the Adjoint group (already defined in [18]).

There is a straightforward way to define a functor from the category of groups to
the category of quandles. It was actually implicitely introduced in Example 3.2 (ii).

Proposition 10.1. [13, Example 2.2] Conj ∶ GrpsÐ→Qnd is a functor.

This functor has a right adjoint, given by the following definition.

Definition 10.2. [13, Definition 2.18] The Adjoint group of a quandle X is a pair
(Adj(X), adj) where Adj(X) is a group and adj ∶ XÐ→ Adj(X) is a mapping, such
that for every quandle morphism

φ ∶ XÐ→ Conj (G)
there exists a unique group morphism φ̂ making the following diagram to commute

(41) X

φ

''

adj // Adj(X)

φ̂

��
Conj(G)
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Clearly the adjoint group of a quandle is unique up to isomorphism. The following
Proposition proves the existence.

Proposition 10.3. [13, Definition 2.18], [13, Remark 2.21] Let X be a quandle and

R = {x ⋅ y = xyx−1, x, y ∈X}

Then (⟨X ∣ R⟩, πR ○ i) is the Adjoint group of the quandle X.
Moreover, Adj ∶ QndÐ→Grps is a functor and (Adj,Conj) is an adjunction.

The structure of Adj(X) can be computed and it is given by the following Propo-
sition.

Proposition 10.4. [13, Remark 2.35] Let X be a quandle and x ∈X.

(i) There exists a unique group morphism

ε ∶ Adj(X) Ð→ Z

such that ε(adj(y)) = 1 for every y ∈X.
(ii) Adj(X) = Adj(X)0 ⋊ ⟨adj(x)⟩, where Adj(X)0 = ker(ε).

(iii) If X is connected then Adj(X)0 = Adj(X)(1).

Remark 10.5. By the universal property of Adj(X), there exists a unique group
morphism

L̂X ∶ Adj(X) Ð→ LMlt(X)
such that L̂X(adj(x)) = Lx. So the adjoint group acts on X by automorphisms.

The properties of Dis(X) reflect the properties of Adj(X)0 (see 3.15), since

Dis(X) = L̂X(Adj(X)0).

Coverings and central extensions of groups are related. Actually, the core of this
relationship is given by the following Lemma.

Lemma 10.6. [13, Corollary 2.41] Let X be a quandle. Then

1Ð→ ker(L̂X) Ð→ Adj(X) L̂XÐ→ LMlt(X) Ð→ 1

is a central extension of groups.

In his paper Eisermann characterized all the (pointed) connected coverings of
a (pointed) connected quandle introducing the category of pointed coverings of a
quandles and by using the properties of the adjoint group. The statement of the
main theorem is the following.

Theorem 10.7. [13, Theorem 5.22] Let X be a connected quandle and x ∈X. Then
there exists a natural equivalence between the category of pointed connected coverings
of X and the category of subgroups of Adj(X)0

x.

Therefore, there is a corrispondence between connected coverings and subgroup
of Adj(X)0

x.
The adjoint group is infinite in general, but for connected finite quandles the same

informations about coverings are given by a finite group.
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Definition 10.8. [18] Let X be a quandle, then the group AdjF (X) = ⟨X ∣ R′⟩,
where R′ = {xyx−1 = x ⋅ y, xo(Lx) = 1, x, y ∈ X} is called the finite adjoint group of
X.

Proposition 10.9. [18, Lemma 2.19] Let X be a finite connected quandle and
n = o(Lx). Then

AdjF (X) ≃ Adj(X)/⟨adj(x)n⟩ = Adj(X)0 ⋊Zn
and AdjF (X) is finite.

Remark 10.10. By Proposition 10.9, both Adj(X)0 and Adj(X)0
x are finite groups.

Since adj(x)o(Lx) ∈ ker(L̂X) for every x ∈ X, then there exists φ such that the
following diagram is commutative

Adj(X) L̂X //

π

��

LMlt(X)

AdjF (X)

φ
66

Therefore, the actions of Adj(X) and AdjF (X) on X are the same. Since Adj(X)0∩
⟨adj(x)⟩ = {1}, it is enough to deal with the finite Adjoint group in order to study
connected coverings.

The finiteness of AdjF (X) and the existence of the universal covering ([13, Defi-
nition 5.1]) lead to the following Proposition.

Proposition 10.11. All connected coverings of a finite connected quandle are finite
and there are finitely many of them.

