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Sommario

Con i termini Fog ed Edge Computing si indicano dei paradigmi computazionali che,

spostando l’elaborazione dei dati IoT nelle prossimità sia dei dispositivi che degli

utenti, mirano a fornire servizi a bassa latenza, immersivi e real-time. Fog ed Edge

Computing trovano applicazione in contesti Smart Cities, dove è possibile sfruttare

la capacità computazionale di gateway IoT, Cloudlet e Base Station per elaborare

parte dei dati generati dall’IoT direttamente ai margini della rete. L’adozione dei

paradigmi di Fog ed Edge Computing è tuttavia complessa in quanto pone una se-

rie di sfide tra cui il processamento dell’enorme mole di dati generati dall’IoT, la

presenza di un numero limitato di dispositivi altamente eterogenei e con capacità

computazionali scarse, requisiti di servizio altamente dinamici e reti con caratter-

istiche eterogenee. Per garantire i requisiti stringenti di bassa latenza, soluzioni

per Fog ed Edge Computing devono essere in grado di utilizzare al meglio le scarse

risorse a disposizione, gestendole al meglio. Se questi paradigmi sono oggetto di

ampie ricerche, vi è la necessità di investigare soluzioni innovative che consentano

di gestire l’enorme mole dati IoT e permettere una concreta applicazione di Fog ed

Edge Computing. Questa tesi propone middleware innovativi in grado di fornire

soluzioni complete per fronteggiare al meglio le caratteristiche altamente dinamiche

di scenari Smart Cities, fornendo metodologie e strumenti per allocare e distribuire

servizi tra le risorse a disposizione, monitorare lo stato delle risorse e modificare

prontamente la loro configurazione. Come criterio innovativo per la prioritizzazione

dei dati IoT per processamento e disseminazione, questa tesi adotta il concetto di

Value-of-Information (VoI), nato come estensione della Teoria dell’Informazione di

Shannon e applicato in ambiti decisionali. A tal fine, questa tesi propone politiche di

gestione delle informazioni che consentono di realizzare servizi modulari e facilmente

(ri-)componibili e tecniche di ottimizzazione innovative che ben si adattano a questi

servizi. Inoltre, i middleware presentati in questa tesi integrano il concetto di VoI

sia a livello di servizio che a livello di gestione per selezionare le informazioni più

preziose per l’elaborazione e la diffusione, riducendo cos̀ı il carico computazionale e

garantendo una gestione ottimale dei dispositivi e della rete. Le ricerche presentate

in questa tesi sono il risultato della collaborazione con istituti di ricerca internazion-

ali e di un periodo di ricerca trascorso presso il Florida Institute for Human and

Machine Cognition (IHMC), FL, USA.
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Summary

Fog and Edge Computing aim to deliver low-latency, immersive, and powerful ser-

vices by processing information close to both devices and users. This is well suited

for IoT applications in Smart City, where IoT gateways, Cloudlets, Base Stations,

and other computational nodes can process (part of) the data generated by the

multitude of IoT sensors directly at the edge of the network. However, the im-

plementation of Fog and Edge Computing is challenging because it requires to deal

with a (limited number of) constrained devices, dynamic services’ requirements, and

heterogeneous network conditions. Differently from the Cloud, where computational

resources are supposed to be unlimited, Fog and Edge services should be capable to

adapt to scarce and constrained resources and deal with the deluge of IoT data. To

facilitate the adoption of Fog and Edge Computing this thesis proposes innovative

middlewares capable of providing comprehensive solutions to address the highly dy-

namic characteristics of these environments. These middlewares provide functions

to allocate and distribute Fog and Edge services among the available computational

devices, monitor the status of the environment, and promptly modify their config-

uration. To deal with the IoT data deluge this thesis investigates the interesting

criterion of Value-of-Information (VoI). Originally born as an extension of Shan-

non’s Information Theory for decision making science, researchers have studied VoI

as an information management tool to select and prioritize information processing

and dissemination. For this purpose, this thesis proposes the adoption of informa-

tion management policies allowing the definition of service components, composable

software modules that can be chained to create larger and more complex services.

In addition, the middlewares presented in this thesis leverage the promising con-

cept of VoI to select only the most valuable piece of information for processing and

dissemination and to scale computational workload in an automated and lossiness

fashion. This would enable to reduce the computational and network load and to

propose innovative methodologies to optimize the available resources. The research

efforts presented in this thesis are the results of the collaboration with international

institutes and a research period at the Florida Institute for Human and Machine

Cognition (IHMC), FL, USA.
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Chapter 1

Introduction

The widespread adoption and the continuous evolution of Internet-of-Things (IoT)

related technologies open to a multitude of new application scenarios that would

leverage on services capable of processing IoT data for realizing immersive and real-

time applications [1, 2]. This would provide enormous benefits to the end-users

of these applications, which will be capable of exploiting the data generated by a

multitude of IoT sensors and smart devices to obtain important information for

several use-cases such as Smart Cities, smart transportation, and smart agriculture

[3, 4].

A common approach for supporting the requirements IoT applications is to adopt

Cloud-centric solutions, where the IoT data generated at the edge is sent to Cloud

data-centers for processing. However, considering the notable amount of IoT data, a

Cloud-centric approach would likely saturate the available network bandwidth and

will result in services with poor performance and high latency. In fact, if Cloud-

based solutions can offer huge and scalable computational resources they are not

capable to satisfy the low latency and real-time requirements of IoT applications.

To address the limitations of Cloud-centric models, several computing paradigms

have been proposed during the last decade such as Fog Computing [5] and Edge

Computing [6, 7]. Even if they present some differences, all these paradigms leverage

the common idea to bring computation close to both users and devices to exploit

their proximity and reduce latency. More specifically, Edge Computing is a concept

that advocates to enable the processing of data at the edge of the network, in

close proximity of where the IoT data is generated by deploying edge devices for

performing computational tasks. On the other hand, Fog Computing extends the

Cloud Computing model to the edge for providing a set of functionality to distribute

the data processing between three different layers: a Cloud layer, a Fog layer, and an

IoT/Edge layer. Differently from Edge Computing, Fog Computing clearly depicts

the connection and the cooperation of these layers, while Edge Computing only

refers to the edge layer. Therefore, if conceptually Fog and Edge Computing are
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CHAPTER 1. INTRODUCTION

different, they are widely interchanged in the literature to indicate the possibility of

doing part of processing directly at the edge.

Fog and Edge Computing paradigms would enable to exploit IoT and edge de-

vices, for elaborating IoT data close to where is generated and where information

will be consumed, thus saving Internet bandwidth, reducing information latency, and

providing high levels of Quality-of-Service (QoS) and Quality-of-Experience (QoE)

[8, 1]. To realize this, academia and industry widely investigated Fog and Edge

Computing during the last years [9, 10, 11]. Some standards have been proposed

such as the OpenFog reference model for Fog Computing [12] and multi-access Edge

Computing (MEC) for telecommunication networks [13, 14]. However, they mainly

address architectural models and specific use-cases without dealing with the impor-

tance of programming models and the IoT data deluge. Therefore, Fog and Edge

Computing still remain rapidly evolving industrial and academic research topics [15].

At the time of this writing, the adoption of Fog and Edge Computing solutions

presents several challenges that still need to be addressed. In fact, Fog and Edge

Computing have to deal with scarce computational capabilities, limited bandwidth,

services migration, and users and devices mobility. In addition, computing devices

at the edge often present heterogeneous characteristics both from a hardware and

software perspective, thus making the management of such resources more challeng-

ing. Also, network links at the edge can present different characteristics in terms of

availability, latency, and bandwidth that need to be considered in the management

of applications. These peculiarities make Fog and Edge Computing very dynamic

environments, thus making their practical adoption even more challenging.

To effectively exploit the resources available at the edge, there is the need for

architectural solutions capable of coordinating and distributing the processing of

the deluge of IoT data on the available computing resources. Furthermore, to tackle

the high dinamicity of these environments, Fog and Edge Computing solutions must

provide tools for enabling frequent re-configurations of network and services to guar-

antee high levels of QoE and QoS and to deal with the aforementioned challenges.

Finally, Fog and Edge Computing solutions have to address the IoT data deluge

by proposing innovative methodologies capable of filtering the data to be processed

and disseminated, thus avoiding the saturation of available computing power and

network bandwidth at the edge of the network. Therefore, the efficient adoption

of Fog and Edge Computing calls for novel methodologies and tools to address the

challenges of these environments and enable matching the low latency requirements

of IoT applications.

This thesis contributes to Fog and Edge Computing by proposing innovative

methodologies and tools for the definition of middlewares that would allow service

providers and users to exploit the promises of Fog and Edge Computing paradigms.

2



CHAPTER 1. INTRODUCTION

To achieve such a goal, these middlewares provide the essential functionality to

coordinate and distribute the processing of services on a pool of fog and edge de-

vices by selecting the most suitable allocations considering the current status of the

environment and the proximity of IoT data sources and end-users.

As innovative resource management methodology this thesis investigates Value

of Information (VoI) maximization, i.e., the maximization of the utility that Infor-

mation Objects (IOs) deliver to end recipients. VoI has originated from the seminal

research in [16] as an extension to Shannon’s Information Theory and it has been a

widely explored topic in decision sciences. Recently, VoI based solutions were pro-

posed in several application areas [17, 18, 19, 20]. However, while interesting results

have been achieved so far, they mostly followed objective approaches that calculate

VoI of a message according to its content and the distance between time and loca-

tion of information generation and receival. Very few works considered subjective

approaches that take into account different utility models per each user when esti-

mating VoI [21, 22]. To fill this gap, this thesis makes a step forward for effectively

integrating VoI into Fog and Edge resource management.

From an architectural perspective, this thesis presents the adoption of a ser-

vice model that defines the concept of “service components”: loosely-coupled and

composition-friendly software modules that can be quickly chained to create more

comprehensive services, and just as quickly rearranged in case of need. Service com-

ponents exploit the VoI concept in the processing stage by seamlessly prioritizing

the processing of the most valuable data, thus reducing the amount of information

to be processed and disseminated. This would allow to optimize available computa-

tional resources and deliver the expected QoS and QoE for most valuable services

operating in Fog and Edge computing environments.

On top of that, this thesis presents the SPF platform as the reference implemen-

tation of the illustrated service model, and the Phileas simulator, a simulation tool

that would enable to simulate middlewares in realistic Fog and Edge Computing

scenarios. On the one hand, SPF is a fully functioning platform developed to man-

age and distribute the execution service components on processing device (gateway

in the SPF terminology) that can be located both at the edge of the network or in

Cloud data centers. On the other hand, Phileas is a discrete event simulator built

upon the experience of SPF to enable the reproducible evaluation of middlewares in

large scale and realistic scenarios. SPF and Phileas would be the buildings blocks to

realize a family of middlewares capable of tackling the challenges of Fog and Edge

Computing both from an application and a network perspective. With these middle-

wares, this thesis wants to propose solutions that can address the high dynamicity

of Fog and Edge Computing by leveraging on tools enabling to quickly react to the

environment’s changes via a prompt reconfiguration.

3
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With this goal, this thesis defines a formal notation for VoI allowing to model

the allocation of service components on computational devices and to measure the

VoI utility derived from a certain allocation. This enables to estimate the total

VoI delivered in a specific time-window and to plan re-configuration of services and

networks. Furthermore, this thesis considers the VoI services’ modeling as the ba-

sis to realize an intelligent use of computational and network resources in Fog and

Edge Computing. To achieve this goal, this thesis describes different optimization

methodologies such as simulation-based optimization, heuristics, and the adoption

of a continuous optimization framework leveraging Deep Reinforcement Learning

(DRL), which continuously monitors the current status of the environment for re-

acting to devices or network failures by proposing a different configuration for service

components.

Moreover, to tackle such challenging environments this thesis supports the idea

that only comprehensive approaches considering both the application and network

perspective can result in the efficient management of Fog and Edge Computing. In

fact, by adopting comprehensive solutions it is possible to have a wider and holistic

perspective on how to optimally manage the available resources. Finally, to address

the problem of IoT data deluge, the presented middlewares integrate VoI methodolo-

gies and tools into the management of both networks and applications, thus allowing

to filter and to prioritize the data and information to be disseminated and processed.

For this purpose, these middlewares manage services and resources in a way that

the VoI delivered to the end-users of applications is maximized. This would enable

to achieve better management of the scarce and coarse resources available at the

edge, thus enabling effective Fog and Edge Computing.

The research efforts presented in this thesis have been published and submitted

in the proceedings of international conferences and journals. The research activity

has been conducted with international research institutions during my Ph.D. and

within a profitable research period and collaboration with the Florida Institute of

Human and Machine Cognition (IHMC), FL, USA.

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground on Fog and Edge Computing for describing the environments in which this

thesis contributes to. Then, Chapter 3 presents the concept of VoI for Fog and

Edge Computing and it describes the Additive Information-centric and Value-based

(AIV) information model for defining service components and their allocation on

devices.

Chapter 4 presents the SPF platform and the Phileas simulator as methodologies

and tools used for the implementation of more comprehensive middlewares. The

former is the reference implementation of the AIV model, while the latter is a discrete

event simulator to reenact the behavior of middlewares operating in realistic Fog and

4
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Edge Computing scenarios.

Chapter 5 gives a characterization of VoI optimization models to maximize the

end-users utility of Fog services. In particular, the practical adoption of optimization

models is discussed for both offline and online resource management inquiring that

such exact models require simulation-based optimization. As a viable alternative, a

distance based heuristic for approximation is proposed and evaluated with promising

results.

Then, investigating deeply into VoI optimization, Chapter 6 analyzes Reinforce-

ment Learning (RL) as a novel technique to integrate VoI methodologies and tools

into a continuous optimization framework. With this goal, this Chapter presents

the FogReinForce algorithm for learning the configuration of Fog Computing services

that maximizes the total VoI delivered in a specific time-window.

Leveraging on the described methodologies and tools, Chapter 7 presents HOR-

NET, a proof-of-concept middleware for realizing the holistic management of Fog

Computing. In particular, HORNET aims to integrate VoI methodologies and tools

into the management of both the network and applications to seamlessly priori-

tize the most valuable information and services. To reach such a goal, HORNET

proposes a multi-layer routing approach that exploits multiple routing options at

different abstraction levels. The proposed approach is presented and then validated

in a small-scale real testbed and in a simulated larger testbed within Phileas.

On the other hand, Chapter 8 introduces the concept of Humanitarian Assis-

tant and Disaster Relief (HADR) as a possible use-case for Fog Computing. HADR

operations usually occur after a natural disaster and involve the collaboration of

multiple rescuers, e.g. firefighters and medical operators. Considering a Smart City

as the set of a HADR scenario, this Chapter reports the challenges that HADR

operators may face in interacting with the existing Smart City Infrastructure. To

facilitate them to exploit IoT assets already presented in Smart Cities, this Chap-

ter presents an extended architecture for the SPF platform that aims to achieve

enhanced interoperability with IoT assets for both civilian and military operators.

Within the same important topic, Chapter 9 takes a wider and holistic perspec-

tive and presents the ACESO middleware for Smart Cities. ACESO is a proof-

of-concept middleware that aims to provide full support for HADR by design. In

particular, this Chapter extends the VoI formulation presented in Chapter 5 for

modeling “location-aware services” that would help rescuers involved in the HADR

operations. Furthermore, this Chapter discusses also the importance of secure infor-

mation exchange between HADR teams (both civilian and military) involved in the

operations. Finally, this Chapter provides a detailed description of a fictional HADR

scenario that involves multiple rescue teams and evaluates the ACESO middleware

within the Phileas Simulator.

5





Chapter 2

Background

This Chapter aims to provide a background on Fog and Edge Computing as com-

pelling computing paradigms to deal with the IoT data deluge and provide low-

latency and immersive services. With some differences from one to the other, Fog

and Edge Computing advocate to bring computation close to both users and de-

vices, thus providing reduced latency and enhanced performance. Fog Computing

proposes an architecture composed of three main layers: a Cloud layer, a Fog layer,

and an IoT/Edge layer. Therefore, Fog Computing aims to consider the whole pic-

ture when distributing the processing of data. On the contrary, Edge Computing

only considers the IoT/Edge layer into account when dealing with the processing of

IoT data.

Bringing the processing close to the edge network would allow services to exploit

the computational resources located in proximity of IoT sensors and users, thus

avoiding the high latency required for uploading data to Cloud data centers. Fog

and Edge Computing are the enabling factors for delivering services with strict,

low-latency and real-time requirements.

2.1 Fog and Edge Computing

IoT applications should provide a wide range of low-latency and real-time services

for several scenarios such as smart city, intelligent transportation, smart agricul-

ture, and so on. This is made possible by the deluge of IoT data collected from

sensors, smart appliances, and other devices located almost anywhere. However,

this enormous amount of data makes Cloud-centric solutions inefficient for running

IoT applications with strict requirements. In fact, Cloud-centric solutions suffer

from high latency curse due to fact that they require IoT data to be uploaded to

Cloud data centers for processing. Other limitations that Cloud-centric solutions

face are bandwidth consumption (the amount of IoT data could be greater than

the available bandwidth), intermittent connectivity with the IoT/Edge layer, and

7



CHAPTER 2. BACKGROUND

other aspects related to constrained nature of IoT devices which might not be able

to transmit data to the Internet.

To overcome the limitations of Cloud-centric solutions, Fog and Edge Computing

paradigms have been proposed as viable alternatives for processing data close to both

devices and users. The main objective of Fog and Edge Computing paradigms is

to allow service providers to exploit IoT and edge devices, for elaborating IoT data

close devices or users or both, thus saving Internet bandwidth, reducing information

latency, and providing enhanced levels of QoS and QoE. Furthermore, Fog and Edge

Computing enable to reduce the dependency with the Cloud in delivering services

to users.

More specifically, Fog Computing extends the Cloud Computing model to the

edge of the network by envisioning a multi-layer architecture on which different

sort of devices can contribute to the data processing. A general Fog Computing

architecture depicts a Cloud layer, a Fog Layer, and an IoT/Edge Layer. The Cloud

layer is to represent Cloud data-centers either public or private or hybrid where

it is possible to allocate part of the computational processing of the IoT data. In

Fog Computing, this layer is usually restricted to the processing of services requiring

high computational power or for batch services, which analyze raw-data coming from

the IoT but do not require compliance with low-latency and real-time requirements.

Also, this layer is depicted at the top to indicate that Cloud resources can be located

in undisclosed locations, far apart from the IoT data is generated. Just below the

Cloud layer is located the Fog layer, populated by different types of computational

devices deployed at base stations or other locations with a direct and broadband

access to the Internet. Finally, at the bottom layer of a Fog architecture is the Edge

/ IoT layer where sensors, IoT devices, and users reside. It is worth specifying that

in some representation the IoT and the Edge layers are two different entities and

that the Edge layer is located above the IoT layer.

On the other hand, Edge Computing considers only the IoT / Edge layer located

at the burden of the network. Therefore, Edge Computing does not take into account

a fog or cloud layer when distributing the processing of IoT data or other compu-

tational tasks. As Fog Computing, Edge Computing aims to deliver low-latency

services by operating close to device. It is worth noting that even if conceptually

different, Fog and Edge Computing are widely interchanged in the literature be-

cause of the wide similarities and the common objectives. In addition, the term

Edge Computing is predominant in telecommunication, where ETSI has adopted

multi-access Edge Computing (MEC) as the de facto standard for allowing appli-

cation developers and content providers to provide services at the edge. Instead,

Fog Computing is under the umbrella of the OpenFog consortium, a partnership of

universities and tech industries for the standardization and the promotion of Fog

8
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Computing. ETSI and OpenFog consortium signed a collaboration for developing

fog-enabled mobile edge applications and technologies [23].

Finally, it is worth noting that, in the context of this thesis, referring only to Fog

Computing instead of Fog and Edge Computing is not a lack of generality. In fact,

this thesis refers to Fog to indicate a more general perspective, considering Fog as a

superset of Edge Computing, which would allow middlewares to consider the whole

Cloud-IoT continuum for services and resources management. This is to present

solutions that would work in both contexts, leaving to the particular scenario the

choice of what set of resources best fit with the environment’s needs.

2.2 Challenges

If Fog and Edge Computing are promising concepts, developing applications for

Fog and Edge Computing is a very difficult task. It requires to deal with a large

number of variables: devices and services placement, interactions with Cloud Com-

puting platforms, and scalability issues in term of both computational resources and

number of users. Furthermore, most of these applications have high QoS and QoE

requirements, since they need to provide real-time information and low latency to

the end-users.

Fog and Edge solutions encounter several challenges such as the deluge of IoT

data to analyze, scarce computational capabilities at the edge, limited bandwidth,

services migration, and users and devices mobility. Firstly, computing devices de-

ployed along the Cloud-IoT continuum present heterogeneous characteristics both

from a hardware and software perspective, thus making the management of such

resources more challenging. Secondly, the management of fog and edge networks

raises other challenges due to the constrained and heterogeneous nature of the envi-

ronments in which they operate. IoT sensors and smart devices operate in multiple

Wireless Sensor Networks (WSN) using a multitude of low-power wireless communi-

cations protocols such as Bluethooth LE, IEEE 802.15.4, Long Range (LoRA), etc.

At the other end, users interact with the network infrastructure using other commu-

nication protocols such as WiFi, LTE/4G, 5G, etc. On top of that, Fog and Edge

Computing need to consider the high mobility of users and terminals, e.g devices

deployed connected vehicles, which causes frequent communication disruptions and

wide variability in channel performance.

Resource discovery is another important challenge for Fog and Edge Computing

solutions that need to be aware of the availability of both raw-data sources and

computational devices where to allocate the processing on. Furthermore, aside for

the availability of devices, resource discovery for Fog and Edge Computing should

also describe the capacity in terms of computing power and storage to provide

9
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Figure 2.1: Fog Computing Scenario. Raw data collected are elaborated and pro-
cessed

valuable insights for resource and service management tools.

The efficient design of Fog and Edge Computing applications needs to consider

the optimal use of the available resources at the edge and the Cloud, switching from

one other depending on the current status, execution price, and user requirements.

This is a complex task for Fog and Edge management tools that need to consider the

distributed and dynamic nature of the environment. In addition, management and

optimization tools need to be aware of the current status of resources and services to

find the optimal allocation for tasks that maximizes the performance of the system.

Despite these challenges, Fog and Edge Computing applications are necessary

to tackle the deluge of data generated by IoT applications and devices. Therefore,

there is the need to investigate solutions that would enable effective Fog and Edge

Computing both from a service provider and an end-user perspective.

2.3 Smart Cities Scenarios

Smart Cities are one of the most interesting application scenario for Fog and Edge

Computing. Their networking infrastructure is characterized by an edge, in which a

plethora of smart objects, sensors, vehicles, and personal devices provide capillary

sensing functions, and by a connected core, where the collected raw data is stored
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and processed through sophisticated analytics in metropolitan areas and Cloud level

data centers.

From the communication perspective, there are two main types of edge networks:

IoT networks, that connect IoT devices one each other, and end-user networks, that

connect users with the rest of the network using wide range wireless communication

protocols such as WiFi, LTE/4G, and 5G.

Typically, IoT devices are deployed in groups to form sophisticated sensing sys-

tems and communicate based on IoT networks exploiting a multitude of short-range

and low-power wireless communications protocols, e.g., IEEE 802.15.4, Bluetooth

LE, and NFC. Then, IoT networks are connected to other wider networks (or even

the Internet) through one or more IoT gateway devices. IoT gateways typically

have significantly better computation, storage, and communication capabilities if

compared with IoT devices.

End-user networks are typically heterogeneous networks formed by a set of over-

lapping medium-range wireless networks of different types, including cellular net-

works with macro and pico cells, Wi-Fi networks, etc. Device-to-device communi-

cations, such as WiFi-direct and LTE-direct, further expand communication oppor-

tunities by allowing personal devices to share information of common interest when

they are in proximity.

Fog Computing extends this scenario by allowing IT service developers and

providers to allocate (a portion of the) information-processing tasks at the edge

of the network, with the potential of significantly reducing the response latencies

(and consequently improving the quality) of IT services and reducing the burden

on the network infrastructure. As a result, Fog Computing represents a particu-

larly attractive paradigm for the development of low latency, deeply immersive, and

high-value-added IT services designed for digital citizens.

In this scenario, information processing tasks can be allocated either in the Cloud

or on top of a plethora of different edge devices, including the aforementioned IoT

gateways, Cloudlets or Micro-Clouds, and Multi-Access Edge Computing. [24]. Also

note that users’ smart personal devices can, and typically do, perform a dual role:

they access Fog Services and at the same time they operate as raw data sources

thanks to the recent and remarkable developments in their sensing capabilities.

However, the implementation of Fog Computing solutions in Smart City envi-

ronments represents a very difficult task for three main reasons. First and foremost,

processing a massive amount of raw data generated by the IoT (predicted to increase

to as high as 850 ZB per year by 2021 [25]) with the scarce computational and en-

ergy resources available to edge devices represents a daunting challenge. In addition,

the significant mobility of users and terminals [26] causes frequent communication

disruptions and wide variability in channel performance. Finally, edge resources are
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very dynamic and heterogeneous. This calls for novel solutions that explore trade-

offs between processing speed and accuracy to best exploit the resources available

along the Cloud-things continuum.

2.4 State-of-the-Art

Fog and Edge Computing has been widely investigated as promising computing

paradigms to bring computation close to the edge side of the network. While there

are some controversy on when to use one term instead of the other, both Fog and

Edge Computing related paradigms share the goal of providing reduced latency and

better performance in general by exploiting (in different parts) the resources at the

edge of the network. This Section aims to report the state-of-the-art in the definition

of Fog and Edge Computing.

Fog Computing was firstly discussed in [5], in which Bonomi et al. described

Fog Computing as a highly virtualized platform for providing computing, storage,

and networking services between the Cloud and the edge of the network. A similar

definition is provided in the white paper from Cisco [27], in which Fog Computing

is defined as a paradigm that extends Cloud computing and services to the edge of

the network.

A remarkable step for Fog Computing is the creation of the OpenFog Consortium

in 2015. The OpenFog Consortium is a partnership of tech industry and academic

institutions to promote the adoption of Fog Computing. To this purpose, it pub-

lished several technical reports and white papers with the aim of proposing standard

for Fog Computing. Later in 2019, the OpenFog Consortium merged with the In-

dustrial Internet Consortium to continue the promotion and the developing of best

practices both for Fog and Edge computing. Following the momentum, a wide num-

ber of work on Fog Computing were published. The major contributions were well

summarized by Mouradian et al. in a comprehensive summary on Fog Computing

in [24]. Another notable survey, which describes contributions to different areas of

Fog Computing and open research challenges is [28]. A relevant book that presents

the contributions and challenges for both Edge and Fog Computing is [29].

