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Summary

This thesis is concerned with applying frontier methods in econometric theory, to revisit relevant
economic questions concerning productivity, technology and innovation. The focal point of this
thesis is to try to employ econometric techniques that may allow us to depart from the usual
assumptions of linearity or additivity of the model, as is usually found in economic literature.
Therefore, a binding common ground of all the chapters of this thesis is relaxing these restric-
tive assumptions, in economic topics relevant to productivity and innovation, in micro and macro
level. In this framework, recent advancements in nonparametric econometric theory allow re-
laxing such model restrictions.

The first chapter of the thesis is the only one within a parametric framework. Common liter-
ature on econometrics of productivity and technical change (TC) assume additivity of TC in the
model, therefore introducing Hicks-neutrality of TC. The chapter estimates a production func-
tion at firm level that allows departing from the standard hypothesis of Hicks-neutral technical
change. Simultaneously, it is coping with the endogeneity of innovation, the latter being consid-
ered a measure of TC. Parametric specifications that allow non-Hicks neutral technical change
are derived. The chapter also presents testable conditions, for common parametric approxima-
tions, under which Hicks neutrality holds. Cobb-Douglas specifications are estimated adopting
IV methods for heterogeneous effect of innovation on productivity. The empirical results reject
Hicks neutrality towards the presence of a capital-saving TC. Finally, this chapter serves as a
link with the nonparametric approaches developed in the following ones.

The second chapter addresses the issue of localization of technical change using the firm
level dataset of the previous chapter. The orthodoxy that technical progress increases productiv-
ity at all factor proportions is questioned by introducing a nonparametric model. In order to allow
the detection of local effects of technical change, a kernel regression approach is adopted. The
endogeneity of innovation is tackled by employing an IV estimation procedure based on regular-
ization. The results reveal that technical change cannot be modeled as a shift in the production
function and that technical change is localized and not Hicks neutral.

The third chapter revisits the issue of international R&D spillovers by using nonparametric
methods and tests the validity of the main results provided in the literature with respect to the
possible existence of nonlinearities, threshold effects and non-additive relations. It considers a
sieve estimation of a panel data model of technology diffusion among countries, paying attention
to the issue of error cross sectional dependence. The adopted semiparametric approach is an
extension of the parametric factor model by Pesaran (2006). The comparison between the
parametric and the semiparametric approach reveals a better performance of the latter. From
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an economic viewpoint, the results show new evidence with respect to the benefits of countries
from domestic and foreign R&D.

Finally, the last chapter of the thesis is a review of the nonparametric kernel regression. Fol-
lowing, mainly, the work of Li and Racine (2007), it summarizes the key features of least squares
cross validation and the kernel regression using local constant, local linear or local polynomial
approaches. Moreover, the nonparametric IV kernel regression is presented, along with the rel-
evant topics of ill-posed inverse problems and regularization methods. This chapter serves also
as an informal “appendix” of the previous chapters, especially for the ones concerning kernel
regression, because it provides useful insights of the underlying methodologies.
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Chapter 1

Estimating a non-neutral production
function: a heterogeneous treatment
effect approach

joint with Davide Antonioli and Antonio Musolesi
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Abstract

This paper addresses the issue of estimating a production function that allows us to depart
from the standard hypothesis of Hicks neutrality while also coping with the endogeneity of a
dummy innovation variable. We consider specifications that relax Hicks neutrality, and we de-
rive the testable conditions for common parametric approximations under which Hicks neutrality
holds. The model is estimated through instrumental variables methods, allowing for a heteroge-
neous effect of innovation on the production process. The econometric analysis rejects Hicks
neutrality and highlights three main features: i) a capital-saving technology of innovative with
respect to non-innovative firms, ii) a locally progressive technical change and iii) fully heteroge-
neous technologies when comparing innovative to non-innovative firms.

Keywords: Biased technical change; Hicks neutrality; Innovation; Productivity; Knowledge production function; CDM model; Instru-

mental variables; heterogeneous treatment effect

JEL classification: C26; C31; D24; O33
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1.1 Introduction

Assessing the effect of technical change (TC) on the production process, both theoretically and
empirically and at all levels of aggregation, is one of the major concerns amongst economists
because TC is largely recognized as one of the fundamental drivers of economic development.
In neoclassical production theory, one of the most commonly used classifications of TC dates to
the seminal work of Hicks (1963). In particular, according to Hicks, “we can classify inventions
according as their initial effects are to increase, leave unchanged or diminish the ratio of the
marginal product of capital to that of labor” (Hicks, 1963, p.121). The above types of inventions
are referred to as labour-saving, neutral or capital-saving inventions, respectively.

Formally, Hicks neutrality (HN) requires that the marginal rate of technical substitution (MRTS)
between each pair of inputs be independent of technical change. However, this definition of neu-
trality has received different interpretations; Hicks’ requirement that the firm be in a state of “in-
ternal equilibrium” (Hicks, 1963, p.113, 234, 236) does not specify explicitly whether the effect
of TC should be measured along the firm’s expansion path or at the optimal factor proportions,
which has resulted in controversy (see, e.g., Antle and Capalbo, 1988).

To clarify this ambiguity, Blackorby et al. (1976) consider three different definitions. The first
was suggested by Hicks and is already referred to as HN. The second is implicit Hicks neutrality
(IHN) and accounts for a ray preserving TC. They also introduce a third definition that they
term extended Hicks neutrality (EHN). While HN translates equivalently to a weak separability
assumption between TC and the inputs (Morimoto, 1974), EHN implies TC that is strongly
separable from the inputs in a production function. The three different definitions considered in
Blackorby et al. (1976), namely HN, IHN and EHN, are not equivalent in general and coincide
only if the production function is input homogeneous.

While HN has received significant attention, several streams of literature question its plau-
sibility. Jones (1965) describes a two-sector economy in which HN is unlikely, although HN
may appear in each industry. Further, Steedman (1985) presents a model of interconnected
industries in which, under weak alternative sufficient conditions, HN is impossible, ultimately
concluding that the compatibility of HN with the other assumptions of a model should be ex-
amined. Acemoglu (2015) also mentions that in Atkinson and Stiglitz’s (1969) seminal paper, it
is implied that when TC is localized to specific factor proportions, then it is biased. Chambers
(1988, p. 206) describes other fairly common types of TC that depart from being HN. In particu-
lar, if TC is locally progressive or regressive, its effect on productivity results in isoquants of the
production function that intercept the old ones. Obviously, such TC does not follow HN, IHN or
EHN.

Empirically, at a microeconomic level, since the seminal works by Pakes and Griliches (1984)
and Griliches (1998), the question concerning the effect of TC on the production process has of-
ten been addressed within the framework of the so-called knowledge production function (KPF),
where innovation activity is the main source of technical and knowledge improvements. The
KPF is a conceptual framework that suggests a possible causal relationship between unobserv-
able knowledge capital and related observable variables such as innovation inputs (e.g., re-
search and development, R&D), innovation outputs (e.g., patents) and firms’ performance. The

9



KPF provided the basis for econometric analyses connecting different and relevant aspects of
innovative activities. In their influential article, Crépon et al. (1998) propose a multiple-equation
econometric model – commonly labeled CDM – that has a similar structure to Griliches’ original
conception and uses appropriate estimation methods for taking into account both the potential
endogeneity of some of the explanatory variables and the particular nature of the dependent
variables. In recent years, the availability of survey data, such as those obtained from the Com-
munity Innovation Surveys, has allowed the use of a direct and binary measure of the innovative
output that is then introduced into a production function framework as an endogenous dummy
variable that accounts for TC (see, e.g., Mairesse and Mohnen, 2010).

Recently, developments and generalizations of the CDM approach have been accomplished,
such as the introduction of dynamics into the model, the assessment of measurement errors
or the consideration of a Schumpeterian perspective (Lööf et al., 2016). The extremely vast
literature clearly indicates a positive and significant effect of innovation on productivity (Mohnen
and Hall, 2013) and sheds light on many other relevant relationships among variables.

However, a crucial maintained assumption in this literature is HN. In standard econometric
models, innovation is additively introduced into the production function specification. Additivity
is equivalent to a multiplicative decomposability of the production function into a function of in-
novation and a function of the inputs. Uzawa and Watanabe (1961) prove the equivalence of HN
and the decomposability of the production function. Therefore, standard econometric models
usually impose a strict condition, specifically HN, when assessing the effect of innovation on
productivity.

The present study contributes to the literature on the econometrics of productivity and TC in
two ways. First, we estimate a model that allows us to relax the neutrality assumption. Second,
we extend the analysis by Blackorby et al. (1976) and provide testable conditions, for common
parametric specifications, namely Cobb-Douglas (CD) and translog (TL), under which HN, IHN
or EHN hold.

The econometric analysis developed here exploits recent advances in the econometric the-
ory of instrumental variables (IVs) with cross-sectional data and a binary endogenous regressor.
In the empirical literature, the standard approach considers a parametric approximation of the
production function – typically CD – in which innovation enters additively, and the main focus
is on the endogeneity of innovation and its binary nature (Musolesi and Huiban, 2010; Mohnen
and Hall, 2013). We depart from this literature by allowing for an heterogeneous effect of the
dummy endogenous innovation variable by adopting the approach proposed by Wooldridge
(2003, 2010). This allows the technology parameters to differ between innovative and non-
innovative firms, finally permitting us to address endogeneity while relaxing the assumption of
neutrality.

The remainder of the paper is organized as follows. Section 1.2 describes the theory of
TC and presents HN, IHN and EHN, along with their relationships. It also introduces empirical
specifications that allow non-neutrality and provides simple conditions under which each of the
different definitions of neutrality holds. The data set is described in section 1.3. This section also
presents the results and comments. Finally, section 1.4 concludes the paper. In supplementary
appendices, we present the relationships among HN, IHN and EHN (Appendix A), and we also
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provide conditions under which neutrality holds within a TL framework (Appendix B). Appendix
C provides robustness checks.

1.2 Hicks neutrality: theory and econometrics

1.2.1 A selective review of theory

Consider a production function f : Rk+1
+ → R1

+ that is expressed as

Y = f (X, I) . (1.1)

R+ denotes the positive real numbers. It is commonly assumed that f is twice-differentiable in
X, strictly quasiconcave in X and non-decreasing in I. Y is a measure of output such as value
added. X = {X1, X2, . . . , Xk}T is a k -dimensional vector of inputs that includes conventional
production inputs such as capital and labour. I represents innovation activity, which is regarded
in production theory as the main source of TC.

In a production function with multiple inputs, i.e., for k > 1, technical change might differently
affect the marginal productivity of each input. Therefore, it can be classified as biased or neutral,
according to whether the ratios between marginal products are changed. Hicks (1963) is the
first to distinguish inventions according to the above observation. Particularly, he focuses on
cases with two input factors, namely capital and labour. Under the requirement that the firm
remains in a state of “internal equilibrium”, he defines an invention as labour-saving, neutral or
capital-saving according to whether its initial effect is to increase, leave unchanged or decrease
the ratio of the marginal product of capital to that of labour, respectively. Uzawa and Watanabe
(1961) generalize Hicks’ classification to cases of more than two factors of production.

Hicks’ classification has resulted in controversial interpretations concerning whether the ef-
fect described above should be observed along the expansion path of the firm or along the op-
timal factor proportions. In particular, while Blackorby et al. (1976) state that this effect should
be considered along the firm’s expansion path, Kennedy and Thirlwall (1972, 1977) consider
HN along a ray from the origin and argue that Hicks’ definition of neutrality does not imply an
expansion path preserving innovation.

Nevertheless, Blackorby et al. (1976) attempt to clarify this ambiguity by distinguishing three
different definitions of neutrality. The first generalizes Hicks’ definition for cases of firms with
more than two inputs; neutrality holds if the MRTS between each pair of inputs is independent
of I . This definition is denoted HN and translates to the following expression:

∂f(X, I)/∂Xr

∂f(X, I)/∂Xl
= ϕrl(X), ∀r ̸= l, (1.2)

where ϕrl, r, l = 1, 2, . . . , k, r ̸= l are functions of X. Therefore, HN requires that the MRTS
for every Xr, Xl, r ̸= l component of X be a function of X only. Blackorby et al. (1976) refer
to innovation as HN if it is expansion path preserving. Further, it is proven (see Morimoto,
1974) that HN holds if and only if the inputs X are weakly separable from I in f , such that the
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production function is described by:

f(X, I) = g(h(X), I), (1.3)

where g and h are real functions. The above implies that HN and weak separability of X from I

impose equivalent restrictions on f .
Blackorby et al. (1976) introduce a second definition of neutrality, namely IHN, that requires

the MRTS between each pair of inputs to be independent of I , at constant factor proportions.
This definition implies that the MRTS is homogeneous of degree zero in the inputs X. Further,
they refer to innovation as IHN if it is ray preserving and prove that IHN holds if and only if
the transformation function f̃(X, Y, I) = max

λ
{λ > 0 : f(λ−1X, I) ≥ Y } can be written in the

following form:
f̃(X, Y, I) = g̃(h̃(X, Y ), Y, I), (1.4)

where g̃ and h̃ are real functions. f̃ is a distance function that uniquely represents the technology
f . According to (1.4), I is IHN if it is separable from X in f̃ .

A third definition of neutrality accounts for cases in which I is strongly separable from X in
the production function f (see Chambers, 1988, p.45). By definition, EHN holds if:

∂

∂Xr
[ln f(X, I)] = ϕr(X), ∀r = 1, 2, . . . , k, (1.5)

where ϕr, r = 1, 2, . . . , k are functions of X. Moreover, it is proven that EHN holds if and only if
the production function can be multiplicatively decomposed into a function h̄ of inputs only and
a function ḡ of I only, such that:

f(X, I) = ḡ(I)h̄(X). (1.6)

Obviously, if innovation is EHN, it is also HN, because eq.(1.6) implies eq.(1.3).
In general, the three definitions of neutrality are not equivalent. Antle and Capalbo (1988,

p.38) note that innovation that results in a renumbering of the isoquants is also neutral in terms
of the MRTS at points on the expansion path but may not be neutral in terms of optimal factor
proportions. Moreover, a priori, neither HN nor IHN is sufficient for EHN. Nevertheless, there
are conditions under which HN, IHN and EHN coincide. First, under the assumption that the
production function is input homogeneous, the three definitions are equivalent (see Morimoto,
1974; Blackorby et al., 1976). IHN and HN are equivalent if and only if the production function
is input homothetic, while the equivalence of IHN and EHN implies the homotheticity of f . A
detailed presentation of the relationships among HN, IHN and EHN is provided in Appendix A.

1.2.2 Econometric specification: relaxing and testing Hicks neutrality

The above definitions of neutrality can be assessed using a suitable econometric framework.
We assume that the inputs of production are the conventional factors capital (K) and labour
(L). The innovation activity of the firm is described by a binary variable I ∈ {0, 1}, as in many
previous works (see, e.g., Mairesse and Mohnen, 2010; Mohnen and Hall, 2013). We consider
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a specification that allows us to relax the neutrality assumption. This is achieved by focusing
on a model in which innovation not only produces a shift in the production technology – as
is usually imposed in econometric analyses – but is also interacted with labour and capital
inputs, thus allowing the technology parameters to differ between innovative and non-innovative
firms. For simplicity, comparability with previous studies and data congruence, the main analysis
is conducted assuming a CD technology, while in Appendix B, we derive testable conditions
concerning the TL form and its relationship with HN.

Empirical studies usually consider a CD production function in which innovation enters ad-
ditively. Given a sample of n observations, the econometric model is described by:

lnYi = ln fCD (Ki, Li, Ii, ϵi) = α+ αI Ii + αK lnKi + αL lnLi + ϵi, (1.7)

where i denotes the i-th observation, and ϵ is the error term. Then, the MRTS1 between L and
K is given by:

MRTSCD
i = −αL

αK

Ki

Li
, (1.8)

which, being independent of I, implies that HN holds. Moreover, IHN is also imposed because
for constant factor proportions, the MRTS is both independent of I and constant. Finally, I is
EHN because (1.5) holds, that is:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = αK

1

Ki
&

∂

∂Li
E [lnYi|Ki, Li, Ii] = αL

1

Li
.

Alternatively, it suffices to observe that I is strongly separable from the inputs in fCD. In sum-
mary, in the case of a CD production function with added innovation as described by (1.7), all
definitions of neutrality described above are satisfied. This equivalence is also implied by the
input homogeneity of fCD.

In (1.7), innovation additively enters the production function. To relax HN, we consider a CD
production function in which innovation also interacts with the inputs, as given by:

lnYi = ln fCDh (Ki, Li, Ii, ϵi) = α+αI Ii+αK lnKi+αKI Ii lnKi+αL lnLi+αLI Ii lnLi+ ϵi. (1.9)

Then, the MRTS between L and K becomes:

MRTSCDh
i = − αL + αLI Ii

αK + αKI Ii

Ki

Li
. (1.10)

In this case, neither HN nor IHN hold, unless the following condition holds:

αKIαL = αLIαK . (1.11)

1Computation of the MRTS involves deriving the marginal products of the inputs. The marginal product of
Xr, r = 1, 2, . . . , k at (Yi,Xi, Ii), i = 1, 2, . . . , n is given by ∂E(Yi|Xi, Ii)/∂Xr,i, which assumes the exogeneity
of all variables, that is, E(ϵi|Xi, Ii) = 0, i = 1, 2, . . . , n. (see Verbeek, 2008, for a discussion of marginal effects in
the linear model) This assumption is considered in this section only to simplify the presentation without losing any
relevant information.
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Moreover, the definition of EHN does not hold, generally, because:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = (αK + αKI Ii)

1

Ki
&

∂

∂Li
E [lnYi|Ki, Li, Ii] = (αL + αLI Ii)

1

Li
.

Alternatively, it suffices to show that I is not strongly separable from the inputs in fCDh, unless
the following condition holds:

αLI = αKI = 0. (1.12)

In summary, in the case of a CD production function with interactions as described in (1.9), the
definitions of HN, IHN and EHN are not satisfied, unless particular conditions are met.

1.2.3 Estimation methods

The particular structure of models in which a dummy endogenous innovation additively enters
the production function (1.7) is typically referred to as the dummy endogenous variable model.
This specification, which is standard in the econometric literature focusing on the effect of in-
novation on productivity (Mohnen and Hall, 2013), can be consistently estimated using, among
other methods, the standard IV estimator (IV-2SLS, hereafter; see, e.g., Wooldridge, 2010; Kele-
jian, 1971; Angrist and Krueger, 2001) and selecting the instruments within the determinants of
the innovation function (Musolesi and Huiban, 2010). However, in a model with interactions
between the endogenous dummy and the explanatory variables, the adoption of the IV-2SLS
is more problematic. The main problem arises because each interaction term IXr will be also
endogenous. Therefore, estimating such a model by standard IV-2SLS would require finding
instruments for all the endogenous variables I, IXr, r = 1, 2, . . . , k. If Z is a set of ρ valid in-
struments for I, then a natural set of instruments for IXr is {ZjXr : Zj ∈ Z}. This approach
results in a total of (k + 1)ρ IVs, while it is well known that the estimation by standard IV-2SLS
in the presence of many instruments exhibits substantial bias and makes inference inaccurate
(see Hansen et al., 2008)

Consequently, we use an alternative IV approach proposed by Wooldridge (2010) (IV-W),
which is more efficient than IV-2SLS and has a number of other interesting features. The imple-
mentation of IV-2SLS requires the zero correlation assumption, i.e., E (ϵ) = E(ϵX) = E(ϵZ) =0,

whereas to use IV-W, the error term ϵ should have zero conditional mean – E (ϵ | X,Z) = 0 –
which is a stronger exogeneity assumption that ensures that E (ϵ) = E(ϵX) = E(ϵZ) =0 but also
implies that ε is uncorrelated with any function of X and Z. Under the zero conditional mean as-
sumption, the two-step approach proposed by Wooldridge for a model in which the endogenous
dummy enters additively, as in (1.7), consists in estimating P (I = 1 | X,Z) = F (X,Z;γ) by
(probit) maximum likelihood (ML) and then estimating the structural equation by IV-2SLS using
1, X and the estimated conditional probability P̂ as instruments.

This two-step approach has a number of very interesting features since i) although gen-
erated instruments are used, the usual IV-2SLS standard errors and test statistics remain
asymptotically valid for the second stage; ii) provided that the homoskedasticity assumption
Var(ϵ|X,Z) = σ2 holds, the IV-2SLS estimator of the second step is asymptotically the most
efficient for the class of estimators in which the instruments are functions of (X,Z); and, possi-
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bly most important, iii) this estimator possesses an important robustness property since the
estimator of the structural equation in the second step is consistent, even if the model for
P (I = 1|X,Z) is not correctly specified, while the requirements that are needed for consis-
tency are much weaker (White, 1982). In other words, the innovation function does not have
to be correctly specified to obtain consistent estimates for the parameters in the augmented
production function.

To estimate a model with interactions such as (1.9), Wooldridge (2003, 2010) proposes a
method (IV-W-H) that is a simple extension of that presented above and provides a solution to
the problem of many instruments in the standard IV-2SLS. This is achieved by using the optimal
– in terms of efficiency – instruments P ≡ P (I = 1|X,Z) for I and PXr for IXr, r = 1, 2, . . . , k .
This approach consists of the following two steps:

a. Estimate P (I = 1|X,Z) = G(X,Z; γ) by ML and obtain the fitted values P̂ .

b. Estimate the structural equation by IV-2SLS using 1, X, P̂ and P̂X as instruments.

As before, under the zero conditional mean assumption, the IV-2SLS of the structural equa-
tion is a consistent and asymptotically normal estimator, and again, the binary response model
does not need to be correctly specified to achieve consistency. Some additional remarks are in
order.

First, note that to estimate (1.9), we use the same parametrization as in Wooldridge (2003,
2010), where the interaction terms are mean centred, i.e., I

(
X−X

)
. Second, note that X is

introduced in
(
X−X

)
as an estimator of E(X) and this should be accounted for when com-

puting the standard errors. However, according to Wooldridge (2010), this will not have serious
consequences, and heteroskedasticity-robust standard errors could still be employed; alterna-
tively, bootstrapped standard errors are a viable alternative. Third, the parameter associated
with innovation, αI , measures, under weak assumptions, the average treatment effect (ATE),
i.e., αI = αATE

I
for both the additive (1.7) and the interaction model (1.9). As the interaction

terms are mean centred and using the same notation as in Cerulli (2014), we can define the
following:

ATE(X) = E (lnY | X,Z,I = 1)−E (lnY | X,Z,I = 0)

= αI + αKI (lnK − lnK) + αLI

(
lnL− lnL

)
.

