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ABSTRACT Wearable devices are commonly used to monitor human movement since motor activity is a
fundamental element in all phases of a person’s life. Patients with motor disorders need to be monitored for
a prolonged period and the battery life can be a limit for such a goal. Here the technique of harvesting energy
from body heat to supply energy to wearable devices is investigated. A commercial flexible thermoelectric
generator, equipped with an accelerometer, is placed on the lower leg above the ankle. The accelerometer
serves to detect diverse motor activities carried out by ten students of VSB-Technical University of Ostrava
involved in the execution of two tasks. To summarize, the motor activities analyzed in the proposed work
are: ‘‘Sit’’, ‘‘Walk’’, ‘‘Rest’’, ‘‘Go biking’’, ‘‘Rest after biking’’, and ‘‘Go down and up the stairs’’. The
maximum measured value of power density was 20.3 µW cm−2 for the ‘‘Walk’’ activity, corresponding
to a gradient of temperature between the hot and cold side of the thermocouples constituting the flexible
thermoelectric generator of 1.5 ◦C, while the minimum measured value of power density was 8.3 µW cm−2

for the ‘‘Sit’’ activity, corresponding to a gradient of temperature of 1.1 ◦C. Moreover, a mathematical model
was developed for the recognition of motor activities carried out during the execution of the experiments.
As a preliminary result, it is possible to state that semi-stationary parts of the signal generated by the
thermoelectric generator can be traced back to the performance of an activity.

INDEX TERMS Body heat, energy harvesting, flexible thermoelectric generator, LTCr 3108, portable data
acquisition unit, recognition of motor activities, skin temperature, Tegway Co. Ltd, wearable device.

I. INTRODUCTION
Since the beginning of the 2000s, wearables have been
considered reliable tools for recording data on the health
status of human beings [1], [2]. Wearables can be used
to monitor the movement of patients with motor disor-
ders, typical of various diseases such as Parkinson’s Disease
(PD), Spinal Muscular Atrophy (SMA), Cerebral Palsy (CP),
among others [3]–[5]. In a rehabilitation process, the record
and analysis of data related to kinematic parameters is a
useful methodology to understand the effectiveness of a
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care treatment. However, in the scientific community, physi-
cians and researchers are discussing data discrepancy of a
patient’s motor skills measured while users are performing
tests in medical laboratories compared to when they are
performing common daily activities at home. Laboratory
measurements are carried out in an artificial environment
and last for few minutes; conversely, while performing daily
activities, the patient makes more diverse tasks than those
performed in a laboratory, so data measured by a physi-
cian may be inaccurate and may not properly reflect the
patient’s real health [6]. As result, it would be more useful
to measure people’s motor skills, ideally for an unlimited
period.
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The only possible way to measure kinematic parameters in
an unstructured environment for an extensive time is to use
wearables: they are low-cost, non-invasive, lightweight, and
guarantee comfortability. A wearable device can sense physi-
ological data, extract relevant information, and communicate
the outcome via a wireless interface [7].

Battery capacity limits the device operating time. Increas-
ing the mass of the active materials in the battery allows a
longer device operating time, but its size and weight will
increase at the expense of the fit of device. Thus, the challenge
for all developers around the world is to provide wearables
that work as long as possible or that do not need to be
recharged. Indeed, for the continuous monitoring of data
related to human movement, there is an absolute need of
energy harvesting solutions to extend the operating time of
a wearable for many hours or days.

A conceivable way to resolve this issue is to harvest
the energy generated by the human body. The potential
energy sources of the body include kinetic energy through
the movements of body joints and thermal energy in the
form of heat exchanged between the body and the envi-
ronment [8], [9]. The kinetic energy source only exists if
the body is in motion, while the thermal energy is always
present because the dissipation of body heat is a continuous
physical phenomenon. About the literature on human body
energy harvesting, the value of power density generated by
a thermoelectric harvester is approximately 30 µW cm−2,
while the value generated by a kinetic one does not exceed
5 µW cm−2 [10]. Therefore, it seems appropriate to focus
the proposed research on techniques for harvesting the body’s
thermal rather than biomechanical energy.