As aforementioned along this thesis, Fog and Edge Computing are widely inter-

changed in literature given their similarities. To this end, dealing with both Fog

and Edge Computing is the survey in [7], in which the authors refers to Edge Com-

puting and MEC as Fog related paradigms, which concentrates on the edge side of

the network. To outline the difference between the two paradigms, the authors in

[30] argue that fog includes “cloud, core, metro, edge, clients, and things” to real-

ize a continuum of computing services from the Cloud to the IoT. This is widely

referred as the Cloud-IoT continuum [6, 24]. On the same view is the work in [31],

12



CHAPTER 2. BACKGROUND

in which the authors state that Fog Computing jointly works with the Cloud, while

Edge Computing excludes the Cloud. In some sense, Fog Computing can be consid-

ered a superset of Edge Computing because it contemplates the whole Cloud-IoT

continuum into account.
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Chapter 3

Concepts

Fog and Edge Computing management is a compelling topic that this thesis aims to

contribute to using the novel criterion of Value-of-Information (VoI). To introduce

the basic concepts that will be the foundation of the middlewares presented in

this thesis, the following Sections illustrate the concept of VoI for Fog and Edge

computing.

Then, this chapter present the Adaptive, Information-centric, and value-based

(AIV) information maturity model as the guideline on which developing a new gener-

ation of applications for Fog and Edge Computing. The AIV maturity model would

enable the definition of value-based service components capable of seamlessly adapt

their workload to the current execution context. Finally, this chapter provides a for-

mal notation for modeling the allocation of services on fog and edge devices. This

notation along with the VoI are the building blocks for developing a new generation

of value-based management middlewares.

3.1 Value-of-Information for Fog and Edge Com-

puting

Originally born from the seminal research by Howard in 1966 [16], Value-of-Information

(VoI) has long been a widely explored topic in decision sciences. It provides a metric

that enables to quantify the value of a single piece of information in decision mak-

ing. Recently, VoI has started attracting the attention of several researchers in the

wireless communications and network and service management research areas as a

natural criterion for optimization of (scarce) resource allocation.

Initially, VoI has been applied to military research in [21, 32] to optimize band-

width consumption and information delivery in tactical networks. In such situations,

VoI based information delivering techniques have proven their abilities in dealing

with low-bandwidth and disrupted networks. On the other hand, researchers have
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started to investigate the application of VoI for different use-case scenarios. In [17],

Turgut et al. present the value of information and the cost of privacy for the IoT.

A formulation to quantify the value of an information/service that considers the

costs (privacy, infrastructure, and maintenance) is given and discussed. Focusing

instead on Cloud Computing applications, Boloni et al. propose an interesting VoI-

based computation scheduling in [18]. The proposed model considers both the costs

and the benefits associated with the processing of information on Cloud Comput-

ing platforms and shows how their VoI scheduling approach can outperform other

traditional methodologies.

In [19], Giordani et al. discuss the application of VoI to prioritize the most

important transmissions in future vehicular networks. The authors quantify VoI

utilizing information quality, space, and time inter-dependencies criteria and con-

sider its adoption as proxy for broadcasting decision in vehicular networks. Other

works suggest the adoption of VoI to quantify the relevance of information and

sensors such as the authors in [20], which propose VoI as a technique to design a

sensor service ranking mechanism. Finally, another relevant work considering the

possibility of measuring user-utility in the VoI formulation is [22].

In the last few years, researchers have developed service [33] and communication

platforms [21] capable of estimating the VoI of information to prioritize its processing

and dissemination. A relatively less explored, but possibly even more interesting

research avenue is related to the exploitation of VoI as the criterion for optimizing

the Fog service fabric. In fact, ranking services and service components according to

the total amount of VoI they provide to end users represents a natural and effective

approach to realize self-adaptive services for Fog computing applications. By using

the amount of VoI delivered to end users as a resource assignment criterion, a system

will be able to naturally and seamlessly prioritize the assignment of resources to

services that are providing the highest value to their end users - either because they

are serving a considerable amount of users or because they are providing highly

valuable information.

This thesis considers VoI as an enabling criterion for addressing the challenges

of Fog and Edge Computing. In particular, this thesis embraces the idea that

developing a service processing model that incorporates the concept of VoI can be

an effective criterion to address the processing of the deluge of IoT data.

To fulfill to the absence of the service model leveraging on the VoI concept, the

next Section presents an innovative formulation for applying VoI methodologies and

tools to Fog and Edge Computing processing models. It is worth noting that, in

the context of this thesis, referring to Fog services instead of Edge services is not a

lack of generality. On the contrary, this thesis refers to Fog service to indicate that

a “general service” can be allocated along the whole Cloud-IoT continuum.
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3.2 Service and Information Maturity Model

Adaptive, Information-centric, and Value-based (AIV) proposes an innovative Fog

and Edge service model, that enables the development of services capable of au-

tomatically scaling their resource requirements to match users’ QoE requirements

to the best of the system’s capabilities given the current execution context. More

specifically, AIV assumes that the processing function of a Fog service emerges as

the result of the coordinated orchestration of adaptive and composition-friendly ser-

vice components. This loose definition of Fog services allows to rather easily support

dynamic architectures in which the single instances of service components can be

migrated to different devices along the Cloud-IoT continuum according to the cur-

rent execution context (service requirements, resource availability, user preferences,

etc.).

Developers will define and implement Fog services as a topology of service com-

ponents that are connected together in a dynamic service fabric, according to a

service description that defines the service semantics and characteristics and the

interactions between service components. In turn, service components represent the

basic building block of Fog services.

AIV also proposes an information maturity model which divides messages in

three different categories, according to the corresponding information processing

phases. The first processing phase regards raw data: input feeds of (typically sens-

ing) data gathered from IoT sensors, smartphones, wearable devices, and other IoT

devices in general. According to the AIV model, raw data are analyzed by generic

lower level service components to produce higher-order data constructs called In-

formation Objects (IOs). In particular, IOs are generated by multiple aggregated

and/or distilled raw data fused to obtain more valuable information. Finally, the

last processing phase makes use of the IOs to generate Consumption Ready Infor-

mation Objects (CRIOs), which represent the information in its final stage, ready

to be consumed by the users who requested it for. It is worth noting that the gener-

ation of an IO could require many raw data objects, and that, in a similar fashion,

a CRIO can be the result of the aggregation of multiple IOs provided by many dif-

ferent intermediate service components. Generally, the AIV model considers IOs as

the output of service components and CRIOs as the output of Fog services.

3.2.1 Notation

Building upon the AIV model discussed in the previous Section, we introduce the

following notation, which we will use as a basis to formulate the optimal service

fabric allocation problem. DS is the list of data sources, which represent IoT sensors

or other types of device that generate raw-data to be processed. Each data source
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dsi ∈ DS has location dsli.

With regards to processing devices, D is the list of edge devices, on which it is

possible to execute service components that implement a (portion of a) Fog service.

Each device di ∈ D has location dli and total resources dtri .

S is the set of Fog services to allocate. sj ∈ S represents the j-th service. In turn,

service sj is realized as a workflow swfj built on top of a set of different service com-

ponents sck, with a corresponding amount of requested resources at time t scrrk (t).

More specifically, a workflow swfj represents an ordered list of service components

interacting each other, e.g. swfj = sc1, sc2, sc3, .., scn.

A service sj is then defined as the combination of its service components SCj. SC
is the set of service components that need to be allocated. In this work, we assume

service isolation to simplify the system model notation, i.e., no service component

shared between services:

SC =
⋃
j

SCj (3.1)

However, by assuming service isolation we are not considering service components

shared between different services.

U is the set of users. Each user ul ∈ U has location ull and it is subscribed to a

set of services usl .

It is possible to model the allocation of service components sck on edge devices

by using matrix notation. A represents the current service allocation configuration:

it is a matrix of size |SC|× |D|, where |SC| is the number of service components and

|D| is the number of edge devices. The matrix A is composed of αk,i elements: αk,i

is equal to 1 if the service component sck is allocated on fog device di. Therefore,

according to this formulation, a service sj is “fully instantiated” if all its service

components sck ∈ SCk result allocated at time t. Or, equivalently, if:

∑
k∈SCk,i∈D

αk,i = |SCk|. (3.2)

(Note that service components might, and typically will, be allocated on different

edge devices.)

The resources allocated at time t on device di are rai(t) =
∑

j∈A αj,i × scrrj ,

thus leaving ari(t) = 1 − rai(t) available resources at device di and time t. The

overall assigned and available resources at time t can then be expressed as ra(t) =∑
j,i∈A αj,i × scrri and ar(t) = 1− ra(t) respectevely.

∀i
∑
j∈A

αj,i × scrrj (t) ≤ dtri . (3.3)
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Equation (3.3) defines a constraint on the edge resources in use at time t in the

overall Fog Computing scenario. In fact, the amount of allocated computational

resources allocated by service components running on a device di ∈ D must be less

or equal than amount of total resources dtri .

3.3 Managing Fog Computing Service Fabric

Two of the most characterizing aspects of Fog Computing environments are the

relative resource scarcity and the considerable workload dynamicity - demanding

resource assignment and computing models with fine-grained adaptivity. Devel-

opers of Fog services cannot assume to have enough computational, storage, and

communication resources to analyze all the incoming data using the full-fledged /

sophisticated / fine-grained analytics techniques developed for Cloud environments.

Instead, they have to adopt trade-offs: either services discard some data or they

have to remodulate analytics so that when they run in the Fog they decrease their

computational requirements, perhaps switching to coarser grained but less compu-

tationally demanding algorithms.

Aligning to the best practices currently developed in the microservice computing

paradigm, many developers typically define and implement Fog and Edge services

as a topology of service components that operate relatively independently and are

connected together in a dynamic service fabric, according to a service description

that defines the service semantics and characteristics, and the interactions between

service components.

This raises the opportunity, at the software platform level, to take advantage of

the modular architecture and support the dynamic modification of the distributed

deployment topology over time by allowing service components to be migrated be-

tween Fog devices in an adaptive and context-aware fashion. More in general, Fog

services aim to deliver enhanced Quality of Service (QoS) or Quality of Experience

(QoE) levels to provide a valuable utility to their end-users [34]. To provide such

service levels, they need to be optimal orchestrated and managed on the available

Fog resources.

Fog service fabric management, i.e., the dynamic assignment and management

of resources in Fog Computing scenarios to fulfill service level objectives and the

reweaving of network connections between Fog service components. However, service

fabric management in Fog Computing also represents a particularly challenging task,

which involves the dynamic management and orchestration of resources to find a

suitable allocation for services in a Fog Computing environments.

For instance, Fog scenarios often present heterogeneous computational resources

dislocated in several layers: at the edge of the network, in a “fog layer”, or on Cloud
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platforms [5]. Moreover, the devices at the edge are characterized in general by

limited computational resources that need to be shared among different applications.

Other important challenges are related to network management at the edge [35], such

as the accurate selection of network links, which should be chosen accordingly to

ensure the services’ requirements in terms of latency and bandwidth.

To address these requirements, there is the need for service fabric solutions capa-

ble of managing multiple Fog services on the available computational nodes. In order

to operate an efficient management, service fabric solutions for Fog Computing must

collect several information such as the workload of different services, information on

the network (latency, available bandwidth), geographical location of devices and

their capabilities. Building upon this information, service fabric solutions should be

capable of finding the best allocation for a set of services, manage their requirements

by scaling the computational resources when needed, and to reactivate or migrate a

service when a Fog device becomes unavailable.

To fully realize the resource remodulation potential of the Fog, there is the need

to investigate service fabric management frameworks that are capable of efficiently

dealing with the ever changing and complex nature of the computing environment.

At the same time, there is the need to support those frameworks by considering the

adoption of optimization criteria that allow to exploit the limited resources available

in the Fog in the most effective way.

Value of Information (VoI), which measures the utility that a piece of infor-

mation from the users’ perspective, represents a compelling building block for the

development of information prioritization solutions for processing and dissemination
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Methodologies and Tools

Several tools have been proposed to address the management of Fog and Edge

Computing. The majority of them tend to extend Cloud concepts at the edge of the

network for allowing the orchestration and management of services on top of IoT

gateways and other edge devices. However, few of them consider the idea to integrate

VoI methodologies into their design. Therefore, there is the need to investigate the

development of new solutions with the twofold objective of realizing i) a functional

middleware implementation and ii) tools for evaluating the configuration of service

components.

As the basis of comprehensive VoI middleware for managing Fog and Edge Com-

puting, this Chapter presents two valuable tools that will be used for implementing

and validate the solutions presented in this thesis. Firstly, this Chapter presents the

SPF middleware, a platform for enabling the management of value-based services

along the IoT-Cloud Continuum. Then, to allow a realistic evaluation of Fog Com-

puting scenarios this Chapter describes Phileas, a discrete event simulator that aims

at enabling the reproducible simulation of value-based Fog services [36]. As SPF,

Phileas is built on the top of the AIV model to simulate the value-based processing

and dissemination of information in Fog and Edge Computing. Phileas would allow

service providers to evaluate different service policies and allocation strategies.

4.1 Modelling Fog Services

Researchers have recognized the concept of Fog Computing by proposing information-

centric programming and service models for Fog applications, such as the one pro-

posed in [37] which describes a Distributed Dataflow inspired by digital signal pro-

cessing techniques and allows BPEL-like service definition via scripting solutions.

More specifically, these solutions mostly provide techniques for service definition

as orchestration of functions offered by different components, without explicitly

addressing the mismatch between the formidable computational and bandwidth re-
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quirements of information processing tasks and the strict resource constraints that

characterize Fog and Edge Computing environments.

Instead, the dynamic and resource-scarce nature of Fog environments suggests

the adoption of a radically different perspective based on the “acceptable lossiness”

concept and on innovative service models. The key idea is to realize services that

are capable of automatically scaling their resource requirements to their current

execution context while preserving high QoE levels.

More specifically, services need to explicitly consider the different characteristics

of Information Objects (IOs) and prioritize the processing and dissemination of the

most important IOs, while discarding unimportant ones. In this context, the VoI

metric, which measure the utility that an IO provides to its recipient, represents a

very interesting criterion for the purpose of information prioritization.

The AIV information maturity model, described in Section 3.2, is built on the

top of these concepts and proposes an adaptive and content-based composition of

different processing steps for Fog Services definition. In fact, according to AIV, Fog

services implement processing functionalities to analyze the raw data generated by

sensors and other devices at the edge to produce and distribute CRIOs to the end

users.

In particular, the processing function of a Fog service is the result of the ef-

forts provided by the coordinated orchestration of two different processing layers:

pipelines and services. Pipelines gather and analyze raw data to produce IOs, often

using low-level and/or service-agnostic algorithms and in some cases leveraging hard-

ware, e.g., computational addons such as the Intel Movidius, or software, e.g., image

processing libraries, resources that need to be preinstalled in the corresponding host

device. Services instead, implement application-specific processing functionalities to

further analyze the pipeline generated IOs to produce CRIOs, and usually can be

migrated to other devices much more easily than pipelines.

Pipelines and services represent the basic building block of Fog services. They

are meant to be composed in a loose, dynamic, and information-centric fashion.

More specifically, Fog and edge services can be defined as a sequence of pipelines

and services that can be matched simply according to the content type of the mes-

sages generated. This loose definition of Fog services allows to rather easily support

dynamic architectures in which the single instances of service components can be

migrated to different devices along the Cloud-IoT continuum according to the cur-

rent execution context (service requirements, resource availability, user preferences,

etc.). Finally, pipelines implements basic processing functionalities that can be eas-

ily re-used by different services and pre-installed by Fog providers both in edge/fog

devices or in the Cloud. Instead, services that implement application-specific tasks

need to be designed and implemented by Fog and Edge application developers.
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Believing that this information maturity model maximizes the opportunities to

reuse processing components and generated results, the following sections present

two different tools: the SPF platform and the Phileas Simulator. The first aims to

be reference implementation of the AIV model and it provides a set of function to

deal with service and resource management in Fog and Edge Computing. Instead,

the second is discrete event simulator for reenacting the same type of services on

realistic Fog and Edge Computing scenarios. Both SPF and Phileas will be valu-

able tools along the following pages of this thesis to present and to evaluate more

comprehensive middlewares that adopt an holistic perspective in dealing with the

challenges of Fog and Edge Computing.

4.2 Sieve Process and Forward (SPF)

SPF is a Fog-as-a-Service (FaaS) platform [33] for dealing with the IoT information

processing at the edge of the network, thus exploiting the proximity of raw-data

sources (IoT sensors) and users. SPF identifies different roles for the stakeholders:

administrators which are responsible for deploying, running, and operating the SPF

components, service providers that develop and deploy IoT applications, and the

users of the SPF applications.

SPF is based on the Adaptive, Information-centric, and Value-based (AIV) in-

formation model discussed during this Thesis. To deal with the deluge of IoT data,

SPF ranks each information object (raw-data, IO, CRIO) according to its VoI value

to prioritize the processing and dissemination of critical information at the edge of

the network.

To provide readers an architectural overview of the SPF platform, Fig. 4.1

illustrates the two main components of the SPF architecture: the SPF Controller

and the SPF Programmable Internet Gateways (PIGs). The SPF Controller acts

as an interface between the users and multiple SPF PIGs. In addition, the SPF

Controller is responsible for dispatching the requests for services received from the

users to the available PIGs, which will execute the required services.

Within the SPF architecture, management functionalities are provided by the

SPF Controller, which is responsible for deploying the information processing and

dissemination functions required by the registered applications. Using the manage-

ment functionalities, the SPF Controller can also reprogram the PIGs in the case a

new service is required using a proprietary programming interface. The Information

Processing and Dissemination functions are instead provided by Proactive Dissemi-

nation Service (DSPro) [21], which leverages the set of filtering and communications

functions implemented by the software platform, according to the commands re-

ceived by the SPF Controller. DSPro is part of the Agile Computing Middleware
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Figure 4.1: SPF in a Smart City Scenario

(ACM), a more comprehensive middleware for addressing communications in harsh

and challenging environments [38].

With regards to the location of PIGs, they can be deployed directly on gateway

nodes at the edge of the network on dedicated hardware placed in the gateway nodes’

proximity (as illustrated in Fig. 4.1). Another option is to deploy PIGs on the

Cloud to run services requiring high computation requirements. On the one hand,

PIGs located in the proximity of IoT assets can provide reduced communication

latency at the price of minor computational resources. On the other hand, PIGs

deployed on the Cloud can benefit of scalable computational resources with higher

communication latency. This makes SPF capable of allocating computational tasks

along the whole Cloud-IoT continuum, thus providing a wider range of options

to developers and administrators of where deploy services. Therefore, it is in the

responsibility of developers and administrators to choose the configuration which

best fit their requirements.

With respect to SPF applications, they are available to users that can request

the execution of services to the SPF Controller over the available communication
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links, e.g. WiFi, LTE. When the SPF Controller receives a request for a service, it

analyses the information contained in the request to select a PIG where to execute

the service. The selection process is based on several criteria such as the proximity

to assets and the available PIG computation and network resources. For example,

if a user requests to run a face recognition algorithm on a specific camera, the SPF

controller will search for a PIG in close proximity of the camera asset. In turn, the

PIG will start executing the face recognition algorithm by analyzing the video feed

from the requested camera to return to the user the results of the analysis.

Finally, Fig. 4.1 shows an illustrative example of SPF operating in a Smart City

scenario, in which IoT services provide useful information to smart citizens and other

Smart City operators. In this example, raw-data sources, such as traffic and security

cameras, usually dedicated to day-to-day monitoring of the city, capture data feeds

that will be consumed by IoT services running on top of SPF PIGs. These services

analyze the raw-data to produce CRIOs into one or multiple service processing

phases depending on the service’s characteristics. A multi-phase processing example

is the motion detection service illustrated in Fig. 4.1, which leverages on a pre-

processing service component that runs a video-transcoding algorithm on the camera

feeds before passing them to the motion detection service component. Finally, the

motion detection service component elaborates the transcoded video feed to identify

motion activities and to deliver this information to the end-users who requested it.

4.3 The Phileas Simulator

Phileas is explicitly developed to allow the reproducible evaluation of Fog and Edge

applications in a realistic environment. Phileas allows users to define value-based

Fog services built on the top of the AIV model and to test their performance from

a VoI perspective. Phileas is implemented in Ruby and distributed as open source

(MIT license) on GitHub at the https://github.com/DSG-UniFE/phileas URL.

4.4 State-of-the-art in Fog Simulation

Fog computing applications become more and more pervasive calling for innovative

solutions capable to monitor, allocate, and manage the available resources at the

edge and the interactions between the Fog and Cloud Computing platforms. With

this regards, simulation is a promising practice in this field of research, since it

enables to represent scenarios involving a large number of variables.

Margariti et al. wrote a comprehensive survey on Fog Computing simulators in

[39]. In this article, the authors analyze several Fog Computing simulators from a

cost perspective and discuss their models and limitations.
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A relevant simulator is iFogSim [40], which aims to offer a complete toolkit for

modeling the allocation of tasks and resources in Edge and Fog Computing envi-

ronments. A similar work is EdgeCloudSim, which was developed for providing a

deep introspection on MEC environments [41]. Furthermore, EdgeCloudSim pro-

vides features for simulating: dynamic load of requests, devices and users mobility,

networking, and service orchestration. Both iFogSim and EdgeCloudSim take inspi-

ration from CloudSim [42], a simulator for Cloud Computing environments.

Another effort in the same direction is the one the described in [43], where the

authors present a simulator based on Discrete EVent System Specification (DEVS)

to evaluate the impact of deploying Fog Computing applications. The evaluation

process mainly involves computational power, processing delay, and scalability of the

system in function on the number of the users and the services’ allocation between

the Fog and the Cloud. Finally, the YAFS simulator [44] aims to be a comprehensive

tool for modeling applications and network in dynamic Fog Computing scenarios.

4.4.1 Main Concepts

Phileas is based on 6 main concepts: locations, data sources, devices, service types,

service activations, and user groups. Phileas models locations in a realistic fashion,

associating geographical latitude and longitude coordinates to them. All entities

modeled by Phileas, such as data sources, devices, and users are placed in a specific

location. Geodesic distance between locations is calculated according to Vincenty’s

formula, which leverages an accurate ellipsoidal model of the Earth and is signifi-

cantly more accurate than the simpler and more popular Haversine formula [45, 46].

Data sources represent the equivalent of connected IoT sensors and continuously

generate raw data of a given content type. For each data source, the message

generation process can be defined by assigning 3 random variables that respectively

control the time between subsequent message generations, i.e., the inter-generation

time distribution, and the size and Value-of-Information attributes for each message

generated.

Devices are the entities that host service components. Phileas models two types

of devices: edge devices and Cloud platforms. Each edge device has a limited (and

configurable) set of available resources, which are assigned to the service compo-

nents running in the device in a weighted fair sharing fashion, according to the

service components’ resource requirements. Instead, Cloud platforms do not have

any resource limitation and can always provide service components with the entire

amount of resources they require.

According to the AIV model, Phileas allows to build Fog services through a

loose and information-centric composition of their building blocks. More specifically,
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each service component defines the content type and maturity level, e.g., raw data,

IO, or CRIOs, of its input and output messages. Messages are then dispatched

between information processing and consuming entities, i.e., data sources, service

components, and end users, by matching their content type and maturity level

attributes to the entities’ interests.

In turn, service components are defined through the related type. By focusing

on the definition of a common behavior shared by all service components of the

same type, the service component type concepts facilitates the definition of multiple

instances of the same service component. More specifically, service components de-

fine an amount of required resources. Following the AIV model, service components

are automatically capable of scaling down their operations in case they cannot be

assign the full amount of resources they require. In this case, incoming messages

are rejected according to a linear message drop policy. For simplicity, at the mo-

ment of this writing Phileas models resources using a unidimensional scale. Future

versions of the simulator might explore multidimensional modeling for resource sets,

i.e., for instance considering CPU, storage, and communication resources as different

dimensions, in future versions of the simulator. In addition, each service component

defines its processing policy, that is the process of generating new messages from

the analysis of received ones.

Service activations are events that define the time and location, i.e., the hosting

device, for service component instantiations. Service activations are designed to

be controlled by a separated component, that is currently under development. In

fact, the capability to evaluate the effectiveness of the decision making performed

by a fully automated activation component is one of the main reasons behind the

development of Phileas.

Finally, Phileas allows the definition of different user groups, a concept which

is meant to model the presence of heterogeneous groups of Fog service users at a

given (fixed) location. The number of users present in a group at any given time

is stochastically modeled through a random variable. For each user group, Phileas

allows to define the share of users within the group interested to a specific content

type.

4.4.2 VoI Tracking and Processing

Phileas accurately models the VoI of each message, from its generation to its con-

sumption. More specifically, in Phileas two different types of information producer

entities can generate new messages: data sources and service components, respec-

tively in response to the arrival of new raw data or to the processing of one or more

lower-maturity messages.
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At the moment of its generation, each new raw data message is assigned an initial

VoI attribute, which is sampled from the VoI distribution modeling random variable

associated to its data source.

Instead, the VoI of messages generated by service components (that can either

be IOs or CRIOs, according to the service component definition) is calculated from

the VoI of messages that need to be processed to generate that message according

to service-specific policies.

Phileas tracks the VoI of each message exchanged from its origination to its

consumption. Upon creation, each message is assigned an initial VoI value and a

VoI decay profile that models the loss of VoI of a message as time passes and the

information travels from its originating source, according to the configuration of the

entity that generated the message (data source or service component).

More specifically, Phileas allows to assign data sources and service component

two different types of VoI decay profiles: a time decay and a space decay one. In

turn, each of those profiles supports 3 types of VoI obsolescence profiles: no decay,

linear decay, and exponential decay.

4.4.3 Communication Model

Phileas adopts a pragmatic approach to communication modeling, oriented to allow

the accurate evaluation of the Value-of-Information produced by the Fog services

running in the simulated scenarios. More specifically, Phileas focuses on the adop-

tion of relatively simple solutions that provide a reasonable accuracy in accounting

message losses and communication delays while dismissing lower-level and protocol

specific aspects such as transmission rate, interference modeling, etc.

Phileas assumes that latency in edge-to-Cloud communications to be stochas-

tically modeled according to a Gaussian mixture distribution. This is a realistic

approach, as proved by our recent research [47]. In addition, for simplicity service

components hosted in a Cloud platform are assumed to be always reachable from

any device or user group.

Communications at the edge, i.e., involving data sources, service components

hosted on edge devices, and/or end users, are modeled using a simplified propaga-

tion model. More specifically, Phileas adopts a propagation loss model based on the

pre-calculation of the maximum communication distance. If the distance between

communicating parties is smaller than the maximum communicating distance the

message is considered successfully delivered, if not it is dropped. Let us point out

that, while apparently simplistic, this mechanism is consistent with the propagation

loss model used in many network simulators, such as NS3 [48], whose PHY imple-

mentation uses propagation loss models to evaluate if the signal power measured at
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the receiving device (also considering the antenna gain) is higher than the receiver

sensitivity threshold. In that case, the simulator considers the packet as correctly

received, if not the packet is dropped.

Phileas models the latency delay by sampling from a random variable with a

long tail distribution. According to the latency analyses published in several recent

research studies, this seems to be a simple but relatively realistic solution [49] [50]

[51].

4.4.4 Mobility Models

The realistic evaluation of Fog Computing scenarios should support different mobil-

ity models for the entities involved in the simulation. This is particularly interesting

for Smart City scenarios where users can move to several locations during the sim-

ulation time.

Mobility models for wireless and ad-hoc networks have been widely investigating

in literature [52]. They make possible to evaluate the performance of protocols

or configurations when nodes move through a defined space. For example, one of

the first and a very simplistic mobility model is Random Walk, in which nodes

follow unpredictable and erratic movements of entities. Another one is the Random

Waypoint mobility model, which extends Random Walk by enabling the description

of waypoints, where moving entities can stop before changing directions. Others

and more complex mobility model exist to fulfill the needs of specific environments.