(1.13)

While in the additive model, the innovation effect is constant, specifying (1.9) allows for an
heterogeneous effect of innovation across firms, which is a function of the production inputs.
This is why, in the heterogeneous case, we will also focus attention on the estimation of the
distribution of such an effect. Finally, suppose that the unobservable stochastic part of the
model, ϵ, differs between innovative and non-innovative firms, that is, ϵ = ϵ0+ I(ϵ1− ϵ0), ϵ1 ̸= ϵ0.
In such a case, under a fairly weak assumption, the above procedure continues to be consistent.
The assumption that is required for consistency is a mean independence assumption E[I(ϵ1 −
ϵ0)|X,Z] = E[I(ϵ1 − ϵ0)], which is generally reasonable for continuously distributed responses
(see Angrist, 1991; Wooldridge, 2010).
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1.3 Data and Results

1.3.1 Data

The data used for the analysis come from the tenth and last Survey on Manufacturing Firms
(”Indagine sulle Imprese Manifatturiere”) provided by Unicredit-Capitalia, which is complemented
with balance sheets sourced from either AIDA (the Italian Balance Sheet Dataset of the Bureau
van Dijk) or from the Chambers of Commerce Registry (UNICREDIT, 2008). The same survey,
although in different waves, has been widely used in the economics literature on firms’ innova-
tion activities (for example Parisi et al., 2006; Hall et al., 2009). Information on the innovation
activity of firms was derived from the survey that was conducted in 2007 and posed questions
referring to the three-year period 2004-2006, while the variables derived from balance sheets
refer to the year 2006. The initial sample comes from a stratified survey: all firms with more than
500 employees are included, while for the firms with fewer than 500 employees, a sample is ex-
tracted and stratified according to the information collected from the company registry for the
variables size, value added, geographical location and industry. To estimate the econometric
model, the main variables we consider are as follows:

1. The natural logarithm of value added (lnY ): the measure refers to 2006 and is reported
on the balance sheet.

2. The natural logarithm of the capital stock (lnK): the measure refers to 2006, is calculated
by summing the value of fixed assets, and is estimated through a perpetual inventory
method considering the usual rate of depreciation of 0.05, including investments. Both
measures of fixed assets and investments are available from 1998 to 2006, and both are
deflated with the respective aggregate price index (derived from ISTAT, the Italian National
Statistical Office).

3. The natural logarithm of labour (lnL): number of employees in 2006 reported on the
balance sheet.

4. Innovation, I: an innovation dummy taking value 1 if the firm affirmed having introduced
at least one product or one process innovation in the previous three years (2004-2006), 0
otherwise.

5. Sectors: the manufacturing firms are classified by sector according to the two-digit ATECO2002
classification, which derives from the NACE Rev.1.1 Eurostat classification.

The aim of our preliminary data analysis is to identify the outliers in the sample, and the econo-
metric sample is obtained by adopting the cleaning procedure detailed below.

First, we drop observations with missing or inconsistent values, resulting in a sample of 3237
firms. Second, outliers are detected using the boxplot rule (Tukey’s method) on the variables
under investigation. In so doing, another 232 observations (7% of the total) that exceed the
boxplot’s outer fences are dropped, resulting in a dataset of 3005 firms and a significant re-
duction in the range of the variables. We also search for outliers with respect to productivity.
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Consequently, we define total factor productivity as TFP = Y/(K0.3L0.7) and then again apply
the boxplot rule to detect another 81 outlying observations. Therefore, the final dataset consists
of 2924 firms.

Descriptive statistics of the main inputs and output are presented in Table 1, while the Z

variables are described in Table 4 of Appendix C. Note that the percentage of innovating firms
in the final dataset employed in this work is 64%. This value is the same as in Hall et al. (2009),
who construct a panel data set starting from different waves of the same survey used in this
work. This value is also very close to the percentage of innovating firms obtained using the
Italian CIS survey (Hall et al., 2008).

1.3.2 Main results

First, we focus on the choice of the set of the Z variables. Importantly, as explained in subsection
1.2.3, Wooldridge’s approach for both the additive and non-additive specifications (IV-W and IV-
W-H) is consistent even if the model for P (I = 1|X,Z) is not correctly specified. This is an
important robustness property.

In Table 2, we report the main results, which are obtained by using Wooldridge’s approach
and selecting the Z variables using a backward selection procedure, with a threshold of 0.10
for the p-value. The presentation of this single set of results, leaving the remaining to Appendix
C, is chosen because of the extreme stability of the results across the different specifications.
Appendix C presents many additional results. These results are obtained using alternative def-
initions of the vector Z and also adopting the standard IV-2SLS method, where the instruments
are selected to be strong and valid.

Examining the results reported in the first two columns of Table 2, which are obtained esti-
mating the additive specification, reveals their consistency with previous empirical work. While
the baseline OLS approach does not provide evidence supporting the positive role of innovation
in the production process, with α̂I = 0.0189 and being non-significant, when we use the IV-W
method, we find a positive and significant Hicks-neutral effect of innovation, with α̂I = 0.285,
which is in line with the existing literature (Hall, 2011), where this parameter ranges from ap-
proximately 0.2 to approximately 0.3. Moreover, the estimated coefficients of labour and capital
are also in line with previous work, with α̂K = 0.179 and α̂L = 0.741, and a resulting elasticity of
scale equal to 0.92.

We then turn to the estimation of the non-additive specification using the IV-W-H method,
which is the main interest of this paper. The estimated average effect of innovation (0.272) is
very close to that estimated using the additive model IV-W (0.285). Note that the results pre-
sented in Table 2 are all obtained using heteroskedasticity-robust standard errors. As stressed
in subsection 1.2.3, when adopting the IV-W-H approach, bootstrapping the standard errors can
be a viable solution to account for the fact that mean-centred variables are used for the interac-
tion terms. We also apply a bootstrap with 1000 replications, which does not affect the results.
The second important result that emerges is that the estimated parameters associated with the
interaction terms, α̂KI and α̂LI , appear to be statistically significant. This is a crucial result from
this paper indicating that innovation does not have a neutral effect on production output. In fact,
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the production technology of innovative firms differs significantly from that of non-innovative
firms, and this difference is produced by two elements: 1) a significant estimated parameter
allowing for a shift, α̂I ; 2) a significant change in the slope parameters, which is measured by
α̂KI and α̂LI , thus also affecting the shape of the production function.

Moreover, the additive specification can be tested against the non-additive one using a modi-
fied F test (Wooldridge, 1995). Unlike the standard F test, this statistic uses the sum of squared
residuals from the second stage of the IV-2SLS regressions in the second step of the IV-W
and IV-W-H approaches. The test rejects the additive specification in favour of the non-additive
specification at the 5% significance level. In other words, the test rejects the condition (1.12)
under which EHN is true. Further, we examine the condition under which HN and IHN hold in
the non-additive specification using a Wald-type test; the test rejects, at the 5% level, the null
hypothesis that (1.11) holds. Therefore, all definitions of Hicks neutrality are firmly rejected.

By examining the estimated parameters, we can obtain further insights into how technology
differs between innovative and non-innovative firms. The estimated elasticity of labour for inno-
vative firms equals 0.94 and is much higher than that for non-innovative firms, which is estimated
at 0.43. The opposite holds for capital, with elasticity values equal to 0.33 for non-innovative and
to 0.08 for innovative firms. As explained below, we find evidence of a capital-saving innovation.
This supports the idea that innovation has an heterogeneous effect on the production process,
which depends substantially on the production input with which it interacts. The consequences
of the different interaction effects are visible in the shape of the estimated production function
(fig.1.1).

The estimatedATE(X) is equal to 0.272+0.510
(
lnL− lnL

)
−0.248(lnK−lnK), where α̂I =

0.272 is the estimated ATE, and we can focus our attention on the estimation of the underlying
density function using the kernel approach. We use a second-order Gaussian kernel and cross-
validation to choose the smoothing parameter. The estimated density is plotted in fig.1.2. As
noted above, in our case, the ATE corresponds to the innovation coefficient. The estimated
ATE returns an increase in value added of approximately 27% if innovation is introduced. Note
that the ATE is the mean value of the ATE(X). The estimated ATE(X) is positive for most of
the domain of the inputs: it ranges from -.677 to 1.453 and is positive for approximately 82% of
the observations. Innovative firms are less productive than non-innovative firms only for very low
values of labour associated with relatively high values of capital. On the contrary, the highest
ATE(X) appears for high values of labour associated with low values of capital. These results
are directly related to the notion of locally progressive TC, which according to Chambers (1988),
is fairly common in practice and has relevant implications. To the best of our knowledge, this is
the first paper providing empirical evidence of such a situation.

Next, we discuss the elasticity of scale (see Basu and Fernald, 1997, for a through discus-
sion on estimated returns to scale). While non-innovative firms are characterized by decreasing
returns to scale, with an estimated elasticity of scale α̂K + α̂L = 0.75, innovative firms exhibit
slightly increasing returns to scale, with an estimated elasticity of scale α̂K + α̂KI + α̂L + α̂LI =

1.02. Using Wald tests, the hypothesis of constant returns to scale is not rejected at the 10%
significance level for innovative firms, while it is rejected at the 0.1% level for non-innovative
firms. Instead, when we estimated a model assuming a common technology (the additive one),
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the elasticity of scale equals 0.92. In this case, the hypothesis of constant returns to scale is
rejected at the 0.1% level. This indicates that when estimating a production function with added
innovation, we face a kind of heterogeneity bias since the value 0.92 is obtained mingling two
heterogeneous technologies: that of innovative firms characterized by constant returns to scale
and that of non-innovative firms with decreasing returns to scale.

A final object that is of great relevance is the MRTS, the analysis of which provides us with
information on the nature of technological progress. To obtain insights into such an object, we
first use contour plots (in figure 1.3) to represent the estimated production function. Such iso-
lines have a direct economic interpretation as the estimated isoquants. Given the shapes of the
isoquants in figure 1.3, we find that the MRTS – the slope of the isoquants – is higher for inno-
vative than for non-innovative firms. The substitution opportunities are reduced for innovative
firms. The values of the relative MRTS tell us that to compensate for a 1% change in labour, an
innovative firm should change capital by approximately 12%, while a non-innovative firm needs
a change in capital of only approximately 1.3%.

To obtain complementary information, we also calculate the MRTS using (1.10) and then
focus on the estimation of its density function (figure 1.4). We specifically estimate the condi-
tional density of the MRTS, conditional to innovation. With innovation being a discrete variable,
we adopt the approach of (Hall et al., 2004), which uses generalized product kernels to deal
with mixed data and cross-validation to choose the smoothing parameters. Interestingly, the
smoothing parameter associated with innovation goes to zero. This not only suggests that inno-
vation is relevant – meaning that the two densities are not the same –but also indicates that the
generalized estimator collapses to the standard frequency estimator. This result goes further in
the direction of fully heterogeneous technology.

1.4 Conclusion

In standard econometric models, innovation additively enters the production function, imposing
a strict condition of Hicks neutrality. We depart from this restrictive framework by consider-
ing a production function that allows a heterogeneous effect of innovation on the production
process and relaxes the Hicks neutrality assumption. We derive conditions, for common para-
metric specifications, under which neutrality holds and that are easily testable through common
Wald-type tests. Further, taking into consideration the endogenous character of innovation, we
estimate the model by adopting an instrumental variables approach that addresses the prob-
lem of many instruments when estimating a model with interactions. The econometric analysis
rejects Hicks neutrality and indicates that innovation produces a non-neutral effect on the pro-
duction process, which is obtained because of the joint presence of a shift in the production
technology and a change in the slope of the isoquants. The latter indicates that innovative firms
are capital saving compared with non-innovative firms. Moreover, as a consequence of the
joint effect described above, a locally progressive technical change is also observed, because,
while for most of the domain of the inputs, innovation has a positive effect, for a small part
of it, innovative firms are less productive than non-innovative firms. Overall, our results indi-
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cate fully heterogeneous production technologies when comparing innovative to non-innovative
firms. These findings have interesting policy implications, as they highlight the complex fashion
in which innovation affects the production process. To the best of our knowledge, this is the first
study supporting such evidence.

Further studies may consider extending the analysis to other countries or to specific sectors.
Methodological extensions may be achieved by considering a panel data framework to account
for the time dimension or by adopting nonparametric methods to highlight the potential presence
of localized technical change.
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Table 1: Descriptive statistics
lnVA lnK lnL

All firms I=0 I=1 All firms I=0 I=1 All firms I=0 I=1
minimum 2.52 2.52 2.75 3.65 4.11 3.65 2.30 2.30 2.30
median 7.43 7.25 7.53 7.71 7.50 7.81 3.50 3.30 3.58
mean 7.46 7.32 7.53 7.60 7.46 7.68 3.52 3.40 3.59

maximum 9.32 9.29 9.33 9.78 9.77 9.78 5.50 5.48 5.50
st. deviation 0.81 0.82 0.80 1.11 1.13 1.09 0.73 0.73 0.72

Table 2 - Main results: lnVA as dependent variable
OLS IV-W IV-W-H

lnL .750∗∗∗ .741∗∗∗ .428∗∗∗

(.0166) (.0218) (.1044)

lnK .185∗∗∗ .179∗∗∗ .327∗∗∗

( .0108) (.0135) (.0639)

Innovation .0189 0.285∗∗∗ 0.272∗∗∗

(.0159) (.0774) (.0806)

IlnL 0.510∗∗∗

(.1545)

IlnK -0.248∗∗

(.0970)

intercept 3.228∗∗∗ 2.870∗∗∗ 3.120∗∗∗

(.0578) (.1203) (.2618)
N 2924 2239 2239
R2 .758 .727 .704
adj. R2 .755 .724 .701
Endogeneity test 12.177∗∗∗ 23.341∗∗∗

Montiel-Pflueger F 168.204
[critical value] [37.418]
ATE .019 .285 .272
Elasticity of labour .75 .74
Elasticity of labour (I = 0) .43
Elasticity of labour (I = 1) .94
Elasticity of capital .19 .18
Elasticity of capital (I = 0) .33
Elasticity of capital (I = 1) .08
Elasticity of scale .94 .92
Elasticity of scale (I = 0) .75
Elasticity of scale (I = 1) 1.02
Relative MRTS -4.12 -4.14
Relative MRTS (I = 0) -1.31
Relative MRTS (I = 1) -11.78
Montiel-Pflueger test for weak instruments, null hypothesis that instruments are weak. τ = 5%,
confidence level α = 5%, test not applicable in regressions with one endogenous variable.
Sectors not presented in the table.
Wooldridge’s (1995) robust score test for overidentifying restrictions not applicable.
Endogeneity test according to Wooldridge’s (1995) score test.
Robust standard errors, Huber/White/sandwich estimator
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, robust standard errors in parentheses
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Figure 1.1: Estimated production function (IV-W-H method)

Figure 1.2: Distribution of the ATE(X), estimated using gaussian kernels. The dashed lines rep-
resent 95% bootstrapped confidence bands. The bandwidth (0.07) is selected by least squares
cross validation. The mean value of ATE (X) corresponds to ATE and is equal to 0.272.
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Figure 1.3: Contours of the production function estimated with IV-W-H. The grey lines cor-
respond to the contours of the innovative firms, while the black lines correspond to those of
non-innovative firms.

Figure 1.4: Density distribution of the MRTS. The dotted line corresponds to the MRTS esti-
mated by the IV-W approach. The solid line and the dashed line correspond to the MRTS of
non-innovative and innovative firms in the IV-W-H case.
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Supplementary Material

Appendix A: Relationships among HN, IHN and EHN

The definitions of HN, IHN and EHN are described in subsection 1.2.1. In this appendix we
provide additional insights into the work of Blackorby et al. (1976, sec.4). Specifically, we provide
an illustrative, simplified presentation of the conditions under which the above definitions are
equivalent, and we highlight their relationships using the following figure.

Figure 1.5: Illustration of the relationships among the different definitions of Hicks neutrality;
double arrows symbol implies equivalence.

The relationship between EHN and HN

Consider the production function Y = f (X, I), where X is a vector of inputs and I is a variable
that measures innovation. If I is EHN, then I is strongly separable from X. Therefore, it is also
weakly separable from X. For definitions of weak and strong separability, we refer to Chambers
(1988, p. 42-46). Morimoto (1974) proves that weak separability of I from X is equivalent to
I being HN. Therefore, if I is EHN, it is also HN. In general, the converse does not hold, that
is, I being HN does not necessarily imply that it is also EHN. Uzawa and Watanabe (1961)
prove that in the case of an input-homogeneous production function f , I is HN if and only if
f is multiplicatively decomposable into a function of I and a function of X. Therefore, if the
production function is input homogeneous, then HN implies EHN.

The relationship between HN and IHN

Moreover, HN and IHN are generally not equivalent terms. Blackorby et al. (1976, fig.I) describe
technical progress that is HN but not IHN, and vice versa. They prove that HN and IHN are
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equivalent if and only if the production function is input homothetic. An obvious consequence of
this theorem is that in a homothetic production function, if I is not HN (IHN), then it is also not
IHN (HN). Moreover, if I is HN (IHN) but not IHN (HN), then f is not input homothetic.

The relationship between IHN and EHN

In general, IHN and EHN are also not equivalent. Blackorby et al. (1976) prove that if I is IHN
and EHN, then the production function is input homothetic. By negation, it can be shown that if
f is homothetic and I is EHN (IHN), then I should also be IHN (EHN). For example, in (1.14),
we describe an empirical specification of a TL function with an added I. In this case, I is EHN
but, generally, not IHN, unless certain homotheticity conditions hold.

Finally, note that according to the above, if the production function is input homogeneous,
then HN, IHN and EHN are equivalent. Indeed, baring that homogeneity implies homotheticity,
if f is homogeneous and I follows one of these definitions of neutrality, then I should also follow
the other two (see also fig.1.5).

Appendix B: Hicks neutrality and the translog specification

In this study, we have also estimated by IV-2SLS, IV-W and IV-W-H the TL specifications that
are presented in (1.14) and (1.17) below. Nevertheless, the results of the F-type tests (see
Wooldridge, 1995) that compare the CD and the TL models do not reject the CD specification
and the estimations of the TL model provide poor results in terms of magnitude and significance
level for most of the coefficients.2 For these reasons, the main interest in this paper is on the CD
specification. However, as the TL specification is the most popular Diewert-flexible form and a
widely used direct generalization of the CD specification, we extend the analysis in section 1.2.2
to account for the TL case. Particularly, in this appendix, we provide insights into HN within a TL
framework and provide easily testable conditions for the presence of HN in TL specifications.
Therefore, the following analysis may be useful in empirical studies that adopt a TL framework
while relaxing HN.

Under the assumption that innovation enters additively, the econometric specification of a
TL production function with conventional inputs K and L is:

lnYi = ln fTL (Ki, Li, Ii, ϵi) =

= α+ αI Ii + αK lnKi + αL lnLi + αKL lnKi lnLi + αK2

1

2
lnK2

i + αL2

1

2
lnL2

i + ϵi,
(1.14)

and the MRTS between L and K is described by:

MRTSTL
i = − αL + αKL lnKi + αL2 lnLi

αK + αKL lnLi + αK2 lnKi

Ki

Li
, (1.15)

according to which I is HN but not IHN, because the MRTS is not constant along a ray from
the origin, unless αKL + αL2 = 0 and αKL + αK2 = 0. Moreover, EHN holds because fTL is

2The results of the estimations of the TL specifications are available upon request.
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multiplicatively decomposable into a function of I and a function of the inputs. Alternatively, it
can be shown that:

∂

∂Ki
E [lnYi|Ki, Li, Ii] = (αK + αKL lnLi + αK2 lnKi)

1

Ki
(1.16a)

∂

∂Li
E [lnYi|Ki, Li, Ii] = (αL + αKL lnKi + αL2 lnLi)

1

Li
. (1.16b)

Note that while in the case of a CD production function with added innovation, all the above
definitions of neutrality are imposed, the TL specification with added innovation imposes HN
and EHN but not IHN.

Further, a TL function with interaction terms between innovation and the explanatory vari-
ables is described by:

lnYi = α+ αI Ii + αK lnKi + αKI Ii lnKi + αL lnLi + αLI Ii lnLi + αKL lnKi lnLi+

+ αKLI Ii lnKi lnLi + αK2

1

2
lnK2

i + αK2I

1

2
Ii lnK

2
i + αL2

1

2
lnL2

i + αL2I

1

2
Ii lnL

2
i + ϵi.

(1.17)

In this case, the MRTS between L and K is given by the following equation:

MRTSTLh
i = − αL + αLI Ii + (αKL + αKLI Ii) lnKi + (αL2 + αL2I Ii) lnLi

αK + αKI Ii + (αKL + αKLI Ii) lnLi + (αK2 + αK2I Ii) lnKi

Ki

Li
. (1.18)

Generally, the definitions of HN and IHN are not satisfied because the MRTS in (1.18) is depen-
dent on I. By contradiction, it is proven that the definition of EHN does not hold either, unless
αLI = αKI = αKLI = αK2I = αL2I = 0. Finally, assuming non-zero coefficients, HN holds only if
at least one of the following conditions is satisfied:

αK

αL

=
αKL

αL2

=
αK2

αKL

=
αKI

αLI

=
αK2I

αKLI

=
αKLI

αL2I

, or (1.19a)

αLI

αL

=
αKI

αK

=
αKLI

αKL

=
αK2I

αK2

=
αL2I

αL2

. (1.19b)

Under condition (1.19a), I in (1.17) is also IHN because (1.8) and (1.18) coincide. Under con-
dition (1.19b), (1.18) is identical to (1.15). In this case, I is IHN if, in addition to (1.19b), it also
holds that αKL + αL2 = 0 and αKL + αK2 = 0.

In summary, in the case of a TL production function with interactions, the definitions of HN,
IHN and EHN are not satisfied, unless particular conditions are met. These conditions are
summarized in Table 3.
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Table 3 - Conditions for neutrality

Type TL additive TL non-additive

HN –

α
K
α
L

=
α
KL
α
L2

=
α
K2

α
KL

=
α
KI
α
LI

=
α
K2I

α
KLI

=
α
KLI
α
L2I

or
α
LI
α
L

=
α
KI
α
K

=
α
KLI
α
KL

=
α
K2I
α
K2

=
α
L2I
α
L2

IHN
αKL + αL2 = 0 and
αKL + αK2 = 0

α
K
α
L

=
α
KL
α
L2

=
α
K2

α
KL

=
α
KI
α
LI

=
α
K2I

α
KLI

=
α
KLI
α
L2I

or
α
LI
α
L

=
α
KI
α
K

=
α
KLI
α
KL

=
α
K2I
α
K2

=
α
L2I
α
L2

, αKL + αL2 = 0,

αKL + αK2 = 0

EHN – αLI = αKI = αKLI = αK2I = αL2I = 0

Appendix C: Robustness checks

In this appendix, we provide robustness checks of the main results presented in subsection
1.3.2. A natural approach is first to estimate the additive model by IV-2SLS and focus attention
on the choice of the IVs. We apply the IV selection method described below and arrive at differ-
ent choices of sets Z of strong and valid instruments. Then, we apply Wooldridge’s approach to
perform IV-W and IV-W-H estimations using the Z sets selected previously. As presented below,
the results are very robust in all estimations.

