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Chapter 1

Introduction

Networks used to support Tactical And Disaster (TDR) operations are challenging communication environ-

ments in which insufficient capabilities of the network infrastructure limit information sharing. Nonetheless,

these operations require a robust and predictable communication layer to support the concerted effort of several

assets and operators that must collaborate to repel invading forces or rescue civilians after a natural disaster.

Decision-makers want TDR operations to become more network-centric and follow the general trend of to-

day’s world to become more interconnected to take advantage and integrate globally available resources and

innovative applications such as Commercial off-the-shelf (COTS) IoT devices, humans as sensors, GPS, social

media, video/ audio over IP, and data transfer. TDR networks must bridge geographically dispersed and highly

mobile groups of heterogeneous nodes operating in foreign and hostile environments. To do so, they must rely

on precarious and opportunistically deployed network infrastructure since natural and fabricated disasters can

significantly damage pre-deployed assets and force the use of a combination of heterogeneous radio equipment

[1]. Network-centric communication paradigms must rely on transport protocols and group communication

solutions to provide the required communication semantics while abstracting the transmission process from the

complexities of low-level layers and dishomogeneous network interfaces.

Unfortunately, COTS solutions have historically presented degraded performance when deployed in TDR net-

works because characteristics of this communication environment violate many of the assumptions behind

their design. This fact is unfortunate because the adoption of COTS solutions could reduce costs by leveraging

economies of scale and can produce robust products by relying on widely adopted standards. Research in the

fields of wireless networks and protocols has promoted the development and advancement of new solutions that

promise better performance and resource utilization than traditional approaches under varying and challenging

network conditions. Modern research efforts have also focused on improving the performance of TCP, studying

solutions such as fair queueing, pacing, and segmentation offloading optimization and attempting to overcome

several limitations that characterize this pervasive protocol. Some of these efforts have culminated in the design

of new congestion control algorithms such as BBR [2], or brand new protocols such as QUIC [3].

Similarly, the field of group communication has also enjoyed significant interest. Recent technological advance-

ments in data analysis and artificial intelligence have brought forward new group communication protocols

specifically designed to support innovative applications such as data-pipeline monitoring, stream processing,

1



CHAPTER 1. INTRODUCTION 2

and event sourcing. While much of this progress targets enterprise-like networks, the internet, or other specific

use cases, it is reasonable to think that some of these advantages will apply to TDR environments too.

Another complexity that characterizes TDR networks is that they present unpredictable and variable perfor-

mance. TDR operations must span large geographical areas and rely on mobile nodes connected utilizing

wireless radios. Morphological conditions and weather can impact the performance of wireless connections.

To compensate for this, middleware and applications designed for these environments are generally highly con-

figurable to support frequent node mobility, resource constraints, wildly heterogeneous devices, and strongly

varying (and sometimes access denied) environments. Unfortunately, the extremely dynamic nature of TDR

networks makes it impossible to optimally tune the behavior of communications middleware using predefined

configurations or simple heuristic solutions and call instead for network-aware applications capable of con-

tinuously re-tuning to adapt to ever-changing operating conditions. However, accurately detecting the current

network status and reacting accordingly still represents an open research question.

In this thesis, I present extensive experimental research on unicast and group communication protocols moti-

vated by the fact that many improvements have been observed that may bridge the gap between enterprise and

TDR environments. Significant parts of this thesis are dedicated to describing unicast protocols and the charac-

teristics of group communication solutions from the point of view of using them in TDR environments. Since

experimentation and analysis using realistic communication hardware capable of simulating TDR operations

with high fidelity are important steps in the overall research and development process, this thesis also presents

significant work conducted to create an open-source freely available, and militarily realistic emulated scenario

that was used to conduct most of the experiments presented in this work.

The final contribution described in this thesis is Smart Estimation of Network StatE Information (SENSEI), a

framework designed to provide network monitoring and adaptation in TDR networks. SENSEI can passively

harvest network information such as exchanged throughput, bandwidth, and latency to infer the status of the

network. SENSEI can then provide this information to other components, or it can use it to perform resource

allocation or adapt other specifically designed communication middleware to improve the use of network re-

sources and avoid congestion. In particular, this thesis presents SENSEI’s architecture, a method to perform

passive bandwidth estimation, and shows how SENSEI can be used in conjunction with other middleware to

provide adaptive video streaming.

The rest of the thesis is organized as follows. Chapter 2 and 3 present respectively a functional description of

TDR networks and operations the first, and the analysis of the requirements and challenges that characterize

these communication environments the second. Furthermore, Chapter 3 also discusses relevant works.

Chapter 4 presents research conducted to evaluate the evolution of unicast protocols in terms of their applicabil-

ity in constrained environments. Chapter 4 analyzes many TCP congestion control algorithms and alternatives

and presents several experiments conducted under realistic and degraded conditions. Chapter 5 contains an

analysis of several modern group communication solutions in the Anglova scenario, a military-realistic emu-

lated environment that describes mobility patterns of a military operation conducted in the fictitious area of

Fieldomont in Anglova.

In particular, this chapter analyzes several group communication solutions, presents to the reader characteriz-
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ing features, and reports on several experiments conducted to evaluate COTS and custom solutions in terms

of scalability, resiliency to packet loss, high latency, and low bandwidth. This chapter also discusses two

implementations of Synchronized Cooperative Broadcast (SCB) used to power the Anglova scenario.

Chapter 6 presents SENSEI, a solution designed to provide network monitoring and adaptation in tactical en-

vironments. In particular, the chapter discusses SENSEI in terms of its architecture motivating design choices.

The chapter also analyzes several related arguments, including the relation between SENSEI and communica-

tion middleware to implement network adaptation.

Finally, Chapter 7 presents future research direction and conclusions. The research effort presented in this the-

sis was conducted in collaboration with the Florida Institute for Human and Machine Cognition (IHMC), FL,

USA, the NATO Science and Technology Organization (STO) IST-124 Research Task Group (RTG) on ”Het-

erogeneous Tactical Networks - Improving Connectivity and Network Efficiency”, and the United States Army

Research Laboratory (ARL), Adelphi, MD, USA. The results of this work have been published or submitted in

proceedings to several international conferences and journals.
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Chapter 2

Tactical and Disaster Recovery Networks

This chapter introduces the concept of TDR networks and presents arguments that highlight the similarities

between the tactical and disaster recovery communication environments. The first two sections describe tactical

and disaster recovery networks from a functional perspective. The third section continues the analysis by

presenting similarities between the two and discusses the use of COTS solutions in TDR operations, arguing

that significant evaluation is required to conclude whether or not they can provide adequate performance in

these complex environments.

2.1 Tactical Networks

Tactical networks are critical components of the Army’s strategy to operate effectively and communicate in

harsh and hostile environments [4]. These networks are highly heterogeneous, unstable, resource-constrained,

and often targeted by disruptive activities conducted by adversarial forces. Their primary objective is to provide

a robust and reliable communication layer capable of expeditiously delivering mission-critical information to

soldiers and commanders in the field and decision-makers in the headquarters. The time-critical and resource-

limited nature of tactical operations requires planning and optimal use of network resources to achieve the

desired network performance while satisfying the need of participants to communicate. Tactical environments

are generally resource-limited and access denied, these aspects create many challenges that network admin-

istrators and solution designers must overcome to achieve the desired functionalities. Nodes and devices

operating in tactical networks can be limited in terms of processing and computation power, hardware may

be battery-powered and consequently power constrained. Nodes’ limited availability of bandwidth resources

may significantly reduce the rate of communication. Signal jamming, denial of service attacks, and obstacles-

rich environments such as forests and hilly locations may lead to intermittent network access. Moreover, the

dynamic nature of military operations causes widely varied loads to be placed on the network by users and

applications connected through wireless and ad hoc links in hostile radio frequencies. [5].

Figure 2.1 shows several nodes conducting a tactical operation in mountainous and vegetation-rich terrain. The

scenario depicts two ground units, a warship, and an Unmanned Aerial Vehicle (UAV), providing sea and air

support and surveillance. Vegetation and meteorological conditions can severely impact the satellite link that

the warship and the ground units utilize to communicate. The ground operators can then expect intermittent

5
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Figure 2.1: Overview of a tactical network deployment.

connectivity and various level of network performance ranging from reliable and high-throughput to severely

impaired depending on whether or not physical obstacles block or weaken the wireless signals that support

their portable radios.

2.2 Disaster Recovery Networks

Natural and manufactured disasters can be unavoidable and cause significant damage to human life and pro-

prieties. Disasters such as earthquakes and tsunamis can be devastating and cause the structural collapse of

network infrastructure and power grid that citizens and other entities rely on to conduct their activities. Rescue

operators enact several endeavors to reduce loss and restore damaged areas. One of them is the deployment of

battery or gas-powered disaster recovery networks. Rescuers can use these mobile ad hoc networks to broad-

cast information of the afflicted area to the outside world, to arrange, schedule, and organize rescue operations

conducted by governmental and non-governmental organizations. These networks can help evacuees to return

to their pre-disaster life by re-establishing network connectivity, giving a sense of normalcy [6]. Damage to

the cellular network and power grid can be extensive, and consequently, it may take a long time before hu-

manitarian efforts can restore affected communities. Common approaches to temporarily provide connectivity

hinge on the use of satellite phones, portable base stations, and drones [7]. However, all these approaches need

special hardware or other forms of preparation. Buildings and interference generated by surviving consumer

electronics transmitters can further deteriorate this makeshift network environment [8].

Disaster recovery is a gradual process that generally starts with the involvement of state and non-governmental

local authorities such as police, fire, and Emergency Medical Services organizations, the Red Cross, amateur

radio operators, and other volunteers. However, when disasters overwhelm local authorities, specific federal

agencies such as the Coast and National Guard can participate in the relief operations and assist civilian forces

by bringing assets and expertise only available to armed forces. Moreover, it is not uncommon for armed forces

to be deployed when disasters involve foreign countries under civil unrest or war, to collaborate, support, and

protect civilian operators and assets. Military units are well prepared to work in challenging environments and
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can provide protection, Command and Control, and Logistics adequate to support activities in damaged terri-

tories. To clarify this, we can consider the unrolling of a natural disaster within a war-torn urban environment

afflicted by a cataclysmic earthquake that involves the participation of Doctors Without Borders supported by

several Army units in the process of aiding injured civilians.

In this scenario, the city’s network infrastructure has been devastated by an earthquake preventing communi-

cation. The pernicious effects caused by the natural disaster can severely impair the humanitarian effort [9].

Disasters can damage the physical components of the network infrastructure, such as antennas, routers, cables,

optical fibers, or the power supply grid, fragmenting the urban networks in a multitude of fully-, and quasi-

isolated sub-network with limited connectivity and unstable links. Due to these network conditions, ground

operators must rely on mobile networks based on radios, satellites, or other wireless mediums to communicate.

Figure 2.2: Overview of a disaster recovery network with multiple heterogeneous nodes.

Figure 2.2 shows a simplified but realistic deployment in which several civilian and military forces must col-

laborate to resolve a humanitarian crisis. The figure shows (on the left) a hospital connected through surviving

cellular towers to several civilian and military operators (on the right). Near the disaster area, damage to net-

work hardware has severed static infrastructure, forcing rescue operators to rely on networks provided through

mobile hardware. In this example, the theatre of operation is a single city, but some operations span vast areas

of hundreds of kilometers.

2.3 Tactical and Disaster Recovery Networks

Tactical and Disaster Recovery operations have several things in common. They are critical operations con-

ducted by a plenitude of operatives that must cooperate to achieve a shared objective. They are highly depen-

dent on the timely and reliable dissemination of information to multiple recipients to distribute orders, increase

situational awareness, and prevent the loss of human life. They may not be motivated by the same reasons,

but they share the hostile and unsafe environments in which they operate. Both operations are conducted in

interference and obstacles-rich, resource-limited network environments. They both require a robust, reliable,

and predictable network layer that must consistently be capable of sharing and receiving messages to create a
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robustly networked force. A force of this kind can communicate and collaborate in the information and cogni-

tive domains to create an improved information position for awareness and understanding. Unfortunately, the

degraded nature of the communication environment that is characteristic of TDR operations thwarts this ideal.

In this thesis, I will use the term TDR networks to indicate the combination of heterogeneous communication

resources inclusive of wireless, terrestrial, airborne, and space-based assets that together form the backbone of

TDR operations. Several factors contribute to TDR heterogeneity. These operations are conducted in hostile

or damaged territories and supported by headquarters and assets positioned in protected positions not afflicted

by natural disasters or enemy activity. TDR networks must rely on several different technologies to support the

integration of communication environments with distinct characteristics. For example, workstations located in

static headquarters or naval assets can be wired together, but nodes at the edge must rely on wireless equipment

to support connectivity on the move. In these situations, static infrastructure is unavailable either because

it is absent, damaged/destroyed, or under enemy control. Furthermore, deploying network infrastructure in

impervious terrains, such as forests, mountains, underground, or underwater, can require expensive and time-

consuming heavy construction work, which is incompatible with the time and cost constraints that characterize

ephemeral operations [10].

The challenges issued by next-generation TDR operations require a careful evaluation of unicast and group

communication solutions. On one side, there is the desire to aggressively take advantage of COTS solutions to

reduce costs and leverage economies of scale, but on the other side, TDR networks break many assumptions

behind the design of commercial solutions that demonstrate degraded performance when deployed in network

environments afflicted by limited bandwidth, long latencies, intermittent connectivity, abrupt variation in net-

work conditions, or frequent node mobility. This fact is unfortunate because the adoption of COTS technologies

enables reaping the benefits of economies of scale and facilitates and hastens the development and deployment

of complex distributed applications by leveraging robust and widely adopted industrial standards and software

components [11]. It becomes then imperative to understand the limitations associated with COTS protocols

and devices to take advantage of them whenever favorable and otherwise develop alternatives or workarounds.

COTS applications are generally based on TCP and on hierarchical structures that have historically presented

degraded performance when deployed in TDR environments such as excessive bandwidth utilization, decreased

throughput, and other failures [12]. Nevertheless, researchers have been focused on COTS solutions to support

edge environments, and quite a few improvements have emerged. This fact calls for the evaluation of modern

communication protocols and middleware to verify the level of performance they can achieve when applied to

TDR networks.

Moreover, considering the transitory and variable nature of TDR networks and that misuse can easily cause

their collapse, there is a need for network-adaptive solutions capable of monitoring and adapting to network

performance. Solution designed for this purpose must be resource frugal, reliable, and rugged since they

must operate in resource-constrained and hostile environments. At a system-wide level, information about link

capacity, bandwidth, stability, and delay, can be used to monitor links status to optimize overall end-to-end con-

nection performance, update routing tables, or, in general, mitigate the effects of congestion. Communication

middleware and protocols can use the information on path latency and bandwidth, to improve network utiliza-

tion without being forced to rely on greedy congestion-control algorithms. Finally, at the application level, this
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information can become an additional factor in the decision-making process that controls the request and pub-

lication of new information that can be opportunistically modified to adapt to the ever-changing circumstances.

Network awareness can be a principal asset to support the situational awareness acquisition process by creating

the basis to ensure that networked components can use the scarce network resources effectively.
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Chapter 3

Requirements and Challenges

TDR networks present numerous challenges that solution designers and network administrators must overcome

by communication and adaptation middleware to achieve reliable and predictable network performance. The

technologies used to provide reliable inter-connectivity between geographically scattered nodes have specific

characteristics that must be considered when designing and selecting solutions for these environments. For

example, wired connections are fast and reliable but require physical connectivity. Satellite links provide high

bandwidths and offer coverage of large areas but demand more time to deliver information since signals must

first reach orbit before being relayed to their destination. Satellites may also present asymmetrical behavior

in terms of the bandwidth they receive and send. Due to the necessity of base stations to connect with orbital

satellites, cloudiness and other physical obstacles along the path can cripple these links reducing or preventing

connectivity inside buildings, forests, underground, or underwater.

Tactical battery-powered radios used at the edge in obstacle-rich environments use VHF or UHF bands, are

afflicted by frequent corruption-induced packet loss, low latencies, and limited range. These radios imple-

ment proprietary forwarding algorithms that can pass messages between intermediary nodes to compensate

for disconnections caused by obstacles or out-of-range endpoints by implementing a dynamic overlay network

between all the nodes belonging to a group. Network topologies of this kind, formed by heterogeneous radio

equipment with a high mobility potential and connected through other links to other networks, are known in

the literature as Mobile Ad-Hoc Network (MANET) [1] and the conditions that afflict these environments are

classified as Delayed/Disconnected Intermittently-Connected Low-Bandwidth (DIL). MANET deployed in tac-

tical environments reflect a scattered battlefield where soldiers and vehicles communicate between each other

using links afflicted by unstable communication latency, varying channel capacity, high packet loss, frequent

disconnection, and node mobility.

This chapter describes the challenges that software developed to operate in TDR networks must overcome to

achieve reliable and predictable network performance. Compared to the previous chapter, this one is more

technical and delves deeper into specific issues that characterize degraded environments. Sections 1 to 5 de-

scribe a range of typical issues spanning from limited bandwidth to security constraints. These issues are also

summarized in Tables 3.1 and 3.2. Moreover, this chapter also contains related works to what the rest of this

document will discuss.

11
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Table 3.1: Summary of challenges and repercussions of tactical networks characteristics.

Table 3.2: Summary of challenges and repercussions of tactical networks characteristics.

3.1 Limited Bandwidth

A primary challenge in TDR operations is that the ever-increasing quantity of data brought forth by the network-

centric evolution of assets does not correspond to a proportional increase in terms of bandwidth that is available

to transmit such information. This fact is due to the technological complexity of bridging edge and enterprise

networks in TDR operations environments which cannot hope to match the growing data output of new gener-

ation devices. For example, operators cannot easily replace satellites without expensive and lengthy prepara-

tions. Moreover, the effective bandwidth provided by networking hardware used in MANET is often orders of

magnitude smaller than the nominal values described in their specifications. This degradation can be attributed

to various conditions such as high churn rate, interference from other radio devices, and poor connectivity.

Furthermore, radio resources are shared between multiple devices exacerbating the effect of transport protocols

overhead-induced starvation [13]. For example, the overhead that characterizes routing protocols commonly

used in commercial networks may be an implicit limiting factor in the number of nodes that can be intercon-
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nected [14].

Interconnected network-centric assets can also be sources of disruption in new and unexpected ways. For

example, two operators connected respectively to a high- the first, and a low-resource subnetwork the second,

could unbeknown to each other be consuming the same multicast video stream from the same source. As

long as the traffic necessary to transmit a certain video quality is below a certain threshold, both subnetworks

can sustain the video transmission without difficulty. A problem arises if the operator connected to the high-

performance subnetwork requests the video at an increased quality. Since the source uses multicast to serve

both operators simultaneously, it would have to increase the traffic circulating in both subnetworks to transmit

the video in higher quality. The more constrained network may not have sufficient resources to handle this

traffic, consequently saturating, and ultimately preventing communications.

Another challenge is that of adapting bandwidth requirements of COTS solutions to tactical environments.

Common issues are the lack of sufficiently refined Application Programming Interface (API) or mechanisms

to control the throughput of these applications in low-bandwidth networks. Some common causes of excessive

data consumption are greedy data exchange mechanisms that lack sufficient logic to decrease the update fre-

quency and non-trivial overheads of transport protocols and synchronization algorithms. This extra throughput

often generated by inefficiencies and developers’ ingenuity can quickly saturate bandwidth deprived networks

or abuse scarce resources compromising global performance.

3.2 Long Latencies

COTS products and protocols are typically not designed to support communication between geographically dis-

persed assets. Commercial designers commonly assume that their products will communicate over the Internet

or other equivalent high-performance networks, typically with short latencies under 100 milliseconds. Delay

in multi-hop satellite connections used in TDR networks can easily reach dozen of seconds. Additionally, this

problem is bound to be exacerbated by the advent of 5G networking which will eventually bring developers

to expect latencies smaller than 1 millisecond. Applications that must operate in TDR environments should

provide API to accommodate long delays. Undersized timeouts may prevent endpoints from establishing con-

nections or waste resources by re-transmitting data supposed lost but just in transit. Long latencies can create

problems for multi-step connection processes that require the exchange of multiple messages. In extreme cases,

transient resources may systematically fail to complete these processes before moving out of radio range. The

intermittent nature of tactical links exacerbates this problem by forcing endpoints to reconnect frequently.

Long latencies can complicate assessing network state. For example, TCP has a default interval of 300 seconds

before considering stale a connection without exchanged traffic. Because of that, it is not uncommon for

solutions that use this transport protocol to develop a status detection algorithm on top of it. A common

approach is to exchange periodically small messages called heartbeats that measure the round trip time as the

interval between the send and acknowledgment times of a heartbeat, and packet loss as the difference between

sent and received heartbeats. These mechanisms are frequently troubled by the same lack of configurability that

characterizes COTS solution. Consequently, they could generate excessive traffic if the exchange periods are

too small or fail to recognize active connections if the maximum timeout is smaller than the network latency.
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The two following examples highlight the practical implications of failing to provide adequate API. The TCP

three-way handshake implementation of Windows 2008 R2 and Windows 7 had a maximum timeout of 21

seconds. When used to connect endpoints separated by more than 12 seconds of delay, missing even one of

the three handshake messages would cause the connection process to fail. The second example stems from

our experience in datagram security. Until 2021, the DTLS implementation of the Bouncy Castle security li-

brary did not provide a method to override the default maximum handshake timeout preventing communication

middleware from establishing encrypted connections in delayed networks.

In general, solutions for TDR environments should account for long latencies, provide API to control maximum

timeouts, and avoid implementing blocking synchronous behaviors that could reduce responsiveness by waiting

for replies from remote resources.

3.3 Intermittent Connectivity

Intermittent connectivity is a typical occurrence in MANET since nodes connected through wireless technolo-

gies move in and out of range in obstacle-rich environments.

Intermittent connectivity can have several negative consequences. For once, loss-based congestion control

transport protocols interpret packet loss as congestion and react by reducing transmission rates. This assump-

tion is frail in tactical environments because loss can also be an intrinsic part of the nature of a wireless

communication channel that can be unrelated to saturation and resource contention. Moreover, MANETs are

often used to connect mobile assets that navigate through obstacle-rich environments, and transport protocol

should not interpret packet loss caused by this fact as a signal to reduce transmission rates.

TDR solutions should expect to be disconnected for long periods and should minimize the time and number

of packets required to reconnect. By doing that, solutions can prevent wasting precious network bandwidth

and avoid the pitfall discussed in the previous section of needlessly lengthening the reconnection process in

the presence of long delays. Ideally, TDR endpoints should preserve connection information on disconnections

and implement simplified reconnection and sync processes based on this information.

3.4 Abrupt Variation in network conditions and topology

A most daunting characteristic of tactical environments is that they can be turbulent and chaotic [15], change

unexpectedly because of enemy activity, weather, and node mobility, and cause extensive performance fluctua-

tions in terms of latency, packet loss, and maximum throughput.

Solutions capable of sensing and adapting to network changes are necessary to opportunistically take advantage

of available resources or reduce consumption to prevent starvation. Opportunely designed APIs can increase

flexibility, support modifying the behavior of transport protocols, and the implementation of applications and

middleware logic that can efficiently summarize and aggregate data. Communication middleware should use

receivers’ interest to prioritize messages and shape informative content to adapt it to the network status. For

example, a video streaming application could dynamically change the quality of a live feed based on available

bandwidth or operators’ interest. Data fusion algorithms could change the coarseness and delivery periods of
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sensor data, altering transmission formats to improve network utilization and modify redundancy and availabil-

ity to increase the chance that critical messages are promptly delivered.

Since restrictive Quality of Service (QoS) policies typically require increasing network footprint to provide

more guarantees, it is critical to pair levels of service and data relevance accordingly to avoid wasting resources.

For example, positional reports and calls for fire have very different requirements. The firsts are small messages

sent regularly. These messages contain geographical coordinates that describe units’ positions over time. The

periodic nature of these messages makes them quickly lose value over time and removes the need for reliability.

Conversely, calls for fire are messages used to describe offensive maneuvers. To avoid casualties and increase

effectiveness, they need to reach their intended destination reliably and quickly.

It is worth noting that the data priority of messages can change over time depending on the mission status

and on what operators need from the network at a given time. For example, communication middleware should

dynamically change the priority of video sources over other traffic when operators or analysis tools are consum-

ing them and should otherwise reduce their transmit rate to save resources. Several types of information lose

importance over time and should lose priority accordingly. Moreover, critical information can get queued in

transmission buffers behind large sequences of unimportant data. Communication middleware should provide

interfaces to retrieve these messages and expedite their delivery over other less critical messages.

3.5 Security

Security is a chief aspect of developing solutions for tactical environments. The sensitive nature of TDR

operations calls for stringent security measures that complicate software development and increase the time

required to deploy updates and fixes.

Lengthy authorization procedures force new software solutions to interact with obsolete technologies and be

subject to inexorable technological erosion. Restricted environments forbid several common operations such as

running applications with administrative privileges or the use of unaccredited libraries and operating systems.

Inline network encryptors designed with the objective of preventing breaches of information between secure

and insecure networking spaces strip transport protocols of custom headers preventing the adoption of new

variants or causing unexpected network failures [16]. Prohibitive costs and security concerns create signifi-

cant differences in the characteristics of test and deployment scenarios, complicating the process of verifying

software functionalities.

3.6 Related Works

Several researchers have proposed improvements to TCP congestion control algorithms or offered new proto-

cols, but few have investigated currently available solutions in constrained networks.