It is worth noting that the majority of mobility models implemented for simula-

tors rely on 2-dimensional and 3-dimensional grids, on which is possible to calculate

the positions of entities given their velocity and direction. However, Phileas adopts

a more realistic modeling of locations, where each location object has an associated

longitude and latitude in accordance with the GPS. This makes the adoption of

mobility models more challenging because it requires to calculate new positions in

a realistic fashion.

Considering these constraints, Phileas provides as built-in the Random Walk mo-

bility model with different configurations that let users describe geographic bound-

aries, starting and ending coordinates, and directions. Furthermore, Phileas also

allows describing the movements of flying objects such as helicopters and UAVs

that interact with the simulation. Finally, it is possible to extend the range of im-

plemented mobility models by extending the mobility model class with the behavior

of the desired mobility model.
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Figure 4.2: Location of the data sources and service components for the fictional
Fog Computing scenario considered in the experimental evaluation.

4.5 Experimental Evaluation

In order to evaluate the Phileas effectiveness and potential in analyzing the per-

formance of Fog applications based on the AIV model, the following experiments

consider a fictional Fog Computing application running in Washington DC, USA.

As illustrated in Fig. 4.2, the fictional application offers different typical services

of a smart city scenario. In particular, the scenario is set in the downtown area of

Washington DC to setup different data sources, which will feed pollution, weather,

music, and traffic monitoring services running on several edge devices (green icons

in the picture) and on the Cloud. Finally, the scenario defines multiple user groups

interested in receiving information from one or multiple services.

The pollution service modeled in this fictional scenario collects data from the

in-range available smart-metering stations for the users interested interested in re-

ceiving notification about the pollution status nearby. The music recognition service

analyzes sound’s samples gathered by sensors located in the park to recognize, using

OCR capabilities, the corresponding track’s name and author. This service requires

high computational and data resources and it is intended to be executed on the

Cloud. The weather service is running in multiple locations and collects humidity,

temperature, and pressure data from weather’s sensors to produce forecast infor-

mation. Finally, the traffic service gathers data from the cameras located at street
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Figure 4.3: Simulated VoI trend during simulation time for defined services.

intersections to determine the status of the viability and inform the users interested

in it.

For the purpose of this experiment, the information processing logic of the ser-

vices is built on the top of a relatively simple fusion algorithm. More specifically,

all the service components considered in the experiments define an incoming buffer

of size bt. When a message is received, it is momentarily put in the buffer. When

the buffer is full, the service component generates a new message whose VoI is the

average of the VoIs of the messages in the buffer measured at their receival time,

multiplied by a constant service specific factor, called VoI multiplier. The service

component then discards the buffer and its content, and creates a new one. Note

that the size of the buffer is not constant but is sampled from a geometric distri-

bution with p = 0.9. This scheme can approximate the behavior of a wide range

of information-centric service components, that emit messages whose content is at

least in part generated from the fusion of a sequence of messages.

User groups are distributed among the scenario’s area and mainly depending on

their position, have different share interests in receiving the information offered by

the different services. For instance, the 80% of the people walking in the National

Mall park are interest in receiving notification about quality of the air or the events

taking place in the park, e.g. if a concert is being played in the area. In addition,

the 85% of the users that are driving vehicles are interested in receiving traffic

monitoring information to adapt their route accordingly. Note that, as explained in

the previous Section, the number of the users interested in a service contributes to

the VoI calculation of the output CRIOs, and thus affects the tasks allocation and

processing strategies of the applications running on the available devices.

To collect the experimental data, the simulation duration is set to one day. Fig.
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Figure 4.4: Number of dropped messages (raw-data and IOs) for service components.

Figure 4.5: Simulated VoI as a function of the number of running service compo-
nents.

4.3 illustrates the total amount of Value-of-Information recorded for the CRIOs pro-

duced by each different service: music, pollution, traffic, and weather information.

As expected, some services have higher VoI than others, in particular the music

and traffic service, which per definition offer real-time/time-sensitive information.

Furthermore, Fig. 4.3 also illustrates how the total VoI remains high even when the

services allocated saturate the entire amount of resources available. More specifi-

cally, the activation of the music service ten hours after the begin of the simulation

does not affect significantly the VoI information of the other services.

Another interesting result is to observe how the AIV service model naturally en-

ables the preservation of high VoI amounts by discarding lower value data when the

amount of available computational resources is not sufficient to process all incoming

raw data and IO messages. Fig 4.4 shows how the percentage of dropped messages

changes in function of the service. As expected, and according to data discussed

above, the higher number of dropped messages is registered for data regarding ser-

vices with lower VoI. Furthermore, we can notice how, within the same service, the

number of dropped IO messages is drastically lower compared to number of raw

data messages, and thus according to the AIV definition. Moreover, comparing Fig.

4.4 with Fig. 4.3 one can notice that the VoI information is not affected by the

dropping of the messages, since its value remains high.
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Finally, Fig. 4.5 illustrates the total amount of VoI generated in the fictional

scenario with a curve color-coded according to the number of running services. Once

again the results show how the saturation of the available resources does not impact

significantly the total amount of VoI provided to users. In fact, when new services

saturate the available resources, with higher-VoI messages are prioritized over lower-

VoI ones, and thus leading to the VoI conserving trend shown in Fig. 4.5.

4.6 Configuration

As final note, this Section provides an example configuration for describing a Fog

Computing Scenario. This is to highlight the highly descriptive interface that Phileas

provides to describe all components involved in the simulation of a Fog Computing

scenario:

Example configuration for locations:

locations(

#national mall edge device

1 => { latitude: 38.889809, longitude: -77.014666 },

#national mall pollution and weather sensor data_source

2 => { latitude: 38.889070, longitude: -77.018466},

)

Example configuration of a data source (IoT sensors):

data_sources(

1 => {

voi_dist: { distribution: :exponential, args: { rate: 0.1 } },

message_size_dist: { distribution: :exponential, args: { rate:

0.1 } },↪→

time_between_message_generation_dist: { distribution:

:exponential, args: { rate: 0.1 } },↪→

output_content_type: :video,

location_id: 1,

time_decay: { type: :linear, halflife: 1000.0 },

space_decay: { type: :linear, halflife: 1000.0 },

},

)

Example configuration for a service type:

service_type(

1 => {
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input_content_type: :pollution,

input_message_type: :raw_data,

output_content_type: :pollution_information,

output_message_type: :crio,

resource_requirements: 50.0,

time_decay: { type: :linear, halflife: 1000.0 },

space_decay: { type: :linear, halflife: 1000.0 },

processing_policy: {

type: :aggregation,

aggregation_window_size_dist: { distribution:

:discrete_uniform, args: { min_value: 1, max_value: 10 } },↪→

aggregated_message_size_dist: { distribution:

:discrete_uniform, args: { min_value: 1024, max_value: 2048

} },

↪→

↪→

voi_multiplier: 2.0,

},

},

)

Example of service activation:

service_activations(

1 => { type_id: 1, at: { time: start_time, device_id: 1 } },

)

Example of a user group:

user_groups(

1 => {

user_dist: { distribution: :exponential, args: { rate: 0.3 } },

location_id: 3,

interests: [

{ content_type: :pollution_information, share: 0.8 },

{ content_type: :music_information, share: 0.2 },

{ content_type: :weather, share: 0.7 },

]

}

)
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VoI-optimal placement of

processing tasks

After having presented methodologies and tools that integrate the VoI concept,

this Chapter presents the VoI-optimal placement of processing tasks in Fog and

Edge Computing. More specifically, this chapter analyzes both user-agnostic and

user-specific VoI models for proposing a management framework that addresses the

optimal placement of service components from a value-based perspective [53].

To achieve this goal, this Chapter presents an innovative user-specific VoI model,

which extends the state-of-the-art in VoI research by investigating the VoI utility

for each user on a per-message basis. This model is the basis to implement the

VoI optimization of service components in Fog Computing. Furthermore, to in-

vestigate others simplified optimization solutions, this Chapter proposes a distance

based heuristic for approximation and other model refinements which provide very

promising results. This work aims to develop valuable techniques that can be in-

tegrated into management middlewares to select the best allocation for processing

tasks among a pool of available devices.

5.1 Optimal resource allocation problem

Building upon the AIV model discussed in Chapter 3 is possible to formalize a

management framework for the allocation of Fog service components. In fact, the

problem of resource allocation for service fabric in Fog Computing applications re-

quires a mathematical optimization framework. More specifically, this problem aims

to maximize a function fn that captures the behavior of the system according to the

optimization criterion in the n-th window of time (which goes from tn to tn+1):
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arg max
A,Γ

fn(A,Γ,D,S,U)

s.t. ∀k
∑

m∈SCk,i∈D

αm,i = |SCk|
(5.1)

It is worth noting that function fn changes every time the global system state

Θ = (D, S,U) changes, e.g., when new resources become available or new service

components are instantiated. In that case we have a new function to optimize, i.e.,

fn+1.

Using a sequence of functions to model the system implies that we are capable

of finding out when the function changes, i.e., when the system changes – which is

a quite complex task per se (see for instance [54], [55], [56], and [57]).

Since it is going to be difficult to detect (or predict) changes to the global system

state, and consequently to find out when the optimization procedure should be

re-triggered, it might be convenient to reformulate the optimization problem in

equation (5.1), switching from a model based on a sequence of static (i.e., time-

invariant) optimization functions fn to one based on a single dynamic (i.e., time-

varying) optimization function f :

arg max
α, γ

f(A,Γ,D, S,U, t)

s.t. ∀k
∑

m∈SCk,i∈D

αm,i = |SCk|
(5.2)

This turns the optimal resource allocation problem from a sequence of (rela-

tively) static optimization problems to a single – but significantly more complicated

– dynamic optimization problem.

5.2 VoI Optimization

In Fog and Edge Computing, a particularly attractive metric to consider for the

adoption within a value-based management framework is the total amount of VoI

delivered to end users by a given service fabric configuration. From the mathematical

formulation perspective, this could be expressed as:

fn = TotalV oI(tn, tn+1) =
∑

m∈M(tn,tn+1)

V oIΘ(m). (5.3)

where M(tn, tn+1) are the messages received by end users within the (tn, tn+1) time

window.

Note that for the purposes of the VoI maximization criterion the VoI contribu-

tion of messages exchanged between sensors and service components are considered
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indirectly in the calculation. In fact, the starting VoI of a CRIO message is the

result of the aggregation of the multiple raw-data and IOs who generated it. Also

note that a message can be received by different end users.

Of course, the adoption of VoI-based Fog service fabric management requires the

development of accurate, generically applicable, and practical models to estimate

the VoI delivered by IOs. Devising VoI models that are cabaple of tracking the

changes of VoI in IOs while retaining a reasonable complexity is quite a challenging

task because, as the formulation V oIΘ(m) highlights, the VoI associated to a mes-

sage m actually depends on the current state Θ of the system. The next Section

presents some proposals to define the V oIΘ model, adopting different perspectives

and assumptions on the knowledge of the system.

Table 5.1: Summary of used notation

Term Meaning

DS Set of data sources
dsi ∈ DS i-th data source
dsli Location of i-th data source
D Set of edge devices
di ∈ D i-th device
dli Location of i-th device
dtri Total resources at i-th device
S Set of Fog services
sj ∈ S j-th service

swfj Workflow of j-th service

sck k-th service component
scrrk (t) Amount of resources requested by k-th service component

at time t
αk,i ∈ A Service component sck allocated on device di
rai(t) Amount of resource allocated on device di
ari(t) Amount of available resources on device di
U Set of end users
ul ∈ U l-th end user
ull Location of l-th end user
usl Set of services the l-th end user subscribed to
rt Generation time of request r
rl Location of request r
mot Originating time of message m
mol Originating location of message m
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5.3 VoI Models

Most VoI models proposed so far in literature only consider the (simpler) case in

which the VoI of a message does not depend from the specific user that receives

it. These approaches implicitly assume an “objective VoI perspective”, according

to which the value of an information object is an intrinsic characteristic and does

not depend from the user consuming it. More sophisticated approaches based on a

“subjective VoI perspective” require a deep knowledge and differentiation for each

possible user, thus further increasing the complexity of the model. This Section

attempts to present generically applicable models of both types.

5.3.1 User-agnostic VoI Model

At the moment of its generation each message (of either raw data, IO and CRIO

type) has an originating VoI. The starting VoI of IOs and CRIOs depends from the

message- and service component-specific result of the processing of previous mes-

sages. The starting VoI associated to each IO is calculated as a service component-

specific function of the raw data messages consumed in the generation of the IO.

The starting VoI associated to each CRIO can be calculated as a function of

the priority of the corresponding service and of the output of a service-specific VoI

calculation function, that every service implementation is supposed to provide:

V oI0(m, Im, s) = SSV (I(m))× FSP (s)) (5.4)

where Im is the set of input IOs processed in the generation of CRIO m, s is the

Fog service that generated m, and SSV (I(m)), as in “Service-specific Value (calcu-

lation)”, is a factor that allows to take into account service-specific considerations

when assessing the value of the information extracted from the I(m) IOs. Finally,

FSP (s), as in “Fog Service Priority”, is the priority of service s, thus representing

a weight factor that permits to assign higher VoIs to the CRIOs produced by higher

priority Fog services.

The starting VoI in equation (5.4) is the basis to calculate the VoI of message m

at its recipients for a service s. More specifically, the total VoI delivered by a CRIO

m needs to consider factors such as the number of its recipients, timeliness relevance

decay (a factor taking into account the decrease in the value for time sensitive IOs

by applying a penalty according to the delivery time), proximity relevance decay

(a factor taking into account the decrease in the value for location-aware IOs by

applying a penalty according to the delivery location):
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V oIΘ(m, Im,MR(m), s) = V oI0(m, Im, s) ×
∑

r∈MR(m)

[TRD(rt,mot)× PRD(rl,mol)]

where MR is the (set of) receivals for message m, TRD(rt,mot), as in “Timeliness

Relevance (of Request) Decay”, is a factor that takes into account the loss of VoI in

the time passed between request generation time rt, and response generation (the

current time mot). Finally, PRD(rl,mol), as in “Proximity Relevance (of Request)

Decay”, is similar to the TRD(rt,mot) component, but its impact on the final VoI

score depends on the physical distance between the position of the requester, given

by rl, and that of the source of IO, provided by mol (in case message m was simulta-

neously issued by several requesters, rl returns the location of the requester closest

to the IO source). With regards to the general case in which an IO m is constructed

from more raw-data messages, the centroid of the origin points of each raw-data

that contributed to its generation is considered for the purpose of PRD calculation.

This also applies to CRIO messages resulting from the composition of multiple IOs.

5.3.2 User-specific VoI Model

To account for user specific utilities we could add to equation (5.5) a component

(U) that considers utility for each user receiving message m:

V oIΘ(m, Im, s, r, t) = V oI0(m, Im, s) ×∑
r∈MR(m)

[TRD(t,mot)× PRD(rl,mol)× U(ru,m, t)] (5.5)

where U(ru,m, t) is the utility of message m for user ru at time t.

Note that this model does not specify the behavior of utility function U , which

is likely to be user-specific and context dependent. Most importantly, forecasting

the U component in equation (5.5) represents a challenging task, even more than

the forecasting of the sum component in equation (5.5).

The practical adoption of a high complexity model such as this requires the adop-

tion of simulation-based optimization. Simulation-based optimization [58] is based

on the creation of a simulation-based model and the optimization of its input param-

eters. Therefore, it is possible to verify how different service component allocations

perform within a defined scenario by evaluating the total VoI collected within the

given time window.
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Model Simplifications

It is worth to formulate a simplification of the model defined in equation (5.5) to

reduce its complexity to a manageable degree in order to avoid simulation based

approaches for its evaluation. More specifically, it is possible to assume that V oI0

only depends on message type (mt) and service profile:

V oI0(m, Im, s) ≈ V oI(mt, s) (5.6)

In addition, the sum component in equation (5.5) can be approximated by clus-

tering messages and users in a limited number of classes, calculating an average

TRD and PRD for each class of messages, and calculating an average utility per

message and user type. In particular, both PRD and TRD functions assumes values

in [0, 1] ∈ R and they act as decay multiplier. Following this approach, the equation

becomes: ∑
r∈MR(m)

TRD(t,mot)× PRD(rl,mol)× U(ru,m, t) ≈

∑
m t∈M

[TRD(m t)× PRD(m t)×
∑
u t∈U

U(u t,m t)]
(5.7)

where mt represent a class of messages.

With regard to message clustering, it is possible to adopt different policies. For

instance, a natural way of clustering messages is according to their content or service

type. User clustering could be performed according to several criteria, including

location, profile type, and so on. For location-based user clustering, an interesting

idea is to model the number of users at a given time t thought the concept of user

group. A user group uk represents a set of users in a defined location ulk with share

of interest wsj(k) in consuming CRIOs produced by a service sj. At a given time t,

the number of users within a user group uk is fixed and it is expressed as uk(t).

We then arrive to the simplified user-specific VoI model :

V oIΘ(m, Im, s, r, t) = V oI(mt, s) ×∑
mt∈M

[TRD(mt)× PRD(mt)×
∑
ut∈U

U(ut,mt)] (5.8)

However, even if simplified, this model still presents some of the disadvantage

of the user-specific VoI model in eq. (5.7). More specifically, the evaluation of the

PRD and TRD components of eq. (5.8) is still challenging as their values are IO

specific. In addition, service components defining the workflow of a service, are

likely to be instantiated on different edge devices. Therefore, the calculation of each

PRD and TRD requires to consider the location of the edge device where the service
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component sck is instantiated on. As a result, solving the model defined in equation

(5.8) is still challenging and it requires simulation-based optimization techniques,

thus hindering the practical adoption of this model.

5.3.3 A distance based heuristic for Service Fabric Manage-

ment

To address the practicality issues of the models presented above, another possibility

is to devise a tractable approximated distance minimization model that aims to

find optimal allocation for service components on fog devices by minimizing the

overall distance defined by the service components allocation. In fact, minimizing

the overall distance would minimize the impact of the PRD decay function, thus

maximizing the VoI of each message m.

Inspired by the processing stages defined in the AIV information maturity model

(raw-data collection, IOs processing, CRIOs delivering), it is possible to devise a Dis-

tance Component (DC) for each processing stage to express respectively: proximity

to data sources and devices (raw-data), proximity to devices running service compo-

nents belonging to the same service (IOs), and proximity of edge devices and users

(CRIOs) to express the distance minimization model:

min
DS,D,U

(ωrd ×DFrd + ωios ×DCios + ωcrios ×DCcrios) (5.9)

where:

DCrd =
∑

sci∈SC [distance(dli, ds
l
i)]

DCios =
∑

sci∈SC [distance(dli, dj
l
i)]

DCcrios =
∑

sci∈SC [distance(dli, u
l
k)]

ωrd + ωios + ωcrios = 1

In these equations, DCrd, as in “DC for raw-data”, takes into account the decay

the information is subjected to from the generation of raw-data to its first processing

phase, i.e. the distance between the sensors generating raw-data and the devices

on which service components process the raw-data. DCios, as in “DC for IOs”,

is to consider the information-delay in the processing chain, i.e. related service

components should be allocated on devices close to each other to obtain reduced

distance and latency. DCcrios, as in “DC for CRIOS”, considers the proximity

of the device generating the information in its final stage (CRIOs) to the users

interested in consuming it. Finally, the weights (ωrd, ωio, ωcrios in (5.9) are to balance

the importance of each DC component in a weighted sum method fashion. The
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component weights are strictly dependent on the scenario conditions (location of

data sources, location of devices, user group locations) and need to be selected

empirically. The service component allocations resulting from the optimization of

(5.9) will privilege lower distance service component allocations, thus minimizing

the delay within the overall service component workflow.

Given the minor complexity, the distance-minimization model (5.9) is well suited

for online optimization. To this end, Alg. 1 presents a distance based heuristic.

Alg. 1 implements the distance based heuristic using a function that evaluates a

given service component allocation, checks for its feasibility, and returns a score

value representing the summation of DC components. Furthermore, to balance

the importance of each DC component and the priority of service components, the

distance based heuristic relies on both the ωrd, ωio, ωcrios weights defined in (5.9) and

on the service priority weights FSP defined in (5.4).

Delving into details, Alg. 1 evaluates the feasibility of an input allocation con-

sidering both the constraints on resources defined in equation (3.3) and a given con-

straint on a maximum distance, thus avoiding to select infeasible allocations. Then

Alg. 1 calculates the DC impact for each service component discriminating between

service components processing raw-data, IO, and CRIO messages. Firstly, for each

service component processing raw-data messages, the algorithm checks the distance

from the device where the service component is allocated to the data sources where

those messages are generated. Secondly, for each service component processing IOs

instead, Alg. 1 checks the distance with the devices where other service components

belonging to the same service are allocated. Finally, for service component pro-

cessing CRIOs, the algorithms evaluates the position of the device processing that

service component with respect to the user groups’ locations.

As a final consideration, a different approach to a distance based heuristic is to

focus on latency minimization. However, if a strict latency model for edge-to-edge

communication is not defined, the latency could be approximated as a logarithmic

function of distance. This is a common practice adopted by other network simulators

such as NS3 [59] and it well suits wireless end-to-end communications. A reasonable

approximation is to relate latency to distance, thus allowing to solve more general

Fog scenarios where a latency model is not well defined. To this end, it is worth

considering that, this approach is common to other related works such as [60, 61].

However, in those scenarios where a latency model is defined and service com-

ponents mandate strict latency requirements a latency minimization approach is

preferable. To implement such approach, it is possible to substitute the DC compo-

nents with their latency counterparts, using an empirical latency model or a network

simulator to calculate the latency within the scenario.
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Algorithm 1: distance based heuristic algorithm

Data: An allocation array x
Result: Sum of the DC components associated to allocation x
initialize DC sum to 0;
// check the for each device the constraint on resources

forall d in Device do
assigned resources = check resources(d);
if unfeasible(assigned resources) then return ∞;

// for each service component processing raw-data calculate the

distance from device

// to the raw-data sources

DC rd = 0;
forall sc in sc raw data do

dc rd sc = calculate distance with raw-data sources;
if unfeasible(df rd sc) then return ∞ ;
DC RDdc rd sc;

// for related service component processing IOs calculate the

distance from

// the devices where they are allocated on

DC ios = 0;
forall sc in sc ios do

dc ios sc = calculate intra-chain distance ;
if unfeasible(dc ios sc) then return ∞;
// multiply this component for its priority factor

dc ios sc = dc ios sc × FSP(sc);
DC iosdc ios sc;

// for service component processing CRIOs calculate the

distance from the device

// to the user groups’ locations

DC crios = 0;
forall sc in sc crios do

dc crios sc = calculate distance with user groups;
if unfeasible(dc crios) then return ∞;
// multiply sc for its priority factor

dc crios sc = dccrios sc× FSP(sc);
DC criosdc crios sc;

return ωrd ×DCrd + ωios×DCios + ωcrios ×DCcrios;
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Table 5.2: Distance between user groups and fog devices.

u1 u2 u3 u4

d1 723.55 1586.61 0 339.74
d2 158.90 2240.61 702.95 366.34
d3 414.92 1884.99 339.74 0
d4 0 2297.23 723.55 414.92
d5 2297.23 0 1586.61 1884.99
d6 2091.34 206.00 1380.80 1679.33
d7 136.19 2189.24 606.02 327.48

5.4 Experimental Evaluation

To validate the proposed models, the following experiments rely on a testbed simu-

lating a realistic Fog Computing application scenario similar to the one illustrated in

Chapter 4. For calculating the VoI generated by the applications, these experiments

leverage the simplified user-specific model in equation (5.8) and the distance based

heuristic defined in Alg. 1. Finally, the following experiments use meta-heuristics

optimization to identify the configuration for the service fabric of the Fog Computing

applications that maximized the total VoI delivered to end users.

This testbed contains the description of 7 devices, 9 data sources, 4 user groups,

and 8 service components. Within the scenario, each Fog Computing service is

defined as a workflow of 2 service components. The locations of devices, data sources,

and user groups are defined in the scenario with a latitude and longitude position in

accordance with the GPS position system. In particular, the distance between user

groups and devices is depicted in Table 5.2.

The Phileas simulator reenacts the above descripted scenario for the purpose of

validation [62]. Phileas was specifically designed to reenact Fog services adopting

the AIV service model and implements advanced VoI calculation features that allow

to define the VoI model to consider for an application, such as the simplified user-

specific VoI model defined in eq. (5.8).

Phileas takes as input a configuration describing devices, users, service of a

realistic Fog Computing and an allocation array describing the allocation of service

components on devices to return as output the total VoI collected in a simulation

time window of one hour.

In the experiments, most of the input configuration remain fixed, while the input

allocation array, i.e., the A parameter of the management framework described in

eqs. (5.1) and (5.2), is controlled by the optimization solution that explores the

search space in the attempt to maximize the total VoI delivered to end users. To

guarantee the reproducibility of the simulation, all the random variables responsible

for the event generation have a fixed seed.
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5.4.1 Optimization Methods

As the optimization method, the following experiments consider meta-heuristics so-

lutions, which represent an interesting and valuable technique to solve dynamic

optimization problems in large and complex search spaces, such as the VoI-based

service placement optimization one. More specifically, this framework relies on Ge-

netic Algorithms (GA) [63] and Quantum Particle Swarm Optimization (QPSO)

[64], which have proved to be well suited for resource management applications

of similar complexity. The implementations of GA and QPSO in the ruby-mhl

(https://github.com/mtortonesi/ruby-mhl) optimization library.

With regards to the configurations, GA uses a population size of 128 individu-

als, an integer-based representation, a mutation operator applying random displace-

ments sampled from a discrete geometric probability distribution, and a crossover

operator based on a variant of extended line recombination algorithm designed to

operate on integers. In addition, Fig. 5.1 depicts the representation used for en-

coding the service component allocation on devices. In this representation, each

block represents the mapping of a service components on a fog device. In other

words, the value of a block indicates the device where that service component will

be allocated. More specifically, Fig. 5.1 identifies each service component sck as

part of service sj using the notation sck,j, where k identifies the component within

the workflow of service sj. In the representation, service components belonging to

the same workflow are adjacent blocks.

In turn, the QPSO algorithm uses a similar representation for the search space.

As is often proposed when adopting PSO-based algorithms for integer or mixed-

integer optimization problems, these experiments considered an R+
n search space

and applied rounding to the next integer on the output of the algorithm, i.e., the

best particle position. In addition, given the problem size and complexity QPSO

is configured to use a 40-particle swarm and a contraction-expansion coefficient

α = 0.75.

Finally, it is worth noting that these representations implicitly solve the con-

straint defined in equation (3.2), by allocating each service component to a Fog

device. As a result, it is particularly well suited for the service placement optimiza-

tion problem.

5.4.2 Results

The first experiment had the objective of evaluating the performance of the meta-

heuristics on the simplified user-specific VoI model. Both GA and QPSO are con-

figured to find the best allocation for service components on fog devices over 100

iterations. Fig. 5.2 depicts how the two meta-heuristics perform in optimizing the
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sc1,1 sc2,1 sc3,1 sc1,2 sc2,2 sck,n

d2 d1 d1 d4 d3

sc1,1 service component 1 of service 1

s1 service 1 = {sc1,1,sc2,1,sc3,1}

d2 device 2

sc2,2 service component 2 of service 2

sc3,2

………….

service components

Figure 5.1: Service component representation. Each block represents the mapping
between a service component and a fog device.