We first select an initial set of potential IVs according to the literature on KPF (see, e.g., Hall
et al., 2009; Musolesi and Huiban, 2010). This set is given in the table below.
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Table 4 - Initial set of IVs
Category Variables Description Type

Firm Char-
acteristics

NW, NE, C, S, Age, Group, Consortium
Firm’s characteristics including
geographical location; age and group or
consortium membership

binary
(0,1)

Human
capital RD Personnnel

Percentage of employees in Research and
Development activities

nu-
meric

Objectives
of

investment

BetterProd, MoreProd, NewProd, Env,
CostRed, Advert, SellNet, SellAss

Objectives including ameliorating the
product, produce more, introduce a new
one, reduce the environmental impact,
reduce costs, to increase the selling
network or to ameliorate it, respectively

binary
(0,1)

Market
penetration

MarkPenEU15, MarkPenEU2004,
MarkPenRussia, MarkPenOtherEU,

MarkPenAfrica, MarkPenAsia,
MarkPenCina, MarkPenUSMex,
MarkPenSouthAm, MarkPenOce

Market penetration in different world
regions, including EU member states,
Africa, Asia, China, U.S., Canada, Mexico,
South America and Oceania

binary
(0,1)

Commercial
agreements

CommAgrEU15, CommAgrEU2004,
CommAgrRussia, CommAgrOtherEU,

CommAgrAfrica, CommAgrAsia,
CommAgrCina, CommAgrUSMex,
CommAgrSouthAm, CommAgrOce

Commercial agreements in world regions,
as mentioned above

binary
(0,1)

Patent
acquisition

PatBuyEU15, PatBuyEU2004,
PatBuyRussia, PatBuyOtherEU,

PatBuyAfrica, PatBuyAsia, PatBuyCina,
PatBuyUSMex, PatBuySouthAm,

PatBuyOce

Location of the aforementioned world
regions where the firm acquired patents

binary
(0,1)

Production
overseas

ProdAbroadEU15, ProdAbroadEU2004,
ProdAbroadRussia, ProdAbroadOtherEU,

ProdAbroadAfrica, ProdAbroadAsia,
ProdAbroadCina, ProdAbroadUSMex,
ProdAbroadSouthAm, ProdAbroadOce

Production located in the aforementioned
world regions

binary
(0,1)

Competitive-
ness

LowCompet, HighCompet,
SmallProdScale

Perceived level of competitiveness and
scale of production compared to
competitors

binary
(0,1)

Financial
specs ListedComp, FinanIncent Listed company or receiving financial

incentives
binary
(0,1)

As highlighted in Bound et al. (1995), a major pitfall that results in inconsistency and large finite
sample bias exists when selecting instruments that are weakly correlated with the endogenous
variable. To avoid the presence of weak instruments and ensure the validity of the IVs, we follow
a two-step procedure.

First, we regress innovation on X and the above set and adopt a backward selection algo-
rithm to choose an initial set of potential IVs that could be strongly correlated with innovation.
The sets corresponding to a 10% and a 5% threshold are presented in the table below.

Table 5 - IV sets
set instruments

10% set FinanIncent, BetterProd, MarkPenEU15, C, EUCompet, NewProd, MarkPenEU2004,
ProdAbroadEU15, Age, CommAgrAfrica, RD Personnnel, MoreProd, HighCompet

5% set FinanIncent, BetterProd, MarkPenEU15, C, EUCompet, NewProd, HighCompet, Age
IV1 BetterProd, MarkPenEU15, EUCompet
IV2 FinanIncent, BetterProd, MarkPenEU15, C, EUCompet
IV3 FinanIncent, BetterProd, MarkPenEU15, EUCompet, NewProd

Generally, the bias of the IV-2SLS estimator increases as the correlation between the IVs
and the endogenous variable decreases and as the number of instruments increases. For
this reason, in a second step, we estimate by IV-2SLS the additive specification using all the
possible combinations of IVs from the 10% set. Since heteroskedasticity-robust standard errors
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are considered, for each specification, we apply the robust score tests by Wooldridge (1995)
to test endogeneity and overidentifying restrictions. We also use the Montiel-Pflueger test to
detect the presence of weak instruments (Montiel Olea and Pflueger, 2013). Unlike traditional
tests, the Montiel-Pflueger test also accounts for heteroskedastic, serially correlated errors.

The above post-estimation tests indicate IV sets of strong and valid instruments. According
to the Montiel-Pflueger test, 42 combinations provide strong IVs. We also find that for 54 sets,
the robust score test cannot reject the validity of the IVs. We finally select 13 sets of valid and
strong instruments for which the exogeneity test is not rejected. These combinations provide
very robust results; both the estimated coefficients and the significance levels are stable across
choices of sets. For reasons of brevity, in Table 6, we present the IV-2SLS, IV-W and IV-W-H
estimations using these three sets3, while Table 7 shows the averages of the IV-2SLS, IV-W and
IV-W-H estimations for the CD specifications using the above 13 sets.

The first three columns of Table 6 present the IV-2SLS results of the additive specification.
The estimated effect of innovation on productivity is between 0.24 and 0.31 and is significant at
0.01 level. In columns 4 to 6, we present the results of the IV-W estimations. The estimated
effects of labour, capital and innovation are similar to those from the IV-2SLS estimations, in
terms of both the magnitude of the coefficients and the confidence levels. The estimated in-
novation parameter is between 0.23 and 0.28 and significant at the 0.01 level. Finally, in the
last three columns, we also present the results of the IV-W-H estimation. The estimated inno-
vation parameter is significant at the 0.05 level, ranges between 0.22 and 0.31 and is similar
to the IV-2SLS and IV-W estimates. An exhaustive presentation of the IV-W-H results and the
comparison to the other approaches is given in subsection 1.3.2.

3The remaining sets and the results they provide are available upon request.
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Regarding the IV-W and IV-W-H estimations, the results presented in Table 6 are similar, in
both values and significance levels, to the respective results in Table 2. The robustness of the
results is clearly shown in Table 7, where we present the averages of the estimated parameters
that are obtained by the estimations that use the 13 sets mentioned above. The standard
deviations of the parameters are also presented in parentheses. The results show that the
estimated coefficients are stable across the different IV sets, for all estimation approaches.

In summary, the above sensitivity analysis shows that the results on the estimated ATE
are very stable across the different estimation methods: IV-2SLS, IV-W and IV-W-H. Moreover,
the results are very robust across different sets of Z and, further, strongly support the results
presented in the main text.

Table 7 - Cobb Douglas estimation averages
IV-2SLS IV-W IV-W-H

lnL .737 .738 .440
(.002) (.002) (.054)

lnK .179 .180 .310
(.002) (.002) (.027)

Innovation .285 .266 .256
(.056) (.055) (.053)

IlnL .489
(.090)

IlnK -.218
(.048)

intercept 3.176 3.180 3.233
(.021) (.020) (.073)

ATE .285 .266 .256
Elasticity of labour .74 .74
Elasticity of labour (I = 0) .44
Elasticity of labour (I = 1) .93
Elasticity of capital .18 .18
Elasticity of capital (I = 0) .31
Elasticity of capital (I = 1) .09
Elasticity of scale .92 .92
Elasticity of scale (I = 0) .75
Elasticity of scale (I = 1) 1.02
Relative MRTS -4.12 -4.11
Relative MRTS (I = 0) -1.44
Relative MRTS (I = 1) -10.85
Average values of the estimated parameters, ATEs, elasticities and rel. MRTS. Standard deviations
of the estimated parameters in parentheses.
Use of 13 IV sets of strong and valid instruments, for which the exogeneity test is rejected at 0.05.
Sectors not presented in the table.
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Chapter 2

Innovation and productivity: new
insights from nonparametric
instrumental regression

joint with Antonio Musolesi
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Abstract

We exploit recent advances on generalized kernel instrumental regression to revisit the rela-
tionship between innovation and productivity. This allows to highlight the possible presence
of a localized effect of an endogenous innovation variable and, thanks to smoothing discrete
variables, also to account for fully heterogeneous technologies across sectors. Such issues
are extremely relevant from both a theoretical and a policy oriented perspective but cannot be
addressed by adopting common parametric approaches. We also address the issue of the
predictive performances of this nonparametric estimator when compared to some parametric
alternatives. The results i) indicate that the proposed nonparametric estimator performs better
than parametric ones and ii) reveal some relevant patterns that can only be detected using the
nonparametric estimator.

Keywords: Nonparametric instrumental regression; localized and biased technical change; Innovation; Productivity;

JEL classification: C14; D24; O33;
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2.1 Introduction

Though Solow (1957) describes technical change (TC) “as a shorthand expression for any kind
of shift in the production function”, in the production theory, TC is typically considered to raise
output at all factor proportions (e.g., see Stewart, 1978). Its effect is usually represented by a
general shift of the production function outwards, or equivalently, by a uniform shrinking of the
unit isoquant towards the origin (Lapan and Bardhan, 1973). Therefore, it is assumed that TC
affects productivity globally, that is, in the entire domain of the production function, rather than
being localized in specific techniques (David, 1975).

A specific type of global shift refers to the notion of Hicks neutrality (Hicks, 1932), which is
often imposed both in theoretical models and in empirical applications. In its original formulation,
Hicks neutrality (HN) requires that the marginal rate of technical substitution of each pair of
inputs is independent of TC. Blackorby et al. (1976) extend the work by Hicks by introducing two
other non-equivalent definitions, i.e. implicit and extended Hicks neutrality. Acemoglu (2015)
highlights that in the language of modern growth theory, technological progress is neutral - in
the simplest form, Hicks neutral - creating the same proportional gain in output regardless of
factor proportions.

This orthodoxy that technical progress would increase productivity at all input levels was first
questioned by Atkinson and Stiglitz (1969). They suggest a formalization of the way by which
TC can be localized (see also Acemoglu, 2008, ch.18) and describe two contexts associated
with learning by doing and research activity, where increases in technical knowledge result in
localized technical change (LTC). In the same vein, Salter (1966) mentions that although, po-
tentially, there exists a large range of techniques of varying investment and labour intensity, only
the immediately profitable ones are actually developed, resulting in the localization of the TC to
the specific ones. In general, irrespective of its source, if TC does not refer to all techniques,
it will not result in a global shift of the production function, but it will be rather localized to spe-
cific factor proportions. Although Atkinson and Stiglitz’s (1969) view draw attention to several
theoretical works (e.g., see Lapan and Bardhan, 1973; Stewart, 1978) and despite the large
recognition of their original idea, “the orthodoxy that Atkinson and Stiglitz were criticizing is still
fairly influential” (Acemoglu, 2015, p.445).

At an empirical level, the analysis of the effect of TC on the production process is often
considered within the framework of the so-called knowledge production function (KPF) that was
proposed in the seminal works by Pakes and Griliches (1984) and Griliches (1998). Crépon
et al. (1998) introduce a multiple-equation econometric model, similar to the structure of the
KPF, where innovation activity is the main source of technical and knowledge improvements
and use appropriate estimation methods to consider the potential endogeneity of some of the
explanatory variables and the particular nature of the dependent variables. The availability
of survey data such as the ones in Community Innovation Surveys has allowed the use of a
direct and binary measure of the innovative output. Innovation enters a production function
framework as an endogenous dummy variable that accounts for TC (see, e.g., Mairesse and
Mohnen, 2010). Noteworthy, in the above literature, innovation typically enters additively into the
production function. This structure imposes a strict shape restriction and specifically implies
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HN (Antonioli et al., 2018).
The present study contributes to the literature on econometrics of productivity and innovation

by providing an empirical analysis of a fully nonparametric production function model. In contrast
to parametric models, which usually employ assumptions that entail a much greater level of
specificity, such as neutrality and specific functional form, the adopted model only assumes that
the regression curve belongs to some infinite dimensional collection of functions, such as the
differentiable ones.

We exploit recent advances on generalized kernel instrumental regression (see, e.g. Horowitz,
2011; Darolles et al., 2011). This allows to highlight the possible presence of a localized effect
of an endogenous innovation variable and, thanks to smoothing categorical variables (Racine
and Li, 2004; Hall et al., 2007), also to account for fully heterogeneous technologies across sec-
tors. While it is well known that the production technology greatly differs across sectors, due to
the existence of small sized sectors, common econometric specifications introduce the sectors’
variable into the model additively, therefore assuming that the effect of sectors to productivity
is described by just a global shift of the production function. Since the kernel estimator can
be written as a convex combination of a frequency and a pooled estimator (Kiefer and Racine,
2009, 2017), with the smoothing parameter determining the balance between these two ex-
tremities, our estimation approach provides an insightful measure of the level of heterogeneity
across sectors and between innovative and non-innovative firms.

We also address the issue of the predictive performances of this nonparametric estimator
when compared to some parametric alternatives, adopting the recent ”revealed performance”
approach proposed by Racine and Parmeter (2014). While nonparametric models have been
shown to significantly improve the predictive ability of parametric models in some cases, this
result is not assured ex ante. For instance, Racine and Parmeter (2014) provide empirical
evidence showing that overspecified parametric and nonparametric estimations may not be
accurate. The curse of dimensionality problem of nonparametric specifications and the bias-
efficiency trade-off, which generally arises when comparing parametric and nonparametric mod-
els, are some of the main reasons of this uncertainty. Therefore, in spite of the a priori appeal
of nonparametric modeling and because of the great uncertainty surrounding the true DGP, it
could be of interest to compare parametric and nonparametric models in the present framework.

The remainder of the paper is organized as follows. Section 2.2 introduces an empirical
specification which allows localized innovation to be detected. It also describes the nonpara-
metric methods we use to estimate the above specification. Sections 2.3 and 2.4 present the
data that are used and the results of the analysis. Section 2.5 concludes the paper and presents
our further steps in this work. Appendix A provides information on the data used and the pro-
cess of data cleaning that is followed, while it also provides some descriptive statistics. Finally,
appendix B describes the procedure that we follow to select instruments.
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2.2 Econometric specification and estimation method

2.2.1 Kernel regression with mixed data and shrinkage estimators

For a production function f : Rk
+ × D → R+, we assume the following econometric model:

Y = f (Z) + u. (2.1)

Y is a scalar, square integrable dependent variable measuring the produced output and Z =

(X, S, I) is a vector of explanatory variables that includes the k× 1 vector X = (X1, X2, . . . , Xk)

of continuous inputs, a categorical variable S for sectors and the dummy innovation variable I.
D = DS × DI is the range of the discrete variables D = (S, I). f is the unknown function of
interest and u is the error term.

The generalized product kernel approach (see Racine and Li, 2004; Darolles et al., 2011) is
adopted to estimate f . We denote by lS and lI the univariate kernels of the discrete variables
S and I respectively, and by wm,m = 1, 2, . . . , k the kernels of the continuous variables X.
Further, we denote by γ = (λ,h) the vector of smoothing parameters of Z, where λ = (λS, λI)

is the vector of bandwidths for D and h = (h1, h2, . . . , hk) is the vector of bandwidths of X. Let
z = (x,d) and d = (S, I). For z,Z ∈ Rk

+ × D, the generalized product kernel is defined by:

K(Z, z,γ) = L(D,d,λ)W (X,x,h), (2.2)

where L(D,d,λ) = lS(S, S, λS)lI(I, I, λI) is the product kernel of the discrete variables and

W (X,x,h) =
k∏

m=1
h−1
m wm(Xm, xm, hm) is the product kernel for the continuous variables. In

this work we employ second order gaussian kernels for the continuous variables and Li-Racine
kernels for the discrete variables. In particular, for a variable D ∈ D = (S, I), the discrete kernel
at point d is defined by:

lD(D, d, λD) =
{

1 if D = d
λD if D ̸= d

Hall et al. (2007) show that the Least Squares Cross Validation (LSCV) method selects the
bandwidths so that the smoothing parameters associated with irrelevant discrete explanatory
variables converge in probability to their upper extreme value.1 To the other extreme, if the
smoothing parameter of a discrete variable is zero, the respective kernel becomes an indicator
function and the estimator becomes a frequency estimator. These properties are closely related
to the concept of shrinkage that is described in Kiefer and Racine (2009, 2017), who provide a
Bayesian interpretation of the smoothing parameter. In particular, they associate the smoothing
parameter of a discrete kernel in a kernel estimator with the prior variance in a Bayes estimate,
highlighting that the smoothing parameter is larger for groups that are more homogeneous,
where the prior variance of the Bayes model is small, and smaller for less homogeneous groups,
where the prior variance is larger.

Note as well that the kernel estimator can be written as a convex combination of a frequency
1This argument is also true for continuous variables, but only in the case of the local constant regression, where

a bandwidth going to infinity produces a constant fit.
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and a pooled estimator, in which the weight is determined by the smoothing parameter. Indeed,
for a regression of Y on a categorical variable G, Kiefer and Racine (2009, 2017) show that the
kernel estimator ŷg of the expectation of Y conditional on a group G = g is described by:

ŷg = (1− Φ)ỹg +Φȳ., (2.3)

G where ỹg is the conditional mean frequency estimator and ȳ. is the unconditional mean fre-
quency estimator. Φ is a quantity in [0, 1] that depends on the group and the smoothing param-
eter. If the later is zero, Φ is zero, so that the kernel and the frequency estimators coincide.
For a value of the smoothing parameter at the upper extreme, Φ equals one and the groups are
pooled together. Selecting the bandwidth, LSCV can determine the appropriate level of hetero-
geneity between these two limits; the pooled and the frequency estimators are both extreme
cases, while “the truth probably lies somewhere in between. The parameters are not exactly the
same, but there is some similarity between them” (Maddala et al., 1997, p.91).

Indeed, it can be expected that there is some degree of similarity in terms of production tech-
nology across technologically close sectors. This remark is also implied in sector taxonomies
such as the Industry Classification Benchmark (ICB) or the work in Pavitt (1984), who identifies
common patterns at the sectoral level and categorizes the manufacturing industries into groups
according to their innovation strategies.2 Adopting the generalized kernel method, the close-
ness between sectors is data driven and it can be tuned, for instance, by LSCV instead of using
a specific taxonomy.

In summary, the generalized kernel method is robust to functional form specifications and
allows to model situations involving complex dependence among categorical and continuous
data, like the one that this work aims to highlight.3 To the best of our knowledge this is the
first work applying generalized product kernel to study the relation between innovation and
productivity. This is crucial to highlight the possible presence of LTC and also to account for
fully heterogeneous technologies across sectors, since the standard frequency approach is
unfeasible in practice with small sized sectors and, for such a reason, researchers typically are
obliged to assume that there is just a parallel shift in technology across sectors.

2.2.2 Nonparametric regression with endogenous innovation

The endogeneity of innovation is tackled applying instrumental variables (IV) methods which
have been recently proposed and allow estimation and inference in nonparametric models with
endogenous explanatory variables (see, e.g. Horowitz, 2011; Darolles et al., 2011). In general, if
at least one of the explanatory variables in Z is endogenous, then f in (2.1) cannot be estimated
by E (Y |Z). One approach to estimate f is to use a vector W of IVs so that E (u|W) = 0. f is
estimated as the solution to the following inverse problem:

E (Y |W) = E (f (Z) |W) . (2.4)

2A recent work in sectoral classification based on innovation activity is found in Castellacci (2008).
3see also He and Opsomer (2015) and Li et al. (2016).
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Assume the following linear, adjoint operators

T : L2
Z → L2

W , Th = E(h(Z)|W) and (2.5a)

T ∗ : L2
W → L2

Z , T
∗k = E(k(W)|Z), (2.5b)

where L2
Z and L2

W are the sets of all square integrable functions of Z and W respectively.
Moreover, denote by r the conditional expectation of Y given W, that is r(W) = E(Y |W).
Assuming that f ∈ L2

Z , (2.4) is equivalent to the expression

r = Tf. (2.6)

The identification of f is related to whether there is a unique solution to (2.6). Newey and
Powell (2003) and Newey (2013) highlight that f is identified if and only if κ(Z) = 0 almost ev-
erywhere is the only function that satisfies E(κ(Z)|W) = 0. Some remarks are in order. First,
the identification of f and the completeness of the conditional expectation are equivalent (see
D’Haultfoeuille, 2011). Moreover, the completeness is equivalent to the injectivity of T because
it implies that the nullspace of E(·|W) is zero. Canay et al. (2013) show that for nonparametric
models and under commonly imposed restrictions, the null hypothesis that the completeness
condition does not hold is not testable. Therefore, the usual maintained identification assump-
tion is that T is one-to-one (see Darolles et al., 2011; Horowitz, 2011). Then, T has an inverse
T−1 and the solution f in (2.6) is given by:

f = T−1r. (2.7)

Under the conditions of Picard theorem (see, e.g. Kress, 1999b), the solution described in
eq.(2.7) is given by:

f =

∞∑
j=1

⟨r, ψj⟩
λj

ϕj (2.8)

where (λj , ϕj , ψj), j = 1, 2, . . . are determined by the Singular Value Decomposition (SVD) of
T . λj , j = 1, 2, . . . are the singular values of T , arranged in decreasing order so that λj → 0

as j → ∞, while ϕj , j = 1, 2, . . . and ψj , j = 1, 2, . . . are orthonormal sequences in L2
Z and L2

W

respectively, such that Tϕj = λjψj and T ∗ψj = λjϕj , ∀j. The problem is ill-posed because the
mapping from r to f in (2.7) is not continuous. Indeed, consider an estimation r̂ = r + δψj that
enters (2.6), the error level δ > 0 being arbitrarily small. Darolles et al. (2011) mention that this
approximation of r introduces an error which leads to a result f + δ

λj
ϕj infinitely far from the

exact solution f . The large change in f due to an arbitrarily small change in r is also explained
in Horowitz (2011).

Because of the ill-posedness of the problem, a consistent estimator of f cannot result from
plugging in (2.7) consistent estimators of r (Newey, 2013). A solution to this issue is to create an
estimator where ill-posedness does not affect consistency; a sequence of bounded operators
Rα : L2

W → L2
Z , α > 0 can be found to approximate the unbounded inverse operator T−1.

Regularization is the approximation of an ill-posed problem by a family of well-posed problems
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such that their solutions converge to the solution of the ill-posed problem. The regularization
scheme approximates the solution f in (2.6) by f̂α = Rαr̂. Denote by δ the error level imposed by
the estimation of r, so that ||r̂−r|| ≤ δ, || · || being the usual norm in L2. The total approximation
error is given by the inequality ||f̂α− f || ≤ δ||Rα||+ ||RαTf − f ||. As described in Kress (1999b,
ch.15), the first term of the right hand side is the sample error, which increases as α → 0.
The second term is the error introduced by the approximation of T−1 by Rα and decreases as
α→ 0. Therefore, the regularization parameter αminimizes the overall error, balancing between
accuracy and stability.

Instead of directly regularizing the problem in (2.6), a common practice (see, e.g. Carrasco
et al., 2007; Horowitz, 2011; Centorrino et al., 2017) is to reshape the equation as follows.
Assuming that the completeness condition holds and that both operators T and T ∗ are compact,
we project (2.6) onto the space of Z, resulting in:

T ∗r = T ∗Tf (2.9)

Denote by T̂ ∗, T̂ and r̂ the estimators of T ∗, T and r respectively, obtained by standard non-
parametric estimators such as kernels and splines (Darolles et al., 2011; Horowitz, 2011). Then,
the sample counterpart of (2.9) is:

T̂ ∗r̂ = T̂ ∗T̂ f. (2.10)

Darolles et al. (2011) mention that f is identifiable if and only if T ∗T is one-to-one. Because
(T ∗T )−1 is noncontinuous, the problem remains ill posed. The regularization procedure is ap-
plied in (2.10) rather than in (2.6).