In [17], H.L. Gururaj et al. examined many TCP congestion control algorithms and compared the throughput

and packet drop rates between six nodes using a shared simulated link. The experiment was run with a fixed

bit rate but no information was released about latency and packet loss. In [18], T. Yanping et al. evaluate

three custom improvements to TCP congestion control in an ad hoc network simulated using NS2. The authors
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focused their observations on fairness and throughput. In [16], C. Richard et al. discussed how transport

protocols interact with the different characteristics of military networks. The authors also compared a number

of TCP congestion control algorithms at varying levels of packet loss. In [19], A. R. Urke et al. described a test

environment made by a hybrid network consisting of an emulated satellite and radio leg used to connect two

clusters of hosts that exchanged military-like traffic. The authors used this testbed to evaluate the competing

flows of several TCP implementations. The emulation was conducted using Netem, Dummynet, and Vyatta.

Netem was used to simulate delay and random loss, Dummynet to control bandwidth, and Vyatta, to create

an IPsec encrypted tunnel. In [20], M Bell et al. argued that to improve the performance in MANETs and to

distinguish between congestion and link error or loss, it is necessary to process explicit congestion notifications

from the network. The authors compared this approach to TCP-Reno, a loss-based congestion control algorithm

inherently fated to underperform in MANETs due to its loss-based detection of congestion.

Similar to the experimentation for unicast protocols, we were able to find only limited research that evalu-

ated modern group communication mechanisms in realistically emulated network environments. In [21], A.V.

Terkhedkar et al. delivered a comprehensive analysis on publish/subscribe solutions focusing on security and

threat analysis. In particular, the authors studied several protocols focusing on their approach to security and

threat mitigation.

In [22], A. Scaglione et al. described an initial approach to cooperative broadcasting at the symbol level,

called Opportunistic Large Array (OLA). Cooperative broadcasting is also described as Barrage Relay Net-

work (BRN) in [23]. BRN and synchronized cooperative broadcasting are similar as both use autonomous

cooperation for time-synchronized nodes and a TDMA structure. In [24], J. Grönkvist et al. showed the perfor-

mance of synchronized cooperative broadcasting dynamic scheduling. In [25], A. Komulainen et al. showed

a comparison of the network broadcast capacity obtained by synchronized cooperative broadcasting and tradi-

tional TDMA-based schemes. Synchronized cooperative broadcasting was shown to be more efficient in mobile

networks unless the network was large and dense. These articles provided important results and considerations

at the base of the implementation of the realistic emulation scenario that will be discussed in Chapter 5.

Significant prior work on network monitoring and adaptation has focused on using statistics such as congestion

level, packet-loss rate, and available path capacity to estimate metrics that affect applications’ performance

in constrained network environments. Related works did not, however, address the problem of determining

the underlying technology powering communication, generally assuming to already possess that information,

or ignored this problem altogether [26] [27]. Identifying the technology that powers communication can help

understand why the network is not performing as expected and simplify troubleshooting. Extracting this knowl-

edge is not trivial because security barriers often prevent applications from querying network devices.

Several strategies can be employed to reach network awareness. Operators can monitor links of interest by

accessing/logging into devices [28], or via Simple Network Management Protocol (SNMP) [29], an Internet

standard protocol that network managers can use to query and issue requests to compatible network devices

such as switches and routers. Yet, SNMP has a non-negligible network footprint, and while researchers tried

several approaches to reduce its overhead to increase portability to resource-constrained environments like

tactical networks [30], proposed solutions typically require standard-breaking changes to the protocol and the

deployment of custom agents and managers that severely limit their adoption. SNMP information is also not
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widely available to applications. While network administrators may query devices under their control, they

can’t generally access monitoring devices outside their domain. Still, a majority of the solutions proposed to

monitor degraded environments are based on SNMP and are in general not passive.

In [31], G. Kuthethoor et al. evaluated SNMP performance in tactical environments and observed that metadata

associated with reports often required more space than the informative content itself. Moreover, SNMP does not

support Multicast with evident overhead implications in the polling phases [31]. In addition, solutions designed

for TDR environments should be bandwidth conscious and implement sophisticated algorithms capable of

summarizing and aggregating data to reduce their network footprint. More detailed information should only be

shared when needed or requested by network operators.

In [26], T. Chen et al. presented an SNMP-based solution that shares information on a per-flow basis and

consequently cannot aggregate and consolidate multiple flows into a single metric to save traffic. Moreover,

the solution only focused on reducing congestion and did not characterize links between endpoints to gain

more insight into the communication status. In [27], S. Peng et al. used Network Management Station (NMS)

(another SNMP based solution) to retrieve network statistics. NMS provided resource allocation by controlling

other specifically designed applications and did not expose its assessment of the network state. Yet, solu-

tions designed for TDR should share monitoring information with other smart middleware to increase network

awareness and decentralize resource allocation.

In [32] and [33], the authors discussed link identifiability and algorithms to calculate the minimum amount

of sensors needed to identify all the links in a network. The authors claimed that as a communication net-

work grows, it becomes increasingly harder to place monitors for each link, a fair conclusion considering the

configuration deluge associated with custom network environments. In [34], the authors presented NetNO-

RAD, a system that treats the network like a black box and troubleshoots network problems independently

of device polling. NetNORAD identifies relevant changes in network conditions using an algorithm based

on percentile variations. NetNORAD relies heavily on active probing, making this solution impractical in

resource-constrained scenarios characterized by rigid bandwidth constraints. In these cases, it may be more

suitable to use passive approaches and instead piggyback monitoring on non-monitoring data packets. For ex-

ample, it is possible to extract the Round Trip Time (RTT) by monitoring ICMP and TCP packets of ongoing

connections. In [27], A.S. Peng et al. presented AutoDRM, another mechanism based on SNMP designed to

manage shared resources without human intervention. AutoDRM centralization makes it impractical in TDR

environments often access denied and compartmented.

Bandwidth estimation is an important part of network monitoring and several researchers have proposed al-

gorithms designed to estimate this metric. Variable Packet Size Probing (VPSP) [35] estimates it across a set

of path hops by sending groups of packets with different Time to Live (TTL) values. The sender forces these

packets to expire and uses ICMP Time Exceeded messages to estimate the RTT at each hop. The minimum

RTT at hop i, RT Ti can be expressed as:

RT Ti = a+
i

∑
k=1

(
S

Ck
)

where a is the delay up to hop i, and each member of the sum, is the contribution at hop k with S and Ck

being respectively the size of the packet and the capacity of the hop. From this formula, the slope of the linear
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interpolation of the minimum RTT measurements is the inverse of the capacity estimate at that hop [28]. VPSP

can suffer significant measurement error. One common reason is that store and forward switches and other

network boxes frequently do not generate ICMP Time Exceeded messages for security reasons. Finally, some

classes of network devices, including proxies and radios, might ignore or modify the value of TTL fields in IP

headers, thus influencing the estimation accuracy of VPSP.

Another technique is based on Packet Pair dispersion (PPD) [36]. This approach estimates a path’s total capac-

ity by sending packet pairs of equal size towards a receiver. Each pair is made of two or more packets sent back

to back (in the latter case the pair is called ”packet train”). This method uses the delta between the time the last

byte of each packet has been received to extract link capacity. With no cross-traffic interference, the receiver

can extract that metric using the formula:

D =
S
C

where D is the delta between packets, S is the size of the packets, and C is the capacity of the link. Packet

dispersion techniques are especially impacted by the presence of cross-traffic that can either decrease (the

first packet delayed more than the second) or increase (the second packet delayed more than the first) the

measured delta, thus affecting the accuracy of bandwidth estimation. Several strategies have been developed

to filter cross-traffic error such as sending trains of packets with different sizes and using statistical or machine

learning-based models (including linear regression, Kalman filters [37], neural networks [38], and measurement

repetition) to filter out bad samples.

Self-Loading Periodic Streams (SLoPS) [39] is a technique based on sending a certain number of packets of

equal size until the receiving rate reaches the channel bandwidth. There are several similar approaches based on

this methodology: ASSOLO, TOPP [40], Pathload, PathChirp, FEAT, and BART, see [35] for a comprehensive

analysis. In [41], J. Strauss et al. present SPRUCE, an (active) available bandwidth estimation tool that sends a

train of UDP packets between two monitoring endpoints while measuring the delta between probes. SPRUCE’s

users must specify a capacity that the solution then compares with the available bandwidth estimated from the

inter sending time between probe packets through:

AB =C ∗ ∆tout −∆tin
∆tin

where C is the capacity of the bottleneck, ∆tout −∆tin is the time to transmit the cross-traffic, and C ∗ ∆tout−∆tin
∆tin

is the rate of the cross traffic. In [42], Oshiba et al. present PathQuick, an estimation algorithm that generates

a packet train in which each packet is placed at an equal time interval and has its size linearly increased as

the packet sequence proceeds. PathQuick was developed with the idea of being used right before transmission

to optimize the subsequent delivery process and avoid the long time necessary by other algorithms to produce

an estimation. Each packet includes the time it was sent so that the receiving node can use it to estimate the

available bandwidth through:

D =
S
C

This approach requires accurate network synchronizations between the communication endpoints.

Probing can be either active or passive. Active solutions generally provide better accuracy at the cost of intro-

ducing additional network traffic, a tradeoff that can be problematic in bandwidth-constrained or high-latency
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networks. In light of this, passive bandwidth estimation techniques may be preferable. For example, QoS-

AODV [43] infers the link capacity by taking the lowest ratio between received and sent packets for each

one-hop neighbor; each node then shares its result with other nodes. Contention–aware Admission Control

Protocol (CACP) [44] is a solution designed for 802.11 ad hoc networks that can estimate the bandwidth as

the idle channel ratio multiplied by the channel nominal capacity. Other solutions such as [45], [46], and [47],

extend this by considering collision, re-transmissions, back-offs, and node mobility respectively. All these al-

gorithms are either active or rely on unreliable passive measurements. Ideally, a communication middleware

could extract information from traffic sent for other purposes and perform bandwidth estimation without in-

jecting any extra traffic. This could reap the benefit of PPD and variants without one of their most considerable

drawbacks: significant overhead.

One highly desired feature to support TDR operations consists in providing video streaming to bandwidth

depleted nodes. In [48], H. Pinson et al. presented subjective research on the characteristics that a video feed

should have to be acceptable from the perspective of emergency first responders. In their article, the authors

identified several metrics to evaluate video streams: The One-Way Video Delay, Frame Rate, Luma Image Size,

Lossless Coding And Transmission, Codec Type And Bit Rate, and the Packet Loss And Error Concealment,

these characteristics are summarized in Table 3.3.

Characteristic Description
One-Way Video Delay Length of time taken to send a video

through the entire video system
Frame Rate Rate at which a video system can produce

unique consecutive images
Luma Image Size Black and white proportion of the video

picture
Lossless Coding And Transmission Data loss before and after compression

Codec Type And Bit Rate Amount of information that the video
codec outputs into the network, excluding

network overhead
Packet Loss And Error Concealment Fraction expressed in percentage of the

packets lost by the network and a
mechanism to counter this effect

Table 3.3: Several metrics to evaluate video streams for TDR operations.

In [49], S. Pudlewski et al. discussed many video encoders and networking protocols for wireless video stream-

ing to introduce the reader to the generalities of video streaming and analyze different strategies used to improve

it. The authors also argued that streaming systems are limited by the following constraints: limited data rates

(this caps the amount of bandwidth that can be freely used by video without congesting the network), limited

power (users are quickly moving from desktop to mobile applications which are battery-powered), channel

conditions (in terms of packet loss or other elements that may affect the stream), and network complexity

(applications have generally low visibility of the network topology). In [50], J. Nightingale et al. presented

a comprehensive analysis of H.265. They also introduced a service capable of harvesting metrics such as

bandwidth, end-to-end delay, and packet loss ratio, calculated using a cooperative mechanism that had clients
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periodically report received statistics to a server for each given video stream. This algorithm applies forward

error correction to ensure the delivery of the most important components of the video. The authors also intro-

duced a selective dropping scheme to limit the throughput in case of bandwidth constraints.

Not much literature focuses on multiple concurrent video streaming or node mobility. Proposed solutions do

not take into account that multiple streams could be active at the same time and only considers the quality of

single streams. They also do not take into consideration that in TDR operations there is a need to implement

opportunistic behaviors and to cache and forward videos to overcome dynamic network fragmentation.



Chapter 4

Experimental Evaluation of Unicast
Solutions in Constrained Environments

This chapter describes prominent protocols used in unicast communications, dedicating considerable space to

TCP and to several congestion control algorithms developed for it. TCP is one of the most pervasive transport

protocols and as such, it has been under extensive scrutiny over the years. This chapter also examines many

alternatives developed to overcome specific limitations of TCP such as Stream Control Transmission Protocol

(SCTP), which tries to overcome Head of Line Blocking (HoLB), Quick UDP Internet Connections (QUIC)

a protocol designed to replace TCP in Google’s networks, and Mobile Sockets (Mockets), a communication

library that IHMC developed with the specific purpose of overcoming TCP’s limitation in tactical environments.

4.1 Unicast Communication

Unicast communication consists of a one-to-one transmission between a transmitter and a receiver generally

achieved through some application library capable of providing basic QoS classes of services (reliable/sequenced)

and as a way of abstracting from heterogeneous hardware. TCP is arguably the most commonly used transport

protocol making it a great candidate to study and compare to other alternatives. Moreover, several problems

have historically plagued TCP, fueling improvements and the development of alternative solutions.

In the late 1970s, the Defence Data Network (a computer networking effort of the United States) developed

TCP intending to enable communication using static and wired connections. Since then, TCP has been used

in several network environments, consistently drifting towards mobile wireless networks. Due to the different

characteristics of the original and current scenarios, researchers started observing several cases in which TCP

was under-performing [51] [52] and consequently proposed and developed variations of the original TCP and

competing solutions.

One major cause of performance degradation was that early congestion control implementations used packet

loss to detect congestion. This assumption can be quite flawed in radio environments. While congestion is

one of the causes of packet loss, insufficient storage space, bandwidth capacity, lack of processing power,

and network errors can too cause this phenomenon and happen much more frequently in radio environments

21
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[53]. This breach of assumption created several situations that made TCP underperform. Moreover, loss-

based congestion control algorithms have also been proven to underperform in networks characterized by a

high bandwidth per latency product. TCP is affected by numerous other problems such as HoLB, buffer-bloat,

and Network Handover Driven Delay. Even considering all these issues, TCP is still the most used transport

protocol in the world, and plenty of improvements have been proposed to address its limitations. Improvements

to TCP have to be limited to the congestion control algorithm. Widely adopted network boxes developed to

improve TCP performance have come to expect a specific packet format that, if not respected, cause these boxes

to behave erratically or silently drop packets. This explains why research has mostly focused on congestion

control algorithms or alternative protocols.

4.2 Classic TCP Problems

Several notorious problems have historically plagued TCP, the most infamous ones being Bufferbloat, HoLB,

Network Link Handover, and Half Open Connections.

Bufferbloat [54] is a term coined to describe the negative interaction between TCP greedy congestion control

algorithm that increases throughput until it detects loss and the large buffers that are part of modern networks.

Large buffers are necessary to not under-utilize communication channels, yet, they can distort the ability of

TCP to correctly estimate the available bandwidth resulting in packet loss at the slowest link. Additionally,

these large buffers require time to empty, thus increasing the average latency of the network. This problem will

become more prominent in the future with the advent of 5G. This technology is characterized by very low laten-

cies that will increase the impact of the degradation introduced by large buffers. Historically, Advanced Queue

Management (AQM) [55] has been the research field focused on improving routers to allow them to detect

bufferbloat and implement countermeasures such as selectively dropping packets or reducing the throughput of

selected flows. It is worth noting that commonly used bufferbloat countermeasures may not work very well in

tactical environments due to the long and variable latencies associated with satellite links.

HoLB is a phenomenon that happens in sequenced transport protocols used to perform independent concurrent

requests through a single connection. Sequenced protocols must deliver stream fragments reliably and in order.

It follows that missing a fragment of one request will have the effect of stalling all the others until that fragment

is delivered, adding significant delay to flows that should be independent of the missing fragment [56].

Network Layer Handover (NLH) is a phenomenon that happens when a node changes its IP address. NLH

can happen for several reasons, such as the detection of an IP conflict or the node moving from an access

point to another [57]. NLH is a source of delay because many protocols and software use IP addresses to

identify endpoints. Changing IP then becomes a significant source of disruption that forces operators to re-

configure applications and re-initialize connections with associated delays. NLH effects are worse in networks

characterized by huge delays because multiple packets, with consequent delays, have to be exchanged at each

reconnection phase even if the NLH happens in a brief interval of time.

There are many approaches to circumvent NLH which add different levels of complexity. The most simple

and slowest one is to terminate the current connection and create a new one upon detecting an IP change.

Better solutions may try to hold the old connection until a new one is established, but that is only possible
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when multiple interfaces are pre-configured with expected addresses and the software subject to the handover

is sufficiently refined.

Half-Open Connections are connections that have not yet been recognized stale. Since TCP only detects

dropped connections at the sender side, receivers have no way to recognize those other than waiting for long

timeouts. In extreme situations, these connections can represent a significant drain of resources. Moreover,

attackers can exploit them to destabilize receivers.

4.3 Congestion Control Algorithms

Congestion control algorithms can be classified depending on whether or not they trigger congestion events on

packet loss (loss-based congestion control algorithms) or delay (delay-based congestion avoidance algorithms).

Delay-based congestion avoidance algorithms use the variation of the average queuing time on a path to mea-

sure bandwidth. Arguably, delay-based algorithms have several advantages over their loss-based counterparts.

In homogeneous networks, delay-based algorithms can provide better bandwidth utilization avoiding loss and

making instantaneous transmissions more stable than standard TCP. Another advantage is that competing delay-

based algorithms’ flows that traverse the same route can fairly share bandwidth since they all observe the same

average queuing delay variation.

Nonetheless, delay-based congestion avoidance algorithms hold many disadvantages that have hindered their

adoption. First, when they must coexist with other protocols in heterogeneous networks characterized by

multiple, asymmetrical, and different paths, these congestion algorithms tend to take advantage of far less

bandwidth than delay-based counterparts [52].

A second issue is called Persistent Congestion Problem [52] which causes new flows to overestimate queuing

delay. Once a group of flows is in equilibrium, new flows will assume that the current queuing delay char-

acterizes the network. This is not correct because all the competing flows should rebalance their throughput

considering new flows to achieve fairness. Delay-based algorithms also have problems in asymmetric links be-

cause delays on the receive path influence the measure that the sender will use to decide how much to transmit

[52].

The following is a summary of notorious congestion control algorithms compiled to complement results and

observations in future sections. The interested reader can find a detailed analysis of these protocols and addi-

tional ones in [53].

4.3.1 Tahoe, Reno, New Reno, SACK, Vegas, CTCP, and Westwood

Tahoe can be summarized by describing its three phases: Slow Start, Congestion Avoidance, and Fast Retrans-

mission. Slow Start is executed at the beginning or when packet loss is detected. In this phase, the Congestion

Window (cwind) is exponentially increased by two packets each time an acknowledge is received until the

cwind reaches a certain configured Slow Start Threshold (ssthres). The cwind is a variable that limits the

amount of data that TCP can send to a receiver and that also identifies the number of packets sent but not

acknowledged.
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Once ssthres is reached, Tahoe enters Congestion Avoidance, increasing the cwind at a much slower and steady

pace of 1
cwind per acknowledge to improve fairness towards other flows and avoid system instability.

After a loss, Tahoe can take advantage of the fact that TCP acknowledgments are cumulative, speed-up re-

covery, and avoid having to wait for the pipe to drain, by assuming that each time it receives 4 duplicate

acknowledgments for packet i, packet i has arrived, i + 1 got lost, and i + 2, i + 3, and i + 4 have likely arrived

too.

Once that situation is detected, Tahoe enters Fast Retransmission where it sets the ssthres to cwind
2 , and cwind to

1 Maximum Segment Size (MSS). The MSS is a parameter of the TCP connection that specifies the maximum

size of a segment which in turn consists of a header and a data section. After that, Tahoe resets to Slow Start.

Reno [58] improved on Tahoe by adding a Fast Recovery phase and by entering Congestion Avoidance instead

of Slow Start after observing the four duplicate acknowledgments. Simplifying, Fast Recovery uses duplicate

acknowledgments to pace retransmissions and avoids waiting for pipe draining by restarting data transmission

after receiving a certain number of acknowledgments. Reno does that because it assumes that for each duplicate

acknowledgment, a certain amount of segments must have arrived at the other side. In Fast Recovery, ssthres is

set to cwind
3 and cwind to cwind

2 , finally it adds 1 to cwind for each acknowledge it receives. In both Tahoe and

Reno, whenever an acknowledgment times out, cwind is reduced to 1 MSS.

New Reno improves on Reno by modifying the Fast Recovery phase. In particular, New Reno sends a packet

from the end of the congestion window whenever it receives a duplicate acknowledgment. Once in Fast Re-

covery, New Reno records the highest outstanding unacknowledged packet sequence number returning to Con-

gestion Avoidance once this sequence number is acknowledged. One systemic problem in New Reno is that it

can enter Fast Recovery even if there is no packet lost when more than three packets are delivered out of order

[59].

SACK modifies Fast Recovery too. In this phase, SACK keeps track of the estimated number of outstanding

packets in the path in a variable called pipe. The sender retransmits data when the pipe is smaller than the

cwind, this separates the decision of when to send packets from the one of which packets to send. SACK

retains the memory of previous acknowledgments and uses it at retransmission time to decide whose packets

to retransmit to avoid sending multiple times the same ones [60].

Vegas [58] differs from Reno in the way it detects loss and bandwidth and in the Slow Start phase. During

Congestion Avoidance, Vegas estimates the amount of data buffered at switches, and based on that, it increases

or decreases the value of the congestion window. This process is done by estimating the expected rate, a number

Vegas obtains by keeping track of acknowledgments’ RTT and assigned to cwind. During Slow Start, Vegas

increases cwind every other time compared with Reno and terminates this phase upon detecting queue buildup

attempting to avoid Reno’s typical Slow Start losses.

Compound TCP (CTCP) designers wanted it to be efficient inside networks characterized by high bandwidth-

delay products. Moreover, they also wanted the protocol to be fair towards other CTCP flows characterized

by different RTT and sharing the same link. Finally, they wanted CTCP to be fair with other non-CTCP

flows (this characteristic is also called TCP friendliness). Compared to previous iterations, CTCP modifies

its Congestion Avoidance phase to consider both RTT and loss. While normally behaving like Vegas, upon
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detecting loss CTCP¸ adjusts the cwind in one of the following ways. If there is no congestion, cwind is

grown exponentially. Otherwise, if the RTT component detects loss, the cwind is decreased proportionally to

the number of backlogged packets. Finally, if it is the loss component that detects loss, cwind is drastically

decreased, the active phase is changed to Congestion Avoidance, and the RTT component is disabled until

CTCP goes back to Congestion Avoidance [52].

Westwood improves on New Reno’s sender side to better handle large pipes characterized by a large bandwidth-

delay product. In particular, Westwood performs bandwidth estimation by analyzing characteristics of the

acknowledgments and uses it to set the cwind and the ssthres after a congestion episode instead of simply

halving cwind [61].

4.3.2 CUBIC

Figure 4.1: CUBIC Growth function.

TCP CUBIC is a congestion avoidance algorithm designed to overcome the low utilization problem charac-

teristic of long-distance networks. Reno and its variants (such as New Reno) behave suboptimally in these

networks because they use a linear function to make the cwind grow following a congestion event, consider-

ably slowing the cwind growth in networks characterized by a large bandwidth-delay product. On the other

hand, in TCP CUBIC, the window size is a cubic function of the time since the last congestion event, and it’s

mostly independent of the RTT.

Upon observing multiple duplicate acknowledgments, CUBIC memorizes the cwind as cwindMax. It then

decreases the cwind and performs the Fast Recovery and Re-transmit phases of previous TCP versions. When

CUBIC enters Congestion Avoidance from Fast Recovery, it increases the cwind using the concave profile (fast

growth) of the cubic function set to plateau at the cwindMax. After that, the cwind grows following the convex

profile (slow growth) of the cubic function.

Figure 4.1 shows the CUBIC growth function after a loss event. The cwind is shown to grow fast up until

the cwindMax that was detected at the congestion point. The growth then becomes convex while CUBIC



CHAPTER 4. EXPERIMENTAL EVALUATION OF UNICAST SOLUTIONS IN
CONSTRAINED ENVIRONMENTS 26

probes for more bandwidth. Controlling the cwind in this way has been found to improve fairness between

connections characterized by different RTT, to improve protocol and network stability by avoiding packet burst

characteristics of purely convex driven growth functions, and to maintain higher throughput. Improvements in

fairness come from the fact that in RTT based implementations, connections with smaller delays can receive

acknowledgments faster and can consequently increase the window size quicker than connections characterized

by longer delays.

Researchers have found several issues in CUBIC caused by the fact that it was developed for short-distance

connections with extended delays. In particular, CUBIC’s exponential increase that happens after the Slow

Start phase can cause several segment losses [62], and by conflicting with other flows in the same state, it can

quickly drain switches resources.

4.3.3 BBR

Bottleneck Bandwidth and Round-trip propagation time (BBR) [2] is arguably one of TCP’s most sophisticated

congestion control algorithms. BBR builds on top of two fundamental assumptions. The first assumption

implies that the end-to-end path can be assimilated to a single link characterized by the bandwidth of the

bottleneck link, and by the RTT of the end-to-end path. The second assumption is that it is possible to build

accurate estimates of RTT and bandwidth for short time windows. Considering that, BBR periodically estimates

the maximum available bandwidth and minimal RTT.