Proof. By theorem 10.7, Adj(X)0 is a finite group and therefore Adj(X)0
x has a

finite number of subgroups. The size of every connected covering is finite since
by Theorem 5.3 of [13], the cardinality of the universal covering is finite and any
connected coverings is a quotient of it. �

10.2. Simply connected quandles. A natural problem about quandle coverings
is to characterize connected quandles with just trivial coverings i.e. coverings given
by the trivial cocycle. Eisermann gives a characterization of them and we use his
result to identify this class of quandles as a subclass of principal connected quandles
in the finite case. This original result is given by Theorem 10.17.

Definition 10.12. [13, Definition 5.14] A connected quandle X is called simply
connected if Adj(X)0

x = {1} for every x ∈X .

Simply connected quandles have been characterized by Eisermann as follows. The
following Proposition gives a statement equivalent to Proposition 5.15 of [13].

Proposition 10.13. Let X be a connected quandle. Then the following are equiv-
alent

(1) X is simply connected;
(2) H2

c (X,Sym(S)) = {1} for every S.
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This criterion can be stated in terms of properties of X and Dis(X). First note
that a simply connected quandle has to be principal.

Proposition 10.14. Let X be a simply connected quandle. Then X is principal.

Proof. By Proposition 5.25, Y = Q(Dis(X), L̂x) ≃ X×1Dis(X)x and it is connected
by Remark 3.22. Therefore, since OLMlt(Y)(x, s) = X × {s}, then Dis(X)x = {1}.
Hence, X is principal. �

Remark 10.15. The converse is not true. Let X be a connected non faithful
quandle X of order p3 for some prime p. Then L(X) has cardinality p or p2, which
are affine in both cases. Then (X, LX) is a covering of an affine quandle.

Lemma 10.16. A connected quandle X is principal if and only if

(42) 1Ð→ Adj(X)0
x Ð→ Adj(X)0 L̂XÐ→Dis(X) Ð→ 1

is a central extension of groups for every x ∈X.

Proof. By Corollary 10.6, it is enough to prove that Adj(X)0
x = ker(L̂X)⋂Adj(X)0

if and only if X is principal. Moreover, ker(L̂X)⋂Adj(X)0 ≤ Adj(X)0
x holds for any

quandle.
A connected quandle is principal if and only if Dis(X)x is trivial (Proposition 4.2).

Since L̂(Adj(X)0
x) = Dis(X)x, then necessarily Adj(X)0

x ≤ ker(L̂X)⋂Adj(X)0, i.e.

ker(L̂X)⋂Adj(X)0 = Adj(X)0
x.

Therefore X is principal if and only if the extension given by (42) is a central
group extension. �

By virtue of Lemma 10.16, finite simply connected quandles can be characterized
in the following way.

Theorem 10.17. Let X be a finite connected quandle X. Then the following are
equivalent

(1) X is simply connected;
(2) X is principal and Dis(X) ≃ Adj(X)0.

Proof. (1)⇒ (2) By Proposition 10.14 any simply connected quandle is principal. By
Lemma 10.16, if a principal quandle X is simply connected then Dis(X) ≃ Adj(X)0.

(2) ⇒ (1) Let X be a finite principal connected quandle and Dis(X) ≃ Adj(X)0.
Then Adj(X)0 = {1}, by Lemma 10.16. �

Remark 10.18. The previous Corollary is equivalent to claim that finite simply
connected quandles are the principal quandles such that LMlt(X) ≃ AdjF (X).

For affine quandles there exists an explicit computation for the Adjoint group,
given by Clawens in [11].

Theorem 10.19. [11, Theorem 1] Let X = Q(A,α) be a connected affine quandle
and let

τ ∶ A⊗AÐ→ A⊗A, x⊗ y ↦ α(y) ⊗ x
Then Adj(X) ≃ (Z ×A ×Coker(1 − τ), ⋅), where

(n,x, y) ⋅ (m,x′y′) = (n +m,x + αn(x′), y + y′ + x⊗ αn(x′))
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for every a, a′ ∈ Z, x,x′ ∈ A and y, y′ ∈ A⊗A.

Since Adj(X)0
x ≃ Coker(1 − τ), Theorem 10.19 allows us to restate Proposition

10.13 in the following way.

Corollary 10.20. Let X = Q(A,α) be a connected affine quandle. Then the fol-
lowing are equivalent

(1) X is simply connected;
(2) A⊗A = ⟨x⊗ y − α(y) ⊗ y, x, y ∈ A⟩.

10.3. Coverings and central extensions of groups. Coverings and central ex-
tensions of groups are closely related. Their relationship has been studied in [13].
In this Section we just collect some of the results in order to complete the picture
of the approach of Eisermann to coverings.

Corollary 10.24 is the unique new contribution. Proposition 10.25 is new and it
is due to Prof. Stanovsky (unpublished) and we present an alternative proof of it
which is due to Dr. Giuliano Bianco.