In literature, a plethora of different ways to regularize exists, including Tikhonov methods
and sieve estimations. In the present study the Landweber - Fridman approach (Landweber,
1951; Fridman, 1956) is followed. This method avoids the inversion of the T̂ ∗T̂ matrix in (2.10)
by using an iterative process (see Carrasco et al., 2007; Johannes et al., 2013) which leads to
the recursive solution:

f̂ν+1 = f̂ν + cT̂ ∗
(
r̂ − T̂ f̂ν

)
, ∀ν = 0, 1, . . . (2.11)

where c ensures the convergence of the iterative process and is selected so that c||T ∗T || < 1.

The solution in (2.11) can be rewritten as f̂1/α = c
1/α−1∑
ν=0

(
I − cT̂ ∗T̂

)ν
T̂ ∗r̂. 1/α is the total

number of iterations needed and α represents the regularization parameter. The number of
iterations can be specified minimizing a leave-one-out cross validation criterion (Centorrino,
2015). Following (2.11), after deriving f̂0 = cT̂ ∗r̂ from a first estimation of r, T and T ∗, f̂1
is computed. This step is repeated until a stopping rule, such as the following minimization
criterion presented in Centorrino et al. (2017).

SSR(ν) = ν
n∑

i=1

[
(T̂ f̂ν)− r̂

]2
, ν = 1, 2, . . . (2.12)

The iteration procedure stops when the above criterion, which describes a locally convex func-
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tion, starts to increase. In this study we employ a similar stopping rule; the procedure ends
when the quantity ||(r̂ − T̂ f̂ν)/r̂||2 stops falling.

2.3 Data

Data used for the analysis are sourced by the tenth Survey on Manufacturing Firms (Indagine
sulle Imprese Manifatturiere), provided by Unicredit-Capitalia, which are complemented with
balance sheets sourced by either AIDA (Italian Balance Sheet Dataset of the Bureau van Dijk)
or by the Chambers of Commerce Registry (UNICREDIT, 2008). Noteworthy, these data are
also used in Antonioli et al. (2018). The same survey, although in different waves, has been
largely used in the economics literature investigating firms innovation activities (see, e.g. Parisi
et al., 2006; Hall et al., 2009). Therefore, our present work is fully comparable to previous
relevant studies. The initial sample includes all firms with more than 500 employees, while for
smaller firms it is stratified by firm size, value added, geographical location and industry. We
follow a cleaning procedure, detailed in appendix A, which results in a final sample of 2.750 small
and medium-sized firms (SMEs). The main variables of the sample and descriptive statistics are
also described in detail in appendix A. Information on the innovation activity of firms is derived
from the survey that was conducted in 2007 and refer to the three-year period 2004-2006. Value
added and labour are reported in the balance sheets and refer to the year 2006. Capital stock
refers to 2006 and is derived from the Italian National Statistical Office (ISTAT). A categorical
variable accounts for sectors and follows the ATECO 2002 classification.

2.4 Results

2.4.1 IV selection

As far as IV selection is concerned, we first select an initial set S of potential IVs according to
the literature on KPF (see, e.g. Musolesi and Huiban, 2010).4 In order to ensure the presence of
strong and valid instruments, we follow a two-step procedure. To the best of our knowledge, IV
selection approaches are not applicable within a nonparametric framework, and for that reason
we adopt a baseline Cobb-Douglas (CD) specification where innovation and sectors are addi-
tively introduced. In the first step we regress innovation on Z and S, and then choose, using
a backward selection algorithm, a set of potential instruments that are strongly correlated with
innovation. In the second step we estimate the CD model using the two-stage least squares
(IV-2SLS) estimator for all the possible combinations of variables from the above selected set,
and then we perform tests to investigate the validity and strongness of the selected variables.
We finally select 3 sets (IV1, IV2 and IV3) of strong and valid instruments. Noteworthy, the re-
sults in the following subsections are robust across these groups. We illustrate figures only for
one set (IV1) for which the nonparametric specification exhibits the lowest ASPE. All the details
of the IV selection process can be found in Appendix B.

4For reasons of brevity, the set of potential IVs is presented in the appendix.
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2.4.2 Model comparison

In this section we present the results of the model comparison between the nonparametric
specification in (2.1) with alternative parametric counterparts. The generalized product kernels
approach (Darolles et al., 2011; Horowitz, 2011) has been used to estimate a local constant ker-
nel regression. The smoothing parameters of the kernels are selected via the LSCV method.
We also consider a CD and a translog (TL) production function augmented with endogenous
dummy innovation (Mohnen and Hall, 2013; Musolesi and Huiban, 2010). Estimating a pro-
duction function where innovation enters additively is the standard practice in empirical studies
on productivity. We also consider a CD and a TL production function with heterogeneous ef-
fect of innovation on the production process (CDh and TLh, respectively), which allow different
slope parameters of the input variables capital (K) and labour (L) between innovative and non-
innovative firms (see Antonioli et al., 2018). The above models are estimated using standard
IV-2SLS methods. It is worth to note that in the cases of CDh and TLh, the interaction terms
with innovation are also endogenous, which leads to the requirement for extra variables to in-
strument these endogenous terms. Therefore, the number of instruments increases, while it
is well known that the IV-2SLS estimation in the presence of many instruments may result in
substantial bias and inaccurate inference (see, e.g. Hansen et al., 2008).

We perform a pseudo Monte Carlo experiment, as introduced in Racine and Parmeter
(2014), to assess the predictive ability of the models. After randomly shuffling and splitting
the n observations at a first 90% into n1 training points and at 10% into n2 evaluation points,
each model is fitted according to the training sample. Then, we compute the average out-of-
sample squared prediction error (ASPE) for each specification σ using the evaluation points.
ASPE is given by:

ASPE = n−1
2

n∑
i=n1+1

(yi − σ̂ (zi))
2,

where yi and σ̂ (zi) is the true value of Y and the respective fitted value according to the training
observations, at point i. The above steps are repeated a large number of times ρ = 1000, which
results in a ρ × 1 vector of prediction errors for each model. This procedure is followed using
different IV sets for the estimations. For reasons of space and because of the robustness of our
findings, while tables 1 and 2 refer to the results for three IV sets (IV1, IV2 and IV3), we illustrate
figures only for one set (IV1).

Table 1 presents the median of the ASPE for each specification across different IV sets. A
first and very crucial result that emerges is that, in all IV sets, the median that corresponds to
the nonparametric model is the smallest among the different specifications. For instance, in the
estimations using the IV1 set, the median ASPE of the NP model relative to the ones of LC,
LCh, TL and TLh is 0.916, 0.892, 0.922 and 0.776, respectively. A second result, which holds
for all the IV sets, is that the median ASPE of the TLh specification is the largest; the model
complexity of TLh might be responsible for its poor predictive ability. For example, the median
ASPE of the TLh model relative to the other models is 1.178, 1.148, 1.186 and 1.286. A third
finding is that the median ASPEs of the CD and TL estimations are very close for all IV sets,
their difference being at the level of 10−4. The predictive ability of CD and TL might be similar.
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Finally, a fourth result is that the CDh results are ambiguous; its median ASPE is less than the
median ASPEs of CD and TL in estimations using the IV2 set and higher in estimations using
the IV1 and IV3 sets. The above findings are also illustrated in figure 2.1, which presents the
box-and-whisker plots of the distributions of ASPE for the different models.

Figure 2.2 shows the empirical distribution functions (ECDFs) of the ASPEs for each specifi-
cation. It is clear that the ASPE of the NP model is stochastically dominated by the ASPE of any
of the parametric models. This result shows that the nonparametric specification outperforms
the parametric ones in terms of predictive ability. Further, the ASPE of the TLh specification
stochastically dominates the ASPE of any other specification, indicating that the TLh model un-
derperforms. The above findings are very robust across different IV sets. On the contrary, the
results of the comparisons among the parametric specifications are less clear. Results that are
not presented in the main text show that while the ECDF of the ASPE for the CDh specification
is stochastically dominated by the ones of the CD and the TL in estimations using the IV2 set, it
dominates them in estimations with IV1 and IV3 sets. Therefore, the comparisons between the
CDh and the CD and between the CDh and the TL specifications do not provide robust results.
Noteworthy, the ECDFs of the CD and the TL models almost coincide, which shows that their
predictive performance is similar.

We finally compare the different specifications using the test for stochastic dominance by
Dunn (1964). The test performs a pairwise comparison that is based on the null hypothesis that
the probability of observing a larger randomly selected value of the first group than of the other
is one half. The results for all pairwise comparisons for the different IV sets are presented in
Table 2. In all cases apart from the CD - TL comparison, the tests reject the null hypothesis.
The tests are towards the findings presented in figure 2.2 and indicate that the differences in
ECDFs are statistically significant in all cases but the CD - TL pair, for which the test shows that
the differences of the ECDFs of the ASPE between the CD and the TL specifications are not
significant.

In summary, we provide clear evidence that a) the NP model always outperforms all the
others, b) the TLh specification underperforms all the others, and c) the choice across the other
three specifications CD, TL and CDh depends crucially on the IV set that is used.

2.4.3 Estimation results

In this section we present the main estimation results of the nonparametric specification in
(2.1). For reasons of brevity, in figures 2.3 and 2.4 we show the results with respect to only
4 of the 22 manufacturing sectors under consideration, leaving the results for the remaining
ones to be available upon request. In particular, we present the results for firms that belong to
sectors 17, 24, 29 and 35, which correspond to the manufacture of textiles, chemical products,
machinery and transport equipment, respectively. The numbering of the sectors is derived from
the NACE Rev.1.1 Eurostat classification. A first result is that innovation has a positive effect
on productivity, but not for all parts of the capital-labour domain. Non-innovative firms could be
more productive than innovative firms for specific production inputs. This finding is illustrated
more clearly in figure 2.4, which presents the contour plots of the difference in the estimation

42



of f between innovative and non-innovative firms, for each sector s, that is f̂(X, S = s, I =

1)− f̂(X, S = s, I = 0). The contours are grey colored for positive values of the difference and
black colored for negative values. Clearly, the effect of innovation on the production process is
not positive for all input sets. This finding is towards the localization of innovation and in contrast
to empirical studies that assume an increase in productivity at all factor proportions.

Further, the results in figures 2.3 and 2.4 provide insights into the role of sectors to the re-
lation between innovation and productivity. This role is shown clearly comparing the production
output that corresponds to different sectors, fixing the innovation variable. For instance, figure
2.5 shows such a comparison associated with sectors 17 and 24. The figure shows that the
effect of sectors on the production process is heterogeneous. This finding is also implied by the
value of the smoothing parameter of the sectors’ variable, which is 0.081, 0.074 and 0.073 for the
kernel estimations that use the IV1, IV2 and IV3 sets, respectively. These values are very small
and indicate heterogeneous technologies across sectors.

2.5 Conclusion

This paper provides an empirical analysis of a fully nonparametric production function model
adopting recently introduced IV methods that allow estimation and inference in a nonparametric
framework while handling endogeneity of explanatory variables (Darolles et al., 2011; Horowitz,
2011). The comparison with commonly used parametric counterparts shows that the nonpara-
metric specification performs better in terms of predictive ability. In contrast, the TL model with
heterogeneous effect of innovation on productivity underperforms, while the CD model with het-
erogeneous effect does not show robust results, as its performance varies depending on the
IV set; better than CD and TL for IV2 but worse than CD and TL for IV1 and IV3. Turning to
the estimations, the results question the orthodoxy that innovation has a positive effect on pro-
ductivity at all factor proportions. Our findings show that there are combinations of capital and
labour where non-innovative firms are more productive than innovative firms. In general, our
findings lean towards the original idea of Atkinson and Stiglitz (1969) about the localization of
innovation. The results also question commonly used shape restrictions such as Hicks neutral-
ity and additivity of innovation. Further, they shed light to the role of the sectors’ variables to the
relation between innovation and productivity. Our findings indicate the presence of heteroge-
neous technologies across sectors and highlight the non-additive, more complex role of sectors
to productivity.
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Figure 2.1: Out-of-sample average square prediction error (ASPE) box plots for different models, in the
case of the IV1 set.

Figure 2.2: Empirical Cumulative Distribution Functions (ECDFs) of the ASPE for different models, in
the case of the IV1 set.
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Figure 2.3: Estimated production function for different sectors, for the IV1 set. The function for innovative
firms is colored grey and for the non-innovative firms is colored black.

Figure 2.4: Contours of the difference in estimation between innovative and non-innovative firms, for
each sector s = 17, 24, 29 or 35. The estimations correspond to the IV1 set.
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Figure 2.5: Comparison between two sectors, for non-innovative and innovative firms, associated with
the IV1 set.

Table 1 - Median ASPE
Median of ASPE Values relative to NP

IV set CD CDh TL TLh NP CD CDh TL TLh
IV1 .1739 .1785 .1728 .2049 .1593 1.092 1.121 1.085 1.286
IV2 .1736 .1681 .1729 .1834 .1605 1.082 1.047 1.077 1.143
IV3 .1707 .1762 .1706 .1846 .1620 1.054 1.088 1.053 1.140

Median ASPEs (left) and relative values of median ASPEs with respect to NP (right).

Table 2 - Stochastic dominance tests
models IV sets CDh TL TLh NP

CD
IV1
IV2
IV3

−2.652∗∗∗

3.420∗∗∗

−2.727∗∗∗

.434

.413

.017

−15.296∗∗∗

−4.681∗∗∗

−6.598∗∗∗

8.420∗∗∗

8.217∗∗∗

4.666∗∗∗

CDh
IV1
IV2
IV3

3.085∗∗∗

−3.008∗∗∗

2.744∗∗∗

−12.644∗∗∗

−8.101∗∗∗

−3.871∗∗∗

11.072∗∗∗

4.797∗∗∗

7.392∗∗∗

TL
IV1
IV2
IV3

−15.729∗∗∗

−5.094∗∗∗

−6.615∗∗∗

7.986∗∗∗

7.804∗∗∗

4.648∗∗∗

TLh
IV1
IV2
IV3

23.716∗∗∗

12.898∗∗∗

11.263∗∗∗

Dunn’s (1964) test for stochastic dominance. Null hypothesis: 50% probability of observing a larger
randomly selected value from the first distribution than from the second.
Classification of p-value: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
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Appendix A: Data, variables and sample

Data used for the analysis are sourced by the tenth Survey on Manufacturing Firms (Indagine
sulle Imprese Manifatturiere), provided by Unicredit-Capitalia, which are complemented with
balance sheets sourced by either AIDA (Italian Balance Sheet Dataset of the Bureau van Dijk)
or by the Chambers of Commerce Registry (UNICREDIT, 2008). The same survey, although in
different waves, has been largely used in the economics literature investigating firms innovation
activities (see, e.g. Parisi et al., 2006; Hall et al., 2009). The initial sample consists of 3.770
observations. It includes all firms with more than 500 employees, while for smaller firms it is
stratified by firm size, value added, geographical location and industry. The main variables of
the data set that we use in our study are:

1. Value added (K e) Y : referred to year 2006 and reported in the balance sheets.

2. Capital stock (K e) K: referred to year 2006, calculated by summing the investments with
the value of fixed assets, as estimated through a perpetual inventory method considering
the usual rate of depreciation of 0.05. Both measures of investments and fixed assets are
available from 1998 to 2006, and both are deflated with the respective aggregate price
index (derived from ISTAT).

3. Labour L: number of employees in 2006, reported in the balance sheets.

4. Innovation I: innovation dummy taking value 1 if the firm affirmed to have introduced at
least one product or one process innovation during the period 2004-2006, and 0 otherwise.

5. Sectors S: the manufacturing firms are classified by sectors according to the two digit
ATECO2002 classification, which derives from NACE Rev.1.1 Eurostat classification.

Our preliminary data analysis is focused mainly on two purposes; the first one is to identify
and remove the outliers of the sample using an appropriate detection method, while the second
is to tackle sparsity of data in the two-dimensional (capital - labour) domain of the production
function, so that the final data set be appropriate to recover a fully nonparametric production
function. For these reasons we follow the cleaning procedure detailed below. Initially, 13 ob-
servations with missing or inconsistent values are dropped. Then, outliers and sparse data are
detected studying the univariate distributions of the variables under investigation. Our focus is
primarily on the 3.239 small and medium sized firms (SMEs), that is enterprises between 10 and
250 employees. Restricting the analysis to SMEs reduces significantly the range of labour and
facilitates the identification of sparse data. We observe that, even focusing solely on SMEs, the
distribution of labour is still extremely right skewed. There is a drastic reduction of the frequency
of the observations for firms with more than 120-130 employees, which is also confirmed by
the cluster analysis that is described below. After this threshold the observations are few and
sparse; SMEs with more than 125 employees account to less than 8% of the total. Therefore,
we restrict the analysis to the subgroup of SMEs with labour L ≤ 125. This set consists of 2.985
observations and it may be a reasonable compromise between studying a relevant fraction of
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the small and medium-sized firms that were initially sampled, while obtaining a dense data set
for nonparametric estimation.

With regard to value added and capital, a visual inspection of the empirical distribution does
not allow to identify the data that have to be deleted. In order to detect outliers, the boxplot
rule is applied to both variables, from which another 150 observations (5% of the total) which
exceed the boxplot’s outer fences are dropped. This results in a data set of 2.822 firms and a
significant reduction to the range of the variables. The same process is followed with respect
to productivity. In particular, we define Total Factor Productivity as TFP = Y/(K0.5L0.5), and
afterwards we apply the boxplot rule again to detect another 72 outlying observations. 2D and
3D scatterplots do not reveal any other outliers apart from the already omitted ones. The final
data set consists of 2.750 firms.

Generally, Tukey’s method applies in both symmetric and skewed distributions. Neverthe-
less, its outlier detection capacity may be affected if the data are significantly skewed. For
this reason we also use adjusted boxplot for skewed distributions, as proposed by Hubert and
Vandervieren (2008). The method takes into consideration skewness through the medcouple
quantity, which was first introduced by Brys et al. (2003). Although the total number of outliers
detected is quite the same (226 for adjusted boxplot, 222 for Tukey’s rule), the resulting range
for both value added and capital is much larger in the case of the adjusted boxplot, therefore
creating a comparatively sparse dataset. For this reason Tukey’s rule is preferable.

In order to check the sparsity of data in the capital - labour plane, we perform cluster analysis
to the initial sample of 3.239 SMEs. Data clustering gives an insight into data, reveals their
structure and provides class identification (Jain, 2010). Moreover, clustering can also be an
effective way to identify outliers (Zhao, 2012). By grouping data into clusters, observations
which are not assigned to any cluster can be considered as outliers. In this framework, dbscan
is a well known density based cluster analysis method which has these characteristics. It is
proposed by Ester et al. (1996) and is based on the definition of a neighborhood around each
observation and a specification of a threshold density. The neighborhood of a sample point p
is specified by a radius r, while the threshold density of a neighborhood is determined by a
number of points k inside. Both r and k are pre-fixed by the analyst. Core points of the sample
are the observations whose neighborhood has at least the threshold density. Based on the
above definitions, a point p is in a cluster C if it belongs to the neighborhood of a core point
of this cluster. Therefore, the method groups points of densely populated areas into clusters
(Zhao, 2012). Unlike other clustering algorithms such as k-means (Hartigan and Wong, 1979)
or k-medoid (Kaufman and Rousseeuw, 2009), dbscan does not impose any restrictions to
the shape of the clusters. Moreover, it does not require a pre-identification of the number of
clusters. The method is suitable for removing sparse observations because it identifies them as
unclustered.

Nevertheless, the specification of clusters and unclustered points with dbscan is sensitive to
the specification of r and k (Kandylas et al., 2010). Different values of these parameters may
lead to different clustering. For this reason we adopt the following graphical heuristic. After
standardizing the variables K and L so that the definition of neighborhood is meaningful, k is
fixed to 4 as suggested by Ester et al. (1996) for 2-dimensional spaces, such as the (K,L)
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plane. To specify r, we compute the distance d of every point to its first 4 nearest ones. The
values are sorted in ascending order in a graph. The point in the graph beyond which the slope
becomes much steeper5 provides an appropriate radius to detect unclustered observations. In
our case r is between 0.10 and 0.13 (see fig.2.7).

Figure 2.6: Total number of neighborhood points with respect to different prefixed radii r. The
threshold density is determined by k = 4. The graph refers to the sample of all SMEs, after
removing observations with inconsistent values.

The resulting clustering shows that in regions of the plane where labour is greater than 120-
130 there are practically no clustered data. This appears to be extremely consistent with the
data cleaning we performed using univariate analyses (note that in the final dataset the maxi-
mum value for capital is 14.952). Therefore, we do not drop other observations to the sample
previously defined.

5This point is referred as “knee” of the graph (Ester et al., 1996).
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Figure 2.7: Data clustering with dbscan for r = 0.1 and k = 4. Black depicts the largest cluster,
blue the remaining clusters and grey the unclustered data. The (K,L) plane is scarse for values
of labour above 120− 130 employees.

Descriptive statistics are presented in table 3 below. Note that the percentage of innovating
firms in the final dataset employed in this work is 64%. This value is the same as in Hall et al.
(2009), who built a panel data set starting from different waves of the same survey used in this
work. This value is also very close to the percentage of innovating firms obtained using the
Italian CIS survey (Hall et al., 2008).

Table 3 - Descriptive statistics
Value added Capital Labour

VALUE all firms non innov. innov. all firms non innov. innov. all firms non innov. innov.
minimum 12 12 16 39 61 39 10 10 10

1st quantile 922 846 979 900 749 990 17 16 19
median 1576 1353 1758 2025 1677 2230 31 26 34
mean 2070 1876 2181 2934 2670 3086 38.5 34.8 40.7

3rd quantile 2770 2485 2956 4048 3571 4216 53 46 56
maximum 9163 9163 8822 14952 14521 14952 125 125 125

st. deviation 1555 1531 1558 2796 2708 2834 26.1 24.9 26.5
skewness 1.49 1.84 1.32 1.63 1.76 1.57 1.13 1.35 1.03
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Appendix B: IV selection

For the estimation of (2.1) we adopt a nonparametric instrumental regression approach (see
Racine and Li, 2004; Darolles et al., 2011). In this appendix we present the procedure that we
follow for the selection of the instruments. As a first step, we select an initial set S of potential
IVs following the literature on KPF (see, e.g. Hall et al., 2009; Musolesi and Huiban, 2010). This
group is described in table 4 below.