BBR’s algorithm has four phases executed in order [63]: Startup, Drain, Probe Bandwidth, and Probe RTT.

During the Startup phase, BBR behaves similarly to CUBIC by doubling the bandwidth at each RTT until

it assumes to have reached the bottleneck upon observing that the measured bandwidth does not increase

anymore. Since the measurements are delayed by one RTT, a queue is formed. This queue is drained in the

Drain phase by temporarily reducing the throughput. In the Probe Bandwidth phase, BBR executes numerous

cycles of bandwidth increase and Queue Drain to try and increase the bandwidth if possible. After reaching a

result, BBR passes to the Probe Latency phase in which it drastically reduces the throughput to 4 packets for a

short period to ensure that queues are drained and improve RTT estimation. By executing these phases, BBR

wants to provide stable in/out bottleneck rates and full pipe utilization. By accomplishing these two objectives,

BBR can achieve good performance without queue buildups along the path.

Nonetheless, developers have observed several problems in using BBR [63]. BBR flows appear to act unfairly

towards other flows characterized by different RTT. Moreover, BBR’s slow adaptation rate can cause bottleneck

overestimation when competing with other flows in the presence of shallow buffers, insufficient queue drain-

ing during RTT estimation, and conflict with other congestion control algorithms that can cause significant

packet loss. For these reasons, BBR may underperform when applied to networks characterized by variable

performance.

4.4 TCP Alternatives

This section introduces several important TCP alternatives. These protocols have been developed to satisfy

specific needs such as handling multiple flows per connection or improving performance in degraded environ-



CHAPTER 4. EXPERIMENTAL EVALUATION OF UNICAST SOLUTIONS IN
CONSTRAINED ENVIRONMENTS 27

ments.

4.4.1 SCTP

SCTP [64] is a message-oriented transport protocol that was designed to optimize the transmission of multiple

streams of data over a single connection and to support multi-homing by separating endpoints identification

from IP addresses. During the connection phase, SCTP endpoints exchange specific tags that will identify

the connection allowing communication even in case of IP change. Moreover, SCTP supports multiple flows

within a single connection by delivering blocks of data in chunks. Each SCTP packet exchanged during a

session is composed by a common header section and by one or more data chunks. Each data chunk can have

an application tag used to differentiate between flows.

SCTP uses a TCP loss-based congestion control described in RFC 2581 [65] in which cwind is slowly in-

creased in the absence of congestion and drastically reduced after a congestion event. SCTP performs conges-

tion control over entire associations (as opposed to individual streams), keeping a separate cwind for each IP

destination.

Chief problems of SCTP are its rather old congestion control algorithm and the fact that many middleboxes

and firewalls are not designed to work with it.

4.4.2 UDT

UDP-based Data Transfer protocol (UDT) [66] is an application-level data transport protocol built on top of

UDP and designed to transfer large volumes of data over high-speed links. UDT provides basic QoS control

such as allowing full and partial message-oriented reliability, sequenced or unsequenced delivery, and time

deadlines on transmission retrials. Similar to SCTP, UDT also supports multiple flows within the same con-

nection.

By default, UDT uses periodic acknowledgments to progress transmission and negative ones to notify senders

of loss. Periodic acknowledgments are particularly performant when transferring lots of data in fast networks

because they reduce the number of control messages, making them grow linearly with time instead of being

linked to the number of packets sent. UDT congestion control uses two mechanisms called Window and Rate

Control. Window Control estimates bandwidth through packet-pair probing and by growing the cwind in a way

that is inversely proportional to the available bandwidth. Instead, Sender Rate Control uses the data arrival rate

at the receiver side to limit the transmission rate accordingly.

UDT also supports user-redefinition of the congestion control implementation by allowing developers to im-

plement callbacks that give control over congestion control variables.

4.4.3 QUIC

QUIC is a UDP-based application-level communication protocol developed by Google in 2013 to replace TCP

and to overcome a number of its limitations. To speed-up connection establishment, QUIC implements a zero

RTT security and migration algorithm for connections with known servers. Similar to UDT, QUIC allows the
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implementation of user-defined congestion control algorithms, provides facilities to overcome HoLB limita-

tions by multiplexing flows, and implements forward error correction to reduce retransmissions and increase

throughput [3].

QUIC can establish connections and begin sending data in 0-RTT because endpoints that have met before

preserve the connection status. Similar to SCTP, the IDs that identify the connection are not related to the

endpoints’ IPs eliminating multi-homing problems. If the client and server have never connected before, the

secure handshake takes 1 RTT to complete. 2 RTT are instead required when there is a need for negotiation

or when the security keys need to be changed [3]. Similarly to SCTP, QUIC overcomes HoLB by supporting

separate data streams inside a single connection. Each stream behaves like a TCP connection at the expense

of some overhead. Each stream requires a specific identifier and offset to keep track of flows within a single

connection.

QUIC decouples congestion control from reliability. QUIC’s reliability mechanism cumulatively acknowledges

the latest packet received, and similar to TCP, it uses selective acknowledgments to register the reception of

loss packets without being limited to sending a maximum of three SAck blocks. In lossy environments, this

approach reduces erroneous retransmissions and removes the need for timeouts [67]. QUIC acknowledgment

messages also carry information concerning the time a packet was received and when the relevant acknowledg-

ment was generated, providing to the sender important information about the connection.

QUIC does not propose a congestion control algorithm but instead provides an API to add an implementation.

For example, Google uses a modified algorithm similar to TCP CUBIC that provides more information to the

congestion control such as being able to differentiate between transmissions and re-transmissions by analyzing

the unique incremental number that is associated with each packet.

Two final considerations are that QUIC is the only protocol that had security being part of its design and that it

will be HTTP/3’s transport protocol of choice [68].

4.4.4 Mockets

Figure 4.2: Mockets design.
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The Mockets communication library [69] is an application-level data transport protocol designed to overcome

challenges that characterize tactical networks developed in response to limitations observed in other protocols,

TCP in particular. Mockets’s API allows applications to specify different classes of services such as: reliable,

unreliable, sequenced, and unsequenced. The library also supports message tagging and then provides an

interface to change priority, cancel, or replace tagged data. Mockets also supports node mobility, security

through the Bouncy Castle implementation of DTLS, and is equipped with a passive bandwidth estimation

algorithm that is discussed in section 6.3.

Mockets also contains a condition monitoring infrastructure [15] capable of informing applications with timely

and accurate information about various characteristics of the connection between two endpoints. Mockets

can detect peer unreachability through a keep-alive mechanism, and applications can register callbacks to be

notified once a configurable period has passed without the local endpoint receiving any message from the

remote one. Mockets also harvests several other metrics such as the number of retransmissions, duplicated,

sent, and received packets and bytes per service class. Finally, Mockets can also perform latency estimation

through acknowledge- and timestamp-based algorithms. The acknowledge-based algorithm measures the RTT

as the difference seen by the sender between sent packets and their acknowledgments. The timestamp algorithm

operates by periodically adding a timestamp chunk to packets that do not fill the Maximum Transmission Unit

(MTU). Mockets’s implementation accounts for processing time in this measure. While this second algorithm

is generally more accurate, numerous conditions could cause these samples to over or under-estimate the RTT,

considering that, Mockets merges and smooths the two types by implementing an exponential weighted moving

average.

Figure 4.2 shows Mockets internal design. There are five major components called Transmitter, Packet Pro-

cessor, Receiver, Status Notifier, and Communication Interface. The Communication Interface can either be a

UDP socket or be specified by an application. Developers can use this feature to extend Mockets’s transport

layer behavior by implementing specific functionalities or adding support for other socket implementations. For

example, developers could prevent Mockets from handling reliability and sequencing and implement custom

logic inside the Communication Interface. The Transmitter’s primary tasks are to prepare and send messages.

This component also monitors the status of the queues used to manage the different classes of service. Finally, it

supports several other features such as bandwidth estimation, latency estimation, and transmit rate modulation.

The Receiver is a layer between the Communication interface and the Packet Processor used to separate the

receive from the handling logic. The Packet Processor analyses and puts together buffers passed by the Receiver

and then notifies the application once a message is ready. The Packet Processor also notifies the Transmitter

about received acknowledgments and duplicate packets. The first information is used to update the window size

and the second to re-schedule acknowledgments that may have not reached the other endpoint. The Transmitter

and Receiver update the Status Notifier with information about the connection state which then delivers this

information in protobuf encoded UDP messages.

The local endpoint uses Mockets’s API to accept, connect, send, and receive packets, with a syntax similar

to TCP or UDP sockets. An application can also provide extra parameters to specify the class of service of a

message or tag it with an ID which can be used in conjunctions with other functions of the API to cancel or

replace one or more messages that share the tag.
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Once an application passes a message to Mockets, the library verifies that the size is smaller than the MTU or

otherwise divides it into smaller fragments before passing it to the Transmitter. Each message is then stored in

a specific queue accordingly to its QoS requirements. A transmit rate modulation algorithm is used to provide

pacing and congestion control.

Mockets connections can be secured using Bouncy Castle’s DTLS implementation [70]. This works by first

establishing a Mockets connection and then securing it with DTLS on top of it. Both Mockets and DTLS

support the definition of connection unique IDs to avoid having to perform a handshake each time a network

handover or a reconnection is necessary.

4.5 Experiments

Figure 4.3: Testbed configuration used for the comparison of unicast protocols.

To evaluate the progress of COTS transport protocols when applied to tactical environments, we selected sev-

eral promising solutions and performed multiple experiments representative of today’s and tomorrow’s needs

in a realistic tactical scenario. In particular, we evaluated the performance of the following communication

patterns: handshake, Remote Procedure Call (RPC), unidirectional transfer, and bidirectional transfer. We run

experiments using TCP, SCTP, UDT, QUIC, and Mockets. For TCP, We decided to analyze three stable and

refined congestion control implementations: CUBIC, CTCP, and BBR.

We decided to analyze handshake performance because it is a necessary operation and because multi-step

handshake mechanisms can significantly degrade or impede communication in the presence of slow and lossy

networks. We analyzed asymmetrical RPC like communication because this pattern is at the basis of communi-

cation with web services and REST-based interfaces that are becoming increasingly more common. Finally, we

examined one-way and two-way file transfer because they can give insight into the steady-state performance

of each protocol. Moreover, since we knew the amount of data to transmit, we could quantify control over-

head. Finally, we used the two-way test to measure the effect of competing traffic flows on acknowledgment

mechanisms since it can greatly influence transmission speed.

For the test, we used a network environment based on Extendable Mobile Ad-hoc Network Emulator (EMANE),

a sophisticated framework for real-time modeling of mobile network systems [71]. In particular, we used

EMANE to dynamically control network characteristics such as latency, packet loss, and network bandwidth
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of traffic that flowed through controlled VLANS.

4.5.1 Testbed Notes

Protocol Implementation
SCTP Linux Kernel Stream Control Transmission

Protocol Tools v.1.0.16
UDT UDT-4 as provided by libudt-dev package
QUIC ngtcp2 library

Table 4.1: Protocol versioning when different from what available in Ubuntu 16.04.

Test Measurement Transmission Size
Handshake Time measured before and

after connect event.
N/A

RPC Time measured before the
request transmission from
the client and after
complete reception by the
server

Request of 256B and
Responses of 2048B

One-Way transmission Time measured between
first and last byte as
received by the client

1MB

Two-Way transmission Time measured by the
client between connection
establishment and complete
file reception.

1MB

Table 4.2: Summary of time measurements for each test.

To drive the experiments, we developed a simple C++ test harness that we could use to specify a communication

pattern and a protocol to be tested. We then deployed the test harness in two endpoints, a client and a server,

each connected to a specific VLAN. We emulated the connection between the two VLANs using EMANE.

Figure 4.3 summarizes this configuration. Each endpoint was deployed in a Ubuntu 16.04 (kernel 4.15) virtual

machine. Table 4.1 summarizes the version of protocols that were not already available in Ubuntu. In each test,

we measured how long it took to complete a task from the perspective of the client application.

1. In the handshake test, we measured the time before and after the connect call;

2. In the RPC test we measured the time before and after the RPC (performed by the client);

3. In the one-way data transmission we measured the time from the receiving of the first and last byte sent

by the server;

4. In the two-way data transfer we measured the time between the connection establishment and the com-

plete file reception.
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During the RPC test, client and server exchange 256B for each request and 2048B for each reply. During the

file transfer tests, the file size was 1MB. The previous information is summarized in Table 4.2.

In the tests, we focused on evaluating the link between performance and packet loss. We selected a represen-

tative one-way bandwidth of 512Kbps and a link latency of 250ms. We kept that fixed and then executed four

experiments each with a different average packet loss ranging from 0% to 15% with a 5% increment. We then

executed each of these four configurations ten times per test per protocol for a total of 1120 runs.

4.5.2 Results

Figures 4.4 to 4.7, summarize the results of the experiments. From the figures, it is possible to observe a general

negative trend in performance at the increase of packet loss. A lack of results for some of the tests, especially

ones with high levels of packet loss, can be attributed to repeated failures or excessive time to complete.

Figure 4.4: Distribution of handshake times under four different packet loss configurations.

Figure 4.4 aggregates the results of the handshake experiments showing that as the packet loss increases, all

configurations take longer to complete. This result is likely caused by the fact that all protocols wait a certain

amount of time before retransmitting handshake messages thus lengthening the process.

Figure 4.5 shows the result of the RPC experiment. In this case, the figure shows an average increase in the

time needed to complete the procedure. It is worth noting that QUIC handled this experiment worse than the

handshake one and that there may be value in investigating if there is any difference in the way reliability is

handled before and after completing the handshake phase.

BBR showed the wider variability during the tests with 10% packet loss, and it was the slowest protocol during

the 15% test. Mockets obtained much better performance after the handshake. This is likely caused by the fact

that Mockets handshake is based on static timers that must be opportunely tuned to provide quicker handshakes

in networks characterized by packet loss and low latencies.

Figure 4.6 shows the average throughput achieved in the one-way file transfer experiment over the different

packet loss configurations. In this experiment, CUBIC showed a very low throughput. Since all packet loss
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Figure 4.5: Distribution of RPC times under four different packet loss configurations.

Figure 4.6: Average throughput during the one-way file transfer experiment.

configurations share this result, the cause likely has to be found in the protocol’s inability to handle low band-

width when paired with high latencies.

CTCP shows excellent throughput when packet loss is absent, but performance degrades quickly in the other

configurations. The one-way file transfer experiment shows that Mockets can achieve higher throughput than

other solutions as the packet loss increases. It is also likely that the cause of bad performance in the lower

packet loss configurations has to be attributed to a default tuning more suited to degraded networks than to
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Figure 4.7: Average throughput during the two-way file transfer experiment.

resource-rich and reliable ones. BBR and QUIC also achieve excellent performance in the presence of loss.

Finally, Figure 4.7 summarizes the results of the two-way file transfer experiment. Mockets and QUIC have

the best performance. BBR and SCTP also achieve good performance. The difference in results is most

likely caused by how certain protocols can better take care of transmitted packets to relay acknowledgments

(Mockets, for example, can piggyback them in data packets) and the negative impact that the reverse flow has

on the reliability of acknowledgments.



Chapter 5

Experimental Evaluation of Group
Communication Solutions in Constrained
Environments

Group communication can describe a variety of communication modalities and semantics that involve many-

to-many communication in which participants, instead of designating recipients, transmit messages addressed

to a group or topic. Nodes then task the group communication solution to filter and deliver only information

that satisfies their interest.

This chapter first introduces IP-Multicast, a communication protocol that forward messages sent towards a

specific multicast address to any node that joined the multicast group identified by that same address. Since

IP-Multicast is generally a best-effort protocol, it is not natively suitable for many applications that require

higher levels of guarantees on the reliability of the communication channel or the preservation of the arrival

order of messages. Luckily, the need for timely and reliable information delivery between groups of nodes is

not peculiar to TDR operations, and many other commercial drivers such as the Internet of Things, Healthcare,

Smart Cities, Monitoring, and the emergence of Fog/Edge computing and Information-centric Networking have

led to the development of an ever-increasing number of solutions capable of providing reliable and ordered

delivery. In particular, the Publish/Subscribe architectural pattern has seen significant adoption and become a

common design pillar.

Group communication solutions separate into two categories, decentralized and centralized approaches. De-

centralized systems use multicast or broadcast, while centralized ones use one or more federated brokers that

connect individually to clients. On rare occasions, solutions realize combinations of these two approaches. De-

signed for the commercial Internet, COTS group communication solutions present the same classes of concerns

expressed in previous chapters when deployed in significantly bandwidth-constrained environments that exhibit

variable latency and significant node mobility. This fact begs several questions that ought to be answered. Can

these solutions efficiently support communication in TDR operations? How can they be evaluated in a realistic

environment? To answer these questions, we performed extensive research evaluating several group commu-

nications protocols for data dissemination and extracted some of their most characterizing features. Moreover,

35
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we evaluated these solutions over an emulated tactical edge network using the Anglova Scenario, a realistic

military scenario that describes nodes’ movement patterns and connectivity over time, EMANE, a sophisti-

cated emulation framework, and a test-harness specifically designed to ensure consistency in collecting and

analyzing results.

The rest of this chapter is as follows. The first section introduces IP-Multicast and explains why this commu-

nication protocol is not sufficient on its own to provide stable and reliable group communication. The second

section discusses the Publish/Subscribe architectural paradigm as a fundamental component of modern soft-

ware infrastructure to provide many-to-many communication. The third section contains a survey of group

communication characteristics that can be useful to understand group communication protocols. The fourth

section presents all the protocols examined in the experiments. The fifth, sixth, and seventh sections intro-

duce the various components of our realistic experimentation environment. Finally, the remaining four sections

present a variety of experiments.

5.1 Multicast

IP-Multicast [72] is a simple technique to implement one-to-many and many-to-many communication over an

IP infrastructure [73]. A group of hosts can perform a multicast communication by agreeing on a multicast

group address and a port. Upon sending a message towards that address, all the hosts listening to it will receive

the message. A multicast group address is an IP address that belongs to the multicast range from 224.0.0.0

to 239.255.255.255. To participate in a multicast group, receivers will need to inform the network of their

interest in messages sent towards a specific multicast group address by sending an IGMP [74] join packet to

their closest router. The network box will then forward multicast packets to the local receivers. Upon receiving

multicast messages, network nodes such as routers and switches will also replicate and share messages between

them and to interested neighbors as necessary.

Many characteristics make IP-Multicast an interesting choice to provide group communication. To start, IP-

Multicast does not require participants to have any prior knowledge of the number of receivers or publishers.

Furthermore, IP-Multicast is intrinsically more efficient than unicast for group communication because even

if a packet has to be sent to multiple receivers, it requires the sender to send it only once. Another advantage

is that routers do not need to keep track of routes towards each single multicast destination but can instead

forward messages over tree-like data structures built based on whether or not any receiver or router manifested

interest in a multicast group address. IP-Multicast also comes with some downsides. For once, while nodes

belonging to the same local network can generally use multicast, the same is not necessarily true over wide

networks, which often require network administrators to perform specific configurations to support multicast

traffic.

While IP-Multicast does not force a specific transport protocol, it is commonly associated with UDP, and

consequently, shares the same best effort guarantees that characterize datagram transmission. It follows that

IP-Multicast does not address many other typical required functionalities such as the need for granular control

over messages QoS, reliability, ordering, and security. Moreover, due to the peculiar nature of radio channels,

which are lossy and not constrained by a cable medium, many wireless radios implement their custom handling



CHAPTER 5. EXPERIMENTAL EVALUATION OF GROUP COMMUNICATION
SOLUTIONS IN CONSTRAINED ENVIRONMENTS 37

of multicast traffic to circumvent performance degradation, making their performance unpredictable over het-

erogeneous solutions. Finally, routers and network boxes often do not forward multicast traffic due to reverse

path forwarding failures [75], security concerns, and Time-to-Live limitations.

5.2 The Publish Subscribe Architectural Paradigm

Figure 5.1: Publish Subscribe architectural pattern.

Produced by the need for a better solution for group communication than IP-Multicast, the Publish/Subscribe

paradigm is a state-of-the-art approach to satisfy the need for accessible loosely-coupled asynchronous group

communication between distributed components.

The Publish/Subscribe architectural pattern describes a communication system in which anonymous, asyn-

chronous, many-to-many, loosely-coupled nodes transmit notifications to interested receivers. Figure 5.1 sum-

marizes this architecture and shows the three typical elements that compose a Publish/Subscribe solution: pub-

lishers, subscribers, and the event channel. The publishers insert information into the system, the subscribers

receive the information they are interested in, and the event or communication channel is an abstraction over

the medium used to signal interest and move data between nodes. The event channel can be implemented in

a centralized or decentralized fashion depending on whether or not it assumes the form of a centralized unit

(generally called a broker) or of a distributed network of nodes that share messages between each other.

On top of satisfying basic communication needs, it is common for Publish/Subscribe implementations to also

provide support for a vast array of highly valuable secondary features, such as mechanisms to guarantee mes-

sage reliability, ordering, delivery deadlines, filtering, security, persistency, connection health, group manage-

ment, and delivery synchronization.
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5.3 A survey on group communication characteristics

Figure 5.2: Important characteristics of group communication solutions.

This section contains an analysis of fundamental characteristics of group communication solutions with an eye

to TDR operations. The list of analyzed features is summarized in Figure 5.2.

5.3.1 Networking Scheme

The Networking Scheme describes the structure of the event channel. To illustrate this we consider three char-

acterizing examples: Direct-Centralized, Indirect-Centralized, Decentralized. In Direct-Centralized solutions,

a centralized entity (typically called a broker) receives messages generated by publishers and delivers them to

interested subscribers. A group of nodes associated with a single primary broker is generally called a cluster.

Over large networks, clusters are connected by federating the brokers. In Indirect-Centralized solutions, pub-

lishers and subscribers exchange events directly but require a centralized entity to sustain the event channel,

discover each other, or find data. Conversely, the event channel in Decentralized solutions is made up of pub-

lishers and subscribers themselves. Decentralized solutions may be static or dynamic depending on whether or

not the topology can change at run-time.

Centralized solutions are arguably simpler to implement and maintain, require less configuration, and provide

a smaller security attack surface by concentrating their capabilities in a single entity. On the other hand,

distributed solutions can better handle, at least in theory, the disjointed nature of the battlefield. Nodes operating
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in ad hoc networks may abruptly change their location and lose contact with the centralized entity. In these

scenarios, distributed solutions capable of relaying messages achieve wider coverage, reducing the impact of

mobility on the overall communication reliability. Decentralized solutions are also intrinsically less vulnerable

to denial of service attacks.

Another principal limitation of centralized solutions is that the broker position limits their forwarding capa-

bilities. The fact that only nodes reachable by the broker can receive and forward messages, creates the need

of selecting a suitable position for the broker in terms of its ability to reach all members of the cluster and

possibly brokers of other clusters. In the absence of routing, brokers may have to be deployed into gateway

nodes capable of reaching the back-haul connection, but this may reveal to be sub-optimal for communication

within the cluster.

5.3.2 Transport Protocol

Communication middleware and other solutions designed to tackle group communication have the advantage

of abstracting and simplifying network interaction. Nonetheless, the choice of transport protocol is strongly

linked to performance, especially in TDR operations as discussed in Chapter 4. Group communication solutions

are generally based on TCP, UDP (unicast or multicast), or other ad hoc protocols built on top of UDP. Con-

sidering the observations produced in Section 5.1, multicast is a more attractive option in terms of bandwidth

consumption, but it is also more complicated to adopt and may not work in wide networks.

5.3.3 Distribution Model

The Distribution Model describes the process that allows a node to subscribe to specific data, which we call

Subscription Scheme, and the method used to trigger data distribution, which we call Distribution Scheme.

Common Subscription Schemes are topic-, type-, and content-based, while examples of Distribution Schemes

are pull- (or fetch) and push-based.

Topic-based subscription filters events based on unique identifiers associated with each event called topic.

Topics can generally support hierarchical organizations to enable granular sub-specifications while keeping

APIs simple. For example, if a node wants to subscribe to information generated by a weather sensor deployed

in a tower called x, the subscription topic could look like ”tower.x.weather”. These APIs typically support

wildcards to extend their functionalities, such as the ”*” symbol for general substitution and the ”>” symbol

for hierarchical substitution. For example, ”tower.*.weather” could be used to retrieve weather information

from all the available towers, and ”tower.*.>” could be used for all types of information.

Type-based subscriptions use information types to filter information. This approach generally requires defining

all the types of messages that publishers and subscribers will use at run-time.

In content-based subscriptions, subscribers advertise their interest by setting specific triggers on events’ in-

formative content typically expressed as key-value pairs. The triggers can be meta-data associated with each

event or data fields extracted by inspecting events’ content. Depending on the implementation, content-based

subscriptions may too require all types to be defined beforehand.

The subscription mechanism holds consequences both in terms of usability and performance. Topic-based sub-
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Figure 5.3: Comparison between throughput obtained with short (top) and big (bottom)
topics.

scriptions are flexible since they can associate arbitrary blobs of data and topics, but they introduce significant

overhead when lengthy. Type and content-based subscriptions are generally more efficient because they intrin-

sically contain the information that the event channel will use for matching, but require preliminary knowledge

of what will be transmitted, reducing flexibility and increasing development complexity. For example, Fig-

ure 5.3 shows the comparison throughput of the same communication middleware using big and small topics

made respectively of one and ten characters. On average, the small-topic configuration used 25 fewer bytes per

packet.