Figure 5.2: Total VoI for each iteration of the two meta-heuristics on the simplified
user-specific VoI model.

total VoI in the given time-window. Both GA and PSO converge quickly to a good

solution, proving their effectiveness, with GA demonstrating better initial conver-

gence speed and QPSO exhibiting a more explorative behavior that allows it to find

an allocation resulting in a 4.85% higher total VoI in longer runs.

Then, the second experiment is to evaluate the performance of GA and QPSO

in optimizing the distance based heuristic described in Alg. 1. Given the lower

computational complexity of the distance based heuristic with respect to the simpli-

fied user-specific VoI model, whose evaluation requires a full simulation run of the

testbed scenario within Phileas, the number of iterations for GA and QPSO is set
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Figure 5.3: Best values for the distance based heuristic using the two meta-heuristics
as optimization techniques.

to 850. The same configuration of the previous experiment are used as input to the

distance based heuristic.

Fig. 5.3 illustrates the performance of QPSO and GA in optimizing the dis-

tance based heuristic. GA outperforms QPSO both from both the exploration and

exploitation points of view. More specifically, GA finds an optimal value around

the 400-th iteration, while QPSO reaches its maximum around the 800-th iteration.

However, both algorithms demonstrate good performance in finding an optimal so-

lution with a tiny gap during the entire process and an average 5% gap at the end

of the process.

It is worth noting that, unlike the simplified user-specific VoI model, the exe-

cution of the distance based heuristic does not return a VoI value. To make the

two approaches comparable, there is the need to evaluate the service component

allocations produced by the optimization of the distance based heuristic, use them

as input for Phileas simulation runs, and calculating the generated total VoI using

the simplified user-specific VoI model of eq. (5.8). The results are depicted in Fig.

5.4, which compares the total VoI values achieved through the optimization of both

models. In addition, from the reported results it is possible to verify how the dis-

tance based heuristic represents a good approximation of simplified user-specific VoI

model.

As illustrated in Fig. 5.4 both GA and PSO find relatively good solutions.
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Figure 5.4: Total VoI resulting from the service components allocations generated
by the optimization of the distance based heuristic.

GA finds an allocation capable of generating a greater VoI around the first 100-th

iterations, while QPSO converges to this result afterward with a 1% average gap

the end. It is worth noting that the total VoI value is fluctuating because of the

discrepancies between the two models. These results indicate that the distance

based heuristic is capable of finding good solutions in term of total VoI generated

and demonstrate the soundness of its formulation and the validity of the selected

approach. Considering that approximating the VoI function is a challenging task,

these results seem to configure the distance based heuristics as a promising approach

for all those scenarios requiring a quick allocation or re-allocation of resources.

To better illustrate the gap between the distance based heuristics and the simpli-

fied user-specific VoI model, this Section also presents the direct comparison of the

previously discussed results in Fig. 5.5a and Fig. 5.5b, considering 125 iterations.

At the 100-th iteration, the distance based heuristics reaches about 88% performance

for QPSO and 91% for GA when compared to the simplified user-specific VoI model.

Therefore, both models are capable of finding good solutions after few iterations of

the meta-heuristic algorithm, which is a quite positive result for the distance based

heuristics, which is much faster to calculate.

To illustrate the differences in computational complexity between the distance

based heuristics and the simplified user-specific VoI model, Table 5.3 reports the

configurations and the execution time, measured via the time UNIX utility, to run
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(a) QPSO (b) GA

Figure 5.5: Comparison between the simplified user-specific VoI model (QPSO, GA)
and the distance based heuristics (A-QPSO, A-GA) using both metaheuristics.

the optimization on both the simplified user-specific VoI model and the distance

based heuristic. As it can be seen, the distance based heuristics is much faster than

the simplified user-specific VoI model.

Considering the good results provided by the distance based heuristics, it is worth

looking for a hybrid approach that can combine this model with 5.8 . The combined

model alternatively executes a higher number (850 in the current configuration) of

runs of the distance based heuristics and lower number of runs (15 in the current

configuration) of the simplified user-specific VoI model. The idea is to use the

optimal solution provided by the distance based heuristics as a new starting point

for the simplified user-specific VoI model that can later explore a broader search

space and avoid local maxima, thus allowing to find improved solutions at lower

computational costs. More specifically, the meta-heuristic optimization algorithm

is configured to use the best allocation generated at the previous step as a starting

point for another 15 iterations of the simplified user-specific VoI based model.

Fig. 5.6 depicts the results achieved by the optimization of the combined models

for both QPSO and GA, reported as C-QPSO and C-GA in the legend. To give

a graphical representation of the improvements, Fig. 5.6 shows with a red dashed

line the best allocation that QPSO found in optimizing the distance based heuristic.

More specifically, the combined optimization can improve the results achieved at the

previous step of about 8.59% with regards to QPSO and 6.29% for GA. Even in this

Table 5.3: Execution time of the optimization models

Model M-H Population Size Iterations Execution Time

Distance based heuristics GA 128 850 6.53s
Distance based heuristics QPSO 40 850 2.87s
Simplified user-specific GA 128 100 10030.43s
Simplified user-specific QPSO 40 100 4113.16s
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Figure 5.6: Comparison of the combined with the distance based heuristic (red
dashed line).

Figure 5.7: Simplified user-specific VoI model versus combined model.
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case, QPSO demonstrates faster computational time and better results in general.

The combined model represents a very good trade-off between model complexity

and accuracy, which can make the combined model well suited for Fog service fabric

management in dynamic scenarios. However, it is worth noting that this respon-

siveness comes at the price of lower explorative capabilities. To illustrate this, Fig.

5.7 compares the simplified user-specific VoI model with a baseline representing the

best service component allocation obtained from the combined model (red dashed

lined). The results show that the simplified user-specific VoI model outperforms

the combined model of an average 4.43% at the end of the optimization process.

This means that less dynamic scenarios in which, for instance, service component

allocation could be planned in advance, might be better served by the simplified

user-specific VoI model than by the combined model.

Finally, Table 5.4 presents a final report of the best results, in term of VoI

collected in the given time window, by the distance based heuristics, simplified

user-specific VoI model, and combined model. As discussed, the combined model

represents a significant improvement with respect to the distance based heuristics,

with a limited increase in computational costs. At the same time, the simplified

user-specific VoI model has a higher computational complexity but is capable of

identifying the most convenient service component allocations

Table 5.4: Maximum Total VoI for each optimization configuration

Meta-heuristics
Model GA QPSO

Distance based heuristics 3907701 3956772
Simplified user-specific 4279243 4486806

Combined 4205837 4296572
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Chapter 6

Reinforcement Learning for

VoI-based optimization

Resource management in Fog and Edge Computing can particularly benefit from

the adoption of self-* approaches capable of learning the best resource allocation

strategies to adapt to the ever-changing conditions of these environments [65, 66].

In this context, Reinforcement Learning (RL) has been widely investigated from

academia as a powerful tool for problem-solving. RL is a goal-oriented training of

a software agent that needs to learn the sequence of actions, which maximizes a

reward.

Fog and Edge Computing resource management solutions can leverage RL as

a powerful tool to deal with the management of dynamic environments requiring

continuous adaptions. Interested by the promising capabilities of RL, this Chapter

investigates Reinforcement Learning (RL) as an enabling method for online opti-

mization of Fog services [67].

6.1 Need for Continuous Optimization

Resource management solutions for Fog and Edge applications require frequent, and

possibly continuous, re-configurations of network and services in order to guarantee

high levels of Quality-of-Experience (QoE) and Quality-of-Service (QoS) [68]. In

turn, this requires the adoption of relatively complicated continuous optimization

solutions, whose proper setup often requires the tuning of several parameters, that

further increase the problem complexity.

The solutions described in the previous Chapters build the ground to develop VoI

management middlewares capable to optimize the allocation of Fog and Edge pro-

cessing tasks according to the VoI criterion. However, the illustrated management

framework is designed to optimize a quasi static scenario, but real-world applica-
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tions will likely operate in very dynamic scenarios. To this end, the distance based

heuristic illustrated in the previous Chapter demonstrated to be a good trade-off in

finding high VoI service component configurations in a relatively short time, thus

making it a good candidate for online optimization.

A different and potentially very promising approach lies in the adoption of self-

* approaches, leveraging solutions that are capable of autonomously learning the

best strategies to adapt to the current conditions. To this end, a recent trend is

the adoption of Reinforcement Learning (RL): an evolving area of machine learning

originally inspired by the psychology of animal learning [69]. RL consists of a goal-

oriented training of an agent to learn the optimal actions (a policy) to interact with a

specific environment. The applicability of RL tools has been investigated in several

fields, such as the optimal placement of Network Function Virtualization (NFV)

[70, 71], energy-efficient resource allocation [72], and latency minimization [73].

RL can be a valuable building block for Fog and Edge Computing management

solutions. Differently from supervised learning methods, which require human in-

tervention for labeling data, RL allows to naturally train a software agent to learn

an optimal policy by interacting directly with the environment. This provides a

valuable tool to tame the dynamicity of Fog Computing environments, which need

continuous interventions to manage the available resources and meet the current ap-

plications’ requirements [74, 75]. Therefore, Fog Computing management solutions

can leverage RL for automatically tuning the configuration parameters when the

environment conditions change to guarantee the delivery of the expected QoS and

QoE.

Motivated by the promising capabilities of such techniques, this Chapter inves-

tigates the application of RL as a candidate for the continuous optimization of a

value-based Fog management framework. Towards that goal, we focus on Value-of-

Information (VoI) optimization as resource management criterion for Fog Computing

applications.

6.2 RL for Resource Management

RL is an evolving field of machine learning consisting in a goal-oriented training

in which an agent interacts with an environment to learn the best possible actions

leading to a specific goal [69, 76]. At each action is assigned an immediate reward

and the goal of the agent is to learn a policy that would maximize the sum of those

rewards. In order to learn a good rewarding policy, the agent needs to solve the same

task multiple times in which it will be capable of exploring a consistent number of

states.

RL has been applied to different sort of problems from learning how to play classic
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Figure 6.1: A typical Fog Computing environment for Smart City scenarios depicting
Cloud data centers, Fog nodes, and IoT end-users.

games to network and service management for dealing with the best allocation of

network slices [74, 75], the best placement for Virtual Network Function (VNF)

or task offloading in Multi-Access Edge Computing [77, 78] to minimize end-user

latency and to maximize the Quality-of-Experience (QoE). Dab et al. formalize

an RL problem to learn the best offloading decisions in order to minimize energy

consumption on the devices-side under latency constraints for 5G applications in [77].

The proposed strategy is evaluated with extensive simulations in NS3 and proved to

be successful in reducing computation time and find near-optimal solutions. Long-

Term latency minimization for Fog Computing is also discussed in [73]. In particular,

this paper proposes an RL approach combined with evolution strategies to deal with

real-time task assignment that allows reducing computation latency in the long-term

period.

In [78], Nakanoya et al. propose an interesting technique for applying RL to

online optimization of Virtualized Network Functions (VNF) sizing and placement.

In particular, the authors propose a two-step RL that divides the learning process

into two phases with the aim of reducing the learning exploration steps. The pro-

posed method is evaluated under three different realistic network environments and

proved to be cost-effective. In [74] Chen et al. discuss DRL for task offloading

decision in MEC for mobile ultra-dense in sliced RAN. More specifically, this paper

proposes two Double DQN learning algorithms for solving computational offloading

under dynamic network conditions. The authors in [79] discuss a Q-learning based

load-balancing algorithm for Fog Networks that allows reducing the processing time

and overload probability.
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Li et al. investigate RL for Network Slicing in [80] by illustrating general con-

cepts and applications for resource management in network slicing by comparing

different scheduling algorithms. An interesting formulation leveraging a Deep-Q

Network (DQN) is the one discussed in [81]. In this work, the authors propose an

algorithm called JTOBA that iteratively solves the problem of best joint task of-

floading and bandwidth allocation in MEC. A very interesting approach is to change

the initialization state every 100 episodes with the current best result. A different

RL application is described in [82], in which a fast task allocation (FTA) algorithm

leveraging DRL is proposed to allocate tasks among heterogeneous UAVs. The au-

thors claim that FTA is highly adaptive even in case of different set of tasks and

environment variability.

6.3 RL as another Optimization Tool

The previous Chapter enquired that the practical adoption of a high complexity

model requires simulation-based optimization [58] to evaluate a particular service

components allocation in terms of VoI. Following this direction, the model defined

in (5.8) has been implemented within the Phileas simulator [62] and optimized using

meta-heuristics techniques. Instead, this chapter presents a different methodology

to optimize the value of (5.8) using RL techniques.

6.3.1 The MDP for VoI allocation

In order to exploit RL techniques into a Fog Service Management Framework, it

is worth defining a Markov Decision Process (MDP) for the system model [83].

An MDP is a general framework (particularly suited for RL) for defining decision

making problems [69]. With this regard, a proper modeling of states and actions

is essential for RL tasks. In fact, RL in general requires a good knowledge of the

whole problem and a proper reward definition in order to allow the training process

to converge.

The MDP for VoI allocation defines a set S of states s, a set A of actions that

allow an agent to move from a state s to another state s′, and a Reward policy R the

defines the reward given by an action that moves the environment into a different

state. In particular, Ra(s, s
′) is the immediate reward for performing action a ∈ A

under state s ∈ S. Finally, the goal of the MDP is to find the optimal policy

a = π(s) that gives the best action a ∈ A under state ∈ S that allows to maximize

the Q-function Q(s, a) for each state action pair.

With regards to a state s ∈ S, we define it as an array-like service component

allocation s = {sc1, sc2, ..., scn} in which the value of the i-th element i − element
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represents the fog device dj where the service component sci is allocated. For in-

stance, {3, 2, 4 .., k, 3 } is an example of a state s ∈ S, where the service component

sc1 (the first element of the state array) is allocated on fog device d3 and k is |D|,
the number of fog devices.

On the other hand, we define an action a ∈ A as the selection of a fog device

d ∈ D where to allocate a service component sci on. For example, an action a = 2

indicates to allocate the service component on fog device d2. Furthermore, let us

note that, because the state and action spaces are finite, the formalized MDP is

finite MDP.

More specifically, the VoI allocation MDP consists of a sequence of n discrete

time steps t = 0, 1, 2, ·, i, ·, n in which an agent analyzes each service component

sci (where the i index corresponds to the i time step) and decides whatever or not

allocates it on a different fog device dj. When an action a ∈ A under state s ∈ S
is performed, a new state s′ is reached, and the agent gets an immediate reward

Ra(s, s
′). Finally, for modeling rewards, this formulation adopts the simplistic but

effective strategy of assigning a reward of 1 to those actions that define an allocation

capable of improving the value of (5.8) with respect to previous state, and 0 to the

others.

6.4 The FogReinForce DRL Solution

Having defined the MDP formulation for the VoI allocation of service components

allows us to adopt a suitable RL algorithm for optimizing the problem. Given

the dimension of the state space, which grows exponentially with the number of

service components to allocate, this Section investigates DRL solutions to propose

a Deep Q-Network (DQN) based learning algorithm FogReinForce. Finally, this

Section discusses the adoption of FogReinForce within a management framework

for enabling the continuous optimization of Fog Computing resource management.

6.4.1 Deep Q-Network Algorithms

Classical RL Q-learning algorithms requires to explore over the state space to learn

the optimal Q-value Q(s, a) for each possible state s and action a by storing all

transitions in Q table. However, when the state space’s size is large, learning a

Q-value in a tabular encoding function is not tractable for both memory and time

limits.

To overcome this limitation, several DRL algorithms have been proposed in

literature. A widely used Q-learning algorithms is DQN, in which the prefix Deep is

to introduce the adoption of neural-networks for leaning a parameterized estimation
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the Q-value function Q(s, a, w). In more words, the DQN algorithm substitutes the

Q-table with a Deep Neural Network for mapping states into action values.

For classical Q-learning algorithm, the learning process updates the Q-value

function in a iterative way using the Bellman equation as follows [69]:

Q(s, a) = Q(s, a) + lr[R(s, a) + γmax(Q′(s′, a′)−Q(s, a)]. (6.1)

where lr is the learning rate, R(s, a) the immediate reward for performing action

a under state s, γ the discount rate for taking into account the expected future

reward given by state s′ and all consequent possible actions.

Instead, for DQN the goal is to minimize a loss function defined as the squared

difference from the target and predicted value:

Loss = (R(s, a) + γmax
a′

Q(s′, a′;w′)−Q(s, a;w))2. (6.2)

where w and w′ represent weight parameters (for the neural networks), Q(s′, a′;w′)
indicates the target value for the state s′, and Q(s, a;w) is the current predicted

value. During the iterations of the training process the Loss function is minimized

using the gradient descent method with respect to the parameters w.

Given the definition of the Loss function, a DQN algorithm update the weights

according to the formula:

wt+1 = wt+

lr[R(s, a) + γ[max(Q′(s′, a′;w)−Q(s, a;w)]∇wQ(s, a;w)
. (6.3)

To learn the parameterized estimation of the Q-value function, DQN exploits

two different Q-value networks: a local Q-network and a target Q-network. During

the training process, the target network is updated after a configurable amount of

iterations with the weights from the local Q-network to stabilize the learning process.

Finally, most recent DQN versions rely on a replay memory to store some state

transitions for training. The algorithm randomly samples a mini-batch transitions

from the replay memory to update the neural network, thus reducing the correlation

and enabling experience replay.

6.4.2 FogReinForce Learning Algorithm

To solve the VoI allocation MDP problem, we propose the FogReinForce learning

algorithm, which exploits DQN for implementing the learning process. FogReinForce

aims at finding the VoI optimal allocation for service components by learning the

optimal policy a = π(s) that selects the best actions to take under a particular state
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s ∈ S to obtain a performing service components allocation in a finite number of

steps N .

Algorithm 2: FogReinForce pseudo-algorithm

Data: ε, γ,update step
Result: π a policy for mapping states into actions
Q0(s, a) = 0 initialize action-value function to 0;
initialize target action-value Q-network for Q estimation;
initialize replay memory RM ;
initialize a random allocation sr to be used as initialization state;
for i in 1,max episodes do

initialize state s1 = sr;
initialize er = 0 episode reward ;
for t in 1, N do

if rand() ≥ ε then
select action at = argmax{Q(st, a)};

else
select a random action at;

take action at and generate the next state st+1;
evaluate st+1 using (5.8) and calculate the reward rt;
set st as the next state st+1;
store transition in replay memory RM ;
update er;
if t is an update step and there enough transitions in memory then

sample a random subset of transitions from RM and learn;
else

calculate discounted reward using γ;

decrease ε and make it decay;

Alg. 2 gives a simplified illustration of the FogReinForce algorithm, which mainly

recalls a classical DQN algorithm with experience replay. Alg. 2 takes as input the

values for ε, γ, and the update step used during the training. The replay memory

RM is used to store the transitions and for sampling a mini-batch during the training

with experience replay [84].

As depicted in Alg. 2, FogReinForce defines the allocation problem as an episodic

task with a maximum number of episodes max episode. More specifically, FogRe-

inForce defines an episode as a finite number of steps N , after which the episode is

considered finished. The number of steps is set to n = 2× k, where k = |SC| is the

number of service components to allocate.

At the beginning of a new episode, the initial state s1 is reset to the random

state sr generated in the initialization phase of the algorithm. This is a common

practice when defining a DRL training process, however, different policies can be

chosen. During each step, the agent interacts with the environment by selecting at
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Figure 6.2: An overview of the management framework for enabling the continuous
optimization of Fog Computing environments.

step t a fog device for the service component sct. The new state is evaluated using

(5.8) to calculate the total VoI that new state st+1 generates. During these steps,

the goal of the agent is to maximize the cumulative reward over the episode given a

finite amount of actions.

6.4.3 Continuous Optimization for Fog Computing

To illustrate readers an architecture for realizing continuous optimization of Fog

Computing resource management this Section presents a proof-of-concept framework

that incorporates FogReinForce into a learning component that continuously checks

for improvements. To this end, Fig. 6.2 depicts the envisioned architecture for

allowing continuous optimization of Fog services running in a Fog Computing site.

More specifically, the Fog management framework includes three main components:

a learning component, a Fog controller, and a Fog monitor.

Firstly, the Fog monitor is responsible for collecting information regarding a Fog

Computing site including users’ interests, available fog devices, running services,

and network conditions. In addition, the Fog monitor updates the collected infor-

mation into the Learning Component to create an input configuration for the Phileas
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simulator.

The Learning component is to find the optimal VoI allocation of service compo-

nents on the resources available at the Fog site. To this end, the Phileas simulator

is configured with the data collected by the Fog monitor to be a realistic representa-

tion of the environment at the Fog Computing site. In order to achieve the optimal

allocation of service components on Fog devices, the Learning Component runs Fo-

gReinForce for a finite number of episodes. In this way, FogReinForce interacts with

the Phileas simulator to find the service components configuration that maximizes

the feedback representing the total VoI delivered during the simulation.

When the Learning component finds a suitable allocation, it instructs the Fog

Controller where to allocate the service components running at the Fog Site. Fi-

nally, for enabling online optimization, this loop runs continuously, thus ensuring to

tackle the dynamicity of Fog Computing environments and deal with users’ mobility,

system’s load, and other conditions.

6.5 Evaluation

The following evaluation relies on the same Fog Computing scenario described in

the previous Chapter. This would provide readers a comparison with the results

illustrated in the previous Chapter. The scenario is a fictional representation of a

Smart City use-case, in which smart citizens exploit the functionality of different

Fog services provided by the municipality. More specifically, the testbed contains

the description of 7 devices, 9 data sources, 4 user groups, and 8 service components.

To reenact realistic conditions, the locations of devices, data sources, and user

groups are defined in the Smart City scenario with a latitude and longitude position

in accordance with the GPS position system. This allows setting fixed communi-

cation ranges for users and devices for reenacting wireless communications. Fur-

thermore, this would drive FogReinForce to allocate service components according

to a minimum distance policy, e.g. privileging those allocations that process data

messages close to where they will be consumed.

The aim of these experiments is to verify the capabilities of FogReinForce in

optimizing the total VoI delivered to the end-users of Fog services during a fixed

time-window. More specifically, FogReinForce will learn how to configure service

components on the available fog devices using the total VoI delivered as feedback.
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6.5.1 Reinforcement Learning Configuration

FogReinForce leverages on a Deep Q-Learning Network (DQN) implemented in

Python, which exploits the pytorch library1 for implementing the training of the

Deep Q-network (neural-network) responsible for mapping states in action values.

To this end, the Python programming language it is a valuable tool for experiencing

with machine learning and data analysis. In addition, the pytorch library provides a

user-friedly API for implementing the state-of-the-art machine learning models and

optimization algorithms.

The Q-Network is implemented as a two-layers neural network with 64 nodes for

each hidden layer, a discount ratee γ = 0.95 to determine the present value of future

rewards, a learning rate of lr = 0.0005, and ε value starting from 1 and annealing

to 0.01. Finally, the mini-batch size for experience replay is set to 64.

During the training phase, FogReinForce will interact with the Phileas simulator

written in Ruby in a HTTP fashion. More specifically, given a state s representing

a service components allocation, FogReinForce requests (via HTTP) to Phileas to

calculate the value of (5.8) for the given configuration. Even if performance-wise is

not great, this is a common practice to integrate software components written in

different programming languages. Future versions of this optimization framework

will provide a better integration of the DRL capabilities within the VoI management

framework to reduce the required training time and speed-up the entire learning

process.

With regards to the training phase configuration, the number of episodes is set

to 1000 to give the agent a fair amount of iterations to learn an optimal policy

a = π(s). In addition, each episode is defined as a sequence of 16 steps after which

the episode is considered done. As described in the previous Section, if the action of

allocating a service component to another fog device (different configuration) brings

to a more performing allocation (in terms of total generated VoI) the agent gets a

reward of 1, otherwise it gets 0.

As first state FogReinForce selects a random allocation of service components on

fog devices. Other options such as a greedy to calculate a feasible starting state are

possible. However, opting for a random state is a good assumption to verify if given

a fair amount of training iterations, the agent would learning a sequence of actions

leading to a good rewarding state. In fact, the agent should be capable of learning

from whatever starting point given a finite number of steps and episodes [69].

1https://pytorch.org
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Figure 6.3: The training of the DRL agent over the VoI model for 1000 episodes.
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Figure 6.4: The best values for the VoI model during the training phase.
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Figure 6.5: The number of processed raw-data messages during the training phase.

6.5.2 Results

FogReinForce is configured with the parameters discussed in Section 6.5.1 to learn

the optimal policy a = π(s) that would maximize the total VoI (5.8) delivered

within a specific time window. To this purpose, Phileas simulator reenacts the fic-

tional Smart City scenario for a limited time window of six minutes. This is to

reduce the training time and to allow the evaluation of different service component

configurations. As illustrated in Alg. 2, at the beginning of each episode, FogRe-

inForce initializes the initial state using a randomly generated state. Then, at each

step, it learns the actions that maximize the cumulative reward of the episode.

During the training phase, for each episode, the score, i.e. the sum of rewards,

and the state soptimal which leads to the best value of (5.8) have been collected.

Fig. 6.3 reports the training phase of FogReinForce to optimize the VoI model

defined in (5.8). More specifically, Fig. 6.3 depicts the time-series of the average

scores that FogReinForce achieved during the 1000 episodes of the learning process.

The reported trend is increasing, thus indicating that the algorithm is capable of

learning a good rewarding policy. However, as common for RL and DRL, the score

value has ups and downs during the training in contrast to other machine learning

techniques. Given a finite number of 16 steps, FogReinForce can improve the current
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Figure 6.6: The comparison of the two versions of FogReinForce during the training
of the VoI model for 1000 episodes.

state up to 12 times for an episode. Moreover, it achieves a cumulative reward value

of 8 after only 500 episodes. This is an encouraging result, which demonstrates the

viability of DRL methodologies for our particular VoI management framework.

On the other hand, Fig. 6.4 illustrates the best VoI values for (5.8) achieved

during the training of FogReinForce. It is worth to note, how the best value is

achieved around the 600-th episode, thus indicating that FogReinForce is capable of

improving the value of (5.8) in a relatively limited number of iterations. This also

shows that FogReinForce can find a good rewarding policy to improve the allocation

described by the random starting state sr.

Another proof that FogReinForce is capable of improving the management of

the processing resource at the edge comes from Fig. 6.5. More specifically, Fig. 6.5

depicts the number of raw-data messages that the fog devices can process during the

time-window defined by the simulation time. It is worth noting how this number

increases during the episodes and that this increasing trend is also related with

more optimal VoI allocations. Finally, this demonstrated that VoI methodologies

and tools are beneficial for addressing resource management.