Table 4 - Initial set of IVs
Category Variables Description Type

Firm Char-
acteristics NW, NE, C, S, Age, Group, Consortium

Firm’s characteristics including
geographical location; age and group or
consortium membership

binary
(0,1)

Human
capital RD Personnnel Percentage of employees in Research and

Development activities
nu-

meric

Objectives
of

investment

BetterProd, MoreProd, NewProd, Env,
CostRed, Advert, SellNet, SellAss

Objectives including ameliorating the
product, produce more, introduce a new
one, reduce the environmental impact,
reduce costs, to increase the selling
network or to ameliorate it, respectively

binary
(0,1)

Market
penetration

MarkPenEU15, MarkPenEU2004,
MarkPenRussia, MarkPenOtherEU,

MarkPenAfrica, MarkPenAsia,
MarkPenCina, MarkPenUSMex,
MarkPenSouthAm, MarkPenOce

Market penetration in different world
regions, including EU member states,
Africa, Asia, China, U.S., Canada, Mexico,
South America and Oceania

binary
(0,1)

Commercial
agreements

CommAgrEU15, CommAgrEU2004,
CommAgrRussia, CommAgrOtherEU,

CommAgrAfrica, CommAgrAsia,
CommAgrCina, CommAgrUSMex,
CommAgrSouthAm, CommAgrOce

Commercial agreements in world regions,
as mentioned above

binary
(0,1)

Patent
acquisition

PatBuyEU15, PatBuyEU2004,
PatBuyRussia, PatBuyOtherEU,

PatBuyAfrica, PatBuyAsia, PatBuyCina,
PatBuyUSMex, PatBuySouthAm,

PatBuyOce

Location of the aforementioned world
regions where the firm acquired patents

binary
(0,1)

Production
overseas

ProdAbroadEU15, ProdAbroadEU2004,
ProdAbroadRussia, ProdAbroadOtherEU,

ProdAbroadAfrica, ProdAbroadAsia,
ProdAbroadCina, ProdAbroadUSMex,
ProdAbroadSouthAm, ProdAbroadOce

Production located in the aforementioned
world regions

binary
(0,1)

Competitive-
ness

LowCompet, HighCompet,
SmallProdScale

Perceived level of competitiveness and
scale of production compared to
competitors

binary
(0,1)

Financial
specs ListedComp, FinanIncent Listed company or receiving financial

incentives
binary
(0,1)

Bound et al. (1995) and Wooldridge (2010, ch.5) highlight the potential problems of incon-
sistency and finite sample bias that result from the use of weak instruments in IV methods.
To avoid this pitfall, we follow a two-step procedure that ensures the strongness and validity
of the instruments. To the best of our knowledge, IV selection approaches are not applicable
within a nonparametric framework. For that reason we adopt a baseline Cobb-Douglas (CD)
specification where innovation and sectors are additively introduced.

In the first step we regress innovation on Z and S, and then choose, using a backward
selection algorithm, a set of potential instruments that are strongly correlated with innovation.
The sets corresponding to a 10% and a 5% threshold are described in table 5 below.
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Table 5 - IV sets
set instruments

10% set CommAgrAfrica, ProdAbroadEU15, C, Age, Group, EUCompet, RD Personnnel,
BetterProd, MoreProd, NewProd, FinanIncent, CostRed, Advert, SellNet, SellAss,
MarkPenEU15, HighCompet

5% set CommAgrAfrica, ProdAbroadEU15, C, Age, HighCompet, EUCompet,
MarkPenEU15, BetterProd, FinanIncent, NewProd

In the second step we estimate the CD model using the two-stage least squares (IV-2SLS)
estimator for all the possible combinations of IVs from the 5% set and then we perform robust
score tests by Wooldridge (1995) to test overidentifying restrictions and endogeneity. We also
apply the Montiel-Pflueger test (Montiel Olea and Pflueger, 2013) to detect weak instruments.
Based on the above post-estimation tests, we find that 62 sets provide strong instruments, while
for 85 combinations the validity hypothesis is not rejected. We finally select 14 sets of strong and
valid instruments. The results that are presented in section 3.3 show a robust picture across
these sets.

For the sake of brevity, we present three of these groups, leaving the results of the remain-
ing IV sets to be available upon request. These sets are IV 1 = (BetterProd, MarkPenEU15,

EUCompet), IV 2 = (BetterProd,MarkPenEU15, EUCompet,Age) and IV 3 = (BetterProd,

MarkPenEU15, F inanIncent, NewProd). All variables except Age are binary. Age is the num-
ber of years of the firm in 2004. BetterProd takes value 1 if the firm’s objective is to ameliorate
its products and 0 otherwise. NewProd is 1 if the firm’s objective is to create new products
and 0 otherwise. MarkPenEU15 takes value 1 if the firm’s market penetration refers to EU15
countries; 0 otherwise. EUCompet is 1 if firm’s competitors are from EU countries; 0 otherwise.
Finally, FinanIncent is 1 if the firm received financial incentives and 0 otherwise.
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Chapter 3

Nonparametric estimation of
international R&D spillovers

joint with Antonio Musolesi and Michel Simioni
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Abstract

We revisit the issue of international technology diffusion within the framework of large panels
with strong cross-sectional dependence by adopting a method which extends the Common
Correlated Effects (CCE) approach to nonparametric specifications. Our results indicate that
the adoption of a nonparametric approach provides significant benefits in terms of predictive
ability. This work also refines previous results by showing threshold effects, nonlinearities and
interactions, which are obscured in parametric specifications and which have relevant policy
implications.

Keywords: large panels; cross-sectional dependence; factor models; nonparametric regression; spline functions; international

technology diffusion.

JEL classification: C23; C5; F0; O3.
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3.1 Introduction

With the development of endogenous growth theory since the nineties, there has been an in-
creasing interest in international R&D spillovers. A pioneering empirical work by Coe and Help-
man (1995), recently revisited by Coe et al. (2009) – henceforth CH and CHH, respectively
– relates total factor productivity (TFP) to both domestic and foreign R&D and, assuming that
technology spills over across countries through the channel of trade flows, constructs foreign
R&D capital stock as the import-share-weighted average of the domestic R&D capital stocks
of the trading partners. Subsequent studies consider other factors as channels of international
spillovers, such as foreign direct investment, bilateral technological proximity, patent citations
between countries, language skills or geographic proximity.

Recent studies extend the literature on international R&D spillovers by accounting for rel-
evant methodological issues such as cross-sectional dependence and non-stationarity (Coe
et al., 2009; Lee, 2006; Ertur and Musolesi, 2017) within a parametric framework.

This paper aims at revisiting the issue of international R&D spillovers using nonparametric
methods. This could be relevant from both an economic and a methodological perspective.
First, from an economic and poliy oriented perspective, it may allow to test the validity of the
main results provided in the literature, especially with respect to the possible existence of nonlin-
earities, threshold effects, non-additive relations, etc., as nonparametric approaches have been
shown to provide new and useful insights in topics very closely related to the present one (Ma
et al., 2015; Maasoumi et al., 2007). Second, nonparametric approaches, which are recently
developing also in the context of panel data (Rodriguez-Poo and Soberon, 2017; Parmeter and
Racine, 2018), have been shown to significantly improve the predictive ability of parametric
models in many cases (Racine and Parmeter, 2014; Ma et al., 2015; Delgado et al., 2014),
even if this is not assured ex ante because of the curse of dimensionality problem of nonpara-
metric specifications and the bias-efficiency trade-off, which generally arises when comparing
parametric and nonparametric models. Therefore, it could be of interest to compare parametric
and nonparametric models in the present framework.

The econometric analysis is conducted using annual country-level data for 24 OECD coun-
tries from 1971 to 2004. This dataset is also used, among others, in Coe et al. (2009) and in
Ertur and Musolesi (2017) and this allows for a comparability with previous studies. The analy-
sis is based on the nonparametric approach by Su and Jin (2012), which allows for a multifactor
error structure and extends the approach by Pesaran (2006). Such an approach combines the
flexibility of sieves with the ability of factor models to allow for cross-sectional dependence and to
account for endogeneity due to unobservables, whereby the explanatory variables are allowed
to be correlated with the unobserved factors. Following Su and Jin (2012), the nonparametric
component is estimated using sieves, and particularly splines. Specifically, we adopt a regres-
sion splines framework, which provides computationally attractive low rank smoothers. We also
employ penalized regression splines, as they combine the features of regression splines and
smoothing splines, and have proven to be useful empirically in many aspects (Ruppert et al.,
2003) while their asymptotic properties have been studied in recent years. The choice of the
knots is avoided by using knot-free bases for smooths (Wood, 2003). Finally, as far as model se-
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lection is concerned, we compare alternative specifications by focusing on their predictive ability
and adopt the approach recently proposed by Racine and Parmeter (2014), which is based on
a pseudo Monte Carlo experiment and takes its roots on cross validation.

The paper is organized as follows. In section 3.2 we describe the model specifications that
we employ as well as the adopted estimation approach. The comparison among the different
model specifications and the results of the estimations, including relevant policy implications,
are presented in section 3.3. Finally, section 3.4 concludes.

3.2 Model specification and estimation method

3.2.1 The classical parametric approach

The standard parametric specification à la CH/CHH can be expressed as:

log fit = αi + θ logSd
it + γ logSf

it + δ logHit + eit, (3.1)

where eit is the error term, fit is the TFP of country i = 1, ..., N at time t = 1, ..., T ; αi are
individual fixed effects, Sd

it and Sf
it are domestic and foreign R&D capital stocks, respectively;

Hit is a measure of human capital. Foreign capital stock Sf
it is defined as the weighted arithmetic

mean of Sd
jt for j ̸= i, that is Sf

it =
∑

j ̸=i ωijS
d
jt, where ωij represents the weighting scheme. We

adopt the same definition proposed by Lichtenberg and van Pottelsberghe de la Potterie (1998),
which has been previously adopted in many other papers (Coe et al., 2009; Lee, 2006; Ertur
and Musolesi, 2017), incorporating information on bilateral imports.

All the existing literature adopts parametric specifications that are variants of (3.1). Most of
the previous studies follow some of the advances in panel time series econometrics over the last
two decades. In particular, given the large T dimension of our panel, the likely existence of non-
stationarity and cross-sectional dependence (Lee, 2006; Kao et al., 1999; Ertur and Musolesi,
2017) has been investigated.1 Recently, Ertur and Musolesi (2017) highlight the presence of
strong cross-sectional dependence in the data. Further, they use unit roots tests decompos-
ing the panel into deterministic, common and idiosyncratic components (see, e.g. Bai and Ng,
2004) to identify the source of possible nonstationarity. They finally find that the series under
investigation are nonstationary and that this property relies on the existence of nonstationary
unobserved common factors rather than on idiosyncratic components. Under this scenario,
Kapetanios et al. (2011), provide both analytical results and a simulation study according to
which the cross-sectional averages augmentation by Pesaran (2006) remains valid.

In the following, for ease of exposition, we employ the notation:

yit = αi + β
′
xit + eit, (3.2)

where yit = log fit, xit = [logSd
it, logS

f
it, logHit]

′ and β = [θ, γ, δ]′.

1Another issue, which is out of the scope of this study, questions the homogeneity of the parameters implicit in
the use of a pooled estimator in favor of heterogeneous regressions.
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3.2.2 A nonparametric model with a multifactor error structure

We adopt the method proposed by Su and Jin (2012), who consider a panel data model that
extends the multifactor linear specification proposed by Pesaran (2006). Specifically, Su and Jin
(2012) consider the following model, which allows for a nonparametric relation between the de-
pendent variable and the regressors, while the common factors enter the model parametrically:

yit = α
′
idt + g (xit) + eit, (3.3)

where dt is an l×1 vector of observed common effects, αi is the associated vector of parameters
and xit is defined above. The “one-way” fixed effect specification is obtained by simply setting
dt = 1. g is an unknown function to be estimated. For identification purposes, the condition
E(g (xit)) = 0 is imposed. The errors eit have a multifactor structure that is described by:

eit = γ
′
ift + εit, (3.4)

where ft is an m× 1 vector of unobserved common factors with country-specific factor loadings
γi. Combining (3.4) and (3.3), we obtain the following:

yit = α
′
idt + g (xit) + γ

′
ift + εit. (3.5)

The idiosyncratic errors εit are assumed to be independently distributed over (dt,xit) , whereas
the unobserved factors ft can be correlated with the observed variables (dt,xit). This correlation
is allowed by modeling the explanatory variables as linear functions of the observed common
factors dt and the unobserved common factors ft:

xit = A′
idt + Γ′

ift + vit, (3.6)

where Ai and Γi are l×3 and m×3 factor loading matrices, and vit = (vi1t, vi2t, vi3t)
′. Following

Pesaran (2006), Su and Jin (2012) proxy the unobservable factors ft in (3.5) by the cross-
sectional averages zt = N−1

∑N
j=1 zjt, where zit = [yit,x

′
it]

′
. They estimate the nonparametric

part of the model using sieves. It is worth noting that the most common examples of sieve
regression are polynomial series expansions and splines.

3.2.3 Alternative specifications

Consider (3.5) for dt = 1, that is yit = αi + g (xit) + γ
′
ift + εit. We are interested in three

different specifications. As a benchmark, the parametric specification is obtained for g (xit) =

β
′
xit. The estimation is performed applying the common correlated effects pooled (CCEP)

approach by Pesaran (2006). Then, we consider two specifications where xit enter the model
nonparametrically. The first specification assumes an additive structure of g, as follows:

log fit = αi + ϕ(logSd
it) + ξ(logSf

it) + ψ(logHit) + γ
′
ift + εit, (3.7)
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where ϕ, ξ and ψ are unknown univariate smooth functions of interest. The second specification
assumes a non-additive structure of g, particularly:

log fit = αi + g(logSd
it, logS

f
it, logHit) + γ

′
ift + εit. (3.8)

3.2.4 Spline modeling

Su and Jin (2012) estimate the nonparametric component of the model using sieves, and par-
ticularly splines, as they typically provide better approximations (see, e.g., Hansen, 2014). Fol-
lowing Su and Jin (2012), we adopt a regression splines (RS) framework. We also employ
penalized regression splines (PRS), as they combine the features of both regression splines,
which use less knots than data points but do not penalize roughness, and smoothing splines,
which control the smoothness of the fit through a penalty term but use all data points as knots.
PRS have proven to be useful empirically in many aspects (see, e.g. Ruppert et al., 2003) and,
in recent years, their asymptotic properties have been studied and then connected to those of
regression splines, to those of smoothing splines and to the Nadaraya - Watson kernel estima-
tors (Claeskens et al., 2009; Li and Ruppert, 2008).

Specifically, for both RS and PRS, we use thin plate regression splines (TPRS), which are
a low rank eigen-approximation to thin plate splines. Thin plate splines are somehow ideal
smoothers (see Wood, 2017) but are not computationally attractive because they require the es-
timation of as many parameters as the number of data points. TPRS avoid the problem of knot
placement that usually complicates modeling with RS or PRS and more generally have some
optimality properties, as they provide optimal low rank approximations to thin-plate splines, while
they also are computationally efficient (see Wood, 2003). Since our explanatory variables have
different units, in the case of the non-additive specification (3.8), we avoid isotropy by con-
sidering a tensor product basis, which is constructed by assigning TPRS as the basis for the
marginal smooth of each covariate and then creating their Kronecker product. The tensor prod-
uct smooths are invariant to the linear rescaling of covariates, and for this reason, they are
appropriate when the arguments of a smooth have different units (Wood, 2006). Finally note
that in the PRS framework, the smoothing parameter is selected by the restricted maximum like-
lihood (REML) estimation, which, relative to other approaches, is less likely to develop multiple
minima or to undersmooth at finite sample sizes (see, e.g. Reiss and Todd Ogden, 2009).2

3.3 Results

3.3.1 Model comparison

To compare the aforementioned specifications, we perform a pseudo Monte Carlo experiment.
In particular, along the lines depicted by Racine and Parmeter (2014), Ma et al. (2015) and
Delgado et al. (2014), using similar macro panel data variables related to economic growth,
the observations are randomly shuffled at 90% into training points and at 10% into evaluation

2The nonparametric specifications are estimated by the R package mgcv.
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points. Each model is fitted according to the training sample. Then, the average out-of-sample
squared prediction error (ASPE) is computed using the evaluation sample. The above steps are
repeated a large number of times B = 1000, so that a B×1 vector of prediction errors is created
for each model.3

The method is linked to cross validation (CV), in the original formulation of which a regression
model fitted on a randomly selected first half of the data was used to predict the second half.
The division into equal halves is not necessary. For instance, a common variant is the leave-
one-out CV, which fits the model to the data excluding one observation each time and then
predicts the remaining point. The average of the prediction errors is the CV measure of the
error. As highlighted in Racine and Parmeter (2014), the method can provide significant power
improvements over existing single-split techniques.

Figure 3.1 presents the box-and-whisker plots of the ASPE distributions for the different
specifications. A first relevant result is that the median that corresponds to the parametric
model is the largest among the different specifications, while the non-additive penalized model
has the smallest median. In particular, the median ASPEs of the non-additive penalized model
relative to the other models – the parametric, the additive unpenalized, the additive penalized
and the non-additive unpenalized – is 0.6023, 0.9284, 0.9409 and 0.8278, respectively. A second
interesting result is that the penalized regression modeling has a smaller median ASPE than its
unpenalized counterpart for both additive and non-additive specifications. However, although
when imposing an additive structure, the two approaches provide quite similar performances,
the gain in terms of predictive ability from using PRS over RS is extremely pronounced when
estimating the non-additive specification, which typically suffers more from the curse of dimen-
sionality problem. Also, it is worth noting that within the RS framework, the additive specification
provides a better performance than the non-additive one.

Next, figure 3.2 shows the empirical distribution functions of the ASPEs for each model.
Clearly, the ASPE of the non-additive penalized model is stochastically dominated by the ASPE
of any of the remaining models. This indicates that the non-additive penalized model outper-
forms all others in terms of predictive ability. It is also evident that the parametric model under-
performs with respect to the nonparametric ones.

Finally, we compare the different specifications using the test of revealed performance (TRP)
proposed by Racine and Parmeter (2014).4 The results of these paired t-tests are presented in
Table 1. In all cases, the null hypothesis that the difference in means of the ASPEs is zero is
rejected. Thus, the tests complement the above presented results, indicating that this difference
is statistically significant in all cases.

3See also Baltagi et al. (2003) who contrast the out-of-sample forecast performance of alternative parametric
panel data estimators.

4The TRP involves estimating the distribution of the true errors for the different models and testing whether their
expectations are statistically different. The true error is associated with out-of-sample measures of fit, contrasted to
the apparent error, which is associated with within sample measures. Typically, the latter is smaller than the former
and frequently overly optimistic (see e.g. Efron, 1982).
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3.3.2 Estimation results

In this subsection, we present the main estimation results and specifically focus attention on
the nonparametric specifications. We only consider PRS, since they outperform their unpenal-
ized counterparts. We first provide the results obtained using the additive specification (3.7)
because, due to the additive structure, the results are directly comparable to those ones of the
parametric specifications adopted in previous studies. Then, we present the results of the non-
additive specification (3.8), which, according to our findings, provides the best performance.
Specifically, we focus on the interaction between domestic and foreign R&D.

The results concerning the nonparametric part of the additive penalized specification are
presented in figure 3.3. The three graphs depict the estimated univariate smooth functions,
which all appear to be highly significant, with extremely low p-values associated with the Wald
test (Wood, 2012) that the function equals zero. It is worth mentioning that because the re-
sponse as well as the explanatory variables are in logs, the slope of the estimated smooth
functions represents the estimated elasticity. The first plot shows the effect of domestic R&D
on TFP. It appears that for low values of R&D, where data are sparse and large confidence
interval bands are present, the relation is flat. Then, for intermediate values of domestic R&D,
the function is monotonic increasing, with a steep rise in approximately the last two deciles.
The policy implications resulting from the above are clear: an increase in domestic R&D has
an effect on productivity only above a threshold, thus suggesting that a critical mass of invest-
ments in R&D is crucial for R&D to become effective. After this threshold, the estimated output
elasticity becomes positive and increases even more for very high levels of domestic R&D. This
can be seen as a refinement of the results of the existing empirical literature on R&D spillovers,
which is based on parametric models and generally distinguishes between G7 and non-G7
countries. Indeed, Ertur and Musolesi (2017), employing the CCE approach, show that the es-
timated output elasticity of domestic R&D is positive and significant for G7 countries, while it is
non-significant for non-G7 countries. Similar results are also found by Coe et al. (2009), who
adopt the dynamic OLS for cointegrated panels, and by Barrio-Castro et al. (2002), who use a
standard fixed effects approach.

The second graph shows the effect of foreign R&D on TFP. Again, for low levels of the
variable, data are scarce, making it difficult to identify a clear pattern. Then, the relation is
positive and roughly concave for intermediate values, while it becomes flat for high levels of
foreign R&D. The results show that an increase in foreign R&D affects TFP positively, but only
up to a certain level. They complement previous empirical literature such as Coe et al. (2009),
who indicate that trade-related foreign R&D is a significant determinant of TFP. More specifically,
our findings improve the results of Ertur and Musolesi (2017), among others, who find a small,
positive and significant effect of R&D on TFP in non-G7 countries, but no significant effect in the
case of the G7. Nevertheless, in all previous studies, the linearity assumption obscures the fact
that the output elasticity of foreign R&D is not constant but varies with respect to the different
levels of foreign R&D. Indeed, looking at the bottom panel of figure 3.3, it can be seen that the
estimated elasticity constantly decreases over the range of foreign R&D up to a level where it
becomes not significantly different from zero.
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The third graph in figure 3.3 depicts the effect of human capital on TFP. It again shows scarce
data and large confidence bands for low levels. Then, the relation between human capital
and TFP is approximately flat for intermediate values, while for high values, it seems to be
monotonic increasing, with a steep rise in approximately the last two deciles. In terms of policy
perspectives, the results suggest a threshold that occurs at very high levels of human capital,
above which the estimated elasticity becomes positive. Investing in human capital becomes
effective only after a certain level is reached. These findings add new insights to Ertur and
Musolesi (2017), who find no significant effect of human capital on TFP for both G7 and non-G7
countries and explain their result on the grounds that the quantity of education no longer has a
significant effect when omitted variable bias is addressed. We find confirmation of such results
for most of the domain of human capital, but we also show that allowing for nonlinearity in the
relation between human capital and TFP is crucial in order to highlight a positive effect for the
highest levels of human capital.

Next, we turn to the estimates of the non-additive specification. Also, in this case, the
estimated (multivariate) smooth function appears to be highly significant. In particular, we focus
on the effect of the interaction between domestic and foreign R&D on TFP. The results are
presented in figure 3.4, which shows the impact on TFP for a level of human capital fixed to the
first, fifth (the median) and ninth decile. As depicted in the first graph, for low levels of human
capital and irrespective of the level of domestic R&D, foreign R&D has almost no effect on TFP.
In terms of policy implications, these findings suggest that foreign R&D spillovers cannot be
effective if the level of human capital in a country remains low. Moreover, the effect of domestic
R&D on TFP seems not to be linked to the level of foreign R&D, which implies an additive pattern
when the level of human capital is low. Similar to the additive model presented above, there is
a threshold above which domestic R&D becomes effective.