For what concerns the Distribution Scheme, pull-based approaches have the consumer request information,

typically by sending fetch messages, and push-based solutions have the publishers send data to the consumers

whenever it matches their interests. The Distribution Model also describes if a solution transmits blobs of

binary data or if data types need to be specified to all participants before they can be shared and the maximum

and recommended size of messages exchanged.

Theoretically, pull approaches should achieve better performance in TDR networks because they are more con-

servative in how they use network resources by only requesting data they are ready to process. On the contrary,

high latencies may be more favorable to push mechanisms because they are not affected by the dely that fetch

requests need to reach the event system. Sophisticate algorithms can mitigate this problem by estimating the

best time to send fetch requests based on consumer performance.
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5.3.4 Dissemination Scheme

We use the term Dissemination Scheme to classify Group Communication Solution (GCS) on the approach

they use to distribute messages between clusters of nodes. Common approaches are flooding, selective, and

gossiping [76].

In flooding, each node broadcasts received messages to any node it can reach. In gossiping, each time a

node receives a message, it forwards it to one or more neighbors it chooses randomly, de facto implementing

probabilistic flooding. We call gossiping ”informed” if the delivery attempt of a message is guaranteed for

neighbors that manifested interest to the class of that message. Finally, selection-based approaches require the

static definition of information paths.

5.3.5 Discovery Mechanism

One of the primary challenges in TDR operations is that nodes may frequently change position, causing the

communication environment to separate unexpectedly into compartmented, unreachable enclaves for long pe-

riods. A discovery mechanism is then necessary to advertise nodes’ return and departure to their neighbors.

The Discovery Mechanism feature classifies solutions based on the algorithm that publishers, subscribers, and

clusters, use to find and discover each other. Approaches can be static or dynamic. Static approaches rely on

pre-defined lists of peers’ IP addresses or DNS records, while dynamic ones are based on run-time discovery

generally implemented through flooding or gossiping.

5.3.6 Health Monitoring

Health Monitoring describes the mechanism used to evaluate connectivity with other nodes in terms of their

ability to reach each other and on the characteristics of their communication channel. Typically solutions rely

on the status of the transport protocol connection or implement an overlay mechanism that exchanges extra

control messages to verify connectivity and status.

We say that overlay solutions are explicit or implicit depending on whether the control messages are embedded

in the event channel’s messages or sent separately. Explicit solutions can implement ping/pong algorithms that

judge how quickly a pong follows a ping and use that information to estimate the status of the connection.

Implicit approaches use information intrinsic in the message distribution mechanism, such as measuring the

difference between publishing and consuming rates. When the difference between these two grows over a

certain threshold, the health monitoring mechanism can infer the presence of a problem with the node under

examination.

5.3.7 Quality Of Service

In QoS we grouped the various mechanisms that provide control over the characteristics of message dissem-

ination. In particular, we classified protocols based on Model, Reliability, Ordering, Delivery Guarantees,

Fragmentation, and Compression.

We use Control Model to classify solutions based on who can specify QoS requirements between the publisher,
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the subscriber, or the event channel. Note that a combination of these is also possible. This aspect is relevant

in TDR networks since they are asymmetrical communication environments with different necessities. For

example, a node closer to the headquarters may push out a lot of data, but a node at the edge may need to limit

the amount other nodes can send to it to avoid network collapse. With Reliability, we classify solutions on how

they ensure message delivery. A basic approach can rely on the guarantees offered by a transport protocol,

more sophisticated solutions can implement separate ack/nack-based mechanisms, or use index-based fetches

that associate each index to a type of information. Subscribers can then control information flow in this way by

notifying the publisher (or the broker) about the index of the message they want to receive next.

With Ordering, we classify solutions based on their limits in guarantees to message arrival orders. In Total

ordering, messages are delivered in absolute chronological order, i.e., no node receives a message before all

other participants have received the one sent before it. Partial ordering adds caveats that relax total ordering.

Partial Source-based ordering guarantees that messages sent by the same source are delivered in order, while

Source-topic ordering only guarantees ordered delivery between messages sent by the same source and char-

acterized by the same topic. It is worth noting that more restrictive classes of service require more network

resources and could not be sustainable in a degraded environment.

Delivery Guarantees describe what happens if the transport protocol fails to transmit a message. Fire-and-

forget approaches only provide the guarantees provided by the transport protocol, at least once, at most once,

and exactly once, respectively guarantee that a message will be received at least, at most, and exactly once.

Several other variations are possible, such as offering reliability but enforcing freshness by only sending the

last message in a channel if previous information has not been delivered.

Persistency describes how the messaging system handles information survival to node crash, network discon-

nection, and time. Some options are fire-and-forget, transaction-based, time-, size-, count-, and deadline-based.

Fire-and-Forget describes an approach without memory or delivery guarantees. Transaction-based maintains

information until explicitly deleted. Deadline-based rules support the definition of thresholds in terms of time,

size, or count, that the event channel uses to drop messages. Some examples of Deadline-based rules are to

retain messages for 1 minute, to at most use 100MB for a single topic, or to remove a message only if it has

been acknowledged by 5 subscribers.

Compression can be stream or message-oriented. Stream-oriented solutions are more efficient the more data

is transmitted but require heuristics to decide how long to wait before sending information, complicating the

solution design.

In general restrictive QoS requirements may require considerable bandwidth or significantly degrade overall

performance by having well-connected nodes wait on peripheral ones.

5.3.8 Cache and Store

We use Cache and Store to describe how solutions preserve information between generation and delivery.

Caching approaches can provide replication by proactively disseminating data to other nodes. In this case, the

death of the original publisher does not prevent interested subscribers from receiving the cached data. Another

approach is to share the location (an index) of the information so that interested nodes can fetch it from there
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at their convenience.

We use Storing to specify if storage is volatile, when stored on RAM, or persistent, when stored on disk.

RAM approaches are generally faster, but on the other hand, they are subjected to hard memory limits, and

information may be lost in case of system failure.

5.3.9 Synchronization

Synchronization describes how the event system enforces event reception synchronization between subscribers.

Examples of synchronization guarantees are best-effort, incremental, and virtual. Best-effort approaches do not

provide any synchronization, with each subscriber receiving events independently from others. Incremental

approaches create temporary partitions that are eventually merged with through an opportune strategy once the

reason for the partition disappears. Full Synchronization guarantees that messages reach all users in identical

order despite failure, however, this is generally implemented in practice as virtual Synchronization by relaxing

some of the requirements while maintaining the constrain that messages reach users in identical order [77].

Another aspect worth evaluating is how to merge conflicting information. In Master/slave approaches, the state

is managed by a centralized authority, while in Quorum-based ones, the state is built by having the participants

vote. TDR environments are not suited for complete synchronization since parts of the networks may be

partitioned for long periods.

5.3.10 Awareness And Adaptation

Awareness and Adaptation (A&A) describes how protocols detect and adapt to state changes such as variation

in network performance and available resources. Solutions can accomplish Network A&A by shaping nodes’

communication based on proximity to other nodes or subscription patterns, by implementing strategies to react

to brokers’ and peers’ failures such as exhaustion and Publish/Subscribe rate variations.

GCSs can perform Proximity optimization by dynamically adapting information flows, making nodes obtain

data from the closest source. A protocol capable of connection adaptation could detect the inability to reach

a broker and switch to a different one. Quality adaptation can entail changing (publish) rates to avoid link

congestion or picking a different path to distribute information. Adaptation in terms of resources could be

implemented by distributing the workload between different brokers/peers to avoid exhaustion or excessive

asymmetrical resources usage.

5.3.11 Run-time Policy Adaptation

Run-time Policy Adaptation describes the control that can be exerted at run-time. Static solutions force systems

to restart after each change in semantic or other characteristics, tearing down already established channels with

consequent non-negligible network overhead. Dynamic GCSs may support hot changes in QoS requirements

(for example, from at most once to at least once semantic), traffic shaping (cancel or prioritize message waiting

to be sent), and dissemination (changing publishing rates and information paths).
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Attack Surface Vulnerability
Publisher

• Data Spam
• Corruption
• Repudiation
• Spoofed Publisher

Subscriber
• Subscription Spam
• Subscription Churn
• Eavesdropping

Event Distribution Layer
• Eavesdropping
• Subscription/Publishing Leak
• Data Inference
• Data corruption
• Malicious routing/loss
• Flooding
• Encryption Breach

Communication Channel
• Overlay Scanning
• Eavesdropping

Table 5.1: Summary of Publish/Subscribe attack vectors and vulnerabilities.

Security Vector Description
Identification How peers identity is verified and secured.
Authorization How access to the system is regulated.

Filtering How information access can be restricted
to subsets of peers.

Secure Storage How information is secured when stored
Secure Communication How information is secured when in transit

Routing Control How the path of information is controlled
Execution Control How peers actions such as limiting the

number of published messages or active
subscriptions can be restricted

Logging and Monitoring How monitor information is secured from
abuse and eavesdropping

Table 5.2: Summary of security points.

5.3.12 Security

Table 5.1 summarizes common attacks towards group communication systems [21]. One way to analyze this

is to consider that there are fundamentally 4 points of entry for attackers: publishers, subscribers, the event

channel, and the communication channel. For example, malicious or compromised publishers may try to spam
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data generation with the objective of overloading brokers or subscribers, sending corrupted or misleading infor-

mation, or being used as an intermediary to send information from unauthorized actors. Malicious subscribers

may drain resources by over-subscribing, by acting in a way that causes high subscription churn rates, and by

trying to eavesdrop on information to which they should not have access or interest.

If parts of the Event Channel were to be compromised, malicious brokers could try to eavesdrop on information,

leak subscribers and publisher characteristics and interests, try to perform data inference and corruption, or

maliciously route or lose information to compromise or delay critical communication.

Finally, external actors can attack the communication channel itself, for example, by scanning the overlay to

gain information about publishers and subscribers or the data that is transmitted between them. In general,

this type of threat calls for solutions that can provide access control, identity management, encrypted com-

munication, event routing control, storage security, logging and monitoring security, and execution control (as

summarized in Table 5.2).

5.4 Protocols

This section describes the protocols analyzed in the subsequent experiments sections of this chapter. The

analysis roughly follows the same structure for each protocol. First, we provide a general introduction to the

protocol, specifying the programming language it was written in and the domain it was designed for. Next, we

analyze the subscription and distribution models. After that, we describe the event channel and the mechanism

that the solution uses to monitor its status. Finally, we discuss how the protocol manages large networks

(discussing federation and forwarding) and conclude with notes about security.

5.4.1 NATS

NATS [78] is a TCP-based messaging system written in Golang implementing a simple text-based publish-

subscribe distribution model.

Clients connect to a NATS server through a regular TCP connection and then subscribe or publish messages

in channels identified by unique topics. NATS provides a fire-and-forget and at-most-once delivery guarantee.

Consequently, a client will keep receiving messages as long as its connection is active, but it will not receive

messages sent before that was the case.

NATS clients monitor the connection with the server by periodically sending ping messages. If servers and

clients do not exchange traffic, the server must reply with a pong message, or the clients will consider the

connection stale and disconnect.

Servers can cluster and dynamically exchange information and divide clients into work queues to optimize

throughput. Clusters are self-healing in the sense that once brokers discover each other, this information is

shared with the clients and with other brokers so that in case of failure they can reorganize. This feature requires

routing between NATS servers and between groups of clients and their respective servers. Messages can be

forwarded between clusters using an internal routing protocol that allows for multi-hop configurations. Finally,

NATS brokers support configurable security enclaves. They can configure authorization and authentication on
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a per topic basis cluster by cluster. Specific rules can be set for the intracluster forwarding of messages deciding

if and how to map messages between different security enclaves.

5.4.2 RabbitMQ-AMQP

RabbitMQ (RMQ) [79] is a TCP-based message broker written in Erlang, designed by Pivotal Software, that

stores and forwards binary blobs of data. RMQ can be configured to use one of a selection of messaging

protocols such as Advanced Message Queuing Protocol (AMQP), STOMP, MQTT, and HTTP. In particular

we evaluated AMQP 0-9-1. It is worth noticing that RMQ provides some improvements on top of these basic

protocols such as range rejection of messages, geo-based routing, and front-end management.

AMQP [80] implements the classic pub/sub paradigm where brokers receive messages from publishers and

route them to consumers. Content delivery can either be push or fetch-based. AMQP supports multiple sub-

scription models which can be summarized as simply sent, topic-based, and tag-based. Metadata can be added

to messages either to provide clients with more information or to allow brokers to perform selective forward-

ing. Reliability is supported utilizing an overlay acknowledge-based protocol and brokers can be configured

so that messages are only removed after being acknowledged. When messages are not delivered, AMQP can

be configured to send the undelivered message or a lost report back to the publisher. Clients can also reject

messages and either ask the broker to reschedule their delivery or signal they will not process them.

Servers and clients monitor their connection using heartbeat messages, if two are lost the TCP connection

between them is terminated. Persistency is client-specific and not necessarily supported by all AMQP client

implementations, the one we used in our tests [81] was designed to re-issue all the configurations upon per-

forming a re-connection.

RMQ brokers support three clustering mechanisms called Cluster, Federation, and Shovel. The Cluster mech-

anism provides a centralized logical broker and it’s designed for an environment characterized by high avail-

ability and throughput. Federation supports the connection of multiple clusters that are far from each other

and implements basic mechanisms to overcome latency and disconnections. Shovel provides a customizable

layer and it’s designed to provide a more rich interface to manage edge cases. Brokers can discover each other

either through static IP configurations or by A/AAAA records set in the DNS. Other discovery mechanisms are

available but rely on external plugins so they were not considered in this analysis.

For what concerns security, RabbitMQ offers TLS as an encryption layer, and optionally data can be protected

through ”Virtual Hosts”, isolated environments in which AMQP entities are created and kept separated. Using

”virtual host”, RabbitMQ can provide a full AAA environment where users’ rights can be restricted. Authenti-

cation is supported either through accounts or by using x.509 certificates.

5.4.3 MQTT

MQ Telemetry Transport (MQTT) v3.1.1 [82] is an open OASIS and ISO standard, TCP or WEB-Socket based

pub/sub messaging protocol designed for constrained devices and low-bandwidth, high-latency, or unreliable

networks. In particular, MQTT was designed to minimize network footprint while providing reliability trades

off.
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Similarly to RMQ, MQTT allows clients to specify wills, i.e. messages that will be relayed to the publisher

by the broker when a client disconnects without notifying the server. Upon subscription, a publisher can

decide if messages have to persist client disconnections and the maximum level of delivery guarantees they

will accept. MQTT supports once (without confirmation), at least once (with confirmation), and exactly-once

(4 ways handshake) semantics. It is worth noting that publishers and subscribers can have a different level of

maximum QoS they are willing to accept. In both cases, the QoS level specifies the relation with the broker for

the specific topic. Reliability is maintained through an overlay protocol that replies with a pub acknowledge

and a pub received respectively for client’s publish and receive operations. MQTT also supports per-message

retention and the connection with the broker can be set as durable in which case subscription persists client

disconnection enforcing delivery of reliable messages.

Client-server connection is monitored using a keep-alive mechanism and clients must periodically send either

a ping request or a control message to the server. Losing keep-alive messages for a certain time will cause the

endpoints to consider the connection stale and disconnect automatically.

For our experiments we used MOSQUITTO [83] implementation of MQTT. MOSQUITTO supports one-hop

forwarding where another broker specifies topics and QoS that will then deliver to subscribed clients.

MQTT provides bare-bone security in the form of encryption.

5.4.4 Kafka

Apache Kafka is a TCP-based protocol written in SCALA and JAVA developed by the Apache Software Foun-

dation [84], to provide a unified, high-throughput, and as a low-latency platform to handle real-time data feeds

[85]. Kafka exchanges data streams (instead of messages), with topics abstracted as immutable ordered records

of data. Kafka stores each client’s delivery state as a record position.

Kafka clients connect to a federation of brokers and subscribe or publish to/into channels identified by topics.

Consumers and publishers can separately specify the maximum level of QoS that they are willing to support

between them and the broker. By default, the information pushed by a publisher is persistent for a configurable

retention period that is independent of whether the data was consumed or not by interested peers. Kafka

manages reliability using indexes that pair consumers and data. Subscribers send fetch requests to the broker

specifying the index of the next piece of information they want. This mechanism can also be used to request

older and implement reliability in case of loss. This approach is possible because Kafka divides topics into

totally ordered partitions, each of which is consumed only by a specific consumer. Ordering is only guaranteed

inside a partition that is specific for a source-topic-consumer. Kafka implements at least-once-delivery by

default. Exactly once can be specified either for single consumers or for all of them. Kafka can require all

subscribers to acknowledge messages to the publisher.

Kafka implements Synchronization through replication by configuring brokers in a master/slave relation. Pub-

lishers send messages to a primary broker that then replicates its status in the replication cluster. Publisher

can either require the replication master or, at greater cost, all the replication members to acknowledge their

messages. The connection between clients and brokers is defined in KAFKA as the ability of peers to keep

connected to their internal database and stay in sync with the partition leader. Being in sync is defined as nodes
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maintaining a sufficiently small offset between their topics and the ones of the leader. Kafka discovery is based

on gossiping or static configuration. Data is not replicated between different brokers that do not belong to a

replication partition.

Kafka natively supports encryption and authorization and manages more complex security scenarios through

external plugins and software companions.

5.4.5 Redis

Remote Dictionary Server (ReDiS) is an open-source, TCP-based, in-memory data structure store written by

Salvatore Sanfilippo and sponsored by RedisLabs [86] which can be used as a database, as a cache, and as a

message broker through its pub/sub API.

ReDiS pub/sub protocol is fairly simple. Clients connect to a broker and specify the topic they wish to subscribe

to or publish. Messages are stored in a hash map. Reliability follows a fire-and-forget pattern, but if the

connection between clients and a server is interrupted (not disconnected), clients and servers store undelivered

messages until they can communicate again. ReDiS messages are limited to a maximum size of 512 MB.

ReDiS’s API implement two methods for receiving messages, the concurrent method is stated to be faster but

without ordering guarantees [87].

ReDiS monitors the connection between clients and servers through a simple keep-alive message sent only if

more than 300 seconds pass without traffic exchange between two endpoints. If that message is not acknowl-

edged, the connection is considered stale and closed.

Forwarding between clusters is implemented as simple broadcasting between brokers [87].

ReDiS assumes that the entities that can be connected to a broker are trusted and as such it manages encryption

through TLS and access control through a configuration-based mechanism. The developers suggest that an

ACLs and user input validation layer should protect access to a ReDiS instances.

5.4.6 DDS

Data-Distribution Service for Real-Time Systems (DDS) [88] is a data-centric middleware developed to provide

pubs/sub messaging in low-latency, critical, and real-time systems.

DDS implements the concept of Data-Centric publish-subscribe where nodes that want to add data register

as publishers and nodes that want to access the data as subscribers. DDS is data-centric in the sense that

publishers and subscribers must bind the type of data they wish to transmit. This approach separates DDS from

other messaging systems that exchange blobs of data. Most of the following information regarding the general

working of DDS are extracted from [89]

Applications connecting to DDS interact with a distributed object called Global Data Space that transparently

handles the updating and retrieving of information using a publish/subscribe-semantic. Publishers/subscribers

univocally bind a data writer/reader (which consequentially also binds the data definition), a topic, and a set

of QoS specifications to a specific flow of information with the objective of updating/retrieving data. It is

worth noting that a topic identifies a single data type. An application can also attach a listener to each flow
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to be notified about data reception, QoS violations, and in general of any asynchronous event relevant to the

flow. The connection between publishers and subscribers is modeled as a domain plain where only entities that

belong to the same plane can interact with each other.

DDS supports an extensive number of QoS characterization other than reliability and order. For example, it

is possible to specify bandwidths and latency deadlines for delivery, control if data must be volatile or persist

publishing. Applications have access to an extensive set of configurations to control what happens when data is

updated, for example, it is possible to specify that the subscriber is only interested in receiving the latest update

or just some updates per unit of time. The interested reader is invited to study the specification to gain a full

understanding of the detail of the QoS capabilities [89].

DDS bases its wire protocol on RTPS, a reliable transport protocol for pub/sub communication over unreliable

protocols such as TCP, UDP multicast, and unicast [90]. While the specification specifies requirements, in-

terfaces, and data types translation, each vendor-specific implementation has a sufficient degree of freedom so

that different implementations are likely not to be compatible unless specific bridges are designed and used.

Clustering and forwarding are implementation-specific, DDS provides a general architecture but it is assumed

that each implementation will require a custom approach.

The DDS standard requires the implementation of mechanisms to ensure data integrity, authentication of sub-

scribers and publisher, authentication of messages and data origin, and optionally mechanism to prevent data

repudiation. In particular, they propose an extension to the Real-Time Publish-Subscribe (RTPS) Wire Protocol

(RTPS) transport protocol [91].

In our experiments, we tested two implementations of DDS: OpenDDS [92], which is a C++ open-source imple-

mentation made by the Object Management Group, and RTI-DDS [93], which is a commercial implementation

made by RTI.

OpenDDS is built on top of Adaptive Communication Environment (ACE), a platform-independent communi-

cation library that OpenDDS exploits for connectivity but also to define the messages that will be supported at

run-time through a component called IDL compiler. Applications using OpenDDS must discover each other

using one of two discovery options, Information Repository, and RTPS Discovery, or by statically configuring

neighbors’ addresses. The Information Repository is a centralized infrastructure that runs in a separate process.

Publisher and subscribers connect to it and use it to learn about each other. RTPS discovery is distributed on the

other hand and based on having each instance advertise its presence to a predefined list of unicast or multicast

addresses. Communication between publishers and subscribers can be achieved with TCP, UDP, Multicast IP,

and RTPS UDP.

5.4.7 DisService

Dissemination Service (DS) [94] is a peer-to-peer communication middleware written in C++, based on multi-

cast, and specifically designed for mobile tactical networks.

DS distributes messages efficiently using a combination of pull and push approaches. Large messages are

divided into fragments and proactively shared to increase information availability and liveness. Peers aggres-
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sively cache messages even when they are not the recipients, thus becoming able to forward messages that

lack a connection between source and destination either in space (not directly connected) or time (connected

at different times). By default, DS holds messages as long as storage is available, otherwise switching to a

last-recently-used policy to expire messages in the cache.

Client applications can make information available to other nodes in the network by sending messages in a

group context. Any other application interested in that information needs to subscribe to that group and select

how it wants messages to be retrieved. In particular, a client can specify if it wants messages delivered in

publication order or as soon as they are received. Furthermore, clients can decide if they want messages to

be reliable or not and can associate priorities to decide from which subscription to receive/add data in case of

bandwidth contention. DS’s aggressive caching mechanism enables it to store data along the path, shortening

the distance that re-transmissions have to traverse in case of corruption or loss.

DS implements reliable multicast communications through a NACK-based mechanism. Subscribing nodes

periodically notify their peers of any missing message (or parts of them, termed “fragments” in DS parlance)

until whole messages are retrieved.

Receivers can detect missing data either because they only receive fragments of bigger packets or by observing

missing sequence numbers from received packets. DS also implements specific mechanisms to share large

objects, such as metadata only dissemination and chunking. The first mechanism distributes, by default, only

metadata describing the data, only exchanging the data upon request. Chunking instead splits large objects of

some known types into smaller ones. For example, one of the chunking algorithms allows DS to send low-

quality chunks of an image that can be aggregated to selectively improve the resolution of certain sections. DS

also allows for distributed queries to retrieve any data stored in the network.

DS monitors the connection with other nodes through a simple heartbeat mechanism. Upon discovering each

other, nodes periodically exchange a heartbeat message to verify the health of the connection between them.

Moreover, DS is also capable of configurable levels of message persistence including reliable/unreliable and

sequenced/unsequenced. Being based on multicast, DS uses a probabilistic approach to decide when to forward

messages to avoid multiple requests to create excessive bandwidth usage but also supports flooding and other

heuristics to cover corner cases. DS implements a fully distributed peer-to-peer system and each node can act

as a client or broker. DS provides only basic encryption by design, leaving to the upper level the possibility of

implementing a more sophisticated group-based security mechanism such as the one we showed in [95].

5.4.8 TamTam

TamTam is a communication broker based on top of the UDP Smudge network library [96] which manages

group communication and management (discovery, failure detection, and status dissemination). Smudge was

designed to be used in constrained environments and allows for the dissemination of small pieces of information

(up to the size of one MTU).

TamTam broadcast messages between participants, with nodes forwarding them with at most one level of

indirection.

Connections are monitored using status messages characterized by a fixed overhead per group member. These
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status messages are piggy-backed on top of ping and acknowledgments. Smudge is designed to provide weak

synchronicity between nodes about the status of other nodes, meaning that not all nodes will report the same

status about other nodes at a given point in time. Status detection is also not something that is directly delivered

to other nodes. Each instance randomly monitors the connection with its neighbors and adds its result to

acknowledgment and ping messages used by other nodes to expand their network knowledge.

Being a prototype, TamTam does not provide security mechanisms.

5.4.9 ZeroMQ-NORM

ZeroMQ [97] is a network library that can be used to do asynchronous I/O socket programming across multiple

transport protocols such as Inter-Process Communication, TCP, and UDP, enabling them to perform fan-out,

publish/subscribe, and request-reply communication patterns.

In particular, we configured ZeroMQ to use the NACK-Oriented Reliable Multicast (NORM) [98] transport

protocol. NORM, is a UDP-based protocol that supports asymmetrical flows based on unicast or multicast.