As another experiment, it is worth considering a slightly different version of

FogReinForce, which updates the starting state s1 every 100 episodes using the state

65



CHAPTER 6. REINFORCEMENT LEARNING FOR VOI-BASED
OPTIMIZATION

0 200 400 600 800 1000
Episode #

370000

380000

390000

400000

410000

420000

430000
To

ta
l V

oI

Fixed starting state
Optimal starting state

Figure 6.7: The best values for the VoI model during the training phase of the two
versions of FogReinForce.

soptimal that generated the highest value of (5.8), inspired by the work in [81]. This

is to prove the online optimization capabilities of FogReinForce, which can exploit

the experience achieved so far to improve a new service components configuration.

To this end, Fig. 6.6 shows that the traditional version (blue curve) achieves

higher scores during training. However, this is trivial because the number of im-

provements during the training process is a function of the starting state s1, i.e,

by increasing the quality of the starting state the number of possible improvements

would decrease. Therefore, this indicates that the number of steps required to im-

prove the current allocation decreases when the starting state is a good service

components configuration in terms of (5.8).

On the other hand, Fig. 6.7 highlights the best values for (5.8) achieved dur-

ing the training of the two versions of FogReinForce. It is worth noting how the

modified version converges to the maximum VoI value faster when compared to the

traditional version. This is another encouraging result that would allow improving

the optimization capabilities of FogReinForce in future works.

Finally, Table 6.1 provides a summary of the best results and compares the two

different versions of FogReinForce. Both versions achieve a quasi-equal maximum

for (5.8). It is worth noting that the slight difference is due to some randomness
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Table 6.1: Summary of Results.

Fixed starting state Optimal starting state

Max VoI 430207.47 430680.14
Max Improving steps 12 10

implemented in the simulator despite the efforts to initialize all random variables

with a fixed seed. On the other hand, the amount of improving steps during the

training is equal to 12 for the fixed starting state version and 10 for the other one.
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Chapter 7

An Holistic view for Fog

Computing Management

Global management of both applications and networks resources can help to provide

enhanced QoS and QoE. In this area of research, Software-Defined-Networking has

been widely explored during the last decade as promising technology for network

management [85, 86]. SDN provides a logical separation of control and data plane to

decouple the forwarding of the network packets from their routing. Therefore, SDN

is a key enabling technology for the management of complex networks. Given its

interesting applications, researchers have also investigated its adoption for managing

Fog Computing networks. However, there is still wide room for investigation, espe-

cially when it comes to integrate both the applications and networks requirements

into the management of Fog Computing.

With the goal of filling this gap, this Chapter describes the experiences in de-

veloping the Holistic Processing and Network (HORNET) solution for allowing an

optimal management of both devices and networks in Fog Computing. HORNET is

a proof-of-concept middleware that provides an overall set of functionality to deal

with the requirements of Fog Computing environments [87]. HORNET adopts the

AIV model for managing information processing/dissemination in a dynamic and

integrated way. In addition, to deal with the high heterogeneity of Fog Comput-

ing environments, HORNET supports a Multi Layer Routing (MLR) approach to

exploit multiple routing options at different abstraction levels at the same time.

To better illustrate the HORNET solution, this Chapter first introduces the

concepts of SDN and NFV and their applications to resource management. Then, it

discusses the motivations and the role of a novel solution capable of considering both

application and network requirements for Fog Computing management. Finally, this

Chapter provides extensive experimental evaluation both on a real testbed and in a

simulated environment.
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7.1 SDN and NFV for Management

Among the efforts into Fog Computing related research, SDN technologies is a com-

pelling topic. In fact, the adoption of SDN among with network virtualization tools

would allow to manage a coordinated orchestration of service functions to provide

augmented QoS and QoE. In this field of research, SDN can leave rage the VoI con-

cept as prioritization criterion for traffic management. This Section discusses the

related work for this field before presenting the HORNET solution.

While the SDN approach has been traditionally adopted (and by now it is con-

sidered the standard solution) in datacenters and huge enterprise networks [88],

some first research efforts demonstrate its validity also in Fog environments [26, 89,

90, 91, 92]. To this purpose, the section revises state-of-the-art contributions along

three primary directions: i) the current literature proposing to adopt the SDN ap-

proach in Fog environments, ii) the recent trend towards softwarization of network

services taking advantage of the SDN, and iii) dynamic service composition and task

offloading to better manage Fog nodes and related computational/resources, even-

tually also adopting Quality-of-Information (QoI) and Value-of-Information (VoI)

concepts.

As presented in a recent survey [93], most of SDN-based Fog routing solutions

propose the adoption of SDN technologies in Fog Computing to provide efficient

routing mechanisms capable of addressing low latency, low bandwidth, and security

requirements of Fog Computing environments. In addition, the paper presents an

SDN solution based on a hierarchy of Fog controllers distributed between the Cloud

and the edge; the primary idea is that frequent events are locally managed on Fog

controllers and rare events are globally managed by the Cloud controller. Other

papers focus on security aspects related to the adoption of SDN in Fog Comput-

ing. For instance, [94] analyzes security vulnerabilities of the OpenFlow channels

and proposes an attack model and related countermeasure based on Bloom filters.

Moreover, [92] proposes a novel approach based on the combination of SDN and

Blockchain to securely manage computational resources (Fog nodes) at the edge,

with the primary goal of exploiting the Blockchain to connect together multiple

SDN controllers deployed in a distributed manner in the Fog layer. Finally, [95]

outlines how another relevant application of SDN in Fog Computing can be the

identification of threats and anomalies. In particular, the paper exploits the SDN

control plane to dynamically deploy software agents monitoring the traffic to identify

anomalies and eventual attacks.

The wide adoption of SDN together with Network Function Virtualization (NFV)

has more recently pushed the attention on the softwarization of network services

traditionally implemented in hardware [96, 97]. In this scope, Service Function
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Chaining (SFC) aims at providing an efficient composition and/or orchestration of

different and related network applications/functions to achieve a chain of services

(building block services) suitable for devices and users in Fog Computing environ-

ments. In [98], Yu et al. propose the adoption of SDN as the enabling methodology

for QoS traffic steering in SFC. More specifically, the authors give a mathemati-

cal definition and formulate a polynomial time approximation algorithm. Instead,

Zhang et al. discuss rule management in SDN-based IoT and propose to aggregate

and minimize the number of forwarding rules by multiplexing different traffic flows

flowing in the same path aggregating them with a VLAN ID label [99]. In [100],

the authors describe a network function virtualization-aware orchestration for SFC

placement in the Cloud. In particular, the authors propose an heuristic for compo-

nent orchestration in small- and large-scale DC network (BACON) that minimizes

the intra- and end-to-end latency of the SFC. A similar approach is given in [101],

where authors formulate an optimization problem for the deployment of service func-

tion chain in 5G mobile networks. Furthermore, [102] presents an interesting survey

focusing on Fog Computing applications, pointing out some of the current challenges

that orchestration techniques usually find in Fog Computing scenarios: churn and

unreliability of nodes at the edge, heterogeneity of resources, security and privacy

related issues, and location issues.

Finally, some works focus on dynamic service deployment [103] and data manage-

ment optimization in [104] in IoT environments. For instance, [105] proposes Data-

intensive Service Edge deployment scheme based on Genetic Algorithm (DSEGA) to

identify a perfect fit for component services and data deployment on edge nodes in

relation to storage constraints and load balancing conditions. Instead, [106] presents

a work offload solution considering the geographic location of mobile edge servers

and IoT devices to better serve service subscribers, also to decide if and when a

task should be run locally or on a remote edge node. Moreover, [107] introduces

an innovative approach to predict the QoS in IoT environments based on Neural

Collaborative Filtering (NCF) and fuzzy clustering. The main idea is to cluster

contextual information and exploit a new combined similarity computation method

to identify latent features in historical QoS data.

In conclusion, the SDN adoption on the edge side of Fog environments requires

more efforts since there is the need to adopt a wider and holistic point of view. The

objective is to support Fog service reconfiguration not only considering networking

features and resources (such as most of the current literature propose) but also

service composition based on the aggregation of processed data (as described in this

chapter).
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7.2 Joint Management of Transport and Applica-

tion Layers

Fog Computing applications would significantly benefit from innovative solutions

specifically designed to consider the time-sensitive, location-aware, and information-

centric nature of IT services and the scarcity of resources. In this context, approaches

that jointly address the issues of information prioritization for processing and dis-

semination and of traffic engineering seem particularly well suited to address the

intrinsic dynamicity of Fog Computing scenarios.

To explore the need of joint management of both information processing and dis-

semination, this Chapter proposes the HOlistic pRocessing and NETworking (HOR-

NET) solution [87]. HORNET adopts an innovative holistic SDN-based approach

that simultaneously and jointly considers both transport (for packet re-routing and

engineering) and application (for dynamic deployment and de/activation of services)

layers. This represents a significant difference from traditional SDN approaches fo-

cusing only on the networking perspective and allows HORNET to perform an opti-

mal management of both computational resources and network flows configuration.

Within this general approach, HORNET adopts the AIV service model which was

specifically designed to address the requirements and challenges of Fog computing

applications. First, the HORNET service model follows an “acceptable lossiness”

perspective to Fog service development, at both the processing and communication

levels. The assumption is that Fog environments are resource scarce and might not

be able to fully support application requirements. For this reason, services should

focus their effort on the processing of a subset of data that allows them to maintain

acceptable Quality of Experience (QoE) levels, eventually dropping packets related

to data deemed as less crucial.

According to the AIV model, service components can be quickly chained to cre-

ate applications, and just as quickly rearranged in case of need. It is worth noting

how this paradigm has similarities with the research on SDN and Network Function

Virtualization (NFV), and extends the service chaining concept as a composition

of different Virtual Network Functions (VNFs) to a higher-level application-driven

perspective, by considering information-centric service components instead of VNFs.

In addition, HORNET addresses the dynamicity of the application scenario by im-

plementing at the single service component level a processing logic which is adaptive

and capable of reducing requirements to match the level of resources currently avail-

able in the deployment location, i.e., the edge device on which the component is

running.

To dynamically control and optimize information dissemination between service

components, HORNET also introduces an important innovation. More specifically,
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HORNET leverages Multi Layer Routing (MLR), which provides three different for-

warding dissemination tools to tackle the needs of different types of applications.

MLR dynamically uses multiple routing solutions at different abstraction layers,

ranging from native IP ones to more expressive but resource-consuming packet dis-

patching techniques, also considering the actual content within packet payload. The

adoption of MLR allows HORNET to tailor the specific dissemination solution for

processed information according to service requirements and the current execution

context, by dynamically choosing the most suitable among a wide array of different

options.

Finally, HORNET adopts VoI as a unifying criterion for the optimization of

resource allocation and management. Compared to other criteria, VoI naturally

enables a much more effective usage of the scarce and heterogeneous computational

and bandwidth resources in information processing and dissemination [21, 108].

The adoption of these innovative models provides to HORNET several advan-

tages compared with traditional solutions. It allows to achieve the desired Quality of

Experience (QoE) levels by focusing on the processing and dissemination of the most

valuable pieces of information from the end users’ point of view, possibly delaying

or even dropping less valuable ones.

However, since it is a radical change of paradigm to take advantage of the HOR-

NET platform each service would have to be developed in accordance with HORNET

concepts and API, thus allowing a VoI-based management of both network flows and

service components. To address this issue, HORNET explicitly considers backwards

compatibility by design. In fact, HORNET can be adopted either in full as a com-

prehensive architecture or embedded into an existing system. In the latter case,

HORNET would manage the behaviour of existing services and solutions by means

of more traditional methodologies such as native IP.

7.3 A Reference Scenario

To better illustrate how HORNET addresses the issues of Fog computing applica-

tions, this Section illustrates a Smart City scenario hosting several services: pollution

monitoring, traffic monitoring, and plate recognition. Pollution monitoring analyzes

environmental data collected from, e.g., CO2, NOx, humidity, and temperature sen-

sors to produce a report on pollution levels, then disseminated to citizens in the

area. Traffic monitoring analyzes data from traffic cameras and vehicle counting

sensors to evaluate the level of traffic congestion in the city; then, it disseminates

situation reports to citizens (either pedestrians or drivers) and police officers in the

surrounding area. Finally, the plate recognition service monitors the traffic plates,

e.g., to make sure that only cars with a specific permit are driving through restricted
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areas. Cars not complying with this restriction are automatically reported to the

police.

All these services have a long-time/continuous running nature and will thus

leverage software components running on Fog nodes deployed and administrated

by the municipality. The fair allocation of resources to this set of various and ever-

running services represents a challenge. In fact, static allocation of resources, simply

based on weights assigned to service types, would be inadequate in this scenario. In

fact, in steady state, all the above mentioned services will likely have access to all the

resources they require. But this allocation would not make the system responsive

to quick changes of the environment context.

For instance, consider the case of a stolen car report, leading to the insertion

of a car plate code to look for in the plate recognition service with high priority.

In this case, the plate recognition service becomes significantly more important and

the VoI of its associated traffic flows increases considerably. Our SDN-based HOR-

NET solution dynamically manages the transport layer of the Fog environment by

configuring how traffic flows with higher VoI are dispatched, i.e., by tuning routing

tables to reroute such flows towards less loaded links, thus prioritizing relevant flows

promoting them from regular data streams (whose messages may be delayed or even-

tually dropped by adopting an ”acceptable lossiness” approach) to high-priority data

streams (that have full access to networking resources of municipality Fog nodes),

or both.

Furthermore, consider the case of a missing child report, requiring to analyze

a huge amount of data (dramatically greater than in the plate recognition service)

collected from cameras by applying computationally expensive face recognition al-

gorithms. The effective and efficient provisioning of such a service would require

not only the prioritization of associated traffic flows (like in the previous example),

but also (and most relevant) the on demand deployment and instantiation of service

components close to raw data sources, i.e., cameras. To this purpose, our SDN-based

HORNET solution adopts a two-layer approach: at the application layer it selects

if, where, and when there is the need of instantiating novel service components,

while at the transport layer it prioritizes messages carrying the new service (either

its configuration or the service component itself) to quickly activate it. It is worth

noting how by applying face recognition algorithms in newly deployed fog devices

close to the cameras it is possible to achieve the notable twofold benefit of increasing

the scalability of the service (thus reducing its latency) and of decreasing the traffic

on the network (since video streams can be locally processed instead of dispatched

to a central server running on a Cloud platform).

To this end, traditional management solutions, or even recent SDN ones lever-

aging the concept of network slicing, are not enough to address all the issues raised
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by the above challenging scenarios. Therefore, to tackle the impelling requirements

of such scenarios there is the need to develop solutions capable of reallocating net-

working and computational resources to service components in a rapid, fair, and

fine-grained manner, while addressing the issue of modulating the information dis-

semination substrate to match the current state and application requirements.

7.4 The Holistic pRocessing and NETworking

(HORNET) Approach

The HOlistic pRocessing and NETworking (HORNET) SDN-based solution aims to

address the issues discussed in the previous reference scenario. HORNET integrates

and extends some work on the Real Ad-hoc Multi-hop Peer-to-peer (RAMP) [109]

and the Sieve, Process, and Forward (SPF) middleware [33], by dynamically manag-

ing the deployment and composition of Fog services according to VoI optimization

criteria and by dynamically re-configuring end-to-end communications to maximize

QoS [110, 111].

As illustrated in Fig. 7.1, HORNET executes its middleware services on top of

edge devices (nodes N1-N5 in the figure) capable of hosting information processing

tasks and of operating as routers for traversing flows, coordinated by a centralized

Fog SDN Controller. At each node, HORNET instantiates and manages information

processing and dissemination tasks in an integrated and context-aware way by lever-

aging a two-layer approach, with a top service layer and a bottom communications

layer.

At the service layer, the Fog SDN Controller dynamically re / deploys and de /

activates service components on fog/edge devices. Service components can be any

software module, ranging from shell scripts and OSGi bundles to containers and

even virtual machines, of course with different supported capabilities and different

performance in terms of deployment latency. To this purpose, the Fog SDN Con-

troller analyzes service requirements and the generated VoI to modulate resource

allocation, by possibly deploying missing HORNET components when and where

needed. At the communication layer, the Fog SDN Controller dynamically man-

ages Fog nodes to improve the QoS of packet dispatching not only by computing

best paths towards the destination and by tuning forwarding rules on intermediate

nodes, but also by adopting an SDN-based MLR approach to select the most proper

routing mechanism among different abstraction layers.
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Figure 7.1: The HORNET Concept

7.4.1 SDN-based Multi Layer Routing

This would support the efficient deployment and integration of information-centric

services with highly varying fan-in and fan-out there is the need of a communica-

tion layer capable of implementing a flexible and context-aware network fabric. To

this end, HORNET takes advantage of the MLR-based data plane (in conjunction

with the RAMP middleware) supporting three primary routing mechanisms at in-

creasing expressiveness power: pure IP forwarding, (VoI-oblivious) overlay-based

dissemination, and VoI-aware overlay-based dissemination.

Pure IP forwarding works by dynamically modifying per-device routing tables

with traditional iptables command to reroute vanilla UDP and TCP traffic flows

based on IP address destination. This mechanism manages legacy applications in a

completely transparent way for edge devices, thus simplifying QoS management.

Overlay-based dissemination supports collaborative packet dispatching among

edge devices by adopting routing schemes based on flow ids. In this case, the Fog

SDN Controller provides a flow id to applications to label generated traffic with. In

addition, the Fog SDN Controller manages Fog nodes by specifying, e.g., that the

traffic labeled with a given flow id has higher priority and thus other lower-priority

traffic flows should be temporarily delayed.

VoI-aware overlay-based forwarding extends the previous mechanism allowing to

tune packet forwarding not only based on the flow id, but also on the VoI carried
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by each packet. To this purpose, the Fog SDN Controller manages edge nodes by

offering routing rules based on VoI values. In this manner it is possible to support

VoI-dependent information dissemination, e.g., by specifying that for a given traffic

flow packets carrying data with VoI values below a threshold should be discarded,

or differentiating destination nodes based on VoI ranges at the sender as well as

on intermediary nodes. In other words, this mechanism dynamically modifies the

pipeline of fog services by also permitting the definition of different pipelines for

the same data, based on time-varying VoI values. Furthermore, the VoI-aware for-

warding also enables a prioritized delivery of service components to Fog nodes, thus

allowing a fast instantiation of high VoI service components even in case of a network

congestion.

The Fog SDN Controller selectively adopts one or more of the above MLR mech-

anisms, with per-application granularity, depending on the current state of the net-

work and on the specific application needs. To this end, the Fog SDN Controller

would likely adopt Pure IP forwarding or Overlay-based forwarding for legacy appli-

cations, while applications built on the top of VoI would adopt VoI-aware overlay-

based forwarding. For instance, the Fog SDN Controller can decide that a legacy

application with strict low latency requirements (such as video streaming for face

recognition [112] or image captioning [113]) should exploit pure IP forwarding, with

no overhead due to overlay networking. On the contrary, more articulated applica-

tions could be effectively provided only if supported by additional dynamically de-

ployed components, eventually coupled with value-dependent packet dissemination

techniques, e.g., by disseminating plate recognition information in a differentiated

manner to prioritize newly stolen vehicles.

It is worth noting that while the data plane is based on and enabled by the

MLR approach (thus IP native, overlay networking, and VoI-aware dispatching),

the control plane is based on the overlay network only. In this manner, information

and commands sent to Fog nodes and the Fog SDN Controller can take advantage of

the routing flexibility of overlay networking. For instance, in this way it is possible to

identify destinations based on a network-independent unique node id rather than an

IP address that could change or could be duplicated in different subnets of the same

multi-hop Fog environment. In other words, the Fog SDN Controller can dispatch

packets related to the control plane independently of how (and whether) routing

tables on intermediary Fog nodes have been configured.

The reference scenario presented in Section 7.3 can greatly benefit from the MLR

approach adopted by HORNET. For instance, the Fog SDN Controller can exploit

MLR to configure the network to reroute low-priority pollution traffic towards lim-

ited bandwidth longer paths supported by the overlay network. On the contrary,

it can setup IP routing tables on intermediary Fog nodes to forward high-priority
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video streams for face recognition towards IP-based short paths.

7.4.2 Value-based Information Processing

The HORNET solution adopts the MLR approach and extends it with the Adaptive,

Information-centric, and Value-based (AIV) service and information maturity model

[36]. On the one hand, AIV proposes an information maturity model that classifies

messages in two different categories: raw-data if a message is generated by a sensor

and Information Object (IO) if the message is the processing result of a service

component. On the other hand, AIV proposes an innovative Fog service model

that leverages VoI-based concepts to enable the development of services capable of

automatically scaling their resource requirements to their current execution context

while preserving high QoE levels.

More specifically, AIV assumes that the processing function of a Fog service

emerges as the result of the coordinated orchestration of adaptive and composition-

friendly service components, in which each component is responsible to deal with a

part of the information processing. This loose definition of Fog services allows to

easily support dynamic architectures where single instances of service components

can be migrated to different devices along the Cloud-IoT continuum according to

the current execution context (service requirements, resource availability, user pref-

erences, etc.). Above this concept, Fog services are defined as a topology of service

components connected together with respect to a service description that defines the

semantics, the characteristics, and the interactions between service components. For

example, the face recognition service mentioned in the reference scenario implements

the processing of video feeds collected from nearby cameras (raw-data) through sev-

eral phases: video transcoding, face detection, and face recognition processing. In

this case, a first service component takes care of video transcoding operations by

transforming the cameras frame raw-data into IOs that will feed the face detection

service component, which in turn passes its output IOs to the face recognition service

component to produce valuable IOs for end users interested in consuming them.

It is needless to say that the development of VoI-aware Fog services requires

explicit support at the middleware level. In fact, there is the need of VoI evalu-

ation mechanisms of raw data and IOs that are of generic applicability and can

be configured to match the needs of the specific service components where the VoI

evaluation is used. To this end, the target middleware is SPF, which aims to be the

reference implementation of the AIV service model. SPF is available as open source

at: https://github.com/DSG-UniFE/spf [33].

SPF evaluates the VoI of messages and keeps track of it along their lifecycle.

More specifically, the initial VoI associated to an IO m is calculated as a function of
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the messages processed for the IO generation and of the priority of the originating

service component:

V oI0(m) = SSV (I(m))× FSP (sc(m)) (7.1)

where I(m) is the set of input messages processed for the generation of IO m and

sc(m) is the service component that generated m. (Note that I(m) will typically con-

sist of raw data messages, but might also include IOs, as it is not rare for IoT services

to perform information processing at different abstraction levels.) SSV (I(m)), as

in “Service Specific Value (calculation)”, is a factor that takes into account service-

specific considerations when assessing the value of the information extracted from

I(m). FSP (sc(m)), as in “Fog Service Priority”, is a factor that considers the prior-

ity of the service that component sc belongs to, thus assigning higher VoI to the IOs

produced by higher priority services. For more details about VoI tracking within

SPF refer to [33], and for VoI tracking within a general framework please refer to to

Chapters 3 and 5.

Finally, it is worth considering that at the single node level, SPF keeps track of

the total VoI of the IOs generated by the service components running in that node.

It then uses this information to assign local (computation, storage, and bandwidth)

resources to service components according to the VoI they generate.

7.4.3 Optimal processing and networking configuration

HORNET builds on top of SPF to run VoI-based information processing services and

leverages its VoI tracking capabilities to tailor the communication layer according to

the application requirements and the current VoI they are producing. More specif-

ically, HORNET aims at finding the service component allocation α and network

configuration γ which optimize the total VoI delivered to end users:

argmax
α,γ

∑
m∈M(tn,tn+1)

V oI(m,MR(m)) (7.2)

where M(tn, tn+1) are the messages received by end users within the (tn, tn+1) time

window.

To optimize service component allocation and traffic engineering, HORNET

needs up-to-date information about the VoI delivered by Fog services. To this end,

SPF continuously monitors service components and, through the local Fog Control

Agent, periodically informs the Fog SDN Controller of the total VoI of generated raw

data and IOs and if they require additional resources. By using the total VoI associ-

ated to raw data and IOs as a resource assignment criterion, the Fog SDN Controller

selects the best path for traffic flows and prioritizes the assignment of resources to
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services that are providing the highest VoI value to their end users. Furthermore,

whenever the Fog SDN Controller assesses that rerouting and prioritization together

do not achieve the required QoS (or the generated VoI is extraordinarily high), it

can also select to re/deploy new service components.

HORNET uses its knowledge base about the services currently running in the

network and the VoI tracking information collected from SPF to optimize service

component allocation and traffic engineering at the entire system level. More specif-

ically, HORNET solves the holistic optimization problem in equation (7.2) by lever-

aging a continuous optimization solution based on an advanced genetic algorithm

variant with adaptive mutation. Genetic algorithms are particularly well suited for

optimization problems with complex search spaces, because of their remarkable flex-

ibility in chromosome representation, and dynamic aspects, which they are capable

of addressing effectively using a varying intensity mutation process (controlled by

feedback on convergence speed) [114] and hypermutation triggering to deal with

abrupt changes in the system state [115]. As a result, genetic algorithms repre-

sent a very good choice for HORNET. However, genetic algorithms are known to

suffer from relatively slow convergence rate in some cases. To address that issue,

it is worth exploring alternative optimization solutions leveraging Quantum-based

Particle Swarm Optimisation and greedy algorithms.

It is worth clarifying that the VoI function in equation 7.2 represents a scalar /

univariate quantity. This allows to formulate the resource assignment problem as a

single-objective optimization one, and actually represents a significant advantage of

the adoption of VoI as an underlying theoretical framework. Alternatively, non VoI-

based multi-objective formulations of the resource allocation optimization problems

would have required the adoption of a significantly more sophisticated optimization

solution, for instance NSGA-II, and most likely less performing from the convergence

rate perspective.

The holistic approach to information processing and traffic engineering manage-

ment adopted by HORNET allows to effectively maximize the overall QoS of the

most important service components, i.e., those producing the highest VoI. For ex-

ample, in case of a stolen vehicle, information about car plates suddenly becomes

much more important – hence valuable – for the police. As a result, since the plate

recognition service starts delivering higher VoI, the HORNET SDN controller ex-

ploits MLR mechanisms at the transport layer by increasing the priority level of

packets carrying information about car plates. Once notified about the new prior-

ity level, intermediary nodes start dispatching such packets with higher priority as

soon as they arrive, but only if the per-packet VoI is high. For instance, a packet

carrying a car plate whose picture is blurred (i.e., not useful for the service) has a

high priority but low VoI, and thus it can be delayed. On the contrary, intermediary
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nodes forward packets related to other services with lower priority only if and when

there are no plate packets in the queue. In other words, the dispatching of packets

with lower priority is delayed whenever a car plate packet arrives; in case the queue

of outgoing lower VoI packets increases too much (and thus packets are delayed for

a long period), eventually they can be dropped in an ”acceptable lossiness” fashion.

This is even more relevant in the case of missing child report. Since it generates

IOs with a very high VoI, the SDN controller exploits the application layer mech-

anisms to trigger the deployment of new service components in charge of applying

face recognition algorithms close to cameras, thus providing more computational

resources to process most relevant raw-data. To this purpose, it exploits MLR to

provide maximum priority to packets carrying software components to be deployed,

temporarily delaying the dispatching of traffic flows related to any service despite

their priority and VoI. In this manner, it is possible to achieve the notable ben-

efit of promptly delivering service components also in case of congested network.

Then, if the child missing alarm is called off, the Fog SDN Controller sets priority to

former levels and stop/decommission service components to release computing and

networking resources.