The second and third graphs in figure 3.4 show the effect on TFP when human capital is
fixed to the median and to the ninth decile, respectively. The results in both graphs suggest a
complementarity between domestic R&D and foreign R&D. For low levels of domestic R&D, the
effect of foreign R&D on TFP is low, and vice versa. Domestic R&D becomes more effective
when the levels of both domestic and foreign R&D are increasing. This is also true for foreign
R&D. These findings have interesting policy implications; in countries with intermediate or high
levels of human capital, investments in R&D are not very effective if the level of foreign R&D
is low. Further, the benefits of foreign R&D spillovers cannot be exploited unless both human
capital and domestic R&D are above a critical mass. The above results contrast with results
from some previous studies such as in Coe et al. (2009), who report that their estimations
considering interactions between human capital and domestic and foreign R&D do not yield
correctly signed and significant results.

3.4 Concluding remarks

This paper revisits the analysis of international technology diffusion by adopting the approach
proposed by Su and Jin (2012), which extends the multifactor linear specification proposed by
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Pesaran (2006) to nonparametric specifications. We first show that a shift from a parametric
to a nonparametric framework provides a significant improvement in terms of predictive ability.
Moreover, it is also documented that penalized regression splines perform significantly better
than their unpenalized counterparts, especially in the case of a non-additive model. Turning to
the estimation results, our findings suggest the presence of threshold effects and nonlinearities.
Then, the estimation of a non-additive specification provides further insights into the interac-
tions among explanatory variables without imposing any parametric restrictions and definitively
indicating that a critical mass of human capital is necessary to benefit from R&D spillovers and
to observe an interactive effect between domestic and foreign R&D. In general, our findings
strongly highlight that the presence of nonlinearities and complex interactions is an important
feature of the data; these are obviously hidden within a parametric framework and have relevant
implications for policy. Finally, it is worth mentioning that a further extension of the present study
may account for heterogeneity across countries. This work is outside the realm of the nonpara-
metric estimations presented in this paper and could be accomplished, for instance, by resorting
to Bayesian modeling (Kiefer and Racine, 2017) to address the curse of dimensionality problem
raised by heterogeneity.
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Figure 3.1: Out-of-sample average square prediction error (ASPE) box plots for different factor models:
the parametric, the additive and the non-additive.

Figure 3.2: Empirical Cumulative Distribution Functions (ECDFs) of the ASPE for different factor models:
the linear, the additive and the non-additive models for the OECD data.
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Figure 3.3: Additive Model. Estimated smooths (top panel) and corresponding derivatives (bottom
panel) for the additive penalized regression model. Component smooths are shown with confidence
intervals obtained by computing a Bayesian posterior covariance matrix.

Figure 3.4: Non-additive model. The effect of domestic and foreign R&D on TFP for different levels of
human capital. The log of human capital is fixed to the first, fifth and ninth decile, respectively.
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Table 1 - Paired t-tests of factor models

models Additive
unpenalized

Additive
penalized

Non-additive
unpenalized

Non-additive
penalized

Parametric 43.683∗∗∗ 45.461∗∗∗ 27.042∗∗∗ 47.992∗∗∗

Additive
unpenalized 9.849∗∗∗ -18.493∗∗∗ 13.138∗∗∗

Additive
penalized -20.492∗∗∗ 10.697∗∗∗

Non-additive
unpenalized 32.642∗∗∗

Null hypothesis: The true difference in means of the ASPEs of the compared models is zero.
The training sample is 90% of the data-sample; number of resampling iterations B: 1.000
Classification of p-value: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
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Chapter 4

Review in the nonparametric kernel
regression
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4.1 Nonparametric kernel regression

The use of regression models is widespread in economic literature. Assuming additivity of the
error term u, these models can be described by the following equation:

Y = f (Z) + u.

The expected value of a dependent variable Y is modeled given a vector of explanatory vari-
ables Z. f is the function of interest. There are two general approaches to the problem. The first
treats f as a function of known shape with unknown parameters β. The aim is then to estimate
β. As an example, consider the well-known linear regression model which is described by:

Y = ZTβ + u.

In the above expression, we have imposed a linear relation between Z and Y . β is a vector of
unknown parameters that is estimated using methods such as Ordinary Least Squares (OLS).
Nevertheless, if the model is not correctly specified, then the parameter estimates are not con-
sistent and inference is not possible. Moreover, tests for the misspecification of the presumed
parametric model do not give information about the correct one. An alternative approach which
does not impose any functional form to the model is nonparametric regression.

4.1.1 Nonparametric kernel regression with continuous data

Consider the following regression model:

Y = f(Z) + u, (4.1)

where f is a function of unknown form to be estimated. Z is a q-dimensional vector of ex-
planatory variables. We assume that Z is a continuous random vector. In section 4.1.2 this
assumption is relaxed towards cases of mixed categorical and continuous regressors. Consider
the case of an i.i.d. sample (Yi,Zi), i = 1, 2, . . . , n. If Z is exogenous, that is E(u|Z) = 0, then
by taking the mean conditional upon Z in both sides of (4.1) results in:

E(Y |Z = z) = f(z). (4.2)

Therefore, we can estimate f by computing the conditional mean of Y . It is proven (see Li and
Racine, 2007, p.59) that E(Y |Z = z) is the function that, among all Borel measurable functions,
minimizes the Mean Squared Error (MSE) of Y . This is stated in the following theorem:

Theorem 1 Let G be the class of Borel measurable (or continuous) functions having finite sec-
ond moment. Assume that f(z) = E(Y |Z = z) belongs to G and that E(Y 2) < ∞. Then,
E(Y |Z = z) is the optimal predictor of Y given Z, according to the following inequality:

E{[Y − g(Z)]2} ≥ E{[Y − E(Y |Z = z)]2}, for all g ∈ G (4.3)
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Nadaraya (1964) and Watson (1964) are the first to propose an estimation of E(Y |Z) ac-
cording to the following steps. By definition, the conditional mean of Y is:

E(Y |Z = z)
def
=

∫
yϕY |Z(y|z)dy =

∫
y
ϕY,Z(y, z)

ϕ(z)
dy =

1

ϕ(z)

∫
yϕY,Z(y, z)dy. (4.4)

ϕ denotes the marginal distribution of Z, while ϕY,Z and ϕY |Z are the joint distribution of (Y,Z)
and the conditional distribution of Y given Z respectively. Based on (4.2), an estimator of f is
derived by replacing ϕ and ϕY,Z in (4.4) with their kernel estimations. Therefore, the estimator
f̂ is described as follows:

f̂(z) =
1

ϕ̂(z)

∫
yϕ̂Y,Z(y, z)dy. (4.5)

The kernel estimator of ϕ is expressed as:

ϕ̂(z) =
n−1

h1h2 . . . hq

n∑
i=1

K(hZ ,Zi, z). (4.6)

K(hZ ,Zi, z) is the product kernel at Zi which is defined in Li and Racine (2003) and in Racine
and Li (2004). It is constructed by defining a kernel function k for each of the discrete or
continuous explanatory variables and then multiplying these functions together to produce the
product kernel. Let Zis and zs, s = 1, . . . , q be the s-th component of Zi and z respectively.
Denote by hZ = (h1, h2, . . . , hq) the vector of the smoothing parameters hs, s = 1, . . . , q that
correspond to the Zs variables. Let k(hs, Zis, zs) = k

(
Zis−zs

hs

)
is the kernel function associated

with Zis. Then:

K(hZ ,Zi, z) =

q∏
s=1

k(hs, Zis, zs). (4.7)

Similarly, the kernel estimator of ϕY,Z is given by:

ϕ̂Y,Z(y, z) =
n−1

hY h1 . . . hq

n∑
i=1

K(hV ,Vi,ν). (4.8)

hV = (hY , h1, . . . , hq) is the vector of smoothing parameters corresponding to V = (Y,Z) and
hY is the smoothing parameter of Y . Let k(hY , Yi, y) = k

(
Yi−y
hY

)
be the kernel function of Y .

Then K(hV ,Vi,ν) is the product kernel at Vi = (Yi,Zi) and is constructed as the product of
K(hZ ,Zi, z) and k(hY , Yi, y). Therefore:

K(hV ,Vi,ν) = k(hY , Yi, y)K(hZ ,Zi, z). (4.9)

As implied in (4.5), an estimator for
∫
yϕY,Z(y, z)dy is derived by replacing ϕY,Z with ϕ̂Y,Z . In-
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deed, substituting ϕ̂Y,Z with the expression in (4.8) results in:

∫
yϕ̂Y,Z(y, z)dy =

n−1

hY h1 . . . hq

∫
y

n∑
i=1

K(hV ,Vi,ν)dy =

n−1

hY h1 . . . hq

∫
y

n∑
i=1

(k(hY , Yi, y) ·K(hZ ,Zi, z))dy =

n−1

hY h1 . . . hq

n∑
i=1

(
K(hZ ,Zi, z)

∫
yk(hY , Yi, y)dy

)
.

By construction, it holds that:
1

hY

∫
yk(hY , Yi, y)dy = Yi.

Therefore, ∫
yϕ̂Y,Z(y, z)dy =

n−1

h1 . . . hq

n∑
i=1

K(hZ ,Zi, z)Yi. (4.10)

Substituting the numerator and the denominator in (4.5) with the expressions in (4.6) and (4.10)
respectively results in the Nadaraya - Watson estimator:

f̂(z) =

∑n
i=1K(hZ ,Zi, z)Yi∑n
i=1K(hZ ,Zi, z)

. (4.11)

Define:
wi(z) =

K(hZ ,Zi, z)∑n
i=1K(hZ ,Zi, z)

. (4.12)

Then, (4.11) is expressed as:

f̂(z) =
n∑

i=1

wi(z)Yi.

wi(z), i = 1, . . . , n are functions that for a given z,
∑n

i=1wi(z) = 1 and wi(z) ≥ 0, ∀i. Therefore,
the Nadaraya - Watson estimator is simply a weighted average of Yi, i = 1, . . . , n. (4.11) also
implies that f̂(z) is a local average of the sample values of Y . Indeed, for a kernel function k, it
holds that k(hs, Zis, zs) → 0 as Zis − zs → ±∞. The value of wi(z) is large only if Zis is close
to zs for all s = 1, . . . , q. Otherwise, the kernel value is close to zero and the respective Yis do
not contribute to the computation of f̂(z). Therefore, the Nadaraya - Watson estimation of the
conditional mean at a point z is a local averaging of the Yis for which their corresponding Zis
are close to z.

For illustration purposes, consider the simple case of one continuous explanatory variable
Z and the use of a uniform kernel, i.e.

k

(
Zi − z

hZ

)
=

{
1/2 if |Zi − z| < hZ

0 otherwise .

Then,

f̂(z) =

∑
|Zi−z|<hZ

Yi(1/2)∑
|Zi−z|<hZ

(1/2)
=

∑
|Zi−z|<hZ

Yi∑
|Zi−z|<hZ

1
.
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The above equation shows that for the computation of f̂ at a point z, only the Zi-s which are
within hZ distance from z are considered. The local information used for the computation of
f̂(z) is controlled by the smoothing parameter. In the extremes, if h is small (close to zero), less
sample points are considered for the estimation of f at z. On the other hand, if h is large, f̂(z) at
any point z is just the average of Yis, and Z becomes an irrelevant regressor of Y . According to
the above, the value of h is important because it controls the number of observations which enter
f̂ . For this reason, Bowman and Azzalini (1997) refer to the quantity nh as the local sample size.
nh is a measure of the number of observations locally. As the sample size increases, that is as
n → ∞, the smoothing parameter should allow local averaging to become more informative by
allowing nh→ ∞. At the same time, the bandwidth h→ 0 should shrink to zero for consistency
of the estimation so that lim

n→∞
f̂(z) = f(z).

The Nadaraya - Watson estimator is also known as the local constant estimator. To under-
stand this, we estimate f(z) by minimizing the kernel weighted least squares objective function
which follows:

min
c

n∑
i=1

(Yi − c)2K(hZ ,Zi, z). (4.13)

Minimizing (4.13) results the local constant estimator c̃ = f̃(z). The first order condition of (4.13)
requires that the first derivative with respect to c at point c̃ is zero, that is:

d

dc

(
n∑

i=1

(Yi − c)2K(hZ ,Zi, z)

)⏐⏐⏐⏐⏐
c=c̃

= −2
n∑

i=1

(Yi − c̃)K(hZ ,Zi, z) = 0.

Solving this equation for c̃ gives:

f̃(z) ≡ c̃ =

∑n
i=1K(hZ ,Zi, z)Yi∑n
i=1K(hZ ,Zi, z)

. (4.14)

(4.14) is the same as (4.11). Therefore, the local constant estimator f̃(z) is the Nadaraya -
Watson estimator f̂(z).

The Nadaraya - Watson estimator in (4.11) requires a value for the smoothing parameter
hZ . In the following we present three of the well-known approaches for bandwidth selection.
We restrict ourselves to the case of continuous variables Z ∈ Rq and to the Nadaraya - Watson
estimation of the regression function. The more general case which accounts for both continu-
ous and discrete variables is presented in section 4.1.2.

Plug-in method
The plug-in method minimizes a Weighted Integrated Mean Squared Error (WIMSE) function
of the form

∫
E[f̂(z) − f(z)]2v(z)dz. v(z) is a nonnegative weight function that ensures that,

asymptotically, WIMSE is finite. The leading term of WIMSE is described by:

∫ ⎧⎨⎩
[

q∑
s=1

h2sBs(z)

]2
+

κq

nh1 . . . hq

σ2(z)

ϕ(z)

⎫⎬⎭ v(z)dz = O

⎛⎝( q∑
s=1

h2s

)2

+ (nh1 . . . hq)
−1

⎞⎠ . (4.15)
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In (4.15), hs, s = 1, . . . , q is the smoothing parameter that corresponds to the s-th component of
Z. κ and σ are defined by κ =

∫
k2(x)dx and σ2(z) = E(u2i |Zi = z) respectively. Bs, s = 1, . . . , q

is defined by the equation:

Bs(z) =
κ2
2

2ϕs(z)fs(z) + ϕ(z)fss(z)

ϕ(z)
. (4.16)

In this expression, κ2 =
∫
x2k(x)dx is the second moment of the kernel function k. Also, we

denote by rs and rss (r = f or ϕ) the first and second derivative of r(z) with respect to zs.
Define αs through hs = αsn

−1/(q+4), s = 1, . . . , q. Then, the leading term of WIMSE in (4.15)
becomes:

n−4/(q+4)χv(α1, . . . , αq), (4.17)

where:

χv(α1, . . . , αq) =

∫ ⎧⎨⎩
[

q∑
s=1

α2
sBs(z)

]2
+

κq

α1 . . . αq

σ2(z)

ϕ(z)

⎫⎬⎭ v(z)dz. (4.18)

Denote by α0
1, . . . , α

0
q the values of α1, . . . , αq that minimize χv(α1, . . . , αq) and by h0s, s =

1, . . . , q the smoothing parameters that minimize (4.15). Obviously, it holds that:

h0s = n−1/(q+4)α0
s, s = 1, . . . , q. (4.19)

If one parameter α0
k is zero, then another one α0

t , t ̸= k should equal infinity, otherwise (4.18) is
not minimized. If h0t → ∞, then the kernel function k(h0t , Zit, zt) = k(Zit−zt

h0
t

) → k(0) becomes
a constant and cancels out from the numerator and the denominator of (4.11). This means
that the variable Zt is irrelevant for the regression. We restrict ourselves to the cases where all
regressors are relevant. This restriction is relaxed in section 4.1.2. Then, we assume that:

Assumption 1 Each α0
s, s = 1, . . . , q is uniquely defined, positive and finite.

To obtain an estimator for α0
s, one can substitute Bs(z) in (4.18) with its estimator B̂s(z), then

compute the integration in χv and, at last, minimize the resulting expression with respect to
α1, . . . , αq. The plug-in method constructs an estimator of h0s by plugging α̂0

s in (4.19), so that:

ĥ0 = n−1/(q+4)α̂0, s = 1, . . . , q. (4.20)

The plug-in method requires an initial estimate of Bs(z) and σ2(z). Therefore, an initial smooth-
ing parameter should be selected. If this pilot bandwidth is far from h0s, then also the ĥ0s may not
be an accurate estimator of h0s. Moreover, if the assumption concerning α0

s does not hold, the
plug-in method is not well defined.

Least Squares Cross Validation
Least Squares Cross Validation (LSCV) is a totally data driven method of bandwidth selection
which relies in minimizing the following objective function:

CVlc(h1, . . . , hq) =
1

n

n∑
i=1

(Yi − f̂−i(Zi))
2M(Zi). (4.21)
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In (4.21), f̂−i(Zi) is the leave-one-out Nadaraya - Watson estimator, computed at Zi and de-
scribed by the expression:

f̂−i(Zi) =

n∑
j ̸=i

YiK(hZ ,Zj ,Zi)

n∑
j ̸=i

K(hZ ,Zj ,Zi)

.

M(Zi) is a weight function which takes values between zero and one (0 ≤M(·) ≤ 1). It prevents
difficulties caused by dividing by zero or by the slow convergence rate caused by boundary
effects. (4.21) is expressed as follows (Hall et al., 2007, p.787):

CVlc(h1, . . . , hq) =
1

n

n∑
i=1

(f(Zi)− f̂−i(Zi))
2M(Zi) +

2

N

n∑
i=1

ui(f(Zi)−f̂−i(Zi))M(Zi)+

1

n

n∑
i=1

u2iM(Zi).

(4.22)

ui is the error term in (4.1) at (Yi,Zi). The third term of the right hand side of (4.22) is not
related to h and, therefore, does not participate in the minimization of CVlc. The second term is
of order smaller than the first one. For this reason, minimizing CVlc is asymptotically equivalent
to minimizing the leading term CVlc,0 of CVlc:

CVlc,0 = 1/n
n∑

i=1

(f(Zi)− f̂−i(Zi))
2M(Zi).

Moreover, it holds that (see Li and Racine, 2007, p.99):

CVlc,0 = E[CVlc,0] + (terms of smaller order).

Therefore, minimizing CVlc is equivalent to minimizing E[CVlc,0], which is expressed as follows
(see Li and Racine, 2007, p.100):

E[CVlc,0(h1, . . . , hq)] = n−4/(q+4)χ(α1, . . . , αq) + o(n−4/(q+4)). (4.23)

αs, s = 1, . . . , q are defined by hs = αsn
−1/(q+4). χ is described by the equation (see Li and

Racine, 2007, p.69):

χ(α1, . . . , αq) =

∫ { q∑
s=1

Bs(z)α
2
s

}2

ϕ(z)M(z)dz+
κq

α1 . . . αq

∫
σ2(z)M(z)dz, (4.24)

where Bs, κ and σ are defined previously.
A comparison between (4.18) and (4.24) shows that if v(z) = f(z)M(z), then χv = χ.
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Indeed, it holds that:

E[CVlc,0] = E{[f̂−i(Zi)− f(Zi)]
2M(Zi)} = E{E{[f̂−i(Zi)− f(Zi)]

2M(Zi)]|Zi}}

=

∫
E{[f̂−i(Zi)− f(Zi)]

2M(Zi)|Zi = z}ϕ(z)dz

=

∫
E{[f̂−i(Zi)− f(Zi)]

2ϕ(z)M(z)dz,

which is the same as WIMSE for v(z) = ϕ(z)M(z).
Let α0

1, . . . , α
0
q be the values of α1, . . . , αq that minimize χ. As in the plug-in method, we

assume that α0
s, s = 1, . . . , q are uniquely defined, positive and finite. Denote by h0s, s = 1, . . . , q

the values of hs that minimize the leading term of E[CVlc,0(h)] in (4.23) and by ĥs, s = 1, . . . , q

the values that minimize the cross validation objective function in (4.21). Racine and Li (2004)
show that:

ĥs = h0s + op(h
0
s), s = 1, . . . , q.

Therefore, through cross validation the computed ĥs is asymptotically equal to h0s. The above
discussion shows that the idea behind LSCV is straightforward; instead of minimizing χ, cross
validation minimizes (4.21) which is fully data driven and requires just a standard optimization
process. This is in contrast to the plug-in method, which minimizes χv. The asymptotic prop-
erties of LSCV are summarized in the following theorem (for details, see Li and Racine, 2007,
p.70).

Theorem 2 Assume that:

1. α0
s, s = 1, . . . , q are uniquely defined, positive and finite

2. f , ϕ and σ2 have two continuous derivatives

3. w, as defined in eq.(4.12), is continuous, nonnegative and has compact support

4. ϕ is bounded away from zero for z in the support of w

Then, the following limits hold:

n1/(q+4)ĥs
P−→ α0

s, s = 1, . . . , q

n4/(q+4)

{
CVlc(ĥ1, . . . , ĥq)− n−1

N∑
i=1

u2iM(Zi)

}
P−→ inf

α1,...,αq

χ(α1, . . . , αq).

Akaike Information Criterion
Hurvich et al. (1998) propose a bandwidth selection method based on the Akaike Information
Criterion. The optimization criterion is given by:

AICc = ln(σ̂2) +
1 + tr(Q)/n

1− {tr(Q) + 2}/n
, (4.26)
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where:

σ̂2 =
1

n

n∑
i=1

{Yi − f̂(Zi)}2 =
1

n
YT (I−Q)T (I−Q)Y.

Y is the n × 1 vector of Yis. I is the n × n identity matrix. Q is a n × n matrix with its (i, j)-th
element given by:

wij =
K(hZ ,Zi,Zj)∑n
l=1K(hZ ,Zi,Zl)

.

Li and Racine (2004) show that this approach appears to be asymptotically equivalent to the
cross validation method and has good finite sample performance.

4.1.2 Nonparametric kernel regression with mixed data

In section 4.1.1 we consider the case of only continuous variables. Nevertheless, in practice,
mixed data are common. In this section, the nonparametric regression accounts for both cat-
egorical and continuous regressors. Moreover, assumption 1 that all explanatory variables are
relevant is relaxed; the presence of irrelevant regressors is considered.

Let D be the d× 1 vector of discrete regressors and C the c× 1 vector of continuous ones.
Ds, s = 1, . . . , d and Cs, s = 1, . . . , c denote the s-th component of D and C respectively.
Assume that C ∈ Rc and D ∈

∏d
s=1{0, 1, . . . , κs − 1}. κs is the number of different values that

Ds can take. Denote also by Z = (D,C) the vector of q = d + c explanatory variables and
z = (D, C) a respective point at the range of Z.

Moreover, let D̄ and D̃ be the vectors of d̄ relevant and d̃ irrelevant categorical regressors
respectively. Similarly, denote by C̄ and C̃ the vectors of c̄ relevant and c̃ irrelevant continuous
regressors. Obviously, d̄ + d̃ = d and c̄ + c̃ = c. We assume that we do not know in advance
d̃ and c̃. Without loss of generality, we rearrange variables so that the first d̄ variables of the D

vector and the first c̄ variables of the C vector be the relevant ones. The relevant and irrelevant
variables are defined according to the following assumption.

Assumption 2 (Relevance of regressors) The random vector (Y, Z̄) is independent of Z̃, where
Z̄ = (D̄, C̄) and Z̃ = (D̃, C̃).