Contrary to TCP, NORM’s reliability is based on negative acknowledgments that are sent by receivers when

they don’t receive a message. NORM reduces the need of sending negative acknowledgments through the

use of Forward Error Correction. NORM also implements a TCP-friendly congestion control algorithm called

TCP-Friendly Multicast Congestion Control [99].

Clustering, forwarding, connection monitoring, and security, are left to be built on top of the ZeroMQ abstrac-

tion with only some basic interfaces and construct built into the library.

5.4.10 JGroups

JGroups [100] is a peer-to-peer group communication toolkit written in JAVA that can either use TCP, UDP

unicast, or multicast. Alternatively, JGroups can be extended to use custom transport protocols.

Applications using JGroups specify a group they will use to share information with other nodes. Since JGroups

instances can only be connected to a single group, applications must either implement logic to filter messages

or start multiple instances to provide something akin to a topic-based publish-subscribe pattern. Since JGroups

keeps track of group participants, applications can send messages to single nodes through unicast messages or

to the whole group through multicast or unicast messages.

JGroups was designed as a stack of layers, each adding functionalities on top of basic operations such as cre-

ating/leaving a group and sending/receiving data to/from other participants. Ordering, reliability (configurable

to wait for at least one acknowledge or one sent by all participants), fragmentation, compression, and security,

are functionalities that can be added by stacking other layers.

JGroups is a distributed solution that monitors the health of a channel through an overlay protocol designed to

verify the status of the group and the connectivity with its participants. Health monitoring is based on sending

heartbeat messages and receiving acknowledgments. In particular, JGroups supports two implementations,

one based on unicast and one on multicast. The first implementation has each node sending a message to its

neighbor on the right, which upon receiving a message will reply with an acknowledgment. The second uses
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multicast to do this.

JGroups instances must be part of a group, and group members can find each other using multicast or provide

their addresses during the configuration phase. Group members must be able to reach each other directly.

JGroups provides facilities to bridge clusters by specifying bridges to separate enclaves. These nodes will

forward messages either through unicast or multicast transport. Cluster bridges can automatically be replaced

if they crash, provided that the node that replaces them can reach both clusters.

JGroups provides basic security facilities to prevent unauthorized nodes from joining groups or communicating

with group members.

5.4.11 Edgware Fabric

Edgware [101] is a lightweight message bus developed for Machine-to-Machine communication to support

resource-constrained, dynamic, and unreliable environments through a service oriented architecture. Each

Edgware endpoint is made of a registry, managing persistency, and a service that acts as the interface for the

application through a local MQTT broker or a web interface. These two components allow applications to

connect to a federated network of MQTT-compatible brokers which act as a single virtual Publish/Subscribe

platform.

Edgware provides three types of communication patterns: Data Feeds, Notifications, and Request/Response.

The firsts are data streams pushed onto the bus and intended to be received by multiple consumers. Each

consumer must explicitly subscribe to a data feed to receive it. Notifications are ad hoc messages directly sent

to other systems. The sender decides which machine will receive each message. Request/Response is a pattern

in which a service listens for request messages and replies with a corresponding response message.

Resource discovery is managed through a multicast-based discovery protocol that univocally identifies all the

systems/services connected to the federated platform. Systems are then composed of different services that act

as producers or consumers.

At the time of writing, the code was the primary source of information for configuration parameters and system

behavior and due to time constraints, it was not possible to perform a deeper analysis.

5.4.12 GDEM

Generic Data Exchange Mechanism (GDEM) is a proprietary group communication middleware developed by

TNO [102] based on the Joint Dismounted Soldier System Information Exchange Mechanism (JDSS) Infor-

mation Exchange Mechanism [103] specified in STANAG-4677 [104].

GDEM differentiates from JDSS in several ways. For starters, while JDSS implements an XML-based protocol

to describe payloads, GDEM is payload agnostic and can evaluate headers without having to parse and decom-

press the payload. GDEM uses a proprietary protocol called SUSP for message segmentation and transport

[105], allowing larger payloads to be broken into variable-sized segments. Moreover, compression is optional

in GDEM

Reliability is provided through a repair window that works by having receivers send synchronization requests
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upon detecting missing messages. GDEM also supports mechanisms for full synchronization in case messages

were lost outside of the repair window.

Clustering and forwarding were added as a simple layer between GDEM and The Simple UDP Segmentation

Protocol (SUSP) capable of forwarding messages to other clusters.

5.5 Anglova Scenario

The Anglova scenario [14] was developed by the NATO STO IST-124 RTG on ”Heterogeneous Tactical Net-

works - Improving Connectivity and Network Efficiency.” The scenario describes the mobility patterns of a

military operation conducted in the fictitious area of Fieldomont in Anglova where an allied coalition advances

intending to repel an invading force and rescue civilians. This operation is set in a hilly forestry terrain that

spans a rectangular area of 13x9 Kilometers. A total of six companies, four mechanized consisting of 24

vehicles, one Command and Artillery of 22, and one Support and Supply with 39, form a battalion of 157

interconnected nodes through a network of VHF and UHF radios.

The Anglova scenario contains mobility patterns vetted by military experts and was designed to highlight the

challenges related to establishing necessary services and fulfilling information requirements in heterogeneous

networks characterized by resource-limited devices, unpredictable network link-state, and connectivity coupled

with node mobility. The scenario in its entirety is composed of 3 vignettes lasting 4 hours, for the experiments,

we primarily considered the Troop Deployment Vignette since it presented the most dynamic communication

patterns. The interested reader can download this scenario and the related components from https://anglova.net.

5.5.1 Troop Deployment Vignette

In the Troop Deployment Vignette, a subset of the battalion consisting of two mechanized and two infantry

companies stage an attack against a hostile force advancing into the operational zone.

The stage of this operation is primarily hilly and covered by forests. We extracted the troop mobility patterns

from a NATO exercise characterized by movements over a rectangular area of 13x33 km over large and tight

roads. The Vignette starts by having the battalion move in a single column over one of the main roads. After

about 10 km, the battalion splits up over two main roads, and after 25 more km, it splits up again on many paths

grouped in companies. Towards the end, the battalion splits up into platoons.

5.6 Synchronized Cooperative Broadcast

Implementing a complete waveform for an emulation environment can be a lengthy process, but there are

decisive advantages in experimenting using realistic communication hardware, topologies, and mobility pat-

terns. While emulation may not use real hardware, it can provide a good compromise between realism and

price. An emulated scenario can also be better controlled, allowing for multiple repeatable runs that would

be prohibitively expensive utilizing real assets. To make the experiments more realistic, the group decided to

use SCB, a relatively new model that is gaining traction in many types of scenarios. SCB provides multi-hop

communication, low overhead, and it is particularly indicated for broadcast communication and consequently
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to TDR operations. In particular, the group implemented two simplified approaches to SCB to improve the

quality of the scenario for the experiments within the Anglova scenario and the EMANE network emulation

framework.

The first approach uses Simplified Multicast Forwarding (SMF) configured to perform classic flooding where

the SMF relay set contains all nodes. This approach enables modeling of a dynamic SCB schedule; however,

it also results in more transmissions than a traditional SCB network. Furthermore, this approach is easy to use

and only requires the original path-loss values but does not include the gains of cooperative transmissions.

The second approach uses a precomputed SCB topology that mimics a static SCB network and enables full

modeling of SCB’s cooperative effects. In this method, the sum of receive power from transmitting nodes is

compared to a path-loss threshold, Lb,”max” to determine the set of nodes that are reachable directly or through

multiple hops from a given source node.

Finally, we estimated packet latency based on the number of hops between the source and the destination node,

and we set the SCB network data rate to RL
ND , where RL is the link data-rate, N is the network size, and D is the

CB slot size.

5.6.1 Emulating SCB

Figure 5.4: SCB slots with dynamic scheduling.

SCB is a waveform primarily designed to transport broadcast traffic within multi-hop mobile networks, making

it an interesting choice to support group communication in MANET environments.

SCB works by having all nodes that receive a packet within a time slot retransmit it simultaneously in the next

time slot scheduled for the source node’s broadcast stream. This retransmission process is repeated until all

nodes in the local network have received the packet. The transmission is synchronized in an interval by dividing

it into repeated Time Division Multiple Access (TDMA) frames consisting of multiple time slots. The time

slots in which nodes transmit or retransmit messages are grouped into an entity called Cooperative Broadcast

Slot (CB-Slot), i.e., a group of D time slots. In particular, each slot in a CB-Slot is used to transmit and relay

only packets from a single source. Figure 5.4 shows a division in which D = 3. As nodes can either receive or

transmit packets, the network capacity can never exceed one. Since SCB broadcasts one packet using D time
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slots, the network capacity is 1
D . A bps value can be obtained by multiplying the capacity by the link data rate

RL.

The simplified models are based on the idea of approximating the broadcast capacity using parameters set to

resemble what would result in a full-scale implementation of SCB. In particular, we considered two approaches,

one based on SMF, and one based on precomputing the SCB Topology.

5.6.2 SMF Approach

Number of nodes Scheduling overhead percentage
24 1.1
48 4.2
72 9.5
98 17

Table 5.3: Scheduling overhead percentage for networks of various size.

The SMF approach is based on the idea of using SMF and the EMANE’s RFPipe radio model. The RFPipe

model provides a set of features to emulate waveforms such as data/burst emulation of bandwidth, per-node

bandwidth, and sender/receiver per-packet delay control.

SMF is similar to full flooding without simultaneous transmissions. All nodes beside the source relay each

packet up to a configurable limit that indicates the maximum number of admissible hops. This approach is

based on the Multi Point Relay (MPR) method according to the SMF framework [106]. This method does not

implement the TDMA scheduling, and for this reason, it is necessary to estimate the impact of the scheduling

overhead Os. The data rate of RFPipe can then be set to RL∗(1−Os)
D , where RL is the data rate of the link and

D is the minimum number of network hops between two nodes simultaneously transmitting different packets.

Since this approach mimics a dynamic SCB capable of adapting itself to different traffic loads, this adaptation

requires a set of administrative slots as shown in Figure 5.4.

To estimate Os, we assume that the status of each slot can either be owned, blocked, or free. We can then

encode this information using two bits. A node owns a slot when it is the only one that can transmit in the

CB-Slot. All the other nodes will see the slot as blocked. Finally, a slot is free if no node owns it yet.

The administrative slot must then contain at least 2 * M bits, with M being the length of the schedule that can

be adapted. Since each CB-Slot involves D transmissions per frame, the channel resource per node is 2∗D∗M
t ,

where t is the time between administrative slots of the node under examination. Hence for a network with N

nodes, with a data rate of RL, a share of Os= 2∗D∗M∗N
t∗RL

is used for administrative time slots carrying scheduling

information.

Table 5.3 summarizes the estimated overhead percentage over the available traffic for different network sizes.

5.6.3 Precomputed SCB Topology

Another way to emulate SCB is to precompute the SCB topology and include the cooperative effects when

calculating the set of receiving nodes for each transmission. We call this solution Precomputed Synchronized
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Cooperative Broadcast (PSCBT), and we implemented it in three steps. First, we built the SCB topology, a

map that describes over time whether or not messages transmitted by a source reach a receiver. After that, we

characterized the delay of each transmission. Finally, we ensured that the total traffic generated by the nodes

never exceeds RL
D .

To build the SCB topology, we compare the power sum obtained by considering all the nodes that are transmit-

ting a message to a path loss threshold Lb,max for each other node to decide whether or not the transmission was

successful. The SCB topology is the result of performing this calculation for each node as a source. This model

relies on the assumption that the SCB transmissions happens in less than one second and that the topology does

not change in that time frame.

To calculate the delay, first, we observe that differently from SMF, the schedule does not change, and each

node only has one CB-Slot per frame. Consequently, each node has a schedule of M = N * CB-Slot. To model

the delay, we assume that the time slots of a CB-Slot are grouped together and that the frame size is M = N *

CB-Slot.

Each packet must then wait on a CB-Slot for half a frame for up to four hops, one and a half frames for five to

height, and so on. To be accurate, it is also necessary to include the transmission time in the delay estimation,

which could be up to four time-slots in the case of four hops. The delay caused by traffic queues in the ingress

nodes needs to be measured during the emulation and added to obtain the total transmission delay.

5.6.4 Comparison between SMF and PSCBT

The SMF approach has the advantage of modeling a dynamic schedule that can handle traffic changes among

the nodes efficiently. This approach only uses the path-loss value between the nodes included in the Anglova

Scenario, greatly simplifying the process of modeling networks of different sizes and parameter settings. How-

ever, this model lacks the gains of cooperative transmissions, and the delay estimation is not very precise.

Furthermore, since messages are relayed through UDP, there is no easy way to support any non-UDP protocol.

On the other hand, the PSCBT approach models a static SCB that has to be pre-configured to the expected

traffic loads. Its chief advantage is that it includes the cooperative effects, and the delay is fairly accurate since

it only occurs in the ingress nodes. This approach also does not pose limitations to the choice of a transport

protocol. The primary disadvantage of PSCBT is that the topology has to be generated for each network size

and parameter setting.

5.7 Introduction to the experiments

To evaluate the suitability and performance of GCS in TDR operations, we created a test framework using the

Anglova scenario, EMANE, and a test harness designed to drive message generation and statistic collection.

To evaluate performance we primarily focused on three metrics:

1. Message Delivery Latency, measuring the delay in milliseconds between send and delivery of a mes-

sage;
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2. Message Delivery Ratio, expressing the ability of messages to reach recipients;

3. Bandwidth Consumption, measuring bandwidth utilization during the experiment.

It is worth noting that since the test harness measures traffic at the senders’ sides, reports for certain protocols

may be higher than the maximum network throughput. The excessive traffic is not delivered but instead dropped

by the network stack. Moreover, the reader should not analyze the three measures in isolation because that could

result in misleading conclusions. For example, measuring a low average latency indicates good performance

only when paired with a high delivery ratio. This is because the test harness reports delivery latency only for

received messages, and those could be few.

The emulation environment was deployed in VMware ESXi using a hybrid EMANE configuration model with

the emulated test nodes mapped to a set of networked Virtual Machines (VMs). All emulation components

were run by separate EMANE servers’ VMs co-located on ESXi host servers.

5.7.1 Messaging patterns

Different data types have different dissemination patterns and requirements. Some data types, such as posi-

tion reports, are generated by each node and are intended to be received by every other node. On the other

hand, sensor data is generated by a handful of nodes and may only be needed by a subset of other nodes.

Finally, orders and reports are generated by higher echelon nodes (e.g., a Headquarters node) and need to be

disseminated down the command hierarchy. In the experiments, we focused on three types of message: Blue

Force Data (BFD), Sensor Data (SD), and HQ Documents (Docs). We chose these three as they have different

requirements for dissemination and allow the evaluation of different classes of service.

BFD are small messages that identify the current position and status of the transmitting mobile node; they tend

to be generated often by each node and need to be received by every other node (at least in the local vicinity

or domain). On the other hand, Docs such as Commander’s Operational Orders and Intelligence Reports

generated by the Operations Center can be much larger (e.g., a document or presentation with multiple slides

and embedded graphics) but are not transmitted very frequently, and should only be disseminated to a subset

of nodes. In between these two categories lie SD, medium-sized messages typically generated by unattended

sensors. They can include high-resolution images or small video segments, which are generated more often

than Docs, but not as often as BFD. These messages are generally only consumed by a subset of nodes capable

of processing their reports.

5.7.2 Test-Harness

To simplify the process of testing multiple protocols, we developed a test harness capable of performing con-

sistent tasks and measuring relative performance. The test harness is written in Java and implements base

functionalities for message generation, logging, and configuration, and it consists of a Driver and a StatServer.

The Driver exchanges messages with other drivers using the emulated network and reports message transmis-

sions and receiving to the StatServer through a separate high-performance control network.

Each protocol interface was developed as a separate module using PF4J [107], a Java library that enables the

implementation of plugins, extension points declared by the application, or loaded at run time. The use of
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Figure 5.5: Test-Harness Driver Architecture.

this library has several advantages. First, it allows different organizations to develop their plugins in parallel,

reducing communication overhead and conflicts. Since the plugins are loaded at run-time, each implementation

can remain relatively private, and organizations can deliver obfuscated jars. Another advantage of PF4J is that

each plugin can have a separate class loader allowing for a different version of the same library to coexist in

a single application. New protocols can be added by creating a new plugin and following a common interface

that must override methods to connect, publish, subscribe, and receive messages.

Figure 5.5 shows the Driver architecture made of a Message Generator, a Stat Notifier, a Receiver, a Sender,

and a Protocol Plugin. Each time a message is received or sent, the Driver sends a report to the StatServer

through a separate high-performance connection. After the scenario has ended, the StatServer outputs a run

report.

The connection between the Drivers and the StatServer uses NATS over a dedicated high-performance Ethernet

LAN independent from the network managed by EMANE that allowed us to obtain very low jitter and latency

for log collection. In particular, this also allowed us to forego time synchronization issues between nodes by

having the StatServer log report reception times and use that information to evaluate events latency.

The test harness ensures that all the tests are run consistently and that the same number of messages of each type

are generated at the same times by the same nodes within the Anglova scenario. This ensures a fair comparison

among the examined protocols. Furthermore, event logging is protocol-agnostic, meaning that regardless of the

underlying protocol, the test platform tracks actions such as message transmissions and receptions, generating

diagnostic messages that are delivered to the StatServer immediately.

Each report contains publisher and subscriber UUIDs, a message Type, and an incremental number. The first

two UUIDs are strings that uniquely identify the node that published the message and the one that received it.

We used the incremental number to uniquely identify each message based on type and source so that we could

pair subscribers’ and publishers’ reports. We used the reports at the end of the scenario to extract two metrics:

delivery ratio and delivery latency.

The delivery metric measures a protocol’s ability to deliver information to the recipients. A delivery ratio of

100% implies that every message that was generated reached all its destinations. The latency metric measures
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the average delay (in milliseconds) between when a message was generated and received.

We measured each protocol bandwidth utilization by deploying the tcpdump utility [108] in each node.

We collected delivery ratio and latency results with three different time cut-offs – 5 seconds, 10 seconds, and

end of the scenario. These cut-offs represent different tolerances for latency. For example, the policy might be

that BFD that has a latency over 10 seconds is too old and hence unusable.

For what concern message patterns, unless differently stated, BFD was 128 bytes in size and sent by everyone

to everyone every 10 seconds. SD to 128 KB every 180 seconds, sent by node six and received by nodes 1, 2,

and 4. Finally, Docs were 512 KB in size, sent by node four, and received by nodes 1 and 2 every six minutes.

5.8 Experiments: 802.11ah

In this experiment, we considered the first 20 minutes of the ”Troop Deployment” vignette [109]. In this

vignette, a single company of 24 mechanized nodes stages an attack against insurgent forces advancing into

the coalition zone. The vignette starts with the nodes moving from the headquarters to the operation area.

Each node uses a 1MHz-600 Kbps wideband radio, creating a network where each node can typically reach

another node in less than three hops. We emulated the radio model using EMANE by modifying an already

implemented 802.11abg into 802.11ah. Since we simulated a low bandwidth network, we disabled routing and

relied on the GCSs’ capabilities.

We set up brokers on nodes 1 and 2 for protocols that required centralized brokers, such as RabbitMQ, NATS,

and Redis. We picked those two nodes because they presented the best connectivity to the others. Nodes 1 and

2 were also the only nodes able to communicate with other companies, making them a meaningful choice for a

centralization point in a real operation. The Distributed protocols (OpenDDS, TamTam, ZeroMQ, and DS) had

their brokers/service/daemon deployed in each node.

In this experiment, we only disseminated BFD messages. Each message was 128 bytes in size and generated

every 10 seconds by each node. Since all nodes were subscribed to each message, the experiment would at

least generate 24 * 128 = 3072 bytes every second, a number well below the maximum radio rate of 600 kbps.

For this experiment, we selected seven group communication solutions from the ones described in Section 5.4:

NATS, OpenDDS, TamTam, RabbitMQ, ZeroMQ-NORM, Redis, and DS. In particular, for DS we harvested

two sets of results, one where BFD were sent reliably and one where they were sent unreliably. The others sent

them reliably.

5.8.1 Delivery Ratio

Figure 5.6 shows the mean delivery ratio for each GCS, in the first 5 seconds, in the first 10, and overall for

the duration of the experiment. From the picture, it is possible to see that DisService with reliability enabled

(DS-R) achieves a good delivery ratio followed by ZeroMQ+NORM (ZMQN) and Redis. We hypothesized that

OpenDDS’s terrible performance could be caused by a missing plugin capable of handling resource-constrained

environments. TamTam fails to deliver messages in the beginning but achieves better delivery as time goes on.
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Figure 5.6: Mean Delivery ratio per system/protocol.

Figure 5.7 shows the average number of nodes receiving messages over time. Ideally, each node would receive

at each tick all the messages sent by other nodes (23 messages for each tick). Similar to what was shown in the

previous picture, DS, Redis, and ZMQN all achieve good performance. From the figure, it is also possible to

observe that halfway through the experiment, the GCSs without reliability and the centralized ones have a dip

in performance. This is likely caused by a general disconnection that characterized that period. The reason for

the drop, in the end, is that since the scenario ends, there is not enough time for the reliability mechanism of

each protocol to finish delivering messages.
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Figure 5.7: Delivery Ratio Over Time per solution/protocol.

5.8.2 Delivery Latency

Protocol Delivered ≤ 5s Delivered ≤ 10s Total Delivered
NATS 1831.85 5206.08 13998.33

OpenDDS 4173.84 5005.14 5067.83
TamTam 2558.98 4364.24 70181.49

RabbitMQ 2218.56 4424.88 15750.49
Redis 1883.24 3858.83 50874.49
DS 97.23 97.23 97.23

ZeroMQ-NORM 105.25 222.48 27265.64
DS-Reliable 94.99 94.99 8754.96

Table 5.4: Average latency in milliseconds for each message delivery class.

Figure 5.8 and table 5.4 show the average latency of message delivery for each GCS. Note that while the vertical
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Figure 5.8: Average latency of message delivery (left), and latency over time (right).

axis shows the average latency for delivered messages, lower latency does not necessarily mean better perfor-

mance because undelivered messages, were not included in this count (as an example, consider DisService

without reliability enabled (DS-R), the latency is the same for all three experiments because either a message

was delivered or was lost, similarly, OpenDDS has very low latency, but its delivery rate was low).

Figure 5.8 also shows the average delivery latency over time. From this figure, it’s possible to see that cer-

tain protocols have significant spikes during the experiment. Since they don’t have reliability mechanisms,

unreliable protocols present more stable latencies.

5.8.3 Bandwidth

Figure 5.9 shows the average bandwidth utilization of each protocol in Kbps. This metric is particularly im-

portant because TDR environments are generally characterized by tight bandwidth constraints. Bandwidth was

measured by capturing outgoing traffic in every node through the tcpdump utility. It is worth noting that not all

the outgoing traffic would reach its destination due to network unreliability.

From the figure, we can see that DS-R is the most bandwidth-efficient protocol followed by DS-R and TamTam.

It is worth noting that DS-R simply performs UDP multicast with some overhead (without overhead, data

exchange should only use 2.4Kbps).
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Figure 5.9: Average bandwidth utilization in Kbps.

5.9 Experiments: LAN VS 802.11ah

This second set of experiments builds on top of the previous one by adding protocols and by incorporating

new message types: SD and Docs. In particular, to the protocols previously included (NATS, RabbitMQ, DS,

OpenDDS, Redis, and ZeroMQ), we also added Kafka, MQTT, and Edgware Fabric. During the experimenta-

tion, we had to drop TamTam and Edgware fabric. The first could not manage big messages, and the second

failed to scale to 24 nodes. Kafka’s performance was also bad. The behavior that we observed was that the bro-

ker would receive and acknowledge messages but then deliver them with increasing latency until no message

was delivered anymore.

First, we evaluated the GCSs in a traditional wired environment (an Ethernet Local Area Network (LAN)) to

provide baseline results and then in the Anglova scenario. Similar to the previous experiment, we compared

the protocols by measuring the delivery ratio, latency, bandwidth consumption, and average cost per message.

In this experiment, we had three different types of messages: BFD, SD, and Docs. BFD size and frequency

did not change from the previous experiment. SD messages consist of 128 KBytes each, are transmitted by

only one node (the sensor gateway) every 3 minutes (for a total of 21 messages during the simulation), and are

supposed to be received by only 3 nodes. Finally, Docs consists of 512 KBytes each, are generated only by one

node (node 4) every six minutes, and are intended to be received only by two nodes (node 1 and 2).

The latency measurements are separated first, based on the message type, and then on whether they were

collected in the Anglova or LAN experiment. Similar to the previous set of experiments, we harvested two

sets of results for DS, one with BFD sent reliably and sequenced (denoted with DS), and one unreliably and
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sequenced (with DS-BFU). Note that DS was configured to send SDs and Docs reliably and sequenced in all

experiments.

5.9.1 Delivery Ratio

Figure 5.10: Delivery ratios in the first 10 seconds (left), and after 20 minutes (right).

The left plot of Figure 5.10 shows the delivery ratios in the first 10 seconds for each protocol during the LAN

and Anglova experiments. This figure shows that most protocols performed well under the LAN environment

validating our configuration. BFD messages were correctly delivered by most protocols. OpenDDS and Rab-

bitMQ had significant problems handling SD messages in the LAN simulation. Only two protocols, DS and

ZMQN were able to handle Docs in the LAN environment. Note that messages, in this case, are counted as

delivered only if their latency is smaller than 10 seconds.

Conversely, performance results obtained during the experimentation in the Anglova scenario were much

worse. Kafka performing especially badly, unable to deliver anything. No protocol was able to deliver Docs

in the interval considered. DS was the only protocol capable of delivering most SD messages. Finally, DS,

ZMQN, NATS, Redis, JGroups, and MQTT delivered most BFD messages.