Finally, it is worth mentioning that the VoI-aware MLR approach allows HOR-

NET to decide how to optimize the communication layer during service provisioning,

with no need to impose service stops for static re-configurations at service launch

time. For instance, the traffic monitoring service typically has a high number of

consumers and can be efficiently carried on top of the overlay based dissemina-

tion mechanism, also taking advantage of device-to-device (D2D) communications

and step-wise efficient multicasting. Furthermore, HORNET can transfer high-VoI

video streams for face recognition over high quality paths without any delay and

without dropping any packet, while assigning limited network resources to low-VoI

video streams for plate recognition that can afford to be slightly delayed or partially

dropped (”acceptable lossiness”).

7.4.4 Architecture and Implementation Insights

Fig. 7.2 outlines the overall architecture of a Fog service node in HORNET. The

depicted components are deployed and activated on each Fog node and allow the

node participation to the HORNET Fog environment. In addition, for each Fog

environment there is one node acting as the Fog SDN Controller by registering

itself to the local RAMP as “Fog SDN Controller” service, thus allowing remote

Fog nodes to dynamically discover and register to it. Based on the information

provided by remote Fog nodes, the Fog SDN Controller generates a weighted graph

representation of the topology.
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Delving into finer details of each Fog node, the overall architecture is divided

into the Control Plane and the Data Plane. The Control Plane (Fig. 7.2, top)

primarily consists of Link Connectivity Manager (LCM) and Control Agent (CA).

LCM manages single-hop links and provides network status information. CA gath-

ers information and exploits the overlay network to send data to the SDN controller

and receive commands from the SDN controller. More specifically, the Communica-

tion sub-component appropriately controls the underlying MLR component to dy-

namically configure available routing mechanisms, while the Service sub-component

dynamically deploys and activates software modules to enrich Fog nodes with addi-

tional capabilities required to correctly provide requested services.

The Data Plane (Fig. 7.2, bottom) consists of the RAMP middleware, the MLR

component, and the SPF middleware enhanced for Fog service dynamic composition.

The RAMP middleware supports the creation of the multi-hop overlay network

with best-effort packet dispatching. MLR properly manages packets received by the

RAMP middleware on a per-flow basis, by adopting the listener-based Data Plane

Forwarder (DPF) to intercept incoming overlay network data packets and apply

routing rules related to overlay-based and VoI-aware MLR layers. Furthermore, it

is worth noting that Pure IP is logically part of the MLR component (and it is

configured by the local SDN CA), but packet forwarding is actually performed by

the operating system through kernel routing tables based on the received HORNET

indications.

The MLR layer extracts the content (together with VoI metadata if available) of

incoming packets of interest to any of the services running on the Fog node and for-

wards it to SPF, which in turn dispatches it to the concerned service component(s).

In the (likely) case the processing leads to the generation of higher level IOs, the

latter – along with their VoI metadata – will be forwarded to MLR in charge of

selecting the proper communication mechanism and finally dispatching it.

The current implementation of the Fog SDN Controller adopts the Graph Stream

library to identify best paths to provide Fog service, e.g., by applying Breadth First

or Dijkstra’s algorithms based on different cost functions. In particular, when an

application requires to the Fog SDN Controller the best path to access a service,

it also gets one of the three already developed routing mechanisms: Pure IP, i.e.,

managing the Fog environment to modify operating system routing tables of inter-

mediary nodes; Overlay-based dispatching, i.e., exploiting the RAMP middleware

to forward packets based on a flow id senders have to tag transmitted packets with;

and VoI-aware, identifying the path towards the destination based on the dynami-

cally calculated VoI of packets, e.g., to exploit large bandwidth and small latency

for packets with high VoI (thus ensuring better QoE) and less capable paths for

packets with low VoI.

82



CHAPTER 7. AN HOLISTIC VIEW FOR FOG COMPUTING MANAGEMENT

Figure 7.2: Architecture of the HORNET SDN solution.

7.5 Experimental Evaluation

This Section presents the evaluation of the proposed solution with a Java prototype

as well as in a simulated scenario, with the twofold objective of demonstrating i)

its feasibility and efficiency in a real-world (but small-scale) scenario and ii) its

capability of dynamically deploy and and compose service components in a wider

simulated environment.

In particular, the purpose of the in-the-field experiments (based on the RAMP

middleware, see Section 7.5.1) is to evaluate the performance of MLR-based net-

work reconfiguration by measuring the control plane latency, also considering the

challenging case of service component deployment with bandwidth saturation due

to high traffic load. Then, performance results achieved with the prototype are used

to configure a larger-scale simulated environment (based on the Phileas simulator,

see Chapter 4). In this manner, it is possible to faithfully reenact an actual pro-

totype in a simulated environment to evaluate how the proposed solution is able

to promptly reconfigure service components (and the network in general) by con-

sidering the activation of multiple devices and heterogeneous service instances to

optimize the overall VoI.

7.5.1 In-the-field performance evaluation over real testbed

To demonstrate the feasibility over a real world scenario, HORNET is evaluated

in a testbed consisting of 5 Raspberry Pi 3 Model B+ connected one another in a

kite-like network topology via either Ethernet or IEEE 802.11 and based on a Java
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prototype available at https://github.com/DSG-UniFE/ramp. It is worth specify

that the evaluation of the efficiency of the control plane is based on two primary

guidelines: the time required to setup MLR forwarding rules on Fog nodes and the

capability of dynamically deploying service components.

The first step is to evaluate the overhead due to rule management by measuring

the rule management cost, i.e., the time spent from when a node requires to the

SDN controller the deployment of a new traffic rule to when the new traffic rule

starts to be enforced on Fog nodes. In the case of pure IP, the SDN controller has

to setup a new routing rule and send it to a Fog node, in charge of applying it. In

case of VoI-aware forwarding, the SDN controller prepares the Java class containing

the logic of the rule and sends it to a Fog node, deploying and registering it to the

overlay networking RAMP middleware.

To this end, Fig. 7.3 depicts measured traffic rule deployment costs in a regular

situation, i.e., without network congestion. In the (native) IP case it takes about 483

ms, while in the VoI-aware case only 59 ms. Such a difference is justified by the fact

that in the former case there is the need of modifying routing rules at the operating

system layer, which is a time-consuming operation also due to the required context

switch and the time required to execute the iproute2 command. Instead, in the

latter case, once the VoI-aware routing rule reaches the interested Fog nodes, the

deployment and registration procedures take less time since they are implemented

within HORNET directly at the overlay layer (they do not require reconfiguration

at the operating system layer). In fact, at the reception of a file representing the

rule as a Java class, HORNET stores the file locally, then instantiates it by directly

interacting with the Java class loader (specialized to specify custom source direc-

tories specifically containing VoI-aware routing rules), and finally registers it in a

key-value store with the available VoI-aware rules. Such procedure does not involve

any time-consuming operation and can be efficiently done in much less than 100 ms

as reported in Fig. 7.3.

On the other hand, Fig. 7.4 shows the qualitative trend related to the delivery

throughput of a service component (size of 5 MB) via a congested link (nominal

bandwidth of 3000 KB/s). More specifically, at time 1 s a traffic flow carrying

data packets starts to fully exploit the available bandwidth. Then, at time 7 s the

SDN controller exploits the same link to deliver the service component at maximum

priority. Slightly after the new control traffic flow starts, the previous one is inhibited

by delaying the dispatching of its packets. Finally, at time 9 s the service component

is completely delivered and networking resources provided again to the previous flow.

In other words, the proposed solution is able to deliver control messages even if data

flows saturate the bandwidth.

Finally, the rule enforcement cost metric is evaluated, i.e., the time required to
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Figure 7.3: Rule management cost.

Figure 7.4: Priority management of control and data flows.

enforce rules on intermediary nodes. In this manner, it is possible to better assess the

suitability of the proposed solution for challenging use cases requiring the prompt

dispatching of packets. To this purpose, the following experiment compares the time

required on a Fog node to identify the next node without and with considering the

VoI. In the former case, it requires to retrieve the flow id from the packet header

and look up the overlay network routing table maintaining <flow id, next hop>

mappings. In the latter case, there is the non-negligible additional overhead due to

payload deserialization, required to retrieve the packet content and then compute

the VoI.

Fig. 7.5 depicts how the rule enforcement value varies while increasing the pay-

load size (from 100 B to 10 KB) at high packet rate (250 packets per second). In the

overlay network case it takes about 50 ms, with limited rise at increasing payload

size, mainly due to slightly more complex memory management. In the VoI-aware

case it takes from 50 ms for 100 B payload to more than 250 ms for 10 KB payload.
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Figure 7.5: Rule enforcement cost at varying payload size (250 packets per second).

In this case the payload size relevantly impacts on the achieved performance, due to

the additional time required for deserialization and to inspect the payload content.

Overall, performance results achieved on a real-world testbed composed of Rasp-

berry Pi devices based on a Java prototype demonstrate the feasibility of the pro-

posed solution. In fact, by adopting the proposed SDN-based MLR solution it is

possible to remotely deploy new service components in a prompt manner (also in

case of bandwidth saturation thanks to the priority-based flow dispatching mecha-

nism), while the time required to enforce rules is limited also in the challenging case

it is required to deserialize huge packets.

7.5.2 Simulation of Reference Scenario

To consider larger scale scenario, this Section presents the evaluation of the HOR-

NET framework in a simulated environment with the primary goal of testing the

articulated reference scenario discussed in Section 7.3, composed of several devices

and different services. In particular, simulated experiments allow to present how

the dynamic deployment and activation of services composition, triggered by the

time-varying requirements and resources of the target environment, influence the

service-specific and overall VoI.

The target use-case

For the purpose of the simulation experiment, as for the other results presented

during this Thesis, Phileas is used for the evaluation of the specifically designed

Fog Computing target use-case. As depicted in Fig. 7.6, the reference scenario of

Section 7.3 is implemented in the downtown area of Washington DC, USA. More

specifically, the scenario defines 7 different data sources (4 environmental stations
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Figure 7.6: Positions of sensors and devices on the map as defined in the scenario.

and 3 traffic cameras) in an area between the National Mall, Capitol Hill, and

Union Station. Furthermore, these data sources are configured to generate raw data

messages with random and exponentially distributed initial VoI values. The VoI

of raw data messages will decay exponentially in both space and time as messages

get disseminated. The time between the generation of subsequent messages, i.e.,

the inter-generation time, and the message size are also random and exponentially

distributed.

The raw data collected from IoT sensors serves as an input for the Fog services.

At the beginning of the simulation, three services are running on the devices at the

edge, analyzing data and disseminating the results in real-time: Traffic Monitoring

(TM), Pollution Monitoring (PM), and Plate Recognition (PR). PM collects envi-

ronmental data from local stations and generates reports with information about

the air quality nearby. TM and PR gather video frames from traffic cameras in

the downtown area and processes them, respectively, to assess the current viability

status and to identify cars with plates of interest.

These services are implemented on top of 10 different components hosted in 4

devices deployed and managed by the municipality. Service components process

incoming information according to a lossy and service-specific buffering policy: if

they do not have enough resources they will drop messages when the buffer is full.

In addition, to mimic the behavior of information processing services, the following

experiments rely on the assumption that an IO message m will be generated only
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Table 7.1: Characterization of service processing

Name
Θ(m)

distribution V
(s)
M

Time decay
type, half-life

Space decay
type, half-life

TM DU(1, 10) 3.5 linear, 1000s linear, 1km
PM DU(1, 10) 3.0 linear, 1000s linear, 1km
PR DU(1, 20) 2.0 linear, 2000s linear, 1km
FR DU(1, 10) 8.0 linear, 800s linear, 1km

after a random number Θ(m) of raw data messages, sampled from a probability

distribution with service specific parameters, have been received. In the experiment,

the discrete uniform distribution DU(a, b) is used to model Θ(m).

For the purpose of these experiments, equation (7.1) is approximated as shown

in eq. (7.3). The initial VoI V oI0 of an IO message m is obtained by calculating

the average VoI of raw data messages RDi processed to obtain IO m and applying

a service component specific multiplier V
(s)
M as a weight that takes into account the

overall parameters defined in equation (7.1). For the purpose of these experiments,

the reference scenario considers linear time and space decay, with service specific

half-life parameters. All the parameters considered for service specific modeling are

summarized in Table 7.1.

V oI0(m) = V
(s)
M ∗

Θ(m)∑
i=1

V oI(RDi)

Θ(m)
(7.3)

VoI-aware service management

The objective of the simulations is to demonstrate that HORNET is able to promptly

manage monitored Fog environments by appropriately considering a service compo-

nents and network re-composition solution that optimizes the overall system VoI. To

this purpose, the reference scenario defines 6 user groups interested in the informa-

tion provided by the services, with the characteristics described in Table 7.2. Groups

1-4 represent a mixture of citizens and municipality officers, while groups 5 and 6

represent police enforcement. Each user group modeled in the scenario has different

share interests in receiving information from one of the three services, depending on

the type of user and her/his location. While PM and TM provide valuable informa-

tion for a wider range of users, PR is for municipality/police enforcement use only.

Finally, the number of users at time t is sampled from a Gaussian random variable

with distribution N(µ, σ).

Phileas is configured to reenact the reference scenario for 24 hours. To model

the target use-case, after 4 hours from the beginning of the simulation a missing

child report arrives, leading to the immediate activation of the Face Recognition
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Table 7.2: Characterization of user groups

ID Location
Subscriber share

TM, PM, PR, FR
Size

distribution

1
National Mall, in front
of Art sculpture garden

65%, 30%, 30%, 45% N(150, 20)

2 Madison Dr. and 7th St. 70%, 45%, 0%, 45% N(90, 20)
3 Penn. Av. and D St. 60%, 85%, 0%, 35% N(115, 20)
4 Close to Union Station 60%, 30%, 0%, 25% N(130, 20
5 Penn. Av. and D St. 75%, 30%, 75%, 95% N(130, 20)

6
National Mall, in front
of Art sculpture garden

75%, 30%, 65%, 95% N(130, 20)

Figure 7.7: VoI produced by each service during the simulation.

(FR) service and of an additional device, as well as of another device one hour

later. These changes to the set of service activated and resources available prompted

HORNET to activate 5 additional service components (replicas) for FR between 4

and 7 hours from the beginning of the simulation to maximize the total VoI produced.

In addition, after 6 hours from the beginning of the simulation, a stolen car report

arrives, leading to the increase of the VoI generated by PR (this is simulated by

changing the corresponding value of V
(s)
M to 6.0) and the activation of an additional

fog device from the police. Again, the detection of a change in the VoI produced

by PR, as well as of the availability of more resources, prompted HORNET to

immediately allocate 2 additional service components (replicas) for PR. Then, to

assess how HORNET would respond in case the stolen car and the missing case were

found, the reference scenario wil schedule the deactivation of the 3 extra devices and

reset the value of V
(s)
M for PR between 14 and 17 hours from the beginning of the

simulation.

As expected the VoI changes heavily throughout the simulation. Fig. 7.7 depicts

with high granularity and at per service level the instantaneous VoI delivered by the

IO delivered to users (y axis) versus the corresponding simulation time (x axis). Fig.
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Figure 7.8: Comparison of (smoothed) VoI produced by each service during the
simulation.

Figure 7.9: Total VoI (scaled) generated during the simulation, in correlation with:
a) the number of active services (left), and b) the number of active devices (right).

7.8 presents the same data but in a different form, comparing the curve VoI delivered

by each service, smoothed through the interpolation at the entire simulation time

level. Both figures clearly depict how the activation of new devices and of the

face recognition service impacts the VoI provided to end users of Fog Computing

applications. In fact, note how the activation of FR impacts TM and PM in a

negative way, even after the activation of new devices. At the same time, the

increased VoI of PR after the stolen car report event means that the service receives

enough resources to deliver a good amount of VoI. Finally, after the deactivation of

FR and of the on demand devices, the VoI curves return to the state at the beginning

of the simulation.

Fig. 7.9 provides a different insight on the behaviour of HORNET. It shows the
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normalized and interpolated VoI accordingly to a color scale based on the number of

active services (Fig. 7.9.a, on the left) and devices (Fig. 7.9.b, on the right). More

specifically, the VoI value of each output message are normalized in a [0, 1] range and

in 1-hour time interpolation window. The figure clearly shows that a high total VoI

is correlated with a high number of active services instantiated and/or devices avail-

able for computation, as this allows more valuable information to be disseminated

to interested users. This is also confirmed by the data in Fig. 7.10, which shows the

number of raw data messages during the simulation. The figure illustrates the num-

ber of raw data messages processed every 10 minutes during the simulation, divided

per message type. These results demonstrate how the service composition stemming

from a triggering-event (the need of locating a missing child) affects the VoI, thus

highlighting the framework effectiveness in dynamically (re)allocating resources to

optimize the total VoI generated at the system level.

It is worth noting that the computational overhead introduced by the VoI esti-

mation is negligible. In fact, the VoI approach implemented within HORNET allows

to selectively filter raw-data messages, thus resulting in a considerably lower amount

of information to be processed by service components. Therefore, the computational

overhead introduced by the VoI estimation is dramatically lower than the computa-

tional resource-saving due to the VoI filtering. To quantify these values, it is worth

specify that during the simulation time only 23.6% of the collected video frames and

14.4% of pollution samples were processed.

Overall, results achieved with the Phileas simulator highlight the effectiveness of

the integrated VoI-based prioritization at both the service and communication layer

performed by HORNET. In fact, by considering the time-varying VoI it is possible to

dynamically deploy service components when and where needed, with the positive

consequence of increasing the overall VoI itself. In other words, achieved results

Figure 7.10: Number of raw data messages processed every 10 minutes throughout
the simulation.
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confirm the capability of HORNET to leverage the availability of more devices to

improve the total VoI produced.
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Chapter 8

Fog Computing for HADR

applications

Humanitarian Assistance and Disaster Relief (HADR) is a particular field in which

Fog and Edge Computing can bring their support. Civilian and military personnel

involved in the HADR operations can leverage the existing and partly-fault smart

city infrastructure to collect useful data concerning the operations. Furthermore,

HADR operators can exploit the existing infrastructure for deploying specific HADR

services and enabling the dissemination of context-* and location-* aware informa-

tion.

Within this context, the SPF middleware described in Chapter 4 can be par-

ticularly beneficial for managing services and resources operating in a Smart City

Infrastructure as demonstrate by [116]. However, to fully explore the capabilities of

Smart City assets there is the need to improve the interoperability between military

C2 (Command and Control) and core computing systems to support future HADR

operations in Smart City environments.

The content of this Chapter is based on the works resulting from the collaboration

with the NATO Informations Systems Technology (IST) 147 Research Task Group

(RTG) [117, 118], which was formed for investigating the military applications of

Internet-of-Things (IoT). As a result of these works, SPF has been investigated as

a platform for managing the orchestration of HADR services at the edge of the net-

work. Furthermore, to fulfill the needs of HADR operators, this Chapter presents an

extended architecture for SPF that would enable enhanced interoperability between

military and civilian infrastructures.
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8.1 Smart Cities for HADR Operations

This Section provides a description of a Smart City scenario from a technology

perspective and discusses the possible requirements that HADR operators would

facing in interacting with the existing infrastructure. In particular, the aims of this

Section are to provide a brief overview of Smart Cities and to introduce HADR

operations in Smart Cities.

As described along this Thesis, Smart Cities are interesting venues for Fog Com-

puting solutions. The concept of Smart Cities tries to leverage modern ICT tech-

nologies to provide valuable services to its citizens. IoT assets deployed in Smart

Cities enable the city administrations to remotely monitor, manage and control city

activities and services, and create new insights and actionable information from mas-

sive streams of real-time data [119][120]. These IoT devices are remotely deployed

on buildings, streets, people’s houses, industrial installations etc. inside a city. They

gather a plethora of information and actuate resources based on demands. Send-

ing all the data to a central server or cloud in raw form puts a severe strain on

resources such as bandwidth usage, processing and analysis resources of the core

components of the city’s ICT, security [121] implications of data transmission and

interoperability concerns of the data transmitted from multiple sources. In order to

circumvent these issues, solutions such as Edge Computing, Fog Computing, Multi-

access Edge Computing (MEC), mobile cloud computing etc. have come into the

picture which offload the computation tasks away from the core of the city’s ICT

systems [122]. This would allow for real-time analysis of the data collected at the

edge, filter the data required to reported to the core ICT and allow quicker responses

for the operational demands.

Now, with the growth of cities, the tangible resources in the city have increased

by many fold. The human population concentrates in the cities now rather than

rural or sub-urban areas. This upsurge of population creates a huge demand on city

administrations to manage people and its resources [123]. Smart Cities with their

ICT and IoT systems try to solve this issue. The natural disasters due to global

warming as well as man-made situations like fatal industrial accidents, terrorist

attacks etc. call for cities to be prepared for large-scale Humanitarian Assistance

and Disaster Recovery (HADR) operations [124]. These HADR operations would

require large involvement of technology assets along with human assets.

In this case, IoT assets can provide real-time Situational Awareness (SA) by

sensing, computation and actuation since they operate closest to the ground. They

are built for the purpose of running on restricted resources such as power which

allows them to operate in adverse conditions. Thus deploying Edge Computing

solutions on these edge (IoT) assets would inherit the advantages of IoT devices and
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further their usage in restricted conditions by reporting filtered out, analyzed and

useful data required for HADR operations.

However, exploiting those assets for HADR operations is not a trivial task. For

instance, there is the need to discover these assets, to interact with them in a

automated manner (interoperable API and data-format) for allowing rescuers to

exploit the existing infrastructure. Furthermore, these HADR operations are likely

to involve the collaboration of both civilian and military personnel, thus requiring

an accurate and a secure information exchange. Within HADR operations, military

can provide useful services and human-power to assess the after-disaster conditions

caused by natural disasters.

To fully exploit the IoT assets there is the need of interoperable solutions ca-

pable of dealing with the software and hardware heterogeneity of IoT those assets.

Furthermore, there is the need for platforms supporting a quick and easy instanta-

tion of software components. Looking into this direction is the NATO Informations

Systems Technology (IST) 147 Research Task Group (RTG), which was formed for

investigating the military applications of Internet-of-Things (IoT). To this end, the

group is looking towards using the SPF platform as middleware for service manage-

ment during HADR operations.

The following Sections discuss how to enable a HADR full support, by proposing

an extended architecture for SPF that aims at the ready deployment by the military

as well as the civilian counterparts services for HADR operations. This extension is

to improve the interoperability and to enlarge the SPF’s range of applications.

8.2 Integrating SPF within a Military C2 Infras-

tructure

Considering the role of stakeholders envisioned for the SPF applications, the military

C2 Infrastructure is one of the possible users of the SPF platform. Especially for

HADR operations, where the NATO IST-147 group is looking towards applying the

IoT technologies, SPF is considered as a possible candidate for Edge Computing

solutions. For HADR operations in Smart City environments, the SPF solution can

be used to gain hybrid SA i.e. from the IoT assets deployed by Smart Cities as well

as by the military at the edge [125, 126].

In the envisioned scenario, the various sensing and reporting platforms from the

ICT systems of the Smart City and the military gather SA data about various events

and incidents in a disaster or emergency situation. These ICT systems may gather

data from various sensors, cameras, human-source intelligence, Non-Government

Organizations (NGOs) and first-emergency responders to help citizens across the
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city. They might get and report specific inputs which might of interest for further

analysis and operations to help citizens or secure resources in the emergency.

Based on the data or reports gathered form the ICT systems, further analysis

might be performed to find out what action needs to be performed correspondingly.

These might be according to the operational needs as set for the disaster recovery

situation where a specific set of actions need to performed to assist citizens in that

situation. For example, an incident might be reported by a team located on ground

of a severe fire in a building and based on the severity of fire, the city’s ICT systems

might want to direct the nearest located fire trucks to the rescue area to save time

and increase efficiency of the rescue operation.

After getting the analyzed data from the ICT systems, the administrators (Smart

City) or commanders (Military) might want to initiate an action to work on the

received inputs or intelligence. These can be autonomously done through the C2

applications to initiate an action. For example, whenever the C2 application knows

about a fire in a building, based on the camera resources available at the edge,

it would trigger the cameras at the vicinity of the incident to send in the video

streams to monitor the situation. Also, manually a resource can be chosen to take

some action. For example, the map being displayed by the C2 UI can be used to

pin-point camera resources on the ground and activate them to report the video

streams. These C2 applications can be running on the central command’s ICT

systems or on a Mobile Tactical Operations Center (MTOC) based on Federated

Missions Networking (FMN) architecture.

The demonstration at the International Conference on Military Communications

and Information Systems (ICMCIS 2018), Warsaw, Poland, 22-23 May, 2018 by

the IST-147 group, showed the possible implementations and use-cases for military

applications of IoT and military C2 systems [125]. These demonstrations proved that

SPF is particularly well suited as on edge computing platform showing use-cases for

running face recognition and object detection algorithms [127] for video captured

at the edge and streamed back to the C2 end. However, in order to highlight its

potential within military environments, the Warsaw demo identified the need to

extend the SPF architecture to support better integration for military systems and

processes.

From the management perspective, there is the need to develop low interfaces

with external C2 applications such as Android Tactical Assault Kit (ATAK) [125].

Figure 8.1: MQTT Topic Format and Sample JSON Message
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The current implementation of SPF components i.e. Controller, and PIGs is based

on proprietary interfaces that could be improved to increase the possible use-case

scenarios. These components right now are not abstract in nature and are designed

(code-wise) to carry out specific tasks. As a result, whenever a new interaction or

operation involving any of these components is required then an entire new func-

tionality has to be added to the existing workflow. Also, future additions and

configuration of specific modules would require a lot of rework and thus a lot of

redesign of the existing implementation that would satisfy that particular use-cases

and might not be applicable for future use-cases.

At the other end, the components in charge of executing SPF services (pipelines

and services) right now communicate using a proprietary protocol based on unicast

UDP, and disseminate information using the ACM DSPro middleware. In order

to better highlight the SPF potentials for military applications, these interfaces

should be compatible with IoT-specific along with other legacy protocols. With this

regard, the NATO IST-147 RTG identified the Message Query Telemetry Transport

(MQTT) as a protocol for message and telemetry transfer within the IoT domain

for military operations [126]. Fig. 8.1 shows the MQTT topic format and a sample

JSON message being exchanged between the military systems as demonstrated in

the Warsaw demo for NATO IST 147 RTG. The interfaces between components and

information producers/consumers should adhere to these MQTT message formats

for systems to exchange data between themselves, initiate requests and responses,

and trigger specific strategies and pipelines at run-time.

Finally, from the execution model perspective there is the need to consider ad-

ditional methods for running services within a PIG. The services on PIGs are in-

voked through the processing strategies and pipelines running on them. In fact,

the Warsaw’s demo highlighted the need to consider different services, such as the

transcoding of video formats, using COTS components. At the same time, it is

possible to take this opportunity to allow the execution of components based on

industry standard protocols, such as OSGi.

8.3 Extended Architecture for SPF

To address these issues, this Section presents an extended architecture for SPF. The

extended architecture is designed to make interactions between the components open

and extensible for various use-case scenarios or implementations, to re-utilize certain

components, and to reduce the coupling and dependencies between the components

by adopting common format for data exchange and interaction based on the existing

military C2 platform architecture and ICT systems.