A. THERMOELECTRIC GENERATOR
Fig. 1 shows a schematic of a thermal circuit where the load
is represented by a ThermoElectric Generator (TEG). The
equivalent electrical circuit for the TEG is shown in the red
dashed box of Fig. 1. The TEG is the device commonly used
to transduce thermal energy into electricity by exploiting the
Seebeck effect, for which a voltage difference is generated
when a temperature difference appears between the two ends
of a material, e.g., metal or semiconductor [11], [12]. A TEG
is made up of multiple thermocouples (TCs), which are usu-
ally composed by p- and n-type semiconducting leg materials
electrically connected in series through metal electrodes, and
commonly encapsulated between two ceramic plates [13].

While considering the thermal circuit of Fig. 1, the rate of
heat transfer across the TEG, Q̇, can be estimated as:

Q̇ =
1T ′

RTEG
(1)

where1T ′ = T ′H −T
′
C is the temperature difference between

the hot and cold sides of the TCs, and RTEG is the thermal
resistance of the TEG. In the electrical circuit, the TEG is rep-
resented by a voltage generator modelled as an ideal voltage
source in series with a resistor, which is the internal electrical
resistance, R. The value of Seebeck coefficient, α, describes

FIGURE 1. Schematic of a thermal circuit where the TEG is the thermal
load. The red dashed box shows the TEG equivalent electrical circuit.

the voltage difference generated from the temperature dif-
ference across the TCs. Since the TCs are made by p- and
n-type semiconducting legs, the TEG Seebeck coefficient,
αpn = (αp − αn), results as it follows:

αpn = −
1V
1T ′

(2)

The thermoelectromotive force of the voltage generator, E,
depends on the temperature difference across the TCs of the
TEG,1T ′, on the total number of TCs constituting the TEG,
N , and on the Seebeck coefficient, αpn, [14]:

E = Nαpn1T ′ (3)

TEGs are used in many applications ranging from med-
ical and wearable devices to many different systems for the
industry [14]. About the industry, the currentmain application
for thermal energy harvesting regards the automotive sector.
TEGs are placed inside the vehicle to harvest the heat wasted
by exhaust gas to improve engine performance and decrease
the fuel energy costs [15]; waterproof TEGs can also be
implemented in ships or submarines to generate electrical
power from the energy densities of hydrothermal fluids in
the deep-sea [16]. In addition, TEGs are being used to supply
energy to wireless sensor nodes for the application field of the
Internet of Things. TEG-based architectures are implemented
in sensor networks to solve the issue of prolonged operating
time for the continuous transmission of data regarding tem-
perature, humidity, pollution, and surveillance management,
among others [17].

There are three main approaches to develop a TEG, which
depend on the arrangement of the p- and n-type legs and
on the direction of the heat flow through the TEG. These
approaches include: (i) lateral heat flow and lateral arrange-
ment, (ii) vertical heat flow and vertical arrangement, and
(iii) vertical heat flow and lateral arrangement [14]. About
applications on thermal energy harvesting from the heat dissi-
pated by the human body, the main approaches are the second
and the third. Using the first approach, the conduction of heat
takes places between different parts of the body, and not from
the body to the environment [18].

Nowadays for applications concerning body heat energy
harvesting, a common rigid TEG is usually replaced by
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a flexible-TEG (F-TEG), since the irregular shape of the
body does not allow proper contact between the skin and
the rigid TEG. Fig. 2 shows the difference between a rigid
TEG and an F-TEG, for which the rigid ceramic substrates
disappear, and the air gap between the p- and n-type legs is
filled by a polymeric matrix, which guarantees flexibility and
robustness to the entire structure.

FIGURE 2. Cross-sectional views of a rigid and flexible TEG. For simplicity,
the TEGs consist of a single TC.

The Carnot cycle defines an upper limit on how the heat
dissipated into the environment can be harvested. This limit
is defined by the Carnot efficiency, ηc =

TH−TC
TH

. Regarding
the body heat energy harvesting process, assuming the body
temperature, TH = 37 ◦C, and air temperature, TC = 21 ◦C,
the resulting efficiency is approximately 4.3% [19]. However,
the maximum conversion efficiency of the TEG can be esti-
mated as a fraction of ηc, as it follows:

ηmax = ηc

√
1+ ZTpn − 1√
1+ ZTpn +

TC
TH

(4)

where ZT pn is the dimensionless figure-of-merit of the p- and
n-type TC, and it is defined as [14]:

ZT pn =
α2pn[(

ρpκp
)0.5
+ (ρnκn)

0.5
]2 T (5)

where T is the absolute temperature of the p- and n-type TC,
ρ is the electrical resistivity and κ is the thermal conductivity
of the p- and n-type legs, respectively. For a TEG module
made from a specific number, N , of TCs, the whole figure-
of-merit is given by [14]:

ZT TEG =
(
Nαpn

)2 RTEG
R

T (6)

where R is the internal electrical resistance and RTEG the
thermal resistance of the TEG.