The second plot of Figure 5.10 shows the delivery ratios at the end of the experiment (which lasted 20 minutes).

Having more time, most protocols can deliver more. DS, ZMQN, and Redis, all achieve over 90% of delivery

of BFD messages. For SD messages, DS and ZMQN are over 95% while all the other protocols are below that.

For Docs, DS and ZMQN have the best performance. DS is again one of the best protocols able to deliver most

messages with the smallest latency.

5.9.2 Delivery Latency

Figure 5.11 shows the average delivery latency on a logarithmic scale. This choice was made to compensate

for the large variance in observed latency. In the LAN environment, OpenDDS has the lowest latency for BFD
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Figure 5.11: Average latency of information delivery.

messages followed by DS. This result is reversed in the Anglova experiment where DS-R performs best and by

a much wider margin. DS-R is still a top contender but presents a higher latency than OpenDDS and JGroups.

This experiment highlights the trade-off between reliability and latency. DS-R can deliver more than 80 percent

of data with very low latency while DS-R can deliver around 99% of messages but with a decisive increase in

latency (more than 60x).

For SD messages, DS appears to be the best both in the LAN and Anglova experiments by a huge margin

compared to the other protocols. For Docs, DS is the only protocol able to deliver 100% of messages in the

Anglova scenario followed by ZMQN with its 75% delivery ratio. In the LAN experiments, DS is still the best

performer with 4758 ms of latency followed by ZMQN with 8393ms, and NATS with 15536ms.



CHAPTER 5. EXPERIMENTAL EVALUATION OF GROUP COMMUNICATION
SOLUTIONS IN CONSTRAINED ENVIRONMENTS 66

5.9.3 Bandwidth

Figure 5.12: Bandwidth utilization (left), and efficiency (right).

The left plot of Figure 5.12 shows the bandwidth utilization in Kbps for both LAN and Anglova environments.

While OpenDDS has the lowest bandwidth utilization in the LAN environment, the protocol was also only

able to deliver BFD messages. A similar observation is true for JGroups which delivers much fewer messages

than the competitors. The next best performer is DS followed by ZMQN. The worst performer in terms of

bandwidth consumption appears to be RabbitMQ. In the Anglova scenario, all protocols show a distinct increase

in bandwidth consumption due to the increased necessity of retransmitting lost messages. The best performers,

in this case, are unreliable and reliable DS followed by ZMQN.

The right plot of Figure 5.12 shows the relative bandwidth efficiency of each protocol obtained by calculating

the ratio between delivered messages and bandwidth cost normalized to the performance of the best performing

protocol. We set the efficiency of the best protocol to 100% and compared the others based on how close they

matched its performance. It is worth noting that this measure compares delivery over bandwidth and not over

latency, and as such, it is not an all-encompassing measure of protocol performance since depending on the

application latency or delivery ratio can be more significant.

In the LAN environment, the best performer is DS-R followed by DS-R, ZMQN, and JGroups. The worst

protocols in this analysis were RabbitMQ, MQTT, and Kafka. In the Anglova environment, the best performer

was DS-R followed by DS-R and ZMQN. It can be seen that reliability, in this case, was much more expensive

than in the LAN environment. In this experiment, OpenDDS was the worst performer likely because this DDS

implementation is not optimized for degraded environments.
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5.10 Experiments: SCB - SMF vs PSCBT

In the third set of experiments, we replaced 802.11ah with two SCB models using the same configurations used

in [109], with Lb,max set to 139 dB, a 1.25 MHz bandwidth, and with a link data rate of 875 kbps. Figure 5.13

shows movement patterns of each company in the scenario.

Figure 5.13: Movement of each company in the Anglova scenario.

Traffic Pattern Size Frequency
Low 128 Bytes 2 Seconds
Medium 1024 Bytes 2 Seconds
High 1024 Bytes 1 Seconds

(a) 24 Nodes

Traffic Pattern Size Frequency
Low 128 Bytes 2 Seconds
Medium 1024 Bytes 4 Seconds
High 1024 Bytes 2 Seconds

(b) 48 Nodes

Table 5.5: Summary of SMF data rates for 24 and 48 nodes.

Traffic Pattern Size Frequency
Low 128 Bytes 2 Seconds
Medium 1024 Bytes 6 Seconds
High 1024 Bytes 3 Seconds

(a) 72 Nodes

Traffic Pattern Size Frequency
Low 128 Bytes 2 Seconds
Medium 1024 Bytes 8 Seconds
High 1024 Bytes 5 Seconds

(b) 96 Nodes

Table 5.6: Summary of SMF data rates for 72 and 96 nodes.

In the third set of experiments, we set for each configuration the number of CB-Slot that can be dynamically

allocated, to M = 2 * N, that t is one second, and that D is 4.
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Traffic Pattern Size Frequency
Low 128 Bytes 5-10 Seconds
Medium 512 Bytes 5-10 Seconds
High 1024 Bytes 5-10 Seconds

Table 5.7: Summary of PSCBT data rates.

Figure 5.14: Interpolated theoretical precomputed connectivity for the 24 nodes network

This set of experiments is made of several scalability tests with networks of 24, 48, 72, and 96 nodes. In

particular, the 24 nodes experiment consists of just Company 1. The 48 nodes experiment consists of Company

1 and 3, the 72 nodes of Company 1, 3, and 4, and the 96 nodes experiment of all four companies. For the

experiments with 24 nodes, we used the first 20 minutes of the Anglova Scenario, while for the three larger

configurations we added from second 5500 to 6501.

Table 5.5, 5.6, and 5.7 show the different messaging patterns that we tested. Note that while to simplify the

experiment we only transmitted BFD, we actually varied traffic load and transmission intervals to test different

communication patterns.

In this configuration, we conducted three sets of experiments. The first set was done to evaluate the performance

of the SMF approach with 24, 48, 72, and 96 nodes with low, medium, and high levels of traffic. The second

set is to compare the SMF and the PSCBT approaches with a 24 node configuration. Finally, in the third set

of experiments, we evaluated the performance of four different GCS plus a baseline IP Multicast over UDP

implementation using the PSCBT model.

Figure 5.14 summarizes the theoretical network connectivity obtained from the PSCBT which is defined as the

fraction of node pairs that are connected via one or more hops. The value shown (0.97 for the 24 nodes network

and 1 for the larger networks) should be similar to the delivery ratios obtained during the emulation.

5.10.1 Delivery Ratio

Figure 5.15 to 5.18, show the delivery ratio throughout the scenario. The first observation is that there are some

differences in both SCB models between the emulation delivery ratio and what was shown in Figure 5.14.
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Figure 5.15: SMF (left) vs PSCBT (right) - Message Delivery Ratio for 24 Nodes.

Figure 5.16: SMF Approach Message Delivery Ratio - 48 to 96 Nodes.

In the 24 nodes network, at minutes 4, 8, and 14, there are several performance drops in the SMF delivery ratio

for all traffic loads, as shown in Figure 5.15. Figure 5.14 shows that these drops correspond to known sections

of the scenario where node fragmentation occurs.

For larger networks, we would expect a delivery ratio of 100% since all the nodes should be fully connected

throughout the scenario thanks to rebroadcasting. Hence, the slightly lower ratio that can be seen in the first

two minutes in Figure 5.16 will need to be investigated.

Figure 5.17 shows the delivery ratio for the SMF approach on different networks and traffic loads. From the

picture, it is possible to see that the delivery ratio is slightly higher with 24 nodes than the 0.97 theoretical

bound for SCB. This may be an effect of SMF flooding that causes nodes to retransmit packets at a larger time

diversity than the one that could be possible in an actual SCB implementation.

Figure 5.18 show the delivery ratio and GCS results for the PSCBT approach. From the figure’s subplots, it is

possible to see that DS-R and the baseline SCB Multicast implementation (basically IP Multicast over UDP)

have similar performance and are close to the theoretical computed delivery ratio of 97%. RTI-DDS provides

similar results but only when sending messages of 128 bytes. This limitation will need to be investigated in
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Figure 5.17: SMF: Delivery Ratio for Messages Received Within 5 Seconds.

Figure 5.18: PSCBT: Delivery ratios in the first five seconds (left) and by the end of the
scenario (right).

future work. DS-R and ZMQN obtain delivery ratio close to 100% at the end of the scenario. Note that both

protocols provide reliable multicast.

NATS is the only solution we considered for the experiments which relyed on TCP and a centralized broker.

From the figures, it is possible to see that the only configuration in which it provides a reasonable delivery ratio

(82%) is with the smallest BFD of 128 bytes each and at the lowest update rate (10 seconds). This is likely

caused by the high cost of unicast traffic.
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5.10.2 Delivery Latency

Figure 5.19: SMF Approach - Message Latency With 0.5 Frame Latency Added.

Figure 5.20: SMF Approach message delivery latency for 24 Nodes with a half frame length
latency added.

Figure 5.19 to 5.24 show results for delivery latency in milliseconds. In the SMF results we added the average

time needed to obtain a CB-Slot. For example, in the 24 nodes network, this delay is 192ms.

Figure 5.19 and 5.20 show that the latency is not much higher than this waiting time for low traffic loads. For

higher loads, the latency grows due to temporary queues in the nodes. Figure 5.21, 5.22, 5.23, and 5.23, show

the latency for larger networks and different traffic loads. The figures show that for medium and high traffic

loads the latency increases at the end of the scenario likely indicating that the queues grow over time.
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Figure 5.21: SMF Approach message delivery latency for low traffic load with a half frame
length latency added.

Figure 5.22: SMF Approach message delivery latency for medium traffic load with a half
frame length latency added.

For the precomputed SCB experiments, we added the latency to obtain half a frame for up to four hops while for

5 to 8 hops, we added the latency to obtain 1 and a half frames. Figure 5.24 show latencies for the precomputed

SCB and for different GCS.

The figures show that the latency in the PSCBT model does not depend on traffic load as long as no queue

builds up in the ingress nodes. This is because PSCBT is implemented as a fixed schedule forcing each node

to wait for its CB-Slot.

This makes the latency be the same for different traffic loads as long as the network does not get overloaded.

Figure 5.24 shows that the latency to get half a frame is 96ms, while the latency for precomputed CB-Slot is
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Figure 5.23: SMF Approach message delivery latency for high traffic load with a half frame
length latency added.

Figure 5.24: PSCB delivery latency for messages delivered within 5 seconds (left) and after
20 minutes (right) for 24 nodes.

slightly larger than 0.96ms. Only in a few cases, more than four hops are needed for the 24 nodes network.
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5.10.3 Bandwidth Utilization

Figure 5.25: PSCBT: Protocols bandwidth utilization with 24 Nodes.

Figure 5.25 and 5.26 show results for the bandwidth utilization of both the PSCBT and the SMF approach. The

first figure shows results for the PSCBT in Kbps grouped by BFD size and frequency. Bandwidth utilization

is fixed for PSCBT since each node only has one CB-Slot and limited throughput determined by the RFPipe

data rate. In the simulation, we do not measure relay overhead, and therefore, since four slots are allocated, the

real bandwidth (shown in Figure 5.25) is four times higher than what was measured. In practice, some of these

slots may not be used but since they are allocated no other node can use them. The figure also shows that all

GCS use substantially more bandwidth than simple IP Multicast over UDP.

Figure 5.26 shows the bandwidth utilization for the SMF approach, in particular, utilization grows with network
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Figure 5.26: SMF: Bandwidth Utilization.

size and traffic load. Loads are substantially higher than in the PSCBT results because SMF executes full

flooding at the UDP level whereas in PSCBT these retransmission are factored ahead of time in the connection

map and translated into a simple ”on/off” flag for practical purposes.

5.11 Experiments: Scalability, PSCBT, and Jamming

In this set of experiments, we evaluated the scalability of several GCS and added the notion of adversarial

jamming using the PSCBT model. For the experiments, we used from second 5000 to second 7000 of the

Anglova scenario. Consistently with previous experiments, we set Lb,max to 139 dB, bandwidth to 1.25 MHz,

and link data rate to 875 kbps.

In particular, we performed the scalability experiment by evaluating the GCSs in configurations with 1, 2, 3,
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Figure 5.27: Connectivity of the overlay network.

and 4 companies of 24 nodes each. We configured each company with its own separated wideband network

on a separate frequency and implemented inter-company connectivity as a separate wideband overlay network.

Two nodes from each company acted as gateways between their company’s network and the overlay network.

Figure 5.27 shows the connectivity of the overlay network for four companies that we extracted from the

PSCBT, note that the connectivity is roughly the same when fewer companies are involved and that by connec-

tivity we mean the fraction of node pairs that are connected via one or more hops in the SCB waveform.

5.11.1 Incorporating Adversarial Jamming Effects

In this set of experiments, we also considered a special case in which the company networks are jammed the

whole time. We modeled the jamming as a 20dB reduction of Lb,”max”. The resulting fragmentation can be

observed in Figure 5.28.
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Figure 5.28: Connectivity of the company networks, the bottom plot consists of averages of
60 seconds.

5.11.2 Protocols Notes

Since this experiment involved multiple companies connected using an overlay network, we had to configure

the GCSs to use two network interfaces at the same time.

For ZMQN, we relayed messages between the company and overlay interfaces based upon their source IP

address. Because ZeroMQ SUB sockets did not provide a way to find the source address of an incoming

message, we made senders add their IP addresses (4 bytes) to each message sent as an additional header. To

prevent messages from looping, we added a method to drop duplicate messages that were received within a

preset time threshold. Note that this dropping occurs at the application level, and dropping messages that

have an identical payload may not have the intended behavior in experiments different from the ones shown in

this section. To use our implementation in different experiments, it is necessary to provide a custom way of

differentiating between messages that share the same payload. In our case, all the messages generated by the

Driver are unique.

For GDEM, we introduced a relay function that sits between the GDEM and SUSP layers and relays messages

between the company and overlay networks. Similarly to DS, we also tested GDEM in two different con-

figurations. The first is an unreliable configuration with no repair window configured to not recover missing

messages. The second is a reliable configuration where the GDEM repair window is set to 10 (which will make
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GDEM attempt to repair missing messages that are still within the repair window).

5.11.3 Experiment setup

For this set of experiments, we prepared configurations of 24, 48, 72, and 96 nodes. In the 24 nodes con-

figuration, we included all nodes of Company 1, in the 48 the ones from Company 1 and 3, in the 72 nodes

configuration all nodes in Company 1, 3, and 4. Finally, in the 96 nodes, we include all four companies.

In each company, we configured the first two nodes with two network interfaces. The GCSs used the first

interface to communicate with local nodes and the second with other relay nodes. Based on the number of

companies involved in an experiment, the overlay network had either 0, 4, 6, or 8 nodes in total.

Within each company, we started by considering that with a total bandwidth of 875 kbps and assuming a static

TDMA schedule with equal bandwidth allocation, each node would on average have a bandwidth of 9.1 kbps.

However, given that the first two nodes of each company were also part of the overlay network and had to relay

data between the local company and the rest of the companies, we adjusted the TDMA schedule to give more

slots to the first two nodes. In particular, we gave the first two nodes 29 kbps and each of the other nodes in the

company 7.1 kbps.

In the overlay network, the total bandwidth was divided equally between the number of nodes that participated

in the overlay. For this reason, depending on the number of companies (and consequently the number of nodes

in the overlay network) the bandwidth was respectively 55 kbps with two companies, 36 kbps with 3, and 27

kbps with 4.

Ideally, we would have used EMANE’s TDMA MAC Layer for this experimentation but unfortunately, we

observed that it was very sensitive to time differences between VMs deployed over multiple hypervisors. The

significant error introduced by that sensitivity forced us to rely on the EMANE’s CommEffect (CE) model

instead.

CE allows adding network effects such as delay, loss, jitter, and bandwidth limits to the ingress side of a

network interface. Typically, this mechanism works well but not in our scenario. In particular, when there are

few sending nodes but many receiving nodes, the firsts may emit more data than what should be theoretically

possible. This happens because the bandwidth is spread across the receivers rather than senders. This fails to

emulate sending via a TDMA waveform, as it allows a sender to transmit more data than what is allowed by its

slot.

To compensate for this phenomenon, we used the Linux kernel Traffic Control to employ a token bucket filter

that prevented the nodes from exceeding the transmission limit of SCB. The token bucket mechanism works by

having several tokens that can be spent on sending data. The tokens are filled up at a set rate until the bucket is

full again. Packets are only sent if sufficient tokes are available and they are otherwise queued.

In the following, two types of comparison are proposed. The first comparison examines the cross-protocol

performance within the same configuration (e.g., three companies, with a 10-seconds cut-off time). The second

comparison looks at the scalability within the same protocol as the number of nodes increases. Note that for DS

and GDEM, we report two sets of results, one for when they are configured to be reliable (DS-R and GDEM-R),
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and one for when they are configured to be unreliable (DS-U and GDEM-U).

5.11.4 Delivery ratio results

Figure 5.29: Delivery ratios of different protocols with 5 (left) and 10 (right) seconds cutoff
for multiple company sizes.

Figure 5.30: Delivery ratios with no cutoff times.

Figure 5.29 and 5.30, show the Delivery Ratio at different cutoffs. Figure 5.29 shows that the 5 seconds cut-off

results in a very low delivery ratio for NATS in any topology. This is an expected result from a unicast protocol

deployed in a bandwidth-constrained environment. While the other protocols perform roughly the same in this

analysis, GDEM seems to show comparatively less degradation at the increase of the number of companies

involved in the experiment. The Figure also shows results for the 10-second cutoff. NATS is still the worst

performer. DS and GDEM present the best performance. ZMQN continues to perform slightly worse than

the other two. Figure 5.30 shows results with no cutoff. In practice, this is the delivery ratio at the end of

the scenario (i.e., after 2000 seconds). From the figure, it is possible to see a decisive improvement in all the
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reliable protocols since they had more time to deliver messages. ZMQN slightly outperforms all other reliable

protocols for one and two companies, and DS slightly outperforms them with four companies.

Figure 5.30 also shows the same data clustered by protocol highlighting scalability as the number of nodes

increases. DS and GDEM show improvements when scaling from 1 to 3 companies. DS-R shows the best

performance with four companies while ZMQN performance decreases slightly as the number of companies

grows. NATS performance can be seen decreasing as expected.

5.11.5 Latency results

Figure 5.31: Comparison of the Latency of different protocols with a 10 second cutoff and
different company sizes.

Figure 5.31 shows the average message delivery latency for each protocol, with an increasing number of nodes

with a cut-off of 10 seconds. While some messages take ten or more seconds to arrive, the averages never

exceed 4 seconds. From the picture, it is possible to see that there is no configuration in which NATS can

deliver any message on average in less than 10 seconds. ZMQN and DS latencies are comparable while GDEM

presents better latencies while achieving comparable delivery rates.
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5.11.6 Bandwidth results

Figure 5.32: Bandwidth utilization within company networks (left) and in the overlay (right).

Figure 5.32 shows bandwidth utilization within companies as well as in the overlay network. As expected,

NATS is the protocol with the highest levels of bandwidth usage, followed by ZMQN. Surprisingly as the

number of companies increases ZMQN overtakes NATS as the most bandwidth-intensive protocol. It is worth

remembering that NATS still presents worse performance in terms of delivery rates. The two GDEM flavors

perform better than the respective DS ones. While GDEM offers reliability through a repair window (set to 10

in these experiments), DS-R attempts to repair all missing traffic. This results in a small increase in the delivery

ratio at a significant bandwidth cost. Note that the bandwidth was reported as the sum of the sent traffic in each

company. Figure 5.32 also shows the bandwidth utilization in the overlay network. Again NATS is the worst

performer. DS performs significantly worse in the four company deployment.

Finally, Figure 5.33 shows the relative efficiency of the protocols, computed as a function of the overall vol-

ume of data delivered versus the bandwidth utilization, with the best performing protocol scaled to 100. We

computed Protocol Efficiency by taking the total volume of useful data delivered versus the overall network

utilization. The best protocol was then set to be 100 %, and the relative efficiency of the other protocols was

calculated as a relation to the best performing protocol. From the figure, it is possible to see that GDEM-U was

the best performer. With one company, GDEM-R was the second-best performer with DS-U being the third

best.

On the other hand, with two, three, and four companies, DS-U performed a little better than GDEM-R. Note

that ”best” performer, in this case, does not mean highest delivery ratio (which was typically achieved by

GDEM-R, DS-R or ZMQN), but has to be intended as a trade-off measure taking into account the network

utilization and the delivery ratio that was achieved for that network utilization.
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Figure 5.33: Overall Relative Efficiency of the Group Communication Protocols.



Chapter 6

Network Monitoring and Adaptation in
Constrained Environments

The extreme dynamism and heterogeneity of networks used to support TDR operations make it impossible

to optimally tune the behavior of communications middleware through predefined configurations or simple

heuristic solutions. Moreover, the nodes that use these networks are highly diverse and range from constrained

sensors and other forms of battery-operated portable devices to powerful servers mounted on vehicles, ships,

and aircraft.

Communication within TDR networks is challenging and easily disrupted, missions are often on the move,

and the network infrastructure is not static but composed of a combination of wireless sensors networks and

MANETs easily disrupted by physical obstacles and interference.

To support end-user applications, guarantee system performance, and inter-operability in such constrained

environments, it is critical to adapt the volume and type of traffic generated by applications to the continuously

varying network conditions.

These factors call for network-aware solutions that can continuously re-tune themselves to adapt their behavior

to the ever-changing operating conditions. Moreover, these solutions must be capable of collecting network sta-

tus information, generating actionable knowledge (including load, link types, quality, and network topology),

and delivering this information where it can be processed and used despite the constrained network infrastruc-

ture.

To this end, we developed SENSEI, a set of components specifically designed to provide efficient network state

detection and adaptation in constrained networks. SENSEI’s services collect data on resource availability and

usage statistics, efficiently distribute this information over the constrained links, increase network observability

by enabling operators to monitor the state of the network, and control and adapt other components. In particular,

SENSEI can cooperate with many services of the Agile Communications Middleware (ACM) to improve the

use of network resources and show network information through appropriately designed graphical interfaces.

SENSEI is a distributed and extendable microservice-based solution that can increase network observability

and improve the use of available network resources.

83
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We designed SENSEI following the microservice architectural pattern [110], which enables the development

of loosely coupled, specialized, and independent services that can interoperate through well-defined interfaces.

The small scope of each microservice expedites development by reducing interaction between team members;

intrinsic modularity makes these services easier to replace, evolve, and maintain. Moreover, microservice

architectures enable graceful degradation by keeping each service separated at the process level, consequently

barring the failure of a single service from jeopardizing the whole group.

The rest of this chapter is organized as follows. The first and second sections respectively introduce SENSEI

and its architecture. The third section discusses SENSEI’s smart status exchange algorithms. The fourth section

presents SENSEI’s passive bandwidth estimation algorithm. The fifth and sixth sections discuss respectively

complexities in deploying SENSEI and NetCacher, a component of the ACM that we used to evaluate adapta-

tion to network conditions during video-streaming. Section 6.6 to 6.9 present several experiments evaluating

SENSEI’s performance and algorithms in a variety of conditions.

6.1 Architecture

SENSEI’s services divide logically into four layers. Services belonging to the Sensor Layer monitor and extract

information from network devices and generate self-contained reports regarding characteristics such as running

services, available resources, and exchanged traffic.

Services belonging to the Aggregation and Share Layer receive the reports generated by the Sensor Layer,

perform some data-agnostic aggregation over them, and efficiently distribute the resulting information over the

network. Finally, services belonging to the Process Layer consume other layers’ messages to provide non-

agnostic aggregation and actionable information. It is worth noting that these services are not isolated from

each other. For example, the Share Layer can use results produced by the Processing Layer to improve delivery

policies, such as only sending relevant information to interested neighbors.

Communication within a single SENSEI instance is done through the NATS messaging bus, while inter-instance

communication uses a specialized microservice called Smart Network Status Exchange Service (SNSE). This

choice was driven by two motivations. First, NATS relies on TCP for message delivery, and many studies

have shown that TCP performs poorly in degraded and wireless networks. Second, by limiting inter-service

communication to processes running on the same host, we can reduce the negative impact that the increased

communication overhead of the microservice architecture could have on already bandwidth-constrained links.

SENSEI encodes information into a protobuf encoded format called measure. Each measure contains a subject,

a string identifying the type of measure, a timestamp, used to signal when the measure was generated, and

three maps, one for string values, one for integers, and one for doubles. Each measure can be instantaneous

or cumulative depending on whether it contains values over a time interval or represents an event at a specific

timestamp.
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6.1.1 Passive and Active network monitoring

Monitoring solutions can be active or passive depending on whether or not they introduce probing traffic in

a network to perform analysis operations. Active approaches are generally more accurate. They can provide

information on demand but suffer from the side-effect of changing the normal state of the network. The probing

traffic used to analyze the network stack and notify other applications of the results can compound negatively

on the state of the network, degrading other transmissions. For example, a common approach to measure the

available bandwidth is to saturate the link between two hosts with mock traffic and log the receiver’s rate. This

saturation can prevent other traffic from circulating the same network.

On the other hand, passive monitoring only observes traffic already in the network. Common approaches for

passive monitoring are to deploy passive sensors in selected nodes and capture network traffic or rely on reports

from network devices.

Unfortunately, information that can be obtained via passive monitoring is limited to active end-to-end commu-

nications and is generally less accurate than active methods. Considering the specific limitations of networks

used to support TDR operations, we designed SENSEI to primarily be based on passive monitoring and only

uses active mechanisms when specifically requested by network operators.