Assumption 2 is quite limitative; irrelevant variables must be independent not only from Y , but
also from the relevant variables Z̄. In simulations, Hall et al. (2007) replace this condition with
the less restrictive one:

E[Y |Z] = E[Y |Z̄], almost surely. (4.27)

Though not theoretically established, the results show that theorems 3 and 4 hold also under
(4.27).

The regression model is given by (4.1). In the case of mixed data, the Nadaraya - Watson
estimator of f is described by:

f̂(z) =

∑n
i=1Ψ((h,η)Z ,Zi, z)Yi∑n
i=1Ψ((h,η)Z ,Zi, z)

. (4.28)
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This expression is similar to (4.11). Unlike K(hZ ,Zi, z) in (4.11), the product kernel in (4.28)
accounts also for the presence of categorical regressors. Ψ((h,η)Z ,Zi, z) is constructed ac-
cording to the following steps. A kernel function is assigned to each discrete variable Ds. Aitchi-
son and Aitken (1976) present a kernel function for categorical unordered variables, which is
described by the equation:

l̃(ηs, Dis, Ds) =

{
ηs, if Dis = Ds

1−ηs
κs−1 , if Dis ̸= Ds

,

where Dis and Ds are the sth components of Di and D respectively. The bandwidth ηs takes val-
ues in [1/κs, 1]. Instead of the Aitkinson - Aitken kernel l̃, the following kernel function, proposed
by Racine and Li (2004), can be used:

l(ηs, Dis, Ds) =

{
1, if Dis = Ds
ηs, if Dis ̸= Ds

(for unordered variables). (4.29)

In the case of categorical ordered variables, the kernel function below can be used:

l(ηs, Dis, Ds) = η|Dis−Ds|
s (for ordered variables). (4.30)

In both cases of unordered or ordered data, ηs, s = 1, . . . , d is the smoothing parameter corre-
sponding to Ds and is restricted in [0, 1]. In the extreme case where ηs = 0, the kernel function
becomes a frequency estimator (indicator function) and the data are split into cells according to
the categories. In the opposite extreme, if ηs = 1, the kernel function becomes a constant and
the corresponding variable Ds is smoothed out of the regression. The product kernel L for the
discrete variables is defined according to the following equation:

L(η,Di, D) =
d∏

s=1

l(ηs, Dis, Ds). (4.31)

We also assign a kernel function for each continuous regressor Cs, s = 1, . . . , c. Denote by
Cis and Cs the sth component of Ci and C respectively. The kernel function used is described
by:

k(hs, Cis, Cs) = k

(
Cis − Cs

hs

)
. (4.32)

k is a univariate and symmetric density function, such as Gaussian, Epanechnikov or Biweight
(for details, see Henderson and Parmeter, 2015, sec.2.4). Then, the product kernel correspond-
ing to the continuous vector C is:

K(h,Ci, C) =
c∏

s=1

k(hs, Cis, Cs). (4.33)

The generalized product kernel Ψ in (4.28) is the product of the kernels in (4.31) and (4.33), that
is:

Ψ((h,η)Z ,Zi, z) = L(η,Di, D)K(h,Ci, C). (4.34)
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According to the above, the estimator of f in (4.28) is rewritten as:

f̂(z) =

n∑
i=1

(
Yi

c̄∏
s=1

k(hs, Cis, Cs)
c∏

s=c̄+1
k(hs, Cis, Cs)

d̄∏
s=1

l(ηs, Dis, Ds)
d∏

s=d̄+1

l(ηs, Dis, Ds)

)
n∑

i=1

(
c̄∏

s=1
k(hs, Cis, Cs)

c∏
s=c̄+1

k(hs, Cis, Cs)
d̄∏

s=1
l(ηs, Dis, Ds)

d∏
s=d̄+1

l(ηs, Dis, Ds)

) . (4.35)

The choice of (h,η) can be made by minimizing the following Cross Validation criterion:

CVlc(h,η) = CVlc(h1, . . . , hc, η1, . . . , ηd) =
1

n

n∑
i=1

(Yi − f̂−i(Zi))
2M(Zi). (4.36)

Similar to (4.21), M(Zi) is a weight function. f̂−i is the leave-one-out local constant kernel
estimator of f , described by the equation:

f̂−i(Zi) =

n∑
j ̸=i

YjΨ((h,η)Z ,Zj ,Zi)

n∑
j ̸=i

Ψ((h,η)Z ,Zj ,Zi)

. (4.37)

The estimated values (ĥ, η̂) that result from minimizing (4.36), enter (4.28) for the derivation of
f̂(z). Hall et al. (2007) show that the leading term of (4.36) is the quantity below:

∫
κc̄σ2(z̄)

nh1 . . . hc̄
M(z)R(z)ϕ̃(z̃)dz+

∫ ⎛⎝ d̄∑
s=1

ηs
∑
v

[Is(v, D̄){f̄(C̄,v)− f̄(z̄)}ϕ̄(C̄,v)]+

1/2κ2

c̄∑
s=1

h2s{f̄ss(z̄)ϕ̄(z̄) + 2f̄s(z̄)ϕ̄s(z̄)}

)2
M̄(z̄)

ϕ̄(z̄)
dz̄,

(4.38)

where κ =
∫
k2(x)dx and κ2 =

∫
x2k(x)dx. f̄ denotes a regression function of Z̄ on Y . ϕ̄ and

ϕ̃ denote the marginal densities of the relevant regressors Z̄ and the irrelevant regressors Z̃

respectively. The subscripts s and ss in f̄ and ϕ̄ denote first and second derivative with respect
to the sth component of z̄. M̄ is defined according to the equation M̄(z̄) =

∫
ϕ̃(z̃)M(z)dz̃. v is

a point in the range of the relevant, discrete variables, while Is is an indicator function which is
defined according to the expression:

Is(x,w) = I(xs ̸= ws)
d̄∏

t̸=s

I(xt = wt),

for x,w ∈
∏d̄

s=1{0, 1, . . . , κs−1}. Therefore, Is(x,w) equals unity when only the sth components
of x and w are different. Moreover, R is given by the expression:

R(z) =
v2(z)

v21(z)
,
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where vj(z), j = 1, 2 is defined as follows (see Hall et al., 2007):

vj(z) = E

⎛⎝⎡⎣ c∏
s=c̄+1

h−1
s k(

Cis − Cs

hs
)

d∏
s=d̄+1

ηI(Dis ̸=Ds)
s

⎤⎦j⎞⎠ .

By use of Holder’s inequality, it is proven that:

R(z) ≥ 1, ∀z, hc̄+1, . . . , hc and ∀ηd̄+1, . . . , ηd.

Obviously, the first term in (4.38) is minimized when R(z) becomes unity. Thus, the minimization
of the cross validation objective function in (4.36) requires R(z) to be unity. It holds that R→ 1 if
and only if the bandwidths of the irrelevant regressors approach their extreme upper values, that
is if hs → ∞ and ηt → 1, for s ∈ {c̄+ 1, . . . , c} and t ∈ {d̄+ 1, . . . , d}. Therefore, minimization of
the local constant cross validation function leads to a choice of extreme values for the smoothing
parameters of the irrelevant regressors. In other words:

lim
ηs→1

l(ηs, Dis, Ds) = 1, for d̄+ 1 ≤ s ≤ d and (4.39a)

lim
hs→∞

k(hs, Cis, Cs) = lim
hs→∞

k

(
Cis − Cs

hs

)
= k(0), for c̄+ 1 ≤ s ≤ c. (4.39b)

By use of (4.39), the estimator of the regression function in (4.35) becomes:

f̂(z) =

n∑
i=1

(
Yi

c̄∏
s=1

k(hs, Cis, Cs)
d̄∏

s=1
l(ηs, Dis, Ds)

)
n∑

i=1

(
c̄∏

s=1
k(hs, Cis, Cs)

d̄∏
s=1

l(ηs, Dis, Ds)

) . (4.40)

Therefore, using the local constant cross validation method, only the relevant regressors enter
the estimation of f . LSCV and the local constant estimator detect and smooth out the variables
which are irrelevant to the regression. The estimation using the local constant cross validation
method is the same as in the case of only relevant variables in the model:

Y = f(Z̄) + u. (4.41)

For R→ 1, the terms described in eq.(4.38) become:

∫
κc̄σ2(z̄)

nh1 . . . hc̄
M̄(z̄)dz̄+

∫ ⎛⎝ d̄∑
s=1

ηs
∑
v

[Is(v, D̄){f̄(C̄,v)− f̄(z̄)}ϕ̄(C̄,v)]+

1/2κ2

c̄∑
s=1

h2s{f̄ss(z̄)ϕ̄(z̄) + 2f̄s(z̄)ϕ̄s(z̄)}

)2
M̄(z̄)

ϕ̄(z̄)
dz̄.

(4.42)

Define αs = hsn
1/(c̄+4), s = 1, . . . , c̄ and βs = ηsn

2/(c̄+4), s = 1, . . . , d̄ (Hall et al., 2007). Then,
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the leading term of CV as expressed in (4.42) is rewritten as:

n−4/(c̄+4)χ̄(α1, . . . , αc̄, β1, . . . , βd̄),

where χ̄ is given by:

χ̄(α1, . . . , αc̄, β1, . . . , βd̄) =∫
κc̄σ2(z̄)

α1 . . . αc̄
M̄(z̄)dz̄+

∫ ⎛⎝ d̄∑
s=1

βs
∑
v

[Is(v, D̄){f̄(C̄,v)− f̄(z̄)}ϕ̄(C̄,v)]+

1/2κ2

c̄∑
s=1

α2
s{f̄ss(z̄)ϕ̄(z̄) + 2f̄s(z̄)ϕ̄s(z̄)}

)2
M̄(z̄)

ϕ̄(z̄)
dz̄.

(4.43)

Denote by α0
1, . . . , α

0
c̄ , β

0
1 , . . . , β

0
d̄

the values of α1, . . . , αc̄, β1, . . . , βd̄ in (4.43) that minimize χ̄.
Then, the properties of LSCV are summarized in the following theorem (Hall et al., 2007):

Theorem 3 Let ĥ1, . . . , ĥc, η̂1, . . . , η̂d be the values of h1, . . . , hc, η1, . . . , ηd that minimize eq.(4.36).
Under assumption 2 and assumptions 4, 5, 6 and 7, presented at the end of the Appendix, the
following asymptotic properties hold:

1. n1/(c̄+4)ĥs → α0
s in probability, for all s = 1, . . . , c̄.

2. P (ĥs > C) → 1 for all s = c̄+ 1, . . . , c and for all C > 0.

3. n2/(c̄+4)η̂s → β̂0s in probability, for all s = 1, . . . , d̄.

4. η̂s → 1 in probability, for all s = d̄+ 1, . . . , d.

The bandwidths of the irrelevant variables diverge to their extreme values, while the smoothing
parameters of the relevant regressors shrink to zero. These properties result to the dimension-
ality reduction of the model because the number of regressors diminishes from q in eq.(4.1) to
q̄ = c̄ + d̄ in eq.(4.41). Furthermore, the asymptotic normality of f̂ is presented in the following
theorem (Hall et al., 2007):

Theorem 4 Suppose that assumption 2 and assumptions 4, 5, 6 and 7 hold. If z is an interior
point with ϕ(z) > 0, then:

(nĥ1, . . . , ĥc̄)
1/2

⎡⎣f̂(z)− f̄(z̄)−
d̄∑

s=1

Xs(z̄)η̂
2
s −

c̄∑
s=1

Ξs(z̄)ĥ
2
s

⎤⎦ d−→ N(0,Ω(z̄)), (4.44)
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where:

Xs(z̄) =
∑
v

Is(v, D̄)
(
f̄(C̄,v)− f̄(z̄)

)
ϕ̄(C̄,v)ϕ̄(z̄)−1,

Ξs(z̄) = 1/2κ2

(
f̄ss(z̄) + 2

ϕ̄s(z̄)f̄s(z̄)

ϕ̄(z̄)

)
and

Ω(z̄) = κc̄
σ2(z̄)

ϕ̄(z̄)

are quantities related to the asymptotic bias and variance.

From Theorem 4 the bias and the variance of f̂ is calculated (see also Henderson and
Parmeter, 2015, sec.5.3). For simplicity reasons we restrict ourselves to the case of only con-
tinuous variables. Then, bias in the local constant least squares (LCLS) estimation is given by
the expression below:

Bias[f̂(z)] ≈ κ2
2ϕ(z)

q∑
s=1

h2sBs(z) = κ2

q∑
s=1

h2s
fs(z)ϕs(z)

ϕ(z)
+
κ2
2

q∑
s=1

h2sfss(z), (4.46)

where Bs(z) = 2fs(z)ϕs(z) + fss(z)ϕ(z). Bias is not directly dependent on the sample size n,
but only indirectly through the smoothing parameters. Therefore, a larger sample size does
not imply less bias. Moreover, it is proportional to the square of the bandwidth. The less the
smoothing parameter, the less biased the estimation is. Furthermore, bias is dependent upon
the distribution ϕ of the data. For this reason sparseness of the data also raises bias. From
(4.46) it is obvious that if the underlying function f is constant (so that fs = fss = 0) or if the
underlying function is linear and the distribution is uniform (so that fss = 0 and ϕs = 0), then
Bs = 0 and the estimation is unbiased.

The variance of f̂ is given by the following equation:

V ar[f̂(z)] ≈ σ2κq

ϕ(z)(nh1 . . . hq)
. (4.47)

Variance depends on σ2 but not on f . Moreover, it is inversely proportional to n; the bigger
the sample size, the less the variance of the estimation. Unlike bias, variance is inversely
proportional to the bandwidth; the less the smoothing parameter, the more the variance of f̂ .
Therefore, there is a trade-off between bias and variance, because if the bandwidth is large,
variance is smaller but bias becomes large. Inversely, if the smoothing parameter is small, bias
is small but variance is larger.

4.1.3 Local linear nonparametric regression

Fan and Gijbels (1996) highlight that the Nadaraya - Watson estimator has zero minimax effi-
ciency. Moreover, as described in Hastie and Loader (1993) and in Chu and Marron (1991), this
approach suffers from boundary bias and bias caused by the asymmetry of observations. Fan
and Gijbels (1992) mention that local constant estimators converge more slowly at the boundary.
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Both biases appearing in LCLS estimation are caused by the asymmetry of the observations
around the point of interest, in combination with a non-zero slope of f at that point. For in-
stance, in a boundary point zb, only the observations on one side of its neighborhood contribute
to the estimation of f(zb). If f has a nonzero slope at zb, then the estimation derived by (4.28)
is biased (see Hastie and Loader, 1993). Approaches such as boundary kernel methods that
handle the boundary problem in local constant estimation exist but are not efficient.

One of the well-known approaches for treating the boundary bias problem is the local linear
estimator (Stone, 1977; Cleveland, 1979). As described by Fan (1993), the method is minimax
efficient in correcting boundary bias. Li and Racine (2004) also show through simulations the
efficiency gains of the local linear least squares (LLLS) estimator relative to the LCLS one.

Consider the case of continuous data, as described in section 4.1.1. Then, the local linear
estimator of f in (4.1) for a fixed point z results from the solution of the following minimization
problem:

min
α,β

n∑
i=1

(Yi − α− (Zi − z)Tβ)2K(hZ ,Zi, z). (4.48)

In (4.48), K(hZ ,Zi, z) is the product kernel as described in (4.7). (Zi − z) is a q-dimensional
vector. Denote by α̂ and β̂ the solution of (4.48). Then:

α̂ = f̂(z),

β̂ = β̂(z),

where β(z) = ∇f(z) =
(

∂f
∂z1

(z), . . . , ∂f
∂zq

(z)
)T

. Therefore, α̂ is the local linear estimator of f at

z and β̂ is the vector of the local linear estimators of the derivatives of f at z. Unlike the LCLS
estimator, the local linear approach estimates automatically not only the regression function
itself, but also its derivatives. Minimization of (4.48) results in the following estimators:

γ̂(z) =

(
f̂(z)

β̂(z)

)

=

[
n∑

i=1

K(hZ ,Zi, z)

(
1 (Zi − z)T

Zi − z (Zi − z)(Zi − z)T

)]−1 n∑
i=1

K(hZ ,Zi, z)

(
1

Zi − z

)
Yi.

(4.50)

The smoothing parameter hz in (4.50) is estimated by minimizing the following LSCV function:

CVll(h1, . . . , hq) =
1

n

n∑
i=1

[Yi − f̂−i(Zi)]
2. (4.51)

Xia and Li (2002) use a weight function M to the cross validation objective function in order
to reduce boundary effects. f̂−i is the leave-one-out local linear estimator, given by f̂−i(Zi) =
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(1, 0, . . . , 0) · γ̂−i(Zi), where:

γ̂−i(Zi) =

(
f̂−i(Zi)

β̂−i(Zi)

)

=

⎡⎣ n∑
j ̸=i

K(hZ ,Zj ,Zi)

(
1 (Zj − Zi)

T

Zj − Zi (Zj − Zi)(Zj − Zi)
T

)⎤⎦−1

×

n∑
j ̸=i

K(hZ ,Zj ,Zi)

(
1

Zj − Zi

)
Yj .

(4.52)

In the more general case of mixed continuous and categorical data, the estimator is given by:

γ̂(z) =

(
f̂(z)

β̂(z)

)

=

[
n∑

i=1

Ψ((h,λ)Z ,Zi, z)

(
1 (Ci − C)T

Ci − C (Ci − C)(Ci − C)T

)]−1

×

n∑
i=1

Ψ((h,λ)Z ,Zi, z)

(
1

Ci − C

)
Yi.

(4.53)

The notation is defined in section 4.1.2. Ψ is the generalized product kernel as described in
(4.34). (4.53) is a local linear estimator for the continuous variables C and a local constant esti-
mator for the discrete variables D. The smoothing parameters (h,η)Z = (h1, . . . , hc, η1, . . . , ηd)

are selected by minimizing the following cross validation function:

CVll(h1, . . . , hc, η1, . . . , ηd) =
1

n

n∑
i=1

[Yi − f̂−i(Zi)]
2. (4.54)

Again, f̂−i is described by f̂−i(Zi) = (1, 0, . . . , 0) · γ̂−i(Zi), where:

γ̂−i(Zi) =

(
f̂−i(Zi)

β̂−i(Zi)

)

=

⎡⎣ n∑
j ̸=i

Ψ((h,η)Z ,Zj , z)

(
1 (Zj − Zi)

T

Zj − Zi (Zj − Zi)(Zj − Zi)
T

)⎤⎦−1

×

n∑
j ̸=i

Ψ((h,η)Z ,Zj ,Zi)

(
1

Zj − Zi

)
Yj .

(4.55)

To establish the asymptotic properties of the local linear estimator, Li and Racine (2004)
show that the leading term in (4.54) is:

CVll,0 =
∑

D

∫ {
κ2
2

c∑
s=1

fss(z)h
2
s +

d∑
s=1

X ′
s(z)λs

}2

f(z)dC +
Ω′

nh1 . . . hc
, (4.56)
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where:

X ′
s(z) =

∑
v

[Is(v, D)f(C,v)− f(z)]ϕ(C,v) and

Ω′ = κq
∑

D

∫
σ2(z)dC.

Define αs, s = 1, . . . , c and βs, s = 1, . . . , d according to:

hs = αsn
−1/(c+4), s = 1, . . . , c (4.58a)

ηs = βsn
−2/(c+4), s = 1, . . . , d (4.58b)

Then, (4.56) can be rewritten as CVll,0 = χα,βn
−4/(c+4), where:

χα,β =
∑

D

∫ {
κ2
2

c∑
s=1

fss(z)α
2
s +

d∑
s=1

X ′
s(z)βs

}2

ϕ(z)dC +
Ω′

nα1 . . . αc
. (4.59)

As in section 4.1.2, denote by α0
1, . . . , α

0
c , β

0
1 , . . . , β

0
d the values of α1, . . . , αc, β1, . . . , βd that min-

imize χα,β. Similarly, denote by h01, . . . , h
0
c , η

0
1, . . . , η

0
d the values of h1, . . . , hc, η1, . . . , ηd that

minimize (4.56). Then, the convergence rates of the smoothing parameters are given by the
following theorem (for details, see Li and Racine, 2004).

Theorem 5 Suppose that assumptions 8, 9 and 10, described at the end of the Appendix, hold.
Then:

ĥs − h0s
h0s

= Op(n
−ϵ1/(4+c)), ∀s = 1, . . . , c where ϵ1 = min{c/2, 2}

η̂s − η0s = Op(n
−ϵ2), ∀s = 1, . . . , d where ϵ2 = min{4/(4 + c), 1/2}

Theorem 5 proves that the smoothing parameters derived by the LLLS estimation converge
to the optimal smoothing parameters. These convergence rates are the same as the ones
presented by Racine and Li (2004) for the case of the LCLS estimation. Therefore, if the re-
gression is non-linear, the bandwidths by LLLS and LCLS estimations converge to their optimal
values with the same rate. Based on theorem 5, Li and Racine (2004) establish the asymptotic
normality of the local linear estimator of f by the following theorem.

Theorem 6 Under assumptions 8, 9 and 10, it holds that:

√
nĥ1 . . . ĥc

(
f̂(z)− f(z)−

c∑
s=1

κ2
2
fss(z)ĥ

2
s −

d∑
s=1

η̂sX
′
s(z)

)
d−→ N(0,Ω′′),

where Ω′′ = κcσ2(z)/ϕ(z) and X ′
s is defined previously. (4.61)

Theorems 5 and 6 do not account for linear regressions and do not observe or smooth out
irrelevant variables. Nevertheless, Li and Racine (2004) show through Monte Carlo simulations
that when a continuous variable Zs enters the regression linearly, then local linear least squares
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selects a large value for the bandwidth hs of this variable. Moreover, in the presence of an
irrelevant discrete variable, the method chooses a bandwidth ηs close to the upper extreme
of its support. Therefore, though not theoretically established, the local linear cross validation
(LLCV) method smooths out discrete variables which are not relevant to the regression. Further,
a large value of hs is chosen when the respective continuous regressor Zs enters the regression
linearly.

Theorem 6 provides the bias and variance of f̂ . For simplicity reasons we consider the case
of only continuous data. Then, the bias of f̂(z) becomes:

Bias[f̂(z)] ≈ κ2
2

q∑
s=1

h2sfss(z). (4.62)

According to (4.62), bias is not dependent on the sample size n. Moreover, if the regression is
linear to all its components, that is fss = 0, ∀s = 1, . . . , q, then the estimator of f is unbiased.
This is in contrast to the LCLS estimator, which generally remains biased when the underlying
function is linear1. Contrary to the LCLS method, the bias of the LLLS estimator does not
depend on the distribution ϕ(z) of Z.

The variance of the local linear estimator is given by:

V ar[f̂(z)] ≈ σ2κq

ϕ(z)(nh1 . . . hq)
. (4.63)

Obviously, the variance of f̂ using the LLLS method is the same as the one of the LCLS esti-
mation.