Fig. 8.2 shows the extended architecture for utilizing the SPF platform in the
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Figure 8.2: Extended SPF Architecture

context of a HADR scenario involving military and civilian ICT systems and assets.

The MTOC system houses the IoT Applications for C2 and resource management

of IoT resources. These applications and resources employ the SPF Controller for

application management and coordination. In this architecture, the SPF Controller

issues commands and get responses based on commands received from the C2 appli-

cation. In order to receive commands, the MTOC application would use the Protocol

Adaption Interface (PAI), to communicate with the SPF Controller. PAI is a proto-

col adapter i.e. it can employ any kind of protocol as suited for the use-case, such as

MQTT and HTTP as illustrated in Fig. 8.2. The Warsaw demo demonstrated that

MQTT well suits the needs of military applications and it can be used as data mes-

saging protocol. By adopting MQTT, PAI can thus receive the JSON payloads from

the C2 applications included in the MQTT messages and interpret the request type.

While, at the other end, the SPF Controller makes use of the PAI to communicate

with the MTOC application.

The SPF Controller has two main components: the above described PAI and

the Service Interfaces (SI). According the workflow of this architecture, PAI listens

to receive inputs from the IoT application to execute a job/service over the HTTP

and MQTT protocol. Instead, SI acts as an interaction-counterpart for the SPF

controller and the SPF based applications. In the proposed architecture, the SI

would interact with the PAI by receiving commands and initiating responses. The

SPF controller would use the SI commands to initiate its internal functionality of

triggering the edge resources or the remote PIGs deployed at the edge. The PAI

98



CHAPTER 8. FOG COMPUTING FOR HADR APPLICATIONS

will translate any commands received by non-SPF applications into a SI specific

command.

In detail, this SPF’s operation would involve to observe the implemented PAI

to receive commands from MTOC application, to translate the requests from the

MTOC into specific or use-case based requests, and to apply the application con-

figuration dynamically at run-time instead of maintaining an application specific

configuration file. Instead, the SI would be responsible for locating and triggering

the use-case based PIGs based on the requests.

The remote PIG running at the edge has a list of hardware resources which it

can interact with such as cameras, sensors, actuators etc. The PIG is responsible

for triggering specific services on the deployed resources to execute use-case specific

tasks. For instance, a request from the SPF Controller can ask the PIG to deliver

HD Camera stream from its available camera to monitor a building under fire. The

PIG can instantiate a service that sends back byte streams of camera feed back to

the SPF Controller. In addition, it can also employ security specific mechanisms to

handle military and civilian data streams separately. The triggering of services is

based on Strategy-Pattern where a specific instance of a service on the PIG can be

instantiated based on the request from the C2 application and its interpretation by

the SPF controller.

Based on the service and processing strategies, the Service Component Manager

(SCM) decides which pipelines and/or services have to be executed/invoked on the

PIG. The SCM has a list of available pipelines for the PIG, and thus triggers specific

pipelines and/or services to execute specific tasks and return results. Typically,

in the original architecture of SPF, pipelines and services were dedicated to the

processing of all content of the same type. However, in this extended architecture,

pipelines and services for the Civilian assets and Military assets are differentiated

and initiated as separate, since military assets are deployed by the military and are

presumed to be more reliable and trustworthy than the civilian assets for which the

owner could not be verified in HADR operations.

PIGs can collect data from assets using two different methodologies depending

on the type and the capabilities of those assets. First, PIG can periodically polling

data from assets in case they expose a REST fashion API, such as traffic cameras

located on the street. On the other hand, we also specify that PIGs can collect data

by means of the MQTT Bus illustrated in Fig. 8.2, which listens for data sent by

assets on pre-defined and configurable MQTT topics.

Apart from sending back the results to the SPF controller running at the MTOC

level, the PIG can also send data directly to the C2 application, based on the

specific inputs from the MTOC IoT applications. As illustrated in Fig. 8.2 these

results/packets (Consumer Ready Information Objects in Fig. 8.2) are delivered as
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Figure 8.3: SPF: PIG applications

JSON payloads over MQTT. The PIG also employs a proprietary UDP connector

which can be used for sending out UDP packets instead of using MQTT in specific

use-cases such as delivering video streams. More in detail, remote PIG’s operations

would involve: to receive and parse commands from the SPF Controller, to configure

dynamically the PIG components at run-time instead of using static configuration

files, to invoke user-case Service and Processing Strategies based on the request’s

parameters, and to locate the appropriate pipeline to execute the service on.

Based on the civilian or military edge system at which the PIG is deployed,

different and specific pipelines can be deployed for the specific assets. For example,

in a HADR scenario that involves the use of civilian assets, video streams provided

by cameras deployed on the streets can be used as input data for face recognition

pipelines running on PIGs. In this case, the video stream will be elaborated and

analyzed to provide to the SPF Controller and the requesting C2 application the

results of the face recognition algorithm. As illustrated in Fig. 8.2 other examples

of assets can be sensors, actuators, and IoT Wearable devices located across the

Smart City scenario.

8.4 SPF: Applications Deployment on PIG

Another architectural change would involve to make the SPF platform capable of

supporting dynamic services instantiation on the remote PIGs at run-time. This

architectural change will let the SPF Controller also to upload new applications

on PIGs and to schedule their execution and activation without re-configuring or

restarting the PIGs. Furthermore, as illustrated in Fig. 8.3 to extend the range of

possible services deployable on PIGs to there different types of services running on

the SPF platform: generic (Unix) processes, SPF specific applications, and OSGi
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bundles.

First, SPF service components are algorithms and tasks specifically designed as

integrated services for SPF. These applications are written as part of PIG’s software

or could be standalone Ruby classes and represent the applications part of the legacy

SPF architecture. Furthermore, in the SPF architecture, a PIG is supposed to

be executed on a Unix-like operating systems, and thus enabling the execution of

architecture-specific applications such as video decoder and transcoder, elaboration

tools, and so on. For security reasons, each application is supposed to be pre-

installed on PIGs and it needs to be trusted and known otherwise, the execution of

an untrusted application could compromise the security of the whole system.

Finally, the adoption of the OSGi [128] [129] specification1 would support the ex-

ecution, the composition, and the management of bundles (Java based applications)

at run-time. In particular, adopting OSGi enables the possibility to efficient manage

applications through containerization techniques, which will let new bundles to be

created, uploaded, and activated on request without performing any cold or warm

restarts of the other applications running on the same remote gateway.

8.5 Processing a HADR operation within the pro-

posed architecture

To illustrate the capabilities provided by the extended architecture in an HADR

scenario, it is worth considering the following use case. In the envisioned archi-

tecture, the SPF Controller is assumed to be running on the MTOC or to be a

component of an IoT application running on the command vehicle, where the com-

mand center of the HADR operations is located. The assumption is due to the fact

that the Controller is expected to have larger resources for handling requests from

service consumers and notably more stable (not susceptible to crashes due to lack

of resources like memory, computing power etc.). The SPF Controller would also

be associated with a database containing a registry or records of the PIG resources

and available services, so would need larger computation resources as opposed to

remote IoT assets/devices.

Fig. 8.4 depicts the workflow for a service requested in the proposed architec-

ture. An example of a possible use-case for HADR operations could be the request

to elaborate a video feed from a camera in a certain location, e.g. to monitor the

presence of moving objects after an earthquake. This would involve the activation

of an object tracking algorithm on the video feed, thus delivering an enriched feed

displaying bounding boxes around the moving objects. In this example, a C2 appli-

1https://www.osgi.org/developer/architecture/
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Figure 8.4: SPF: PIG applications

cation or a user would request the elaborated video stream by sending a command

to the MTOC application using a MQTT message containing a JSON payload with

a list of parameters: the action to be performed (object tracking on video feed),

the location of the camera specified as latitude and longitude, the resolution of the

requested video feed, and so on.

The request for service is elaborated when the MTOC running the IoT applica-

tion receives the command and reads the JSON payload contained in the MQTT

message. Then, the MTOC sends the service invocation request along with other

required parameters to the PAI of the SPF Controller using one of the supported

protocol, in this case MQTT. The request is then received by the SPF Controller,

which looks up in the associated Asset database to find information regarding PIGs

and resources that need to be invoked to serve the received request. In particular,

the SPF controller looks for a PIG capable to serve request based on multiple char-

acteristics such as its location (being matched as requested by the C2 application)

and the resources (assets, computational power, and so on) associated to that PIG.

When a PIG capable of serving the request is found, the SPF Controller forwards

the request to the PIG using the SPF proprietary protocol. Then, SCM schedule the

request to start the object tracking algorithm on the video stream on the correct

pipeline. If the elaboration requires multiple capabilities such as the transcoding

and decoding of the video stream, the SCM would coordinate the effort of more

pipelines and/or services. Finally, the elaborated video stream can be sent over the

network using the UDP connector or delivered to back to the SPF Controller and

then to the C2 application, which requested it.
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Chapter 9

Enabling HADR in Smart Cities

After having discussed an extended architecture for the SPF platform tailored for

HADR operations, this Chapter takes a deeper investigation on how to facilitate

HADR operations in Smart Cities. In particular, this Chapter further investigates

the concept of Civil-Military Cooperation (CIMIC) as a collaboration of civilian and

military personnel for dealing with natural disasters. CIMIC introduces another

level of complexity into the management of HADR because it requires to coordinate

the efforts of the different entities involved in the operations also from a security

perspective.

To respond to such disasters, there is the need for a comprehensive solution

capable of providing a full set of functions for HADR operators. This chapter

argues that context-aware and location-aware information is essential for providing

Situational Awareness to the HADR personnel involved in the operations. With

this goal, this Chapter extends the VoI formulation defined in Chapter 3 to support

the modeling of locations of interest (domain) and roles in its formulation. This

would enable to prioritize the dissemination of mission-critical information over less

valuable ones, also between different domains.

Finally, this chapter reports the experience in developing ACESO, a proof-of-

concept middleware that aims to enable HADR operations in Smart City environ-

ments. Different from the previous Chapter, which provided a detailed description

of an extended architecture for the SPF platform, this Chapter adopts a higher and

holistic perspective to provide readers useful guidance for developing Smart City

middlewares capable to support HADR operations.
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9.1 Concepts

Large scale disasters have an unpredictable nature and can cause widespread dam-

age, overwhelming local authorities and requiring external assistance. Military forces

can assist in the rescue operations, contributing their Command and Control (C2)

and Logistics assets for disaster relief purposes [130, 131]. Civil-Military Coopera-

tion (CIMIC) is essential for ensuring adequate preparedness for dealing with major

natural disasters and enabling a rapid and robust Humanitarian Assistance and

Disaster Relief (HADR) operations.

In smart cities, rescuers can connect to the smart city infrastructure, discovering

undamaged assets and still functioning services that can help to achieve mission

objectives and increase situational awareness. Rescuers can bring some additional

assets to support rescue operations and federate them with the assets of the other

organizations. Emergency relief personnel would immensely benefit from location-

and context-aware information provided by the smart city services and tailored to

their needs. However, this presents several substantial challenges.

First, even if partially damaged, modern smart city infrastructure has a truly

capillary distribution and thus can generate a plethora of information that might

overwhelm the scarce bandwidth and processing resources still available after a dis-

aster [132]. Such a deluge of information could be harmful for HADR operations by

exposing rescuers to a flood of irrelevant information among which a small amount

of useful data is hidden [133].

Providing a suitable middleware for supporting HADR operations is a challenge.

Setting up on demand a dedicated information processing infrastructure is not a vi-

able choice, as it would place an excessive burden on emergency forces and delay the

first critical stages of the operations. On the other hand, the repurposing of a typi-

cal smart city middleware to support HADR operations presents several challenges.

Such systems are usually not designed to be resilient and to work in heavily de-

graded conditions and they lack capabilities to quickly federate with other systems,

i.e., provided by civil or military emergency teams.

These challenges could be adequately addressed by making middleware for smart

cities capable by design of operating in HADR conditions. More specifically, the mid-

dleware should be capable of identifying the information relevant to rescuers and

survivors and prioritizing its processing and dissemination. Besides, the middleware

should implement a breaking glass policy that activates in emergency conditions, re-

laxing access control on resource utilization and enabling resilient communications.

Such controlled relaxation enables a federation of new assets and users while pre-

serving robust security mechanisms for information sharing and system-level logging

and auditing.
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This Chapter presents the proof-of-concept implementation of information-centric

and context-aware smart city middleware called ACESO. ACESO leverages VoI

methodology and tools to prioritize information for processing and dissemination

in HADR scenarios. Furthermore, ACESO supports complex federated HADR op-

erations involving civilian and military organizations by extending VoI approach to

the multi-domain environments and implementing label-based information routing

and security policies.

9.2 CIMIC Operations in Smart Cities

To discuss the importance of HADR is worth considering a scenario in which a

smart city has been affected by a natural disaster which caused the collapse of

several civilian buildings with many lives at risk. On such occasion, the immediate

action of rescuers, e.g., civilian and military firefighters and medical personnel, is

vital for assisting the survivors. Emergency services must immediately react to the

situation and acquire as much relevant information as possible to prepare, organize

and execute appropriate response actions.

However, after a natural disaster, many aspects of the urban area can be pro-

foundly changed and thus negatively affect the local forces HADR operations. For

example, earthquakes or floods might inflict damages to the city road infrastructure,

thus changing the physical connections between areas of the city. Roads could be

interrupted by water, the rubble of fallen buildings, or by direct damage on the

road surface that obstructs the passage of rescue vehicles. Obstructed roads cause

all the city traffic to re-route to the available transportation links, thus overloading

any such connection and creating a situation of traffic congestion that further limits

the ability of passage of local rescuers toward the areas in danger. Local forces are

consequently forced to re-route or use other transports, such as helicopters or boats,

to assist citizens in need.

At the same time, the smart city network infrastructure can be severely dam-

aged when a natural disaster occurs [134]. HADR scenarios can involve multiple

network link failures because of physical damage to the communication equipment

or because of network congestion. Similarly to the road network, when a part of the

communication links fails, the remaining links will be often consequently overloaded

by the messages that have been re-routed to reach their destination. Furthermore, in

the hours immediately following a disaster, the network might register traffic spikes,

which are caused by citizens that try to communicate and reconnect to each other,

thus further absorbing the limited network resources.

Disasters might turn the smart city network infrastructure into a set of partially

or fully isolated sub-networks characterized by limited bandwidth and unreliable
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links. However, the network slicing capabilities of the upcoming 5G standard will

likely enable smart city services to run in strongly isolated networks (slices), thus

limiting access to IoT assets in that slice. At the same time, the dynamic network

slicing capabilities of 5G can be helpful to reshape networks and reallocate network-

ing resources to HADR applications in case of needs. Several research studies are

investigating these challenges, see [135, 136, 137].

Emergency response teams will increasingly rely on IT services for assistance in

the execution of response activities. Their humanitarian mission would be facilitated

by an enhanced situational awareness enabled by constant live data feeds coming

from the surviving smart city sensing infrastructure and privately owned IoT de-

vices. This extensive infrastructure of IoT devices enables, e.g., monitoring an area

using visual information obtained from local traffic and security cameras. Air and

temperature sensors could also be used to identify gas leaks and high temperatures,

or fires, that can cause dangerous explosions that could put the lives of aid personnel

at risk.

These conditions adversely impact the whole IoT infrastructure, especially if the

interaction with the Cloud is crucial for enabling access to the collected data. Un-

availability of the Internet or cloud connectivity will affect or even obliterate any

smart city services that rely on cloud services for real-time availability of environ-

mental data.

The increasing importance of HADR operations is fostering the cooperation

of civil and military authorities for rescue purposes. Civil-Military Cooperation

(CIMIC) is increasingly being considered an essential enabler for rapid and robust

HADR operations. The involvement of military forces in HADR is promising be-

cause the military could leverage their Command and Control (C2) and Logistics

capabilities to deploy assets to help with the disaster relief activities rapidly.

However, the military does not own or control the sensing IoT infrastructure

of modern smart cities. These IoT infrastructures are referred to as grey assets,

which are not as trustworthy as blue assets, owned by the military. However, those

authorities will likely focus on different aspects of HADR operations, potentially in

areas of the city. Also, participants of the HADR operations might have different

equipment and security policies that prevent them from freely sharing information.

This is, of course, especially true in the case of military forces.

A typical HADR Operational scenario will involve multiple emergency response

teams operating in different areas. It is likely that communication services in these

areas will be federated and rely on disruption-tolerant IT infrastructure. Bandwidth

will be limited and therefore, of premium value. Given multiple objectives and

resource scarcity, the information will also need to be tailored to the end recipients.

Finally, as military and civilian responders would usually deploy additional sensing,
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processing and communication equipment, there is the need to consider federation

and interoperability of information security mechanisms.

Services for HADR operations will likely have a information-centric nature, rely-

ing on analytics that processes the vast amount of data coming from smart city sens-

ing infrastructure and crowdsensing platforms. In turn, due to the harsh conditions

caused by natural disasters, the processing of information will likely be performed lo-

cally, often relying on edge-based solutions such as Mobile Edge Computing (MEC)

[138, 139, 140].

Since most IT services will implement some form of Situation Awareness, lo-

cations represent the most crucial aspect of the tailoring process. Rescuers and

civilians are served with detailed information about their surrounding areas while

information related to distant areas will be more generic or even no provided. For

example, civilians contacting services for help should be informed about the avail-

ability of specific drugs they need in the subset of opened stores or relief centers.

Emergency response operations in CIMIC scenarios would significantly bene-

fit from middleware solutions enabling information-centric and location-based IT

services that can tailor their response to the users’ requirements. However, to ad-

equately address the needs of citizens as well as of civilian and military rescuers,

middleware should implement a specific set of concepts and functions that allow

easy access to the data provided by those services.

9.3 Requirements for HADR Middleware

Smart cities represent an extraordinarily heterogeneous and dynamic environment.

They are characterized by the pervasive presence of IoT devices that continuously

acquire environmental information. The gathered information is dispatched to con-

sumer applications, local services and Cloud through a multitude of different com-

munication channels (LTE/4G, WiFi, fiber-optic, etc.) [141].

In a smart city, middleware represents the backbone for all applications that

heavily rely on live data feeds in order to provide information-centric, time-critical,

location-, and context-aware IT services to the citizen. Middleware mitigates the

complexity of smart city environments and enables the development of information-

centric and location-based applications by providing support services, functions,

and tools that orchestrate the multitude of IoT resources and simplify the access to

environmental information.

In particular, a middleware for smart cities is typically built on top of extremely

sophisticated entities designed to decouple the development of IoT services and

applications from the management and access control of resources, such as IoT assets

and edge devices. Network softwarization has led to the creation of multiple levels
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of ownership or administrative control of smart city assets. For instance, a smart

city traffic camera management system might be realized as a virtual infrastructure

controlled by the city transportation department and built on top of a shared smart

city infrastructure administrated by the municipality IT department. Furthermore,

the development of IoT and Fog computing technologies stimulated private actors to

enter the smart city infrastructure market with their, often proprietary, solutions.

This high number of players and stakeholders translates in the enforcement of a

large number of different administrative control and access policies for resources,

further increasing the environment complexity.

Unfortunately, so far there has been limited attention towards highly resilient de-

signs for smart city middleware, that would not only allow middleware to withstand

natural disasters, but that would make it capable of effectively supporting HADR op-

erations in those conditions. This represents a very challenging but equally promis-

ing design approach worth being adequately investigated. Timeliness and ease of

deployment possibly represent the most critical goals for IT infrastructure in HADR

operations. In contrast to setting up from scratch a dedicated middleware infras-

tructure to support HADR operations, leveraging the emergency capabilities of an

already deployed middleware could grant rescuers a prompt initiative in the first,

critical, stages of relief operations, and help them to maintain a high operational

tempo.

In order to function effectively in HADR conditions, smart city middleware

should satisfy some specific requirements. First of all, the middleware should sup-

port a breaking glass mode that allows switching to an emergency security policy.

In this mode, the middleware activates specific functions that: allow resilient com-

munication; relax access control on resource utilization; enable different, civilian

and military, organizations to federate their equipment and services; enforce flexible

security mechanisms for information sharing; and implement system-level logging

and auditing.

As discussed in Section 9.2, in HADR operations, the smart city network is likely

to be fragmented in multiple partially or fully isolated sub-networks, for instance, in

case of a CIMIC operation involving a military network that for security reasons can-

not directly integrate with a civilian one. Since from the geographical perspective,

these isolated sub-networks could be partially overlapping, is preferable to use the

more appropriate domain term when referring to these sub-network environments.

A domain identifies not only a specific area of the smart city but also a homogeneous

set of assets owned by a corresponding organization which is logically disconnected

from the smart city network infrastructure. It is, at the same time, a geographical,

a topological (from the networking perspective), and an administrative concept.

The smart city middleware should allow to connect the various domains involved
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in HADR operations. To this end, in the likely case of lack of connectivity, rescuers

should be able to deploy dedicated gateway devices that integrate with the middle-

ware to realize communications between different domains. In this way, the middle-

ware can leverage the connectivity provided by the gateways to realize a federation

of domains in which the different middleware instances cooperate for information

processing and dissemination purposes.

The middleware should relax access control policies enforced in normal mode to

enable rescue teams to leverage all the assets available for sensing and processing,

irrespectively of ownership and administrative boundaries. Moreover, the middle-

ware should be capable of withstanding significant damage to the smart city sensing

infrastructure – either physical destruction of IoT assets or crashes/disconnections

of the corresponding analytic services. In such cases, the problem can be mitigated

by locating still standing IoT assets or deploying new devices in the afflicted area,

and integrate them in a new analytics pipeline. To this end, the middleware should

integrate dedicated asset discovery and integration functions.

Smart cities middleware supporting CIMIC in HADR operations needs to enable

a secure sharing of information between civilian and military teams. The traditional

network security measures used to separate military and civilian systems can be in

many cases replaced or enhanced by implementing application-layer access control.

Such application-layer security policy could be based on several attributes, such as

affiliation, role, and reference location of a rescuer.

However, is important to take into account every exception in a highly unpre-

dictable and changing environment of the HADR operations. Although the breaking

glass policy enables a temporary overriding of the system security policy, it results

in evoking more stringent auditing mechanisms, including a mandatory review of

the audit log by a human administrator in order to identify and penalise malicious

use.

Because in an emergency situation available bandwidth and computational re-

source would usually be limited, it is essential that middleware identifies the infor-

mation critical for rescuers and survivors, and prioritizes its processing and dissem-

ination.

Smart cities present an environment with a high density of devices that gather

and publish live environmental data [142, 143]. The process of collecting environ-

mental data is indeed very delicate since it can produce a large quantity of unhelpful

or filler information that slows down the process of data elaboration and usage by

applications. As the information produced will likely be overwhelming, there is the

need to identify the most critical information for rescuers and civilians and forward

it to them promptly.

Prioritizing relevant information, however, represents a significant challenge,
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which requires specific solutions. More specifically, information relevance is not

limited to the timeliness in which is acquired from the environment and received by

users, but it is also related to the geographic position of users. Information gathered

in the proximity of a user is more likely to be relevant and of immediate use rather

than information gathered in more distant locations. There is the need to imple-

ment both constrained and location-based information dissemination (geofencing)

and city-wide coalition level information sharing.

9.4 The ACESO Middleware

To address the challenges discussed in Sections 9.2, 9.3 this Chapter presents ACESO1,

a middleware solution enabling location-aware and information-centric IT services

for CIMIC operations.

ACESO leverages Value of Information (VoI) methodologies and tools for in-

formation processing and dissemination to offer support for the development of

location and context-aware services at several levels. To this end, ACESO is com-

posed of different components designed to extensively exploit the effectiveness of VoI

or further enable and simplify the design of context-aware services. More specifi-

cally, ACESO is capable of disseminating and filtering information based on VoI,

scheduling computation resources based on requirements and ensuring data privacy

through attribute-based and context-aware security mechanisms. Besides, ACESO

also leverages MARGOT [144] to implement a distributed and federated solution

for the location-based discovery of devices and services.

These capabilities are required to deal with the harsh conditions that characterize

HADR operations, such as network, infrastructure, and device failures described in

Section 9.2. To allow services to operate in such conditions, ACESO continuously

analyzes the information regarding the operating scenario, e.g. the information

about available fog devices, to reallocate computational resources between HADR

services or to reactivate or migrate services to different nodes when necessary in

a dynamic waving fashion. These policies would helping to mitigate the adverse

effects due to natural disasters on Smart Cities environments and to realize resilient

and capable location- and context-aware services for HADR operations.

Finally, ACESO leverages attribute-based and context-aware approach to secu-

rity, such as location-aware security, to ensure that sensitive information does not

leak to unauthorized entities. Such approach allows services to specify tailored and

highly restrictive access policies to data while enabling the ACESO middleware to

support breaking glass policies for an emergency. Breaking-glass policy could allow

1Aceso, daughter of Asclepius and Epione, was the Greek goddess of the healing process.
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HADR operators to access private resources and information when required for sake

of public safety.

9.4.1 VoI as a foundation for Location-Aware Services

To implement location-aware services, ACESO leverages and extends the Value of

Information (VoI) based concepts and tools illustrated during this Thesis. For more

detail on the VoI formulation for a general framework please refer to Chapter 5.

Within this context, VoI represents a particularly interesting theoretical framework

for HADR scenarios. In fact, in addition to the efficient use of resources it allows

to naturally consider location-aware aspects as wells as to homogenize them with

other concerns, such as information timeliness, and to constraint the burden on

information processing and dissemination infrastructure. Both these aspects are of

utmost importance in HADR applications.

ACESO adopts a VoI estimation and tracking model that improves the design

of the model (presented in Chapter 5) to consider the possibility that the content

of IOs might refer to multiple locations and the fact that users might be interested

in information related to multiple (and potentially distant) locations.

More specifically, it implements VoI estimation and tracking of each IO that

flows through the platform. At the moment t0 of its generation, the initial value

V oI0(m, t0) of an IO m is estimated by the originating software component, for

instance, according to the content that information refers to or to service-specific

policies. Estimates can be further refined through a learning process that considers

feedback from end-users [22]. The originating software component also labels IO m

as containing information about the set Lm = {mol,L1, ...,Ln} of interest locations

for message m, in which mol represents its originating location and Li are locations

to which the content of the IO somehow refers to. We need to consider the fact that

a message might contain information relevant to a set of locations, either because

they are nearby or because they are in a similar emergency condition and would

benefit from the content of the message.

As IO m flows through the network, its content will become obsolete and possibly

less relevant. In turn, this means that its VoI will decrease over time and space.

The value of message m when received at time t > t0 by user u at location lu will

then become:

V oI(m,u, t) = V oI0(m, t0)× TRD(u, t0, t)× PRD(u,Lm,Lu) (9.1)

where TRD(u, t0, t), as in “Timeliness Relevance Decay”, is a factor that takes

into account the obsolescence of information, and hence the decrease in the VoI of

m in the interval between generation time t0 and csrrent time t, PRD(u,Lm,Lu), as
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in “Proximity Relevance Decay”, is similar to the TRD(u, t0, t) component, but its

objective is to measure the relevance (and loss thereof) of information with respect

to the set Lu of interest locations for user u. This model allows considering multiple

locations of interest for a user, either including its current location or not.