6.1.2 NetSensor

NetSensor is the primary service of the Sensor layer. We designed this component to passively monitor traffic

between hosts to extract characterizing information such as the average bytes and packets exchanged by ap-

plications and RTT between hosts. In particular, NetSensor uses the Pcap/WinPcap library to capture network

packets, build statistics on network usage, discover and identify local gateways, enable bandwidth estimation,

and assess the latency between hosts by processing ICMP or TCP’s (S)ACK/NAK packets.

The ICMP latency detection mechanism calculates latency by measuring the delta between Echo Request and

Replies, while the TCP mechanism computes the delta between packets flagged as PSH and relevant acknowl-

edgments.

NetSensor implements two simple local topology detection algorithms. The first identifies network gateways

by looking for nodes with a disproportionate number of IP addresses associated with a single MAC address.

The second algorithm classifies as local nodes, all the nodes that have a MAC address different from one that

belongs to a gateway.

Finally, NetSensor can also be configured to group addresses that belong to specific network segments to

overcome tricky configurations that would fail to be recognized by the previous algorithms.

6.1.3 Node Monitor

The NodeMonitor is a component that spans the Sensor and Aggregation layers. Its primary task is that of

collecting reports from the sensor layer and converting to SENSEI’s measure format any report encoded differ-

ently. Figure 6.1 shows the NodeMonitor receiving statistics generated by Mockets and NetSensor, in particular,

Mockets used to use a custom report format that had to be converted into SENSEI’s format before it could be
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Figure 6.1: SENSEI’s sensor aggregation service harvesting data from a number of sensors.

made available to other services. The SNMPSensor in the figure is another service we developed to integrate

SNMP information in SENSEI based on the SNMP4j [111] library.

The NodeMonitor also directly harvests a variety of information from the localhost, including CPU, memory,

battery, and OS-related information through the SIGAR [112] library which provides a cross-platform interface

to information on computer hardware and operating system activity.

6.1.4 SNSE

SNSE is the primary service of the aggregation and sharing layers. This service performs data-agnostic aggre-

gation and distributes information over constrained links.

It also collaborates with other services from the processing layer to provide content- and context-aware informa-

tion distribution of network state information, which uses characteristics of neighboring nodes to significantly

reduce state sharing overhead.

6.1.5 NetSupervisor

Figure 6.2: SENSEI Architecture: interaction between Sensors, SENSEI’s services, and the
NATS messaging system.
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NetSupervisor is the primary service of the Processing layer. We designed this component to process informa-

tion obtained from remote and local nodes to enable content-aware aggregation and produce actionable results.

Figure 6.2 shows SENSEI architecture up to this point. On the bottom, services in the Sensor layer harvest

information about the status of the network which is then converted if necessary into SENSEI’s measure format

and made available to other services locally through NATS and remotely by SNSE.

Upon receiving network statistics, NetSupervisor processes that information and generates reports regarding the

network status. In particular, NetSupervisor computes a local summary for each cluster containing exchanged

traffic, latency, connectivity, and packet loss. Moreover, NetSupervisor creates a link report for each pair of

clusters. This report describes the characteristics of each connection in terms of bandwidth, latency, and packet

loss.

NetSupervisor also implements two other services: The Alert and Election algorithms. The Alert algorithm

tracks unique identifiable measures and calls a given callback in response to the verification of an event. If

no callback is specified, it generates a message that reports on the anomaly. There are currently three possible

triggers: a variation of a tracked value from a certain quantity, a percent variation between two consecutive

values, or equivalence with a target value. It is also possible to specify if the reference has to change each time

a new alert is triggered or if the first value detected will be a permanent reference.

The Election, or Link Detection, algorithm, infers the baseline characteristics of an unknown link. The infer-

ence process is purely heuristic and operates as follows. First, a subject matter expert writes a Reference Link

Status for each link type containing several metrics that characterize each link, such as expected maximum

throughput, minimum latency, and packet loss. The expert then assigns to each value a score, reflecting how

likely the link under consideration will have that characteristic.

Subsequently, the run-time characteristics of the link are compared with values in the reference files, and the

description that better fits the observed attributes is chosen.

In a typical scenario, this algorithm can be used to identify links that change communication technology, such

as switching from SATCOM to LTE or UHF radio, and to differentiate between different states of the same

link, e.g., good vs saturated.

Table 6.1 shows the thresholds for which SENSEI computes scores after analyzing the reference files. In the

figure, ET and EL are the expected throughput and latency, whereas T and L are the values of throughput and

latency detected at run-time. During the Link Analysis phase, NetSupervisor will use the reference values

specified in the configuration files to assign a score to each configured link type. Each score will be the sum of

the sub-scores obtained for latency and throughput values extrapolated in turn by comparing the value obtained

at run-time with the associated reference table mentioned earlier.

Finally, NetSupervisor selects the link type with the higher score as the assumed link type.

To clarify, if there are two link types, A and B, and at run time we detect a throughput of value T and latency

L, the score of A can be obtained by summing the relative scores of latency and throughput affinity obtained

evaluating the respective tables.
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Throughput Thresholds Latency Thresholds
T >= ET 0.8∗EL <= L < 1.2∗EL

0.9∗ET <= T < ET 1.2∗EL <= L < 0.2∗EL
0.75∗ET <= T < ET L > 2∗EL
0.50∗ET <= T < ET 0.5∗EL <= L < 0.8∗EL
0.25∗ET <= T < ET 0.2∗EL <= L < 0.5∗EL
0.1∗ET <= T < ET 0.1∗EL <= L < 0.2∗EL

T < 0.1∗ET L < 0.1∗EL

Table 6.1: Throughput and Latency Thresholds tables.

The scores can also be considered a confidence index, the larger the difference between each score value, the

safer the classification of the link. For argument’s sake, if after the extrapolation the total score of A is higher

than the total score of B, NetSupervisor will infer that the link type is A and vice versa.

NetSupervisor also supports a simplified version of the Election Algorithm where a subject expert has to only

fill reference values for bandwidth and latency. NetSupervisor will then compare the distance between the

values detected at run-time and the reference values and pick the link with the smallest distance.

6.1.6 Visualization

A critical component of situation awareness and mission success is the timely delivery of information between

nodes. Since network performance and hardware status can have a great impact on node communication,

operators can gain great insight by observing baseline measurements of network performance and other char-

acterizing information such as which applications and devices are generating anomalous amounts of traffic.

To satisfy this need, we integrated SENSEI in 3 visualization services.

NetViewer is a user interface designed for network administrators that supplies a graphical environment to

provide access to SENSEI information. In particular, it can show the aggregated network topology, traffic over

time, latencies, packet loss, and so on. NetViewer also supplies facilities to request more information from

SENSEI to enable drilling down on information not periodically exchanged between instances. NetViewer also

shows live updates on nodes joining and leaving the network, hardware, software, and network info such as

incoming and outgoing traffic rates for each node, and statistics of other middleware such as DisService and

Mockets. Figure 6.3 shows NetViewer. In particular, the figure shows an aggregated topology on top, and a

chart of traffic over time right below.

Mirage is a tool designed to be utilized by operators directly into the field and capable of displaying SENSEI’s

as a layer on top of other information. Since network administrators are not the primary targets of this com-

ponent, the information that it shows is greatly simplified and limited to reporting about the connection status

between clusters of nodes. We designed Mirage to aggregate information coming from various sources and

display what results on top of a map. Figure 6.4 shows SENSEI information displayed on top of a map. In

the figure, it is possible to see links of various colors, each color representing a different link condition that

can be used to gain insight into the status of the network at a glance. The figure also shows several little icons

representing positional updates of other units or sensor reports.
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Figure 6.3: NetViewer user interface.

We designed SENSEI to easily integrate with other services. In particular, SENSEI encodes information in

stateless protobuf messages periodically sent and updated when new information is available. Figure 6.5 shows

SENSEI integration in another application used by the armed forces called KilSwitch.
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Figure 6.4: Mirage user interface.

Figure 6.5: Integration of SENSEI network monitoring layer in Kilswitch.

6.1.7 OODA Loop

The Observe Orient Decide and Act (OODA) loop is a decision-making model first introduced by Boyd’s and

created by examining fighter pilots in aerial combat [113].
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Figure 6.6: OODA Loop for Network Monitoring and Adaptation.

According to Boyd, the outside world is random and filled with ambiguities. Moreover, Boys argues that trying

to understand a randomly changing space with pre-existing mental concepts can lead to confusion, ambiguity,

and more uncertainty. From this, Boyd deduced that logical models of the surrounding reality are intrinsically

incomplete, inconsistent, and must continuously be adapted according to newly obtained observations. In

particular, Boyd encodes the process necessary to overcome this situation in a cyclical process made of four

phases: Observe, Orient, Decide, and Act.

The Observe phase is used to harvest information about the environment of interest. This knowledge is then

transformed, cross-referenced, and used to generate hypotheses on expected outcomes in the Orient phase. The

most promising hypotheses are then used to formulate responses in the Decide phase. Finally, in the Act phase,

the selected hypotheses and responses are tested by interacting with the environment.

It is worth noting that the phases are interconnected and guide each other in subsequent executions. For exam-

ple, the Orient phase can guide the Observe phase to gain information to reinforce specific hypotheses. Finally,

Boyd also emphasized the concept of Tempo, i.e., the time necessary to go through the four phases, arguing

that operating at a faster Tempo than adversaries can prevent them from being effective by invalidating their

assumption and creating confusion.

SENSEI implements what we call the OODA loop for network monitoring and adaptation. Figure 6.6 shows

this loop. The figure shows that during the Observe phase, SENSEI harvests network information through

specialized components (NetSensor) and from reports obtained sent by communication middleware (Mockets).

During the Orient phase, NodeMonitor, SNSE, and NetSupervisor, aggregate, share, and process this informa-

tion, to formulate hypotheses about the network status. In the Decide phase, NetSupervisor further processes

the information creating actionable plans that will be executed during the Act phase. This cycle is continuously

repeated since external events and the effect of the Act phase will change the network environments.
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6.2 Status Exchange

6.2.1 World State

Figure 6.7: World State.

SENSEI stores information in the World State, an in-memory data structure that is independently maintained

by each SNSE and that represents the state of the network as seen by each specific instance. The World State is

composed of blocks each describing the consolidated view on a specific topic such as the status of a group of

nodes, the traffic on some link, or the latency between two clusters. Each block is a hierarchical data structure

built around a certain topic divided into sectors containing information at different levels of aggregation. For

example, the most consolidated section on the traffic between two clusters only contains the name of the two

clusters and the traffic between them, on the other hand, at a lower level of consolidation, all the reports used

to create that consolidated view are maintained so that they can be requested if necessary. By default, only the

sectors at the highest level of aggregation are periodically distributed between clusters to minimize network

footprint.

Figure 6.7 shows a graphical representation of the World State. The picture shows several typical blocks that

compose the World State, such as the “HW/SW” block that describes information about physical or close-to-

the-machine characteristics of nodes belonging to the cluster, such as the installed hardware, e.g., CPU, RAM,

network interfaces, the operating system, or the Clusters block that contains data about SENSEI instances,

such as the addresses of detected sensors and known neighboring instances. The Traffic block shows multiple

sectors at a different level of aggregation. In particular, the figure shows that ”Traffic Aggregate i” is made of
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three Traffic flows that are aggregated into one to save information.

6.2.2 Data-agnostic aggregation

Figure 6.8: Example of cumulative aggregation.

Blocks are populated and replaced based on three types of data-agnostic aggregation policies that can be sum-

marized as follows:

1. The first aggregation policy is used to aggregate non-cumulative information. Measures that arrive from

a sensor within a certain time interval and are characterized by the same unique ID are added to a list.

2. The second aggregation policy is used for cumulative information. All the cumulative measures that

fit within a certain time interval and are characterized by the same unique ID, are merged into a single

measure. Figure 6.8 shows how two consecutive cumulative measures can be merged into a new measure

by extending the time interval of the resulting measure and summing the values.

3. The third aggregation policy is used for cumulative information that cannot directly be aggregated by

summing values such as merging the informative content of sensors reporting light and temperature

levels in a room. In this case, both temperature and light are merged into a single measure, and their

values are kept separated by using the sensor type to identify each value. This aggregation policy is used

to remove the overhead associated with information coming from multiple low-level sensors describing

the same ”object”.

Moreover, blocks are removed if no relevant information is received after a long time and replaced when new
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information is received, i.e., newer than a time threshold, to give space to information that fits within the new

time interval. These thresholds are automatically estimated by SNSE based on sensors’ specific update patterns.

6.2.3 Content- and context- aware aggregation and distribution

SNSE implements several strategies to provide content- and context-aware aggregation and distribution with

the help of NetSupervisor.

Redundant information is consolidated by merging entries that describe the same event observed by multiple

sensors. In general, NetSupervisor resolves conflicts by prioritizing information obtained from sensors that are

closer to the event under observation but it can also use custom algorithms for a subset of other information

where that approach would not work.

Content awareness is achieved by prioritizing certain information over others on a per-destination basis. To

do this, NetSupervisor uses knowledge about neighboring clusters, such as their associated subnetworks or

hosts, to increase the chance that the shared information is relevant to each destination. For example, a traffic

aggregate is by default only shared with neighboring clusters that are involved in the communication described

by that aggregate.

Context-awareness can be achieved by modulating the quantity and type of shared information based on the

communication link status. For instance, throughput thresholds can be calculated for each link based on the

amount of bandwidth consumed by other applications that are sharing network resources.

SNSE then shares information accordingly with these limits by prioritizing highly-aggregated and critical in-

formation and only sharing lower priority data if there is sufficient extra bandwidth.

Moreover, SNSE incorporates a few different strategies to reduce the control overhead generated over the

network. Updates are limited to 1 MTU-sized packet, and the update rate is adjusted dynamically based on

the observed network capacity. Since the data available locally usually exceeds 1 MTU, subsets of the data are

selected based on freshness and change rate. However, data that is skipped has its priority raised so that it will

not be left out indefinitely.

6.2.4 World State Distribution

World State exchange between SENSEI instances is generally best-effort relying on multicast to share infor-

mation between hosts belonging to the same network segment, and on Mockets to communicate with remote

clusters that have to be reached through constrained and shared links.

We chose unicast for inter-cluster communication because network routers are often not configured to forward

multicast traffic. Note that only one SNSE instance per cluster, called Cluster Master, can exchange data with

remote nodes. We did this to increase control over the type and amount of traffic entering and leaving the

cluster. Moreover, SNSE can be configured to act as a simple relay point to support uncommon configurations,

and NetSupervisor can be configured to oversee multiple remote clusters.

The World State is exchanged between SENSEI instances using three policies: periodic, event-based, and

request-based.
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1. The periodic sharing policy is the default sharing mechanism used between Cluster Masters. Consis-

tently with throughput and time limitations, each Cluster Master cycles the content of its World State

sending only the most aggregate section of each block. A custom filtering function only allows relevant

and aggregated information to be transmitted to neighbors. For example, if we have three Cluster Mas-

ters A, B, and C, and we indicate with TAB the traffic between A’s and B’s clusters, and with TAC the

one between A’s and C’s, A will only send TAB to B and TAC to C. C will not be notified about TAB, and

B about TAC.

2. Event-based sharing is used to distribute high-priority messages called Alerts. Currently, it is possible

to configure static thresholds in SENSEI and assign them to specific metrics. During traffic monitoring,

the measured values are compared to the configured threshold to catch anomalous situations and trigger

information sharing with selected neighbors.

3. The request-based sharing policy enables remote Cluster Masters to subscribe and request specific

blocks. This enables ACM’s components to be notified about specific changes in the network condi-

tions that the periodic policy would not include in its updates. For example. SENSEI visualization

components exploit this mechanism to receive topology and traffic data from all clusters independently

from their location.

6.2.5 Analysis of Default State Exchange Algorithm

Figure 6.9: Exchanged CNS: comparison between old and new sharing algorithm with dif-
ferent network topologies.

In this simple analysis, we considered a network composed of N Clusters where each Cluster Master can

compute a description of all the links with its neighbors. We also included a visualization component that

makes requests to the local Cluster Master to receive and show the status of the whole network. Our first take

on World State exchange had each Cluster Masters exchange information with any other. That algorithm could

quickly saturate very constrained networks, and consequently, we developed an improved version that shares

blocks only between Cluster Masters that are one-hop away from each other. It is worth noting that the network

topology has a significant impact on the performance of the new algorithm.

In the case of mesh networks (where each node is directly connected with everyone else), the performance of

the new and old algorithms are equivalent, however, the new algorithm will reduce the overhead due to block

sharing in all other network topologies.
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One drawback of the new algorithm is that Cluster Masters will not receive World State reports from nodes

more than one-hop away. Nonetheless, in our experience, we noticed that it is unusual that nodes in a network

need complete information concerning the status of distant nodes and that it is better to provide the information

that is required through the request-based distribution policy which ensures that it is always possible to retrieve

information relative to specific topics, regardless of the number of hops that separates two nodes.

Figure 6.9 shows a comparison between the number of reports periodically exchanged between Cluster Masters

with the old and the new algorithm with varying network topologies. For example, for 15 nodes in a ring

topology, the new algorithm outperforms the old one by sending less than 15% of the updates that the old

algorithm would generate.

6.3 Passive Bandwidth Estimation

We designed SENSEI to passively detect several network metrics such as the traffic circulating the network,

the RTT between hosts, and the available bandwidth. To provide passive bandwidth estimation, we designed

Passive Packet Pair (P3), a passive version of the packet pair bandwidth estimation mechanism that assesses

the bandwidth available over the end-to-end path by measuring differences in the inter-arrival times of packet

pairs or trains produced at the transport protocol level starting from application-generated traffic. In particular,

we integrated P3 into the Mockets communication middleware.

6.3.1 P3

Figure 6.10: Bandwidth estimation using P3.

Similar to other approaches based on packet pairing, P3 estimates the available bandwidth over the bottleneck

link between two endpoints by dividing the size (in bytes) of one of two consecutive packets by the time arrival

difference of the last octet of each packet. For the estimates to be accurate, both packet pairs need to be of

equal size and transmitted back to back by the sender.

P3 reduces statistical error by averaging time differences across multiple packet pairs, following an approach

similar to Trains of Packet Pairs (TOPP) and SLoPS, but differently without requiring the introduction of prob-



CHAPTER 6. NETWORK MONITORING AND ADAPTATION IN CONSTRAINED
ENVIRONMENTS 97

ing traffic into the network. P3 can do this passive process because it exploits traffic exchanged by applications

using Mockets.

Another significant difference that distinguishes P3 from other packet pair estimation techniques, is how the

arrival time of the last octet of packets is measured. Traditional packet pair implementations assume that the

application-level packet reception time, i.e., when the operating system delivers a packet to an application,

coincides with the arrival time of the last octet of the packet. This approach suffers from a few issues and

limitations:

1. The receiving application’s behavior and the operating system’s thread scheduling might negatively

affect the measured times by introducing delays;

2. The receiving application is not aware of situations where packets from other flows are added between

a pair’s packets;

3. Measurements can only be taken on the node that runs the receiving application.

To mitigate these problems, P3 relies on NetSensor to measure packets’ arrival time. Since NetSensor uses

libpcap, it can acquire high fidelity packet arrival times based on the interface-generated packet timestamps or

otherwise fallback to kernel-generated ones when not supported by the network interface.

Figure 6.10 illustrates the bandwidth estimation process performed by P3. In the figure, an application (on the

left) using Mockets transfers some data, e.g., a document, to another host (on the right). The document is frag-

mented by Mockets into multiple packets that fit the network MTU and that are made ready for transmission.

If the bandwidth needs to be estimated, Mockets marks all the headers of packets involved in the process with

a special sequence of bytes that indicates that they are part of a pair or train for bandwidth estimation and the

number of packets that will be part of the estimation. After that, Mockets pre-fetches all marked packets from

memory to minimize the delay between transmissions and transmits them one after the other. By integrating

P3 in Mockets, P3 can exploit the traffic exchanged by applications via the Mockets middleware instead of

introducing probing packets to estimate the available bandwidth. While traversing the network, the packets

originally transmitted back to back will accumulate a delay that depends on the capacity of the bottleneck

link of the traveled path. This delay will take the form of inter-arrival time between packet pairs collected by

NetSensor.

Upon receiving the first marked packet, the receiver enters a bandwidth estimation phase during which Mockets

will block packet transmission for some time whose duration depends on the currently estimated bandwidth

and the number of packets involved in the estimation. This allows P3 to reduce the chance of locally generated

cross-traffic, e.g., due to message acknowledgments or other control or application traffic exchanged between

the endpoints. This is important to increase the efficacy and the accuracy of P3 by maintaining a high ratio of

valid samples, as P3 estimation calculations discard all measurements obtained from pairs that are afflicted by

cross-traffic.

In particular, NetSensor records all packets flowing over the monitored links and stores each packet arrival time.

Upon detecting a marked packet, NetSensor enters a bandwidth estimation session for the two endpoints and

looks for other marked packets that belong to the same estimation sequence. If NetSensor detects cross-traffic
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or packet reordering between probing packets, it drops the afflicted pair or train, and the sequence analysis

continues from the next pair/train, if available. NetSensor can easily detect reordering, duplicates, and loss

packets because each Mocket message is identified by an ever-increasing unique identifier.

Once the expected number of packets arrives, NetSensor computes the bandwidth estimation from the packet

inter-arrival times and generates a report. After some time, if not enough packets are received in a certain inter-

val, NetSensor aborts the estimation session and generates a report if at least one pair was received correctly.

P3 can either be done periodically or be requested by applications using Mockets. Additionally, Mockets can

be configured to be completely passive or opportunistically passive. In the first case, Mockets will wait for a

configurable interval of time for a sufficient amount of data to be made available for sending. If enough data

is made available by the application before the specified time, Mockets will divide it into sequences (pairs

or trains) of packets of equal size and send each sequence back to back. Otherwise, Mockets will abort the

process. In the opportunistically passive case, if not enough traffic is available after the specified amount of

time, Mockets proceeds by randomly generating enough data to reach the number of bytes required for the

estimation.

6.4 Notes on SENSEI Deployment

Figure 6.11: Example of deployment of SENSEI components over the nodes of a tactical
network.

Figure 6.11 shows a possible deployment configuration for SENSEI. The picture shows a hybrid configuration

where SENSEI instances are deployed in every node. In the picture, Node A is the Cluster Master of WLAN-

A, in the figure, the node receives information from all the other SENSEI instances. Once processed, the

information generated by SENSEI is distributed to the various communication middleware of the ACM to

improve network utilization.

In general, we deploy SENSEI using one or more the following approaches depending on logistic and security

constraints:
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1. Full deployment;

2. Selective deployment;

3. Rely on network hardware.

6.4.1 Full deployment

In this configuration, SENSEI services are deployed in every host. This is the most pervasive solution, and it

gives the most visibility and creates the most problems.

When sensors are deployed in every host, SENSEI can obtain a comprehensive picture of the system from

all existing points of view. However, we can also expect redundancy caused by sensors observing the same

events from different nodes within a cluster complicating the aggregation process and may not be applicable in

particularly constrained sub-networks. For example, consider two sensors that monitor multicast traffic, one at

the source and one at the destination.

Depending on the network technology and topology, aggregation algorithms have to recognize multicast pack-

ets and handle them correctly, avoiding traffic observed by multiple sensors to be counted more than once.

These algorithms must also handle corner cases. For example. multicast traffic is sent as broadcast over Wi-Fi,

while between switch hops it has to be counted multiple times.

To overcome latency between sensors and aggregation points, a timestamp is added to each report, and SENSEI

uses this knowledge to time-align reports from different sensors. This requires that all the sensors generating

reports have their time consistently aligned. Lack of synchronization could result in an incorrect interpretation

of the results.

Security can also severely hinder a full-scale deployment of this kind. For example, some devices may not

allow the use of root credentials [114] necessary to monitor network traffic using libpcap, in Android, we

circumvented this limitation by creating an alternative version of NetSensor based on a custom VPN that

would pass packets to NetSensor and mirror them in the device network interface instead of using libpcap.

This solution has several disadvantages such as restricting other applications from being able to use VPN

services and not being portable since it requires the use of a specific Android API.

6.4.2 Selective deployment

Sensors can also be placed in specific nodes. This has clear advantages in terms of configuration and de-

ployment times. On the other hand, this solution reduces system visibility and suffers from some nuances in

uncommon configurations. For example, SENSEI relies on the traffic shared by nodes to passively reconstruct

the network topology, it follows that SENSEI can only build a topology of nodes for which it sees traffic. One

compromise could be that of having sensors in choke points of the network and in selected internal nodes char-

acterized by consistent interaction with other local nodes but that does not solve the problem of detecting nodes

that are not generating traffic.
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6.4.3 Rely on network hardware

Network observability can be provided by integrating NetSensor into local gateways. This approach is inter-

esting when monitoring resource-constrained devices or when security prevents sensors deployment.

Moreover, network switches can be configured to mirror traffic to specific interfaces. NetSensor can then attach

to these interfaces and monitor traffic from centralized locations. Note that with mirrored traffic, SENSEI

cannot generally rely on sensor locations in the network to establish sensors’ authority over network regions.

One way to circumvent this problem is to override NetSensor defaults with values that are congruent with the

network under observation. In general, knowledge has to be divided into meaningful sectors to maintain the

content- and context-aware aggregation and distribution.

6.5 ACM

The ACM [11] is a suite of tools designed to provide efficient network communications, information dissemi-

nation, and opportunistic resource discovery in extremely challenging networking scenarios. In particular, this

section presents NetCacher, a part of the ACM that once integrated with SENSEI can provide adaptive video

streaming.