Next Proposition shows the connection between coverings and central extensions
of groups.

Proposition 10.21. [13, Proposition 2.49] Let (X, πα) be a covering of X/α, then

(43) 1 // ker(π∗α) // LMlt(X) // LMlt(X/α) // 1

1 // Disα(X) // Dis(X) // Dis(X/α) // 1

are central extension of groups.

Remark 10.22. The converse is not true. For any quotient X/α of a connected
affine quandle X the extension written in (43) is central, but the quotient map is
not a covering, since both X and X/α are Latin.

Some examples of coverings come from the class of conjugation quandles.

Proposition 10.23. [13, Example 1.5] Let G and H be groups, f ∶ G Ð→ H a
surjective morphism of groups and X ⊆ G be a union of conjugacy classes. Then the
following are equivalent:

(1) (Conj(X), f ∣X) is a covering of Conj(f(X));
(2) the short exact sequence

(44) 1 // ker(f ∣⟨X⟩) // ⟨X⟩ // f(⟨X⟩) // 1

is a central extension.

The functor L preserves coverings.

Corollary 10.24. Let (X, πα) be a covering of X/α. Then (L(X), L(πα)) is a
covering of L(X/α).

Proof. The set L(X) is union of conjugacy classes generating LMlt(X) and

1Ð→ ker(π∗α) Ð→ LMlt(X) Ð→ LMlt(X/α) Ð→ 1

is a central extension of groups by Proposition 10.21. Note that π∗α∣L(X) = L(πα).
By Proposition 10.23, (L(X), L(π∗α)) is a covering of L(X/α). �
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The order of the left multiplications is preserved by coverings.

Proposition 10.25. Let (X, πα) be a covering of a connected quandle X/α and
n = o(L[x]) for every [x] ∈X/α. Then o(Lx) = n for every x ∈X.

Proof. Since π∗α is surjective then n divides o(Lx) for every x ∈ X. Moreover Lnx ∈
ker(π∗α) and then it is central.

Let y, z ∈ X. Since X/α is connected, by Proposition 2.11 there exists h ∈
LMlt(X) such that [h(y)] = π∗α(h)([y]) = [z].

Then h maps isomorphically the block [y] to [h(y)] for every y ∈ X. Let w ∈ X
such that [w] = [y] and h(w) = z. Since Lw = Ly, then

Lny(z) = Lnyh(w) = hLny(w) = hLnw(w) = h(w) = z.
Therefore, o(Ly) divides n. �

Remark 10.26. The property of preserving the order of left multiplications does
not characterize coverings. It is enough to consider faithful connected non simple
quandles such that o(Lx) is prime (for instance connected involutory affine quandles)
to get an extension which preserves the order of the left multiplications but which is
not a covering.

This order-preserving property can be stated in terms of identities satisfied by
cocycles.

Corollary 10.27. Let X be a connected quandle, β ∈ Z2
c (X,Sym(S)) and n = o(Lx)

for every x ∈X. Then

∏n−1

k=0
β (x,Lkx (y)) = 1

for every x, y ∈X.

11. Future directions

11.1. Questions and open problems. In this final Section we give a list of open
problems and questions which arose from the the results of the thesis. Some of them
were already written in the previous Sections.

The condition P-LQ2 ∉ S(X) has a nice interpretation in the variety of quandles
(Proposition 3.33). We wonder it this is true in the framework of universal algebra.

Question. Does the condition P2 ∉ S(X) have some characterization in universal
algebra?

Since we prove that Taylor quandles have a nice characterization and that they
behave nicely with respect to solvability and nilpotency one possible future direction
of research is to attemp a classification of finite Taylor quandles (up to some size).

Problem. Classify all the finite Taylor quandles (up to some size).

We can not prove that Maltsev quandles are a proper class of Taylor quandles,
then we formulate it as an open problem.

Problem. Find a characterization of the class of Maltsev quandles.
Does it coincide with the class of Taylor quandles?
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We prove that the class of principal Latin quandles is a variety (Theorem 4.8),
therefore it is an equational class.

Problem. Find an equational axiomatization for the variety of principal Latin quan-
dles.

In the variety of latin quandles the class of quandles with doubly transitive auto-
morphism group has not been characterized.

Problem. Find a characterization of the class of finite Latin quandles with doubly
transitive automorphism group.

In order to exploit the Galois correspondence between the congruence lattice of a
quandle and the lattice of normal subgroups of left multiplication group, it will be
useful to solve the following problem.

Problem. Let X a quandle and α be its congruence. Find some suitable condition
under which Disα(X) =Disα(X).