4.1.4 Local polynomial nonparametric regression

The local polynomial estimator in nonparametric regression is obtained by using a higher order
polynomial in (4.13) or (4.48), instead of a constant or a linear function. It is a generalization
of the Nadaraya - Watson and the local linear estimator. Consider the case of q continuous
regressors. Then, for a fixed point z, the local polynomial estimator f̂(z) of order p results from
minimizing the following objective function (see Li and Racine, 2007, p.89):

min
αt

n∑
i=1

⎧⎨⎩Yi − ∑
0≤t̄≤p

αt(Zi − z)t

⎫⎬⎭
2

K(hZ ,Zi, z). (4.64)

1For a comparison see eqs.(4.46) and (4.62).
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(4.64) follows the notation introduced by Masry (1996), in particular:

t
def
= (t1, . . . , tq),

t̄
def
=

q∑
j=1

tj ,

zt
def
= zt11 × · · · × z

tq
q and∑

0≤t̄≤p

def
=

p∑
j=1
t̄=j

j∑
t1=0

· · ·
j∑

tq=0

.

αt is a function of z. For p = 0, expressions (4.13) and (4.64) are the same, while for p = 1

(4.64) is the same as (4.48). Denote by T the collection of all t so that 0 ≤ t̄ ≤ p, that is
T = {t ∈ Zq : 0 ≤ t̄ ≤ p}. Assume that α̂t, t ∈ T are the values of αt at point z that minimize
(4.64). Then, the local polynomial estimators of the regression function and its derivatives up to
order p are given by:

dtf̂(z) = t!α̂t, ∀t ∈ T, (4.66)

where:

t!
def
= t1!× · · · × tq! and

(dtf)(z)
def
=

∂tf(z)

∂zt11 . . . ∂z
tq
q

.

For t equal to the transpose of the zero vector 0, (4.66) provides the following estimator of f at
z:

f̂(z) = α̂0⊺ .

In both (4.64) and (4.66), hZ is the smoothing parameter, which is estimated by minimizing the
LSCV function. The leave-one-out estimator of f is computed by:

f̂−i(Zi) = α̂−i,0⊺

α̂−i,t, t ∈ T are the values of α−i,t that minimize:

min
α−i,t

n∑
j ̸=i

⎧⎨⎩Yj − ∑
0≤t̄≤p

α−i,t(Zj − Zi)
t

⎫⎬⎭
2

K(hZ ,Zj ,Zi).

The asymptotic normality of estimator f̂ is established through the following requirements:

Assumption 3 It is assumed that:

1. the regression function f(z) is continuous with continuous derivatives up to the (p + 1)

order.

2. k is a bounded second order kernel function with compact support.
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3. h = O(n−1/(q+2p+2))

The theorem that follows describes the asymptotic properties of f̂ . For simplicity reasons, the
bandwidths corresponding to the regressors are the same, i.e. h1 = h2 = · · · = hq = h.

Theorem 7 Assume the conditions in 3. If ϕ(z) > 0, ∀z then:

nhq+2l
[
∇(l)f̂(z)−∇(l)f(z)−Al,p+1(z)h

p+1−l
]

d−→ N

(
0,
σ2(z)

ϕ(z)
Vl

)
. (4.68)

Al and Vl are described in Masry (1996), as well as the following uniform almost sure conver-
gence of the local polynomial least squares (LPLS) estimator:

Theorem 8 For all l ∈ Z : 0 ≤ l ≤ p, it holds that:

sup
z∈S

⏐⏐⏐∇(l)f̂(z)−∇(l)f(z)
⏐⏐⏐ = O

((
ln(n)

nhq + 2l

)1/2

+ hp−l+1

)
,almost surely. (4.69)

An increase in the order of the local polynomial results in a smaller order of bias. On the other
hand, the order of the polynomial has a negative effect with respect to the variance of the
estimator. Fan and Gijbels (1996) describe the rise in variability of f̂ as a result of the increase
of p. Therefore, interest lies in the choice of the order p of the local polynomial. Hall and
Racine (2015) propose a LSCV approach to determine the bandwidth as well as the order of
the local polynomial. According to the proposed method, the cross validation function in (4.51)
is minimized jointly with respect to the bandwidth hZ = (h1, . . . , hq)

T and with respect to p. This
approach is in contrast to previous ones which suggest as a choice of p the smallest integer
above the order l of the derivative of f of interest.

4.2 Nonparametric kernel regression with instrumental variables

In section 4.1 exogeneity of Z is assumed. Nevertheless, if Z is endogenous, f in (4.1) can not
be estimated by E(Y |Z) because the error term is not independent of the vector of explanatory
variables, that is E(u|Z) ̸= 0. One approach to this problem is using a vector W ∈ Rρ of
instrumental variables so that E(u|W) = 0. Then, f is estimated as the solution to the following
equation:

E(Y − f(Z)|W) = 0. (4.70)

The solution f in (4.70) requires solving an inverse problem. Indeed, (4.70) can be rewritten as:

E(Y |W) = E(f(Z)|W).

Assume the following notation:

r : Rρ → R, r(W) = E(Y |W), (4.71a)

T : L2(Z) → L2(W), Th = E(h(Z)|W), (4.71b)

T ∗ : L2(W) → L2(Z), T ∗k = E(k(W)|Z). (4.71c)
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L2(Z) and L2(W) are the sets of square integrable functions of Z and W respectively. T ∗ is the
adjoint operator of T . Properties of the T operator are presented in the end of the Appendix.
Then, (4.70) is equivalent to the expression:

r = Tf. (4.72)

(4.71) and (4.72) show that f is the solution to a Fredholm integral equation of the first kind. In
the Appendix an alternative derivation of (4.72) by Horowitz (2011) when Z and W are contin-
uous is presented.

4.2.1 Identification of f

Identification of f is related to whether there is a unique solution to (4.72). f and f ′ both solve
(4.72) if and only if:

E(f(Z)− f ′(Z)|W) = 0.

For this reason, Newey and Powell (2003) and Newey (2013) highlight that f is identified, i.e. is
the only solution to (4.72), if and only if g(Z) ≡ 0 is the only solution to the equality:

E(g(Z)|W) = 0.

Obviously, the identification of f and the completeness of the conditional expectation are equiv-
alent. Indeed, according to the definition in D’Haultfoeuille (2011), Z is complete for W if, for all
measurable real functions g such that E(|g(Z)|) <∞:

E(g(Z)|W) = 0 a.s. ⇒ g(Z) = 0 a.s. (4.73)

Moreover, completeness is equivalent to the injectivity of T , because expression (4.73) implies
that the null space of the conditional mean operator E(·|W) is zero.

Canay et al. (2013) show that for nonparametric models and under commonly imposed
restrictions, the null hypothesis that the completeness condition does not hold is not testable.
Newey (2013) provides the following explanation which is based on the eigenvalues of the condi-
tional expectation operator. Denote by {λi, ξi, i = 1, 2, . . . } the eigenvalues λi and eigenvectors
ξi of T . λi, i = 1, 2, . . . are positive. f in (4.70) is not identified when at least one of the eigen-
values is zero. Nonetheless, as mentioned in Horowitz (2011), if T is assumed non-singular and
the eigenvalues are sorted in descending order, then they have a unique limit point at 0. There-
fore, the problem in testing completeness is that, empirically, models with zero eigenvalues and
models with eigenvalues that approach zero cannot be distinguished.

The usual maintained identification assumption is that T is one-to-one or nonsingular (see
Darolles et al., 2011; Horowitz, 2011, among others). T has an inverse T−1 and the solution f
in (4.72) is given by the expression:

f = T−1r. (4.74)
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4.2.2 The ill posed inverse problem

The definition of well posed and ill posed problems was first introduced by Hadamard (2014)2.
A problem is well posed if it satisfies the following three conditions:

1. Existence of the solution

2. Uniqueness of the solution

3. Continuous dependence of the solution on the data (stability of the solution)

A problem is ill posed if it is not well posed, i.e. if one of the above properties does not hold.
Engl et al. (1996, ch.2) mention that the existence of a solution in (4.72) is equivalent to r

being attainable for all r ∈ L2(W). This means that r must be in the range of T . The second
condition holds if and only if only zero belongs to the null space of T . This requirement holds
assuming that T is one-to-one. Then, the inverse of T exists. If the first two conditions are
satisfied, the third one holds if and only if T−1 is continuous.

The nonparametric IV estimation leads to an ill posed problem because the mapping from r

to f in (4.74) is not continuous. Indeed, under the conditions of Picard theorem (Kress, 1999a,
sec.15.4), the solution in (4.72) is given by:

f = T−1r =
∞∑
i=1

⟨r, ψi⟩
λi

fi. (4.75)

In (4.75), ⟨·, ·⟩ is the inner product in L2, defined as ⟨h1, h2⟩ =
∫
h1(z)h2(z)dz for h1, h2 ∈ L2.

(λi, fi, ψi), i = 1, 2, . . . are determined by the Singular Value Decomposition (SVD) of T . λi’s
are the eigenvalues of T and T ∗ while fi’s and ψi’s are the corresponding eigenfunctions. (4.75)
shows that because λi → 0 as i→ ∞, f is not continuously dependent on the data. In practice,
an estimation r̂ = r + δψi enters (4.72), the error level δ > 0 being arbitrarily small. Darolles
et al. (2011) mention that this approximation of r introduces an error which leads to a result
f + δ

λi
fi infinitely far from the exact solution f . The large change in f due to an arbitrarily small

change in r is also explained in Horowitz (2011).

4.2.3 Regularization

Because of the ill-posedness of the problem described in (4.72), a consistent estimator of
f can not result from plugging in (4.74) consistent estimators of r and the conditional dis-
tribution ϕ(Z|W) (see also Newey, 2013). Nonetheless, a sequence of bounded operators
Rα : L2(W) → L2(Z), α > 0 can be found to approximate the unbounded inverse operator
T−1. Then, the solution f in (4.72) is estimated by f̂α = Rαr̂, α → 0. This approach is called
regularization and describes the approximation of an ill-posed problem by a family of well-posed
problems, such that their solutions converge to the solution of the ill-posed problem (see Kress,
1999a, sec.15.2). Kress (1999a) provides the following definition.

2for a definition see also Kress (1999a, ch.15).
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Definition 9 Let X and Y be normed spaces and T : X → Y a one-to-one, bounded, linear
operator. A family of bounded linear operators Rα : Y → X, α > 0, with the property of
pointwise convergence

lim
α→0

RαTf = f, f ∈ X

is a regularization scheme for the operator T . α is called the regularization parameter.

The regularization scheme approximates the solution f in (4.72) by f̂α = Rαr̂. Denote by
δ the error level imposed by the estimation of r, so that ||r̂ − r|| ≤ δ3. The total approximation
error is given by the inequality:

||f̂α − f || ≤ δ||Rα||+ ||RαTf − f ||. (4.76)

As described in Kress (1999a), the first term of the right hand side in (4.76) is the sample error,
which increases as α → 0. The second term is the error introduced by the approximation of
T−1 by Rα and decreases as α → 0. Therefore, the regularization parameter α minimizes the
overall error balancing between accuracy and stability. A small value of α corresponds to large
sample error and a highly variable estimator. On the other hand, a large value of α results in an
over-regularized estimator.

In practice, instead of directly regularizing the problem in (4.72), we reshape the equation
as follows. r, T and T ∗ are defined in (4.71). It is assumed that the completeness condition that
T is one-to-one holds and that both operators T and T ∗ are compact. Projecting (4.72) onto the
space of Z (see, e.g. Centorrino et al., 2017), we obtain:

T ∗r = T ∗Tf. (4.77)

Denote by T̂ ∗, T̂ and r̂ the kernel estimators of T ∗, T and r respectively. Their smoothing
parameters can be estimated according to one of the bandwidth selection methods discussed
before. Then, the sample counterpart of (4.77) is:

T̂ ∗r̂ = T̂ ∗T̂ f̂ . (4.78)

Darolles et al. (2011) mention that f is identifiable if and only if T ∗T is one-to-one. (T ∗T )−1

exists but is noncontinuous. Therefore f̂ = (T̂ ∗T̂ )−1T̂ ∗r̂ is not well-defined. The regularization
procedure is applied in (4.78) rather than in (4.72).

In literature a plethora of different ways to regularize exists, including Tikhonov methods,
sieve estimations and truncated iterative approaches4. A brief description of two well-known
regularization methods follows:

1. Tikhonov regularization (Tikhonov, 1943; Darolles et al., 2011)

2. Landweber - Fridman regularization (Landweber, 1951; Fridman, 1956)

3|| · || is the norm in L2 so that for every h ∈ L2, ||h|| =
[∫

h2(z)dz
]1/2

4for example Kaczmarz iteration or Krylov subspace methods
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Tikhonov regularization
The method adds a small positive constant term α to the eigenvalues of T̂ ∗T̂ to obtain a well-
posed solution to the problem of (4.78). Therefore, the estimator of f is the solution to:

T̂ ∗r̂ = αf̂ + T̂ ∗T̂ f̂ . (4.79)

Denote this estimator by f̂α. αI + T ∗T is invertible for any nonnegative α, because T ∗T is a
self-adjoint nonnegative operator. Nevertheless, αI + T̂ ∗T̂ may not be invertible, because T̂ ∗ is
not generally the adjoint operator of T̂ . However, if T̂ and T̂ ∗ are consistent and the sample size
n is sufficiently large, then αI + T̂ ∗T̂ is also invertible. Then, the solution to (4.79) is given by:

f̂α =
(
αI + T̂ ∗T̂

)−1
T̂ ∗r̂. (4.80)

Tikhonov’s regularized solution of the problem in (4.77) can be expressed in terms of the
sequences λi, fi and ψi, i = 1, 2, . . . as follows:

fα = (αI + T ∗T )−1 T ∗r =
∑
i≥0

λi
α+ λ2i

⟨r, ψi⟩fi. (4.81)

By comparison of (4.81) with the result provided by the Picard theorem, we observe that the
Tikhonov regularization controls the decrease of eigenvalues λi by replacing 1

λi
in (4.75) with

λi

α+λ2
i

in (4.81). The regularized solution fα can be written as:

fα = argmin
f

[
||r − Tf ||2 + α||f ||2

]
. (4.82)

(4.82) shows that the method adds a penalty term α||f ||2 to the minimization of ||r − Tf ||2. α
is the regularization parameter which is chosen to be positive and converging to zero. It can be
estimated by minimizing a criterion such as the leave-one-out Cross Validation function below
(see Centorrino et al., 2017):

CVn(α) =
n∑

i=1

[
(T̂ f̂α(−i))(wi)− r̂(wi)

]2
. (4.83)

T̂ f̂α(−i) is the leave-one-out estimator which is derived by eliminating the i-th observation from
the sample before estimating Tf . The regularization parameter serves to control the conver-
gence of the eigenvalues of T to zero through eq.(4.81).

Landweber - Fridman regularization
The Landweber - Fridman method belongs to the family of truncated iterative regularization
methods. It avoids the inversion of the T̂ ∗T̂ matrix in (4.78) by using an iterative approximation
process. According to the method, (4.78) is multiplied by a quantity c such that c||T ∗T || < 1,
yielding:

cT̂ ∗r̂ = cT̂ ∗T̂ f̂ . (4.84)
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c ensures the convergence of the iterative process. The SVD states that the largest eigenvalue
of T ∗T is 1. Therefore, any c smaller than 1 will guarantee convergence. Adding f̂ in both sides
of (4.84) provides the following recursive solution of the method:

f̂k+1 = f̂k + cT̂ ∗
(
r̂ − T̂ f̂k

)
, ∀k = 0, 1, . . . (4.85)

The solution in (4.85) can be rewritten as:

f̂1/α = c

1/α−1∑
k=0

(
I − cT̂ ∗T̂

)k
T̂ ∗r̂. (4.86)

In (4.86), 1/α is the total number of iterations needed and α represents the regularization pa-
rameter. The number of iterations can be specified minimizing the leave-one-out cross validation
criterion described before (see Centorrino, 2015). Florens and Racine (2012) mention that the
smoothing parameters for T and T ∗ can be updated at every iteration in (4.85). Therefore, after
deriving f̂0 = cT̂ ∗r̂ from a first estimation of r, T and T ∗, the bandwidths of T and T ∗ can be
updated using f̂0. f̂1 is computed from (4.85). These steps are repeated until a stopping rule,
such as the minimization criterion presented in Florens and Racine (2012):

SSR(k) = k
n∑

i=1

[
(T̂ f̂k)(wi)− r̂(wi)

]2
, k = 1, 2, . . . (4.87)

The iteration procedure stops when the above criterion, which describes a locally convex func-
tion, starts to increase.
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Appendix A: Assumptions in local constant nonparametric regres-
sion

To establish the asymptotic properties of f̂ , the following assumptions are made (see Hall et al.,
2007).

Assumption 4 We assume the following:

1. (Yi,Zi), i = 1, . . . , n are i.i.d.

2. ui, i = 1, . . . , n has finite moments.

3. f , ϕ and σ2(z̄) = E(u2i |Z̄i = z̄) have two continuous derivatives.

4. M is continuous, nonnegative, with compact support.

5. The distribution ϕ of Z is bounded away from zero; there ism > 0 such that |ϕ(z)| > m, ∀z.

Assumption 5 Define:

H =
c̄∏

s=1

hs

c∏
s=c̄+1

min(hs, 1).

For 0 < ϵ < 1/(c+ 4) and for a constant γ > 0, assume:

1. nϵ−1 ≤ H ≤ n−ϵ

2. n−γ < hs < nγ , ∀s = 1, . . . , c

3. The kernel k(hs, u, v) = k
(
u−v
hs

)
is a symmetric, compactly supported, Holder-continuous

distribution, with k(ρ) < k(0), ∀ρ > 0.

Assumption 6 Define φ̄(z̄) = E[f̂(z)ϕ̂(z)]/E[ϕ̂(z)]. Assume that the function∫
[φ̄(z̄)− f̄(z̄)]2M̄(z̄)ϕ̄(z̄)dz̄

vanishes if and only if all smoothing parameters h1, . . . , hc̄ and λ1, . . . , λd̄ vanish. M̄ is defined
as M̄(z̄) =

∫
f̃(z̃)M(z)dz̃.

Moreover, denote by α0
1, . . . , α

0
c̄ , β

0
1 , . . . , β

0
d̄

the values of α1, . . . , αc̄, β1, . . . , βd̄ in (4.43) that min-
imize χr. We assume the following:

Assumption 7 Every α0
s, s = 1, . . . , c̄ is positive and every β0s , s = 1, . . . , d̄ is nonnegative.

Every one of them is finite and uniquely defined.
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Appendix B: Assumptions in local linear nonparametric regression

To determine the asymptotic normality of the local linear estimator, we assume that the following
three requirements hold. More information on these assumptions are found in Li and Racine
(2004).

Assumption 8 Every α0
s, s = 1, . . . , c and every β0s , s = 1, . . . , d is uniquely defined and finite.

Assumption 8 and equations (4.58) imply that the smoothing parameters cannot be infinity.
Then, (4.56) reveals that this requirement rules out the case where fss(z) = 0, ∀z and ∀s =

1, . . . , c. Therefore, f cannot be a linear function in any of its components.

Assumption 9 It is assumed that:

1. (ĥ1, . . . , ĥc, λ̂1, . . . , λ̂d) ∈ [0, η]c+d lies in a shrinking set. η = η(n) is a positive sequence
that approaches zero slower than the inverse of any polynomial in n. Further, we assume
that nh1 . . . hc ≥ tn, where tn → ∞ as n→ ∞.

2. the kernel function k : R → R described in eq.(4.32) is a bounded symmetric density
function. It is m times differentiable, where m > max{2+4/c, 1+ c/2} is a positive integer.
Moreover, it holds that

∫
k(x)x4dx <∞ and that

∫
|kϱ(x)xϱ|dx <∞ for all ϱ = 1, . . . ,m.

3. ϕ(z) is bounded below by a positive constant on the support of Z.

The first point of assumption 9 implies that as n→ ∞, hs → 0, for s = 1, . . . , c and nh1 . . . hc →
∞. Moreover, it entails that as n → ∞, λs → 0, s = 1, . . . , d. Therefore, the assumption does
not allow smoothing out irrelevant discrete regressors.

Assumption 10 We assume the following:

1. Consider the family F of functions from Rc to R, which are two times differentiable and
bounded by functions that have finite 4th moment. Then, for every D of the support, all
functions σ2(·, D), g(·, D) and f(·, D) belong to F .

2. (Yi,Zi), i = 1, . . . , n are independent and identically distributed. Also, ui, i = 1, . . . , n as
defined in eq.(4.1) have finite 4th moment.

3. The quantity

∫ {
κ2
2

c∑
s=1

fss(z)α
2
s +

d∑
s=1

X ′
s(z)βs

}2

ϕ(z)dz+
Ω′

nα1 . . . αc

is uniquely minimized at (α0
1, . . . , α

0
c , β

0
1 , . . . , β

0
d). All α0

s and β0s are finite.
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Series A, pages 359–372.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Jour-
nal of the Econometric Society, pages 1–25.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65(1):95–114.

Wood, S. N. (2006). Low-rank scale-invariant tensor product smooths for generalized additive
mixed models. Biometrics, 62(4):1025–1036.

Wood, S. N. (2012). On p-values for smooth components of an extended generalized additive
model. Biometrika, 100(1):221–228.

Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.

Wooldridge, J. M. (1995). Score diagnostics for linear models estimated by two stage least
squares. Advances in econometrics and quantitative economics: Essays in honor of Profes-
sor CR Rao, pages 66–87.

Wooldridge, J. M. (2003). Further results on instrumental variables estimation of average treat-
ment effects in the correlated random coefficient model. Economics letters, 79(2):185–191.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

Xia, Y. and Li, W. (2002). Asymptotic behavior of bandwidth selected by the cross-validation
method for local polynomial fitting. Journal of multivariate analysis, 83(2):265–287.

Zhao, Y. (2012). R and data mining: Examples and case studies. Academic Press.

101


	Estimating a non-neutral production function: a heterogeneous treatment effect approach
	Introduction
	Hicks neutrality: theory and econometrics
	A selective review of theory
	Econometric specification: relaxing and testing Hicks neutrality
	Estimation methods

	Data and Results
	Data
	Main results

	Conclusion

	 Innovation and productivity: new insights from nonparametric instrumental regression
	Introduction
	Econometric specification and estimation method
	Kernel regression with mixed data and shrinkage estimators
	Nonparametric regression with endogenous innovation

	Data
	Results
	IV selection
	Model comparison
	Estimation results

	Conclusion

	Nonparametric estimation of international R&D spillovers
	Introduction
	Model specification and estimation method
	The classical parametric approach
	A nonparametric model with a multifactor error structure
	Alternative specifications
	Spline modeling

	Results
	Model comparison
	Estimation results

	Concluding remarks

	Review in the nonparametric kernel regression
	Nonparametric kernel regression
	Nonparametric kernel regression with continuous data
	Nonparametric kernel regression with mixed data
	Local linear nonparametric regression
	Local polynomial nonparametric regression

	Nonparametric kernel regression with instrumental variables
	Identification of f
	The ill posed inverse problem
	Regularization