We developed NetCacher because traditional video streaming applications require large amounts of network

resources and stable connections. Even considering modern advancements in video encoding and compression,

such as High-Efficiency Video Coding [115], hundreds of Kbps are still necessary to stream videos of sufficient

quality [48]. These traffic flows can compete with high priority and time-critical data generated by other

applications sharing the same network resources. Nevertheless, TDR operations participants often desire video

streaming as in some cases, it significantly enhances Situation Awareness. For example, a ground operator

could use video surveillance provided by a UAV to spot or otherwise assess enemy activity or observe disaster

survivors’ status.

This and the fact that TDR operations are generally dynamic with varying requirements for information ex-

change calls for solutions capable of monitoring and interacting with communication middleware to balance

congestion and increase the overall quality of the services provided. Competing usage also calls for systems

that can dynamically change their bandwidth footprint and if possible, provide graceful degradation.

NetCacher is a video streaming management system specifically designed to overcome these challenges. Fur-

thermore, this component is capable of real-time adaptation, providing parallel streaming at different qualities,

and caching and forwarding video resources to overcome limitations related to node mobility and network

disconnection.

6.5.1 NetCacher

Figure 6.12 summarizes NetCacher architecture which is composed of two elements, a streaming library that

takes care of recording, transcoding, and distributing a video resource, and a streaming management envi-

ronment that allows access and control of video resources by managing discovery, caching, and forwarding

between NetCacher instances.
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Figure 6.12: NetCacher architecture.

Each video resource is managed by one instance of the streaming library that records, transcodes, and sends the

video to a remote receiver or another NetCacher allowing for the multiplexing of a single resource into parallel

streams of different quality.

By processing SENSEI network monitoring information, NetCacher is capable of performing graceful degrada-

tion by balancing the trade-off between video quality and bandwidth consumption in real-time on a per-stream

basis.

6.5.2 Streaming Library

NetCacher’s Streaming Library is written in JAVA and leverages the OpenCV library to achieve a flexible video

streaming service designed for the tactical environment. OpenCV is an open-source computer vision library

developed by Intel [116] that facilitates the interaction with individual video streams’ frames and wraps the

FFmpeg library. NetCacher uses OpenCV to handle video encoding, decoding, streaming, and controlling video

streams. Using OpenCV, the Streaming Library can interface with network video sources and consumers, such

as IP cameras or WEB-based players, and become a source of its own (e.g. distributing multimedia contained

in a file server).

The Streaming Library is composed of four logical parts, the Resource Recorder, the Resource Streamer, the

Stream Controller, and the Stream Notifier, the Resource Recorder records and transcodes each resource into a

stream and passes it to the Resource Streamer for transmission. Upon receiving a request for the resource, the

Streaming Management Environment communicates to the Resource Streamer a unicast or multicast destination

address for the stream.

For each active stream, the Stream Notifier advertises stream statistics to SENSEI. SENSEI can then commu-

nicate with the Stream Controller to control the stream, for example, by specifying a bandwidth limit. This

feedback is then converted by the Stream Controller into what we call a stream profile, a compatible set of

options for the video transmissions compatible with the feedback requirements.

NetCacher controls the video quality by using the OpenCV library, and in particular, we use the Video Buffering

Verifier option to specify the quality and footprint of the video by setting a bandwidth limit.
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6.5.3 Streaming Management Environment

Figure 6.13: NetCacher WEB Interface.

The Streaming Management Environment provides a WEB interface (shown in Figure 6.13) to access, dis-

tribute, and remove video resources. Upon receiving a video streaming request, NetCacher creates a daisy-

chained point-to-point re-streaming of the information that eventually reaches the requestor.

NetCacher can proactively distribute each stream to other instances to increase information liveness in environ-

ments characterized by nodes mobility. For example, a node can use this feature to cache video resources from

a UAV to ground units when establishing a continuous link is not possible. Concurrent streams can be used to

multiplex flows into streams of different quality, supporting, when necessary, networks of different capacities.

6.6 Experiments: Evaluation of Link Detection Algorithm

We designed the first set of experiments to test the reliability of NetSupervisor’s link detection algorithm. The

test was conducted using EMANE which we configured to emulate the characteristics of a degraded environ-

ment. More specifically we modeled three types of links, summarized in Table 6.2. In addition, we applied

a 20% random noise to the statistics harvested by NetSensor, to test the stability of NetSupervisor’s scoring

process. The evaluation was conducted by randomly changing the characteristics of the link and the traffic

exchanged between two subnetworks.

Link ID Bandwidth Latency
WLAN < 100Mbps <= 10ms

SATCOM < 1Mbps >= 200ms
HF < 56Kbps <= 100ms

Table 6.2: Links Exemplar Values.
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Figure 6.14: SATCOM (top), LAN (center), and HF (bottom) link score results.

Table 6.3 and 6.4 summarize the score tables used during the tests. Table 6.3 shows the score that would be
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assigned to a specific link based on the value that was effectively detected. For example, the reference value

for a LAN network is 100Mbps, for that link, if the observed throughput were to be larger than that value, the

LAN link would get 100 points, if it were between 100 and 90Mbps, 90 points, and so on following the scores

shown in the table. The same process applies to the other link types. Figure 6.14 shows the score results for

different tests. NetSupervisor was correctly able to identify the link type 8 times out of 9 by a relevant margin

which was measured as the difference in score with the other possible link types.

Throughput Scores Rule LAN SATCOM HF
T >= ET 100 -20 -20
0.9∗ET <= T < ET 90 90 90
0.75∗ET <= T < ET 90 100 100
0.50∗ET <= T < ET 80 80 100
0.25∗ET <= T < ET 70 70 100
0.1∗ET <= T < ET 60 60 90
T < 0.1ET 40 40 80

Table 6.3: Throughput scores used for the experiments.

Latency Score Rules LAN SATCOM HF
0.8∗EL<= L< 1.2∗EL 100 100 100
1.2∗EL <= L < 2∗EL 100 100 100
L >= 2∗EL 50 100 60
0.5∗EL<= L< 0.8∗EL 90 40 70
0.2∗EL<= L< 0.5∗EL 90 30 40
0.1∗EL<= L< 0.2∗EL 90 20 30
L < 0.1∗EL 90 10 20

Table 6.4: Latency scores used for the experiments.

NetSupervisor did not identify an outperforming HF link in the third experiment due to the added noise. Still,

the fact that the inferred scores were very close, reveals the anomalous condition. In all the other experiments,

NetSupervisor identified the link types correctly.

6.7 Experiments: Latency Detection Responsiveness

This set of experiments was conducted to evaluate SENSEI’s latency detection responsiveness under different

traffic loads. The results show that SENSEI can follow network variations consistently and that the overhead

generated does not increase linearly with the number of nodes. In particular, we conducted two experiments.

The first one measured the average latency of the Alert-based sharing policy with varying traffic loads. The

second experiment measured the average bandwidth consumption of SENSEI while varying the number of

nodes within the network. In the first experiment, we simulated 3 traffic loads using iPerf3 [117]: low (2560

bps), medium (128 Kbps), and high (204.8 Kbps). Using EMANE, we set up three clusters named TOC, LAV-

1, and LAV-2, and controlled the links between the LAVs and the TOC. We then limited the link to 256 kbps

and we randomly generated CE events modifying the latency between LAV-1 and TOC between 50ms and 1s
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with a minimum change-step of 50 ms. We deployed SENSEI in the TOC and LAV-1 and extracted latency

information using NetSensor’s ICMP and TCP-RTT detection mechanisms.

Figure 6.15 shows that a small delay affects SENSEI’s reports upon each event, but the error is otherwise

small. The figure shows as a continuous line the real latency of the network and uses different shaped points

to illustrate the results obtained by different RTT detection algorithms. Table 6.5, 6.6, and 6.7, summarize the

errors and standard deviations with and without the ”assessment tails”.

Figure 6.15: Latency comparison detected by SENSEI in three different configurations:
25600 bps (left), 128 kbps (right), and 205.8 kbps (bottom).

Type AVG Error STD DEV TAIL DELAY
ICMP 124.4 ms 235.8 -

ICMP NT 29 ms 20.38 4s
TCP 100.7 ms 178.3 -

TCP NT 69.7 ms 104.7 2 s

Table 6.5: Error and Standard Deviation for the RTT detection mechanism with 25.6 Kbps.
NT stands for No Tail.

Type AVG Error STD DEV TAIL DELAY
ICMP 178.6 ms 346.0 -

ICMP NT 32.8 ms 15.97 4s
TCP 118.0 ms 215.6 -

TCP NT 60.5 ms 32.6 2 s

Table 6.6: Error and Standard Deviation for the RTT detection mechanism with 128 Kbps.
NT stands for No Tail.

In the second experiment, we tested SENSEI in the Anglova scenario. In particular, we evaluated SENSEI

overhead with 4, 8, 16, and 24 nodes, by measuring the average amount of traffic shared between nodes and
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Type AVG Error STD DEV TAIL DELAY
ICMP 116.47 ms 192.3 -

ICMP NT 38,2 ms 19.5 3s
TCP 97.8 ms 72.9 -

TCP NT 60.96 ms 61 2 s

Table 6.7: Error and Standard Deviation for the RTT detection mechanism with 294.8 Kbps.
NT stands for No Tail.

companies. We evaluated the period-based sharing policy between 2 Cluster Masters where one of the clusters

has a varying number of nodes within it.

Figure 6.16: Bandwidth comparison inside one (blue) and between two companies (orange).

Figure 6.16 shows that there is a significant advantage in aggregating information as the number of nodes grows.

The high reduction of expended bandwidth can be explained by considering that the three biggest contributors

to the overhead in the company are topology and traffic information followed by a small amount of traffic used

to keep the members in touch with each other. When the topology is fairly stable, SENSEI reverts to a state

where it shares information every 10 seconds instead of every second removing any duplicated information.

For example, if 2 nodes were to report the same topology, their views would be aggregated. Moreover, the

compression is much more efficient at the Cluster Master level since it has more information to compress.

Table 6.8 summarized these results.
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Nodes Intra-Company
Traffic (bytes)

Inter-Company
Traffic (bytes)

Gain (%)

4 1629 1217 25.3
8 4984 2458 50.6

12 10047 3426 65.9
24 27246 4197 84

Table 6.8: Summary of scalability with increasing number of SENSEI instances.

6.8 Experiments: Adaptive video streaming

Figure 6.17: Adaptive Streaming experiment: A video multimedia is transmitted to a mobile
device using a link with variable available bandwidth ranging from 128 Kbps to 1 Mbps.

We designed the fourth set of experiments to evaluate the effect of bandwidth on network stability managing

a dynamic video stream through NetCacher and SENSEI. The two components collaborated to change video

quality based on network conditions. Figure 6.17 shows the experiment topology. In the test, NetCacher would

retrieve a video from an IP video camera, transcode it and stream it to a mobile device. We assumed an

unconstrained link between NetCacher and the camera and we emulated the link between NetCacher and the

mobile device using EMANE. During the experiment, we periodically changed the link characteristics so that

the available bandwidth would go from 128 Kbps to 1 Mbps and vice-versa. A supporting application would

generate TCP traffic through the same link (roughly 300 Bps, simulating blue-force data) and would measure

delivery latency from one side of the link to the other.

For the first experiment, we manually controlled NetCacher to lower or increase video quality just before

lowering or raising available bandwidth. The first plot of Figure 6.18 shows that by performing this manual

adaptation the link never saturates and there is no increase in latency. In the second experiment, the video

quality is only updated after SENSEI notices that the link is saturated. The second plot shows that the latency

periodically and consistently increases to very high values signaling a saturation of the communication link.

Seconds after, upon detecting the link saturation SENSEI suggests to NetCacher to lower its throughput. After

some time the latency slowly goes back to normal preserving both the ability of the video to be streamed and

restoring the timely delivery of traffic generated by the supporting application.
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Figure 6.18: Latency spikes with manual (top) and dynamic (bottom) adaptation.

Figure 6.19 shows in bright green NetCacher traffic and in dark green the supporting application traffic. The

figure shows that NetCacher shares 64 Kbps for the low-quality stream and 400 Kbps for the high-quality

stream. The supporting application consistently shares 300 Bps. Figure 6.20 shows the difference in quality

between the high- and low-quality streams with the image from the low-quality stream more pixelated than the

high-quality one.
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Figure 6.19: Traffic generated by NetCacher (Green) and by the support application (very
small compared to the first). Increases in NetCacher traffic correspond to higher quality
video streaming. Spikes are caused by limits of the FFmpeg library.

Figure 6.20: The left and right pictures show respectively a frame from a high and low video
quality profile. As expected, pixelation is much more marked in the second frame.

6.9 Experiments: Evaluation of P3

This last set of experiments evaluates P3 over two separated experiments, one conducted in an emulated envi-

ronment and one using physical radios. In both cases, two nodes exchange information using the Mockets com-

munication middleware while NetSensor monitors packets to extract bandwidth estimation. This deployment is

summarized in Figure 6.21. To drive the experimentation, we developed a simple client/server application that

sends data from client to server using Mockets. On the server node, we also deployed NetSensor to monitor

the packet trains generated by Mockets and extract their dispersion.

To simplify harvesting statistics, we developed a simple server capable of processing NetSensor results and

generating reports. We emulated the first testbed using EMANE controlling the link between VMs utilizing

CE. The emulated environment was composed of three Ubuntu VMs hosted in a VMWare ESXi hypervisor:
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Figure 6.21: Experiment architecture.

two VMs were used to host the driver and one to host EMANE. Each VM had 2 CPUs and 2 GBs of RAM.

We made the second testbed using two LEDE-based radios installed on a MikroTik RouterBoard RB411AH

equipped with a Ubiquiti XR9 900 Mhz transceiver. Two wireless terminals were placed about 10 meters apart,

separated by a building wall.

With our experiments, we wanted to verify four things. Firstly, we wanted to know if there was a correlation

between CPU usage in our emulated environment and dispersion in the packet pairs. Knowing if there was

correlation was important to decide if it was necessary to set hard resource limits in real deployments to avoid

wrong measurements. Secondly, we wanted to verify that there was no significant penalty when using P3

in Mockets in terms of maximum throughput. Thirdly, we wanted to investigate what was the maximum

bandwidth limit that we could reliably observe with our implementation of P3. Finally, our last experiment was

designed to test the accuracy of P3 with real hardware.

6.9.1 Estimation Error over CPU

Figure 6.22 shows that we did not find a correlation between CPU usage and dispersion of detection accuracy.

For this experiment, we configured the driver to send 5600 bytes of data with four probing packets (three pairs)

per operation, and we repeated the experiment 10 times for each one of two CPU load values: very low (5%)

CPU usage and very high (100%) CPU usage. We produced a total of 60 samples. The target CPU usage

levels were achieved using the Linux stress utility configured to overload the 2 CPUs available on the VM. We

verified the CPU loads from the ESXi control panel. We set the capacity of the emulated link to 512 Kbps, a

value that did not introduce significant measurement errors (see Section 6.9.3 for more details on this). The

figure shows the percentage of relative measurement error where the value of the real bandwidth is the one

configured via EMANE and the measured value is the one obtained from P3 estimation. Each point is a sample

harvested after re-running the experiment. The figure shows no apparent difference in the distribution of the

error over the samples in the two configurations.
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Figure 6.22: Samples’ relative measurement error for 5% and 100% CPU load.

6.9.2 Estimation Overhead

Figure 6.23: The plot shows bandwidth consumption with and without P3. The peak at the
end is caused by a difference in the end of the experiments, what should be observed is the
general trend.

To verify no significant penalty in using P3, we monitored the traffic exchanged between the server and the

client using the tcpdump utility. We configured the driver to exchange 5600 bytes, and we repeated the exper-

iment 10 times with P3 enabled and ten times with P3 disabled. Figure 6.23 shows that there is no significant

difference in terms of generated traffic when comparing Mockets with and without P3. In practice, a few extra

bytes are exchanged between the two endpoints to signal the start of the estimation process, but the packet

trains are fully made of data that would have been exchanged anyway.
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6.9.3 Estimation error over Bandwidth

Figure 6.24: Error over bandwidth.

To measure the estimation limit of our P3 implementation, we exchanged 5600 bytes 10 times with different

bandwidth settings in the emulated testbed and plotted the errors. We tried the following bandwidth values:

512, 1024, 2048, 4056, and 8112 Kbps; Figure 6.24 shows that our implementation remains fairly accurate

until 2048 Kbps. After that value, statistical overshoot becomes more frequent and the error dispersion in-

creases. One possible cause is how EMANE paces out packets injected into the network but this needs further

investigation.

6.9.4 Estimation over radio Link

Figure 6.25: Radio Bandwidth Estimation between P3, and UDP iperf3.

To test P3 with real radios, we used our second testbed and we collected bandwidth estimation samples obtained

when connecting our test endpoints using a radio link with a nominal throughput of 54000 kbps. We compared

bandwidth estimates obtained using P3 and the Linux tool iperf3, configured to use UDP to transmit traffic at

a rate of 8 MBps at the client-side and measure the received throughput at the server-side. Figure 6.25 shows
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that P3 achieves greater accuracy than iperf3, which significantly underestimates the available capacity. The

reason for such underestimate can be attributed to the high packet loss (about 40% or higher) experienced by

iperf3, which inevitably lowers the measured throughput at the receiver’s end. The reason for P3 overshoot is

unclear and will require further investigation. One possibility is a queueing delay at the receiving side. That

could reduce the delta between arrival times and explain the overshoot.
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Chapter 7

Conclusion

This thesis presented results in three topics relevant to network-centric TDR operations conducted in degraded

communication environments: unicast transport protocols, group communication solutions, and network status

estimation and adaptation.

Chapter 4 was dedicated to research on unicast protocols and showed that compared with results obtained

in past research [118], several valid COTS alternatives have emerged that can handle the high latencies, low

bandwidths, and packet loss, that characterize TDR networks.

While these solutions may not provide the wide array of side capabilities that come with specialized libraries

such as Mockets, the performance improvements are hard to argue against and a future can be envisioned in

which improved versions of these COTS alternatives will reduce the need for custom protocols. Nonetheless,

more experiments are required to confirm this. In particular, future experiments will need to test solutions

with different bandwidth and latency variations in more dynamic scenarios because dynamic tests may better

simulate the aleatory nature of tactical and disaster recovery missions.

For what concerns the research on group communication described in Chapter 5, there are several points to

be made. Starting with emulation, this thesis presented several experiments using an 802.11ah and two SCB

radio models designed to evaluate the performance of relevant COTS and custom-made group communication

solutions. The SCB emulation enabled experiments in a realistic scenario capable of taking full advantage of

multicast communication. In particular, this thesis presented two approaches. The first of the two is based on

SMF and has the advantage of implementing a dynamically scheduled SCB which can efficiently handle traffic

changes among the nodes. However, this method does not support the inclusion of cooperative transmission

gains and only roughly model delay. Finally, given the reliance on SMF, which is a UDP-based protocol, it is

very difficult to support applications that use TCP or other non-UDP protocols.

The second approach is based on precomputed topologies and needs to be pre-configured for the expected traffic

loads. It requires precomputed topology data for each network size and parameter setting (which can require

considerable preliminary work) but it may be preferable since it has the advantage of including cooperative

transmission effects. Moreover, the delay estimates are much more accurate compared to the previous model.

It is also worth noting that this model is not limited to UDP and can be used with any other transport protocol

115
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supported by EMANE.

For what concerns GCS, this thesis presented an analysis conducted with the same objectives of the study on

unicast protocols: to evaluate if COTS solutions could take over ones specifically designed for TDR operations.

Each GCS was evaluated in terms of message delivery ratio, latency, and bandwidth utilization in a realistic

environment supported by EMANE and the Anglova scenario using 802.11ah and PSCBT radio models.

The results obtained from these experiments indicate that ad hoc solutions specifically designed for constrained

environments and based on multicast outperform all the other systems that we evaluated. More specifically,

protocols designed for the internet did not provide adequate performance when deployed in a constrained

scenario with characteristics similar to TDR operations which have low bandwidth, are unreliable, and exhibit

variable latency.

The protocol analysis highlighted the existence of several significant differences in the design direction be-

tween consumer and tactical solutions. In particular, consumer applications tend to lean towards centralized

TCP-based architectures, while tactical solutions towards custom implementations of reliable multicast. A

possible explanation for this trend is that TCP is a well-known reliable protocol that works sufficiently well

in performant networks. Moreover, centralized solutions are easier to develop and optimize. Still, multicast

is intrinsically more efficient than unicast for group communication and can provide several advantages in

constrained environments.

Considering the emerging prevalence of fog computing and IoT devices, there is no reason to argue against a

future in which COTS solutions will be able to close the gap for group communication too. For this reason, the

research described in this work should be repeated in the future when new solutions are available.

For what concern future research directions, there is a need to experiment with additional data types and with

different delivery services, such as OLSRv2, to see if the added cost of running routing can compensate for

scarce performance. Future experiments will also need to be executed with more nodes to evaluate scalability

and the advantages of hierarchical dissemination structures. Additionally, more advanced forms of network

degradation will need to be tested to evaluate if protocols can degrade graciously in the presence of bad net-

works. In particular, it could be interesting to compute results with variable jamming effects. More work

also has to be done to better characterize the various trade-off that resulted from observing the existence of a

trade-off between reliability and bandwidth consumption. In particular, bandwidth vs latency, bandwidth vs

reliability, and reliability vs latency.

The third and last topic of this thesis discussed in Chapter 6 is that of monitoring and adaptation in TDR op-

erations environments. In particular, this thesis argued that traffic monitoring is of great interest to identify

anomalies and adapt to changing network conditions but since networks used to support TDR operations are

severely degraded and bandwidth depleted, it is essential to conserve bandwidth by opportunely reducing the

volume of monitoring traffic and by preferring passive detection approaches whenever possible. To this avail,

this thesis presented SENSEI, a distributed, resource-frugal solution capable of passively monitoring the net-

work, inferring its status, and driving the behavior of other components. SENSEI has the potential to greatly

enhance the performance of applications deployed in degraded environments by enabling them to adapt their

behavior in response to communication links’ status changes, for example by automatically reducing the output
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of low priority traffic in congested channels.

In Chapter 6, this thesis also illustrated how SENSEI passively harvests several network characteristics such

as latency (relying on other communication middleware and traffic generated by other nodes), and bandwidth

(through the Passive Packet Pair algorithm implemented in NetSensor and Mockets). Moreover, the same

chapter presented NetCacher, a solution capable of dynamically transcoding video streams based on network

usage reports obtained from SENSEI. Through this example, this thesis argued that many of the characteristics

of the tactical scenario limit the use of mainstream software and discussed possible improvements showing

that network monitoring needs to be more specialized and consider other participants’ needs (not only the

end-to-end quality of a video stream).
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Acronyms

ACE Adaptive Communication Environment

ACM Agile Communications Middleware

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AQM Advanced Queue Management

BBR Bottleneck Bandwidth and Round-trip propagation time

BFD Blue Force Data

BRN Barrage Relay Network

CACP Contention–aware Admission Control Protocol

CB-Slot Cooperative Broadcast Slot

CE CommEffect

COMSEC Communication Security Barrier

COTS Commercial off-the-shelf

CTCP Compound TCP

cwind Congestion Window

DCF Distributed Coordination Function

DDS Data-Distribution Service for Real-Time Systems

DIL Delayed/Disconnected Intermittently-Connected Low-Bandwidth

Doc HQ Document

DS Dissemination Service

DS-R DisService without reliability enabled

DS-R DisService with reliability enabled

EMANE Extendable Mobile Ad-hoc Network Emulator

GCS Group Communication Solution
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GDEM Generic Data Exchange Mechanism

HOL Head-Of-Line

HoLB Head of Line Blocking

IHMC Florida Institute for Human and Machine Cognition

JDSS Joint Dismounted Soldier System Information Exchange Mechanism

LAN Local Area Network

LAV Light Armored Vehicle

LKSCTP Linux Kernel Stream Control Transmission Protocol Tools

MANET Mobile Ad-Hoc Network

Mockets Mobile Sockets

MPR Multi Point Relay

MQTT MQ Telemetry Transport

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NLH Network Layer Handover

NMS Network Management Station

NORM NACK-Oriented Reliable Multicast

OLA Opportunistic Large Array

OODA Observe Orient Decide and Act

P3 Passive Packet Pair

PPD Packet Pair dispersion

PSCBT Precomputed Synchronized Cooperative Broadcast

QoS Quality of Service

QUIC Quick UDP Internet Connections

ReDiS Remote Dictionary Server

RMQ RabbitMQ

RPC Remote Procedure Call

RTG Research Task Group

RTPS Real-Time Publish-Subscribe (RTPS) Wire Protocol

RTT Round Trip Time

SBT Shared Based Tree
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SCB Synchronized Cooperative Broadcast

SCTP Stream Control Transmission Protocol

SD Sensor Data

SENSEI Smart Estimation of Network StatE Information

SGBT Shared Group Based Tree

SLoPS Self-Loading Periodic Streams

SMF Simplified Multicast Forwarding

SNMP Simple Network Management Protocol

SNSE Smart Network Status Exchange Service

ssthres Slow Start Threshold

STO Science and Technology Organization

SUSP The Simple UDP Segmentation Protocol

TDMA Time Division Multiple Access

TDR Tactical And Disaster

TOPP Trains of Packet Pairs

TTL Time to Live

UAV Unmanned Aerial Vehicle

UDT UDP-based Data Transfer protocol

VM Virtual Machine

VPSP Variable Packet Size Probing

ZMQN ZeroMQ+NORM
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