Ideally, it would be possible to assign multiple VoI metadata to the same IO,

one per each interested user. However, modelling each user and its set of interest in

the system would be extremely difficult. To constrain complexity, this formulation

assumes that in practice, users will be grouped into roles and that the corresponding

role identifies the set of interest of the user. As a result, VoI models can be defined

for a given (information type, user role) tuple. For example, IOs containing video

frames from traffic cameras will have different VoI models according to the role of

consumers.

While one might be tempted to define PRD as a function of distance from the

centroid of the locations in Lm and Lu sets, this would essentially implement the

“geofencing” of information. Such geofencing would result in forcing information ex-

change within an enclosed area and hindering its delivery to users that are interested

in locations far from their present, such as higher echelon commanders coordinating

the emergency response in remote areas. The nature of HADR operations suggests

against the adoption of naive geofencing methodology in favor of more sophisticated

solutions. To this end, ACESO adopts two different VoI models, i.e., two differ-

ent sets of PRD and TRD functions, for intra-domain and inter-domain services,

respectively.

With regards to the specific VoI model, ACESO allows using a different set of

PRD and TRD functions for each service. This allows services to adopt a VoI model

that makes them exhibit a strongly localized behaviour, i.e., models in which the

value of an Information Object (IO) decreases rapidly as the IO moves away from

the originating source.

9.4.2 Inter-domain routing

For inter-domain communication, ACESO integrates VoI tracking within a more

generic information labeling framework for the management of information dissem-

ination. MARGOT is responsible for locating other instances of ACESO running in

the scenario, thus allowing them to join and realize information exchange between

different geographical locations associated with different domains. Therefore, this

process is essential to route information between domains and, at the same time, to

make sure that information sharing policies are respected.

More specifically, each instance of ACESO exchanges information regarding its

operating domain to build a global status of the location of interests. This status
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Figure 9.1: Role- and value- based inter-domain routing.

contains a set of rules that associates users and their roles with the locations in

which they are operating. These rules are modeled as described in eq. (9.1) and

allows each instance of ACESO to be aware of the roles of users operating in other

domains.

To realize inter-domain information exchange, ACESO evaluates each generated

IO for forwarding by estimating its VoI using eq. (9.1) and the labels the IO is

assigned. Let us stress that, for inter-domain communications, ACESO adopts dif-

ferent sets of TRD and PRD functions, in which the decay profile the information

is subjected to over space and time is lower than for intra-domain communications.

In fact, for inter-domain communications, this evaluation is highly dependent on the

Lm component of PRD function. Therefore, when an IO is evaluated, if there is a

matching location Li ∈ Lu resulting in a non-zero value of the PRD function, the

IO is then routed to the instance of ACESO running in location Li. This match-

ing means that users operating inside location Li present a matching role for the

forwarded IO.

Fig. 9.1 illustrates multiple domains connected together. More in detail, Fig. 9.1

depicts that users operating in domains A and B share medical and firefighter roles,

and consequently, IOs labeled with these roles will be exchanged between domains.

In contrast, domain C and domain B share the environmental role, but only IOs

originated inside domain B are shared with domain C. Environmental IOs generated

within domain C are not exchange with domain B as the security policy prohibits
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that information generated inside domain C leaves this domain.

To clarify the concept of inter-domain routing it is worth considering two exam-

ples, a first describing service with low TRD and PRD decay profiles and a second

highlighting the need for information sharing with no strong emphasis on location.

Firstly, a representative example of a service providing information with long-range

utility could be a navigation service. IOs regarding the viability status is likely to

be forwarded between domains to inform the HADR operators of the overall traffic

conditions and to allow them to plan accordingly the optimal route to follow. In

this regard, the navigation service will present a lower TRD decay profile. Secondly,

a different example is the one in which higher echelon commanders, responsible for

coordinating the emergency response, require full access to overall information. In

this case, ACESO will forward each IO to the location Lu, where higher echelon

commanders are operating, even if Lu is farther away from the IO’s originating

location.

Finally, the use of IO labeling allows ACESO to adopt strict rules for inter-

domain release of IOs, thus preventing leakage of sensitive information to unautho-

rized users.

9.4.3 Context-aware security

Information security is one of the main challenges that must be addressed when

developing context- and location- aware services. In fact, in order to enable context-

aware mechanisms, the nodes’ context information needs to be shared with the net-

work or services, thus exposing potentially sensitive data and increasing the attack

surface.

However, the context information can also be used to enhance the strength of

security mechanisms. One of the most common approaches is to treat the context

information as attributes used within attribute-based access control (ABAC) policies

[145]. For example, the location of a node can be an attribute applicable to both a

subject, i.e. entity requesting access, and an object, i.e. information or service that

the access is being requested to. Thus, location-aware security mechanisms can be

used to enforce dissemination of information originating from one particular area

only to users located in another particular area. Moreover, the relative location of

a user in respect to an electronic device used for accessing digital information could

be used to further enhance security and make sure that a particular terminal is

authorized to display information or grant access to a service only if the requesting

user is in its immediate vicinity.

Although access control in respect to the IoT information is often with a read

access - and thus protection of confidentiality of information - it is important to
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point out that a write access is often even more important, as it contributes to the

protection of integrity and availability of information obtained from the IoT devices.

In particular, poisoning data sets with false or deliberately crafted information can

have far-reaching consequences for correctness and accuracy of operational decisions,

potentially leading to insufficient use of resources or endangering the life of personnel.

By leveraging on these concepts, ACESO implements an attribute-based access

control (ABAC) manager for the management of the security requirements of HADR

operations [146]. Within ACESO, the ABAC manager is implemented as a layer on

top of information collection and dissemination components. More specifically, the

ABAC manager checks for the integrity of raw-data collected from the IoT devices

to avoid poisoned or malicious data to be injected into the processing system. At

the same time, the ABAC manager also filters the IOs to be delivered to the end-

users of the HADR services by following the security policies defined for the specific

scenario.

On the other hand, attribute-based access control is also enforced by the Policy

Guards that connect civilian and military domains. This allows a secure sharing of

information and avoiding that classified data generated within the military domain

would leaked to unauthorized civilian users.

Note that, in some cases, it could be possible to use dedicated network appli-

ances such as data diodes, i.e., components that enforce the unidirectional flow of

information, which have the advantage of requiring no or minimal modifications to

interconnected systems, but also of providing high restriction on supported business

processes and operational use cases due to inability to support two-way communi-

cation. Slightly more flexible security can be achieved through implementation of

two-directional guard solutions relying on trusted data labelling for making decisions

about releasing - and accepting - information at the network boundary.

9.4.4 Architecture and Implementation

ACESO middleware architecture is illustrated in Fig. 9.2. The middleware is com-

posed of six main modules interacting in a service-oriented fashion. The core module

in the ACESO architecture is SPF. Within ACESO, SPF provides functionality to

deploy, activate, and configure services on gateways running on fog devices or in

Cloud platforms. To do so, SPF collects information about services running on

controlled gateways and provides a specific API, which offers mechanisms allowing

reconfiguration of computational resources.

The Service Controller module query the status information to continuously mon-

itor the status of running services. On the one hand, in case of a faulty service

resulting from the devices’ unavailability or network faults, the Service Controller
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can generate a new allocation for services using the remaining computational nodes.

On the other hand, in case of unresponsive services due to the overloading of compu-

tational resources, the Service Controller adopts VoI management policies to deal-

locate resources from the least valuable applications to effectively redistribute them

to more valuable services in the current scenario. These capabilities become crucial

when the middleware operates in disaster recovery mode. It is worth specifying

that for operating such reconfigurations, the Service Controller can implement the

optimization models described in Chapter 5 and Chapter 6.

ACESO defines two information bus for services operating within the middle-

ware. The information bus are designed on the top of VoI methodologies and tools

to filter and prioritize data during the phases of acquisition and dissemination. In

particular, the VoI Bus evaluate of each raw-data message received from IoT devices

within a domain and applies a VoI based message filtering that selects only the most

relevant messages. Only filtered raw-data are then processed by the services running

on the top of SPF, thus taming the deluge of data generated by the smart city IoT

infrastructure. Once the services transform raw-data into ready-to-use information

objects (IOs), ACESO enables data dissemination to the end-users by leveraging on

the DSPro middleware[147]. DSPro realizes disruption tolerant VoI-based dissem-

ination of information on the top of peer-to-peer architecture, in which each peer

acts both as an information provider and consumer. Each DSPro peer periodically

exchanges a message called node context containing multiple information such as the

peer position, role, and range of influence (a geographical area on which the peer is

interested in). Thanks to this process, a DSPro peer can decide if an IO should be

delivered to another peer or not.

Figure 9.2: The ACESO middleware runnning several HADR rescuers services (in
yellow).
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The information bus offer an information filtering mechanism based on the con-

text of information and nodes, which usually resolves as an evaluation of standard

context attributes such as position, time, application-given attributes. The ABAC

manager provides a further filtering mechanism. The ABAC manager is responsible

for implementing the attribute-based access control within ACESO. As depicted in

Fig. 9.2, it acts as an information filter on two sides. Firstly, it checks raw-data

messages to be processed, thus avoiding malicious data to be injected into the pro-

cessing system. Secondly, based on the operating domain and the defined security

policies, it injects to DSPro only the IOs that can be safely disseminated.

Finally, ACESO also integrates MARGOT, an auxiliary service for the discovery

of resources within the IoT domain [144]. MARGOT discovers assets and services

available within the Smart City infrastructure leveraging proactive-based discovery

agents that support multiple communication protocols, e.g. MQTT, CoAP. More

specifically, these agents exploit the discovery mechanism of widely used IoT commu-

nication protocols to retrieve information without or with minimal prior knowledge

of the network.

9.5 Enabling HADR with ACESO

To describe how ACESO would enable effective location- and context-aware ser-

vices and information dispatching within a HADR operation, this Section presents

a fictional HADR scenario illustrated in Fig. 9.3. In particular, Fig. 9.3 shows the

collaboration of civilian and military personnel operating in three different domains,

illustrated using the grey and blue asset logic: the grey color represents a civilian

domain and the blue color a military one.

This HADR scenario introduces a firefighter team departing from the opera-

tion center to assist the victims that require immediate assistance. Aside from the

firefighters, during HADR operations, also other local forces can be involved. For

example, Fig. 9.3 depicts a medical team that operates in symbiosis with the fire-

fighters to provide medical assistance to victims in serious conditions. Completing

the scenario are the other teams depicted in Fig. 9.3: a civilian team flying on

a helicopter and a military team that assists the local forces by providing them

resources, personnel, and hardware.

However, while the main objectives are common to all forces, rescue victims and

damage control, each team has different tasks that need to accomplish to achieve the

common goals. Firefighters’ tasks usually involve the extraction of victims trapped

under the fallen buildings or to extinguish fires. On the other hand, the objective

of the medical teams is to stabilize the health conditions of the injured civilians and

to bring them to the nearest medical care center. Instead, the team flying on the

117



CHAPTER 9. ENABLING HADR IN SMART CITIES

Figure 9.3: Multi-domain scenario with public and private domains

helicopter is responsible for monitoring the conditions of the city and for providing

useful information to the other rescuers involved in the operations. Finally, the

military team represents an adaptable force that can either bring its support and

collaboration to the other rescuers or perform specific and entrusted tasks inside the

blue domain represented in Fig. 9.3.

ACESO takes into account all these differences during the dispatching of infor-

mation. Each time a user sends a request shares metadata related to its position

(GPS coordinates), the information related to its role, authority affiliation, and

other additional information required to evaluate the VoI of the specific request.

For example, the team flying on the helicopter has a scarce interest in the road
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traffic conditions. Instead, it is more interested in receiving information related to

the air condition (environmental information), the presence of smoke clouds and the

presence of collapsed buildings.

ACESO uses the metadata sent by applications to evaluate the VoI of each re-

quest, thus enabling it to tailor service responses based on the current user location,

roles, and security policies as described in eq. (9.1). These attributes allow ACESO

to dispatch only relevant information matching the users’ interests, location, and

affiliation. In this way, when firefighters are moving between areas, ACESO will as-

sign higher VoI to all information about road traffic conditions, environmental data,

and information related to areas that present favorable conditions for the possible

spawn of new fires in the city. Meanwhile, the medical teams can also be provided

with information about road traffic conditions. However, they will receive more data

about their specific role, such as the presence of nearby hospitals, the number of

victims that can be hosted or information regarding medical supplies required to

stabilize the civilian victims.

Besides, Fig. 9.3 depicts how each domain is provided with a gateway (GW in

the figure). Gateways allow information sharing between domains. To this end,

the instances of ACESO running in the different domains exchange status messages

that contain the roles of the users operating within the single domain. These roles

allow ACESO to decide if the information generated in a domain may be useful to

users operating in the other domains. In the case of inter-domain communications,

the VoI evaluation adopts the PRD and TRD functions described in Section 9.1 to

avoid geofencing information relevant to multiple domains.

Finally, the Policy Guard visible in Fig. 9.3 allows ACESO to evaluate the

information labels related to the security policies for allowing or denying the release

of information. This is a mandatory requirement for CIMIC in HADR operations

and it is usually implemented using guards or data diodes to avoid information

leakage from military systems to unauthorized users in the civilian domain. A

guard can also restrict the information flow from civilian to military domains, thus

providing some protection against malicious and untrusted information.

9.6 Simulation Results

To validate the effectiveness of ACESO in dealing with the HADR operations de-

scribed in Section 9.5, an experimental evaluation over a fictional scenario within the

Phileas simulator [148] is given. The fictional scenario is set in the city of Helsinki,

Finland, which has been proven by NATO Group IST 147 to be the reference Smart

City location for evaluation [149].

As described in Section 9.5, the scenario presents three different information
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Figure 9.4: A map depicting the reference HADR scenario in the city of Helsinki,
Finland.

domains defined as A, B, and C visible in Fig. 9.4. Along with these domains,

the scenario defines four different types of users involved in the HADR operations

with the following user types: a helicopter, a firefighter team, a medical team, and

a military platoon.

Phileas is configured to reenact the described scenario for 24 hours for collecting

the data from 18 data sources, and 6 edge devices dislocated within the three do-

mains visible in Fig. 9.4. An important part during the simulation is the mobility

of HADR operators along the different domains. In fact, it is essential to evaluate

if the extended definition of VoI can provide inter-domain routing of context-aware

information. To this end, the helicopter moves from location H-A to location H-B

(visible in Fig. 9.4) following a line that crosses all domains. More involved in

the pragmatical side of operations, the firefighter team covers both domains A and

B. These firefighters will operate inside one or more vehicles that move following a

straight route from domain A to domain B. Instead, the medical team still operates

inside domains A and B, but their movements are simulated using a random walk

mobility model with geographical boundaries covering both domains. Then, the

mobility of the military platoon also follows a random walk mobility model within
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Table 9.1: Roles labeling

Roles Required services

Helicopter BS, FD, EI
Firefighters NS, FD, EI

Medical team NS, MI, EI
Military team CI, EI

domain C.

The locations of IoT sensors and the six edge devices in the city are visible as

yellow pins in Fig. 9.4. The raw data collected from IoT sensors serve as an input

for the services. At the beginning of the simulation, six services are running on

the devices at the edge, analyzing data and disseminating the results in real-time:

Navigation Service (NS), Fire Detection (FD), Building Status (BD), Environmental

Info (EI), Medical Information (MI), and Classified Information (CI). NS collects

video frames from traffic cameras and processes them, respectively, to assess the

current viability status. FD also processes the video frames to identify/detect fires

in the surrounding buildings, which are also monitored by the BD service that uses a

combination of video frames and sensor data to look for fallen buildings. Instead, EI

collects environmental info to detect the quality of air and other dangerous situations

such as gas leaks. Finally, the MI service informs the medical operators of the injuries

caused by the natural disaster to the citizens and their locations.

With regards to roles, the team flying on the helicopter is mainly interested in

collecting information regarding fires and fallen buildings provided by the FD and

BS services. Firefighters need to acquire information regarding the location of fires

alongside their route and the information to reach those fires using the NS and FD

services. The medical team is responsible for intervening to bring its support in

the emergencies indicated by the medical information (MI) service. To do so, the

medical team uses the navigation service (NS) to get a safe path to the position

of the injured people. Finally, the military platoon is interested only in classified

information (CI) that cannot be shared with the other teams for security reasons.

As for the other teams, the military platoon collects environmental information

leveraging on the EI service. To this end, Table 9.1 contains a detailed representation

of the information labeling, which assigns to each team the services they require for

the HADR operations.

On the one hand, domains A and B provide location-aware services for the civil-

ian (firefighters and medical team) involved in the HADR operations. On the other

hand, domain C is characterized by the presence of military platoon involved in the

operations. While some civilian services running within domain C (EI, MI) provides

useful information for the other teams, the information produced by military-specific
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Table 9.2: Characterization of service processing.

Service Name TRD half-life PRD half-life

Environmental Info (EI) 2000 s 1 km
Fire Detection (FD) 5000 s 10 km
Building Status (BS) 15000 s 10 km
Navigation Service (NS) 5000 s 7.5 km
Medical Information (MI) 8000 s 10 km
Classified Information (CI) 1000 s 2.5 km

Table 9.3: Simulated bandwidth consumption for raw-data messages in the overall
scenario.

Msg Type Avg Msg Size) Generated (MB) Sent (%)

Medical 128 KB 6500 MB 79.34%
Video 756 KB 82300 MB 54.69%
Environmental 128 KB 3248 MB 54.59%
Pollution 1 KB 34 MB 64.72%
Temperature 256 B 17 MB 41.18%

services is not forwarded to the other domains for the security reasons stated above.

The following simulation focuses on the capabilities of ACESO in dealing with in-

formation dispatching between the different roles and domains. With regards to the

services, each one is defined with a linear TRD and PRD decay profile. More in

detail, the TRD and PRD decay profiles of the location-aware services running in

the scenario have been configured accordingly to Table 9.2.

Tab. 9.3 illustrates the benefits provided by the VoI Based Bus in filtering low

value raw-data messages. In particular, Tab. 9.3 reports for each message type an

average message size, the total data generated, and the percentage of transmitted

data. It is worth noting how VoI filtering reduces the amount of transmitted data

discarding the less valuable information to prioritize the processing and dissemina-

tion of the most valuable raw-data messages. The filtering is essential to reduce

both bandwidth consumption and then to process delay at the fog nodes.

On the other hand, the aggregated VoI produced by the running services is illus-

trated in Fig. 9.5, which represents the VoI value of the aggregated IOs (generated

during the simulation) through a box plot representation. More specifically, it is

worth noting how some services have a higher VoI, thus indicating that the dispatch

of this information will be privileged to whom services with a lower VoI.

Another interesting information regarding the implementation of location-aware

services is the decay information is subjected to when travelling to domains. In

fact, the VoI formulation defined in Section 9.4.1 allows to define for each service

its domains of interest, thus allowing IOs to be forwarded and delivered to other

domains when necessary. This is illustrated in Fig. 9.6, which depicts the VoI decay
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profile for IOs messages (delivered to end-users) as a function of distance. On the

whole, Fig. 9.6 depicts that each service has its own decay profile, i.e. the VoI is

strictly dependent on the message class. It is worth noting that, the definition of

the PRD and TRD decay profiles enables a location-aware distribution of services.

In addition, Fig. 9.6 demonstrates the effectiveness of the ACESO model in

delivering information only to those users interested in consuming it that are within

a defined domain (geofencing), e.g. classified information, as defined by the labeling

depicted in Table 9.1. However, when information is relevant to other domains,

ACESO can forward it to the to users, operating in other domains, whose roles

match the information content. Services such as fire detection can have a minor

decay in space and time, thus indicating that this type of information will likely be

forwarded to the other operational domains.

Fig. 9.7 depicts that some information is delivered only to those users having

a specific role and how the same piece of information can have different VoI values

depending on the specific role. For example, IOs produced by the BS services are

delivered only to the team flying on the helicopter. In contrast, IOs produced by

the navigation service are delivered to both firefighters and the medical team but

with different VoI. Finally, classified IOs are delivered only to the military platoon

because other users cannot access the classified content.

Furthermore, Fig. 9.8 shows the amount of IO messages delivered every 10

minutes during the simulation time. It is worth to note that the medical information

service delivers a constant and considerable amount of IOs since it is predictable that

a large number of medical reports will be generated due to injuries caused by the

consequence of the natural disaster. In addition, the 3 hours time-window with no

messages in the BS histograms occurs when the helicopter moves to domain BS,

where these IOs are not relevant.

Instead, Fig. 9.9 illustrates the importance of inter-domain routing in the overall

Figure 9.5: The VoI box plots of each content type during the simulation time.
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Figure 9.6: VoI as a function of distance for IO messages.

Figure 9.7: VoI trend as function of distance and role.
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Figure 9.8: IOs delivered to end-users every 10 mins during simulation time.

Figure 9.9: IOs forwarded between ACESO instances every 10 mins during simula-
tion time.
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ACESO architecture for creating Global Situational Awareness. This allows the

firefighter team operating in domain A to be informed about viability information

in domain B and so on.

Fig. 9.9 also shows how ACESO can act as data diode by prohibiting the for-

warding of information matching defined security policies (classified information).

In fact, the ACESO instance running in domain C does not release classified infor-

mation to the other domains because of the security policies. Finally, it is worth

pointing out that information is not simply replicated across all domains, but it

is forwarded only when needed, e.g. the Fire Detection IOs are forwarded from

Domain A to Domain B only when the firefighter team is within Domain B.
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Conclusion

Fog and Edge Computing are very interesting research topics in scientific literature,

as they aim to enable a multitude of use-cases and to provide immersive, latency-

sensitive, and real-time services. However, the development of Fog and Edge appli-

cations capable of satisfying such requirements calls for novel solutions capable to

address the IoT data deluge and the management of scarce resources at the edge of

the network.

To contribute to Fog and Edge Computing, this thesis investigated novel method-

ologies and tools to propose comprehensive middlewares for dealing with the chal-

lenges of Fog and Edge Computing environments. These middlewares provide valu-

able tools to address several use-case scenarios from Smart City applications to

Humanitarian and Assistance Disaster Relief (HADR) operations.

To enable the management of Fog and Edge applications, this thesis presented

the SPF middleware, which allows service providers to coordinate and distribute the

service processing among a pool of devices located along the Cloud-IoT continuum.

Then, with the purpose of enabling the simulation of these middlewares in realistic

scenarios, this thesis presented the Phileas Simulator. Both SPF and Phileas make

use of an innovative service model that defines Fog and Edge services as the com-

position of multiple service components: software modules that naturally integrates

VoI techniques for filtering only the most valuable data in the processing and dis-

semination. Leveraging on this model, this thesis proposed different optimization

techniques for maximizing the VoI utility delivered to the end-users of applications,

ranging from simulation-based optimization to Deep Reinforcement Learning.

Then, this thesis presented middlewares that integrate the discussed methodolo-

gies and tools to achieve holistic management of applications and networks in Fog

and Edge Computing. More specifically, these middlewares integrate VoI method-

ologies and tools by default to manage services and resources in a way that the VoI

delivered to the end-users of applications is maximized. This is to achieve better

use of the scarce resources available at the edge and enabling effective Fog and Edge
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Computing.

To give a more exhaustive summary of the content of this thesis, Chapter 2 pro-

vided background on Fog and Edge Computing. Chapter 3 presented the concept of

Value-of-Information (VoI) as novel criteria for Fog and Edge service modeling and

resource management. To do so, this Chapter presented a novel notation for mod-

eling the allocation of service components, composable service blocks, on devices.

Then, Chapter 4 presents two valuable tools built on the top of the AIV model,

the SPF middleware and the Phileas simulator. On the one hand, SPF is a functional

platform for running value-based services. On the other hand, Phileas is a discrete

event simulator specifically designed for reenacting value-based Fog services. Both

are valuable tools for the research presented in this thesis and they will be used

for the implementation and the evaluation of the middlewares presented in the next

Chapters.

Next, Chapter 5 discusses user-agnostic and user-specific VoI optimization mod-

els for maximizing the total VoI generated by Fog services. Furthermore, this Chap-

ter presented novel contributions in formalizing user-specific VoI models that take

into account the end-user specific utility in the VoI definition. Finally, Chapter 5

reported the adoption of optimization techniques for the VoI maximization of service

components configurations on Fog devices.

Further investigating VoI optimization, Chapter 6 reported the research on Re-

inforcement Learning (RL) as another optimization tool for VoI based model. With

this goal, Chapter 6 presented FogReinForce, a DRL based algorithm that trains a

software agent to find the service components configuration maximizing the total

VoI. Moreover, this Chapter discussed a possible implementation of a continuous

optimization framework that relies on the FogReinForce algorithm to address the

high dinamicity of Fog Computing.

After having formalized a resource management criterion and optimization tools

for its maximization, this thesis proposed middlewares as valuable solutions for deal-

ing with the complexity of Fog Computing management. Within this context, this

Thesis presented the HORNET solution in Chapter 7 for enabling holistic manage-

ment of Fog Computing. More specifically, HORNET leverages VoI both for services

and network management by adopting a Multi-Layer Routing approach that con-

siders multiple routing options to address different services’ requirements.

Then, this thesis investigated the application of Fog Computing middlewares

for dealing with Humanitarian and Disaster Relief (HADR) operations in Smart

Cities. To this end, Chapter 8 presented the extended architecture of the SPF

middleware that would enable easier integration with civilian IoT assets already

presented in Smart Cities and military assets appositely deployed for the operations.

The extended architecture is also to facilitate the management of applications and
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services by HADR operators that need a software interface to monitor and interact

in the ongoing operations.

Next, Chapter 9 presented ACESO, a proof of concept VoI middleware designed

to support HADR operations in smart cities. ACESO implements a breaking glass

policy that activates in emergency conditions, relaxing access control on resource uti-

lization and enabling resilient communications. Furthermore, this Chapter presented

and extended the VoI model incorporating the concepts of domains of interest and

roles for supporting context- and location-aware services. The extended VoI model

is evaluated within the Phileas simulator over a fictional HADR scenario involving

multiple HADR teams with different roles.

On the whole, the application of VoI methodologies and tools into the design of

Fog and Edge Computing middlewares delivered promising results. The researches

illustrated in this thesis present novelties over the state of-the-art, as they address

Fog and Edge Computing using the innovative criterion of VoI. Moreover, the pre-

sented efforts aim to give a comprehensive overview of the research on VoI from its

formulation to its application in the design of value-based based Smart City mid-

dlewares. In addition, this thesis provides a step forward into the application of Fog

and Edge Computing solutions to appealing scenarios such as HADR operations.

Finally, the results achieved during this thesis demonstrated the soundness of the

illustrated approaches, thus motivating further research into the adoption of these

methodologies.

Future works will further investigate the topics presented during this thesis with

the objective of improving the self-learning capabilities of the proposed middlewares.

To this end, a future research direction is to compare different DRL algorithms

in solving the VoI allocation problem. Finally, another research direction is to

investigate service scalability at the device level for enabling elastic management of

resources at the edge side of the network. Both are interesting research directions

that complement the efforts presented in this thesis.

Concluding, this thesis summarized part of my research efforts achieved dur-

ing PhD’s program at the Department of Engineering of the University of Ferrara.

During this program, I was part of the Distributed Systems Research Group under

the supervision of my tutor Prof. Cesare Stefanelli and my co-tutor Prof. Mauro

Tortonesi.
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