The combinatorial approach to the computation of cohomology for Latin quandles
can be used to further extend Corollary 9.34.

Problem. Use the combinatorial approach to cohomology to find some other families
of Latin quandles with trivial cohomology.

Give a characterization of Latin quandles with trivial cohomology. Note that this
class is a subclass of the variety of principal Latin quandles by virtue of Theorem
10.17.

Question. Is there any combinatorial characterization of this class in terms of the
properties of the action of f and ω?

Are there any sufficient conditions for a principal Latin quandle for having trivial
cohomology other than condition (F)?

11.2. Connected Quandles of size pq. The characterization of connected quan-
dles of size pq where p and q are distinct primes is an open problem. The characteri-
zation of connected quandle of size p and p2 is given respectively is given in [14] and
[17] through a characterization of their transvection groups. We claim that a similar
result can be obtained through the theory developed in Section 6 for non-simple ones
(note that for simple quandles this theory does not help) in the pq case.

Problem. Find a characterization of the transvection group of a non-simple con-
nected quandle of size pq.

The starting point is the description of the congruence lattices of such quandles.

Proposition 11.1. Let p, q be prime integers and X be a connected quandle of size
pq. Then Con(X) is one of them showed in figure 1.

Proof. Note that, since the blocks of a congruence have all the same size, every
factor of X has prime size and then it is simple. Hence, α ∧ β = 0X and α ∨ β = 1X

for any pair of proper congruences. Otherwise, the factor X/α and X/(α∨β) would
not be simple.

(A) Clearly if X is simple, then Con(X) is the two element lattice.
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1X

0X

(a)

1X

α

0X

(b)

1X

αβ

0X

(c)

1X

. . .. . .α2α1 αn−1 αn

0X

(d)

Figure 1. (A) Simple - (B) Subdirectly Irreducible - (C) Subdirectly
reducible, p < q - (D) Subdirectly reducible p = q

(B) Let X be a subdirectly irredubicle quandle and let µ be its monolith. Let
µ ≠ β ∈ Con(X). Hence, µ ∨ β = β = 1X. Therefore Con(X) is as in (B) of figure 1.

(C) Let X be not subdirectly irreducible and let α and β be congruences and
assume that X/α and X/β have both size p. Then X/α ≃ Q(Zp, φ) and X/β ≃
Q(Zp, ψ). Since α ∧ β = 0X, then we have the following subdirect embedding:

XÐ→X/α ×X/β ≃ Q(Zp ×Zp, φ × ψ)
By Corollary 4.7, the size of X divides p2, contradiction. Therefore, Con(X) is as
in (C) of figure 1, and the size of X/α is p and the size of X/β is q.

(D) If p = q, Con(X) is as in (D) of figure 1, since α ∧ β = 0X and α ∨ β = 1X for
any pair of proper congruences. �

Remark 11.2. It is easy to see that a connected quandle of size pq with p ≠ q is
affine if and only if it is subdirectly reducible. Therefore the problem reduces to the
subdirectly irreducible case.

11.3. Galkin quandles. Galkin quandles are a family of Latin quandles of size 3p
where p is a prime integer. They were defined by Galkin in [16] and his construction
was generalized and studied in [7] and [8] in relation to pointed Abelian groups.

Definition 11.3. Let p be a prime integer, c ∈ Zp and µ, τ ∶ Z3 Ð→ Z, defined by

µ(x) = { 2, if x = 0
−1, if x ≠ 0

τ(x) = { 1, if x = 2
0, if x ≠ 2
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Then X = (Z3 ×Zp, ⋅) where

(x, a) ⋅ (y, b) = (−x − y,−b + µ(x − y)a + τ(x − y)c)
is called Galkin quandle.

It is easy to see that any Galkin quandle is Latin and that it is an abelian extension
of the unique connected quandle of order 3. In Proposition 5.7 of [7] it has been
proven that a Galkin quandle is affine if and only if p = 3. Therefore we can formulate
the following questions by virtue of Remark 11.2.

Question. Let p > 3 be a prime integer.

(i) Is any Latin SI connected quandle of order 3p a Galkin quandle?
(ii) Is any connected SI quandle of order 3p Latin?

On the RIG database the answer to this question is positive and moreover we can
formulate the following conjecture about the transvection group of such quandles.

Conjecture 11.4. Let X be a connected SI quandle of order 3p. Then

Dis(X) ≃ Z2
p ⋊Z3

Moreover we can extend the same Conjecture to the general case of quandle of
size pq.

Conjecture 11.5. Let X be a connected SI quandle of order pq with p < q. Then

Dis(X) ≃ Z2
q ⋊Zp
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