Many factors affect the performance of a body heat energy
harvesting system, such as the physical characteristics of
living tissues, physiological state of the body, environmen-
tal conditions, as well as thermal and electrical features
of the thermoelectric materials employed for developing
a TEG [20], [21].

While harvesting the energy from the body heat dissipated
in the environment, the amount of voltage generated by the
TEG is in the order of millivolts, which is less than the
value of the input voltage required by commercial off-the-
shelf (COTS) components to operate. Thus, it is mandatory to
use a power management circuit to increase the TEG voltage

output to a required value, which is in order of magnitude of
volts. This will further decrease the efficiency of the energy
harvesting process, so that the amount of thermal energy
collected on the bodily surfaces might be not enough to power
a wearable device continuously.

The challenge of this work concerns the use of a TEG to
understand if the body heat energy, harvested while users
perform motor activities, is enough to power sensors used
in monitoring people’s movement for an unlimited period.
Moreover, an analysis on the pattern of the TEG output
signals is carried out to correlate those signals with the diverse
performance of human activities. In such a way, TEGs may
be used to distinguish movements performed in common life
scenarios. In the scientific literature, there is a lack of studies
aimed at using thermoelectric energy harvesters to detect
people’s motor activities. The proposed work addresses this
topic at a preliminary stage.

In the following paragraphs, first the materials chosen
for the execution of the tests and the experimental setup
will be introduced. Then, the procedure for carrying out
the experiment and the techniques used for data processing
will be explained. The collected data will be shown in the
‘‘Results’’ section and analyzed in the ‘‘Discussion’’ section.
Finally, the ‘‘Conclusions’’ section emphasizes the results of
the work.

II. MATERIALS AND METHODS
To monitor the thermoelectromotive force, i.e., Seebeck volt-
age, generated while people were moving and to detect
diverse human activities, it was necessary to combine an
F-TEG, suitable for wearing, and an accelerometer useful
for monitoring human motor activities. A data acquisition
unit (DAU) was also built for saving all the measured signals.
In the aftermath, data were processed offline through the
MATLABr SW environment.
Fig. 3 shows the wearable system used by users during the

execution of diverse activities. An F-TEG and an accelerom-
eter were placed on both the legs, above the ankle. Con-
nection wires, of approximately 110 cm, bridge the output
signals of the F-TEG and accelerometer to the input pins of
the DAU. To reduce discomfort while performing the activi-
ties, a support Velcro belt was used to place the DAU at the
level of the waist. (see Supplementary Material Video).

A. HARDWARE
The circuit schematic of the proposed wearable measurement
system is shown in Fig. 1S (see Supplementary Material).

1) F-TEG
The fully-flexible thermoelectric device is the F-TEG devel-
oped by Tegway Co. Ltd. Company, South Korea. It is
the world-first ‘‘stand-alone’’ high performance F-TEG,
and it is the output of the research effort conducted by
the Korea Advanced Institute of Science and Technology
(KAIST). The information related to the manufacturing pro-
cess and its characterization, can be found in [22]–[24].
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FIGURE 3. Wearable system used by users.

The F-TEG module encapsulates 170 couples of p- and
n-type legs (p-type: Bi0.3Sb1.7Te3, n-type: Bi2Se0.3Te2.7).
The p- and n-type legs are dices with dimensions:
1.6 mm× 1.6 mm× 2.0 mm. Fig. 4 shows the hot side of the
F-TEG, which faces the human skin (red dashed box), while
the cold side is facing the environment (blue dashed box).
The F-TEG is worn above the ankle and the proper contact
with the skin is guaranteed by Velcro straps. The F-TEG is
equipped with a superabsorbent polymer-based heatsink that
promotes liquid evaporation to allow the F-TEG to obtain a
larger temperature difference between its two sides, which
leads to higher power generation. When combining the use
of the heatsink with the F-TEG, the heatsink needs to be wet
and squeezed before its placement on the F-TEG. The same
F-TEG has already been used to supply energy for performing
a wearable electrocardiography [25].

FIGURE 4. The F-TEG device, and the F-TEG worn above the ankle.

Compared to a common rigid TEG, the F-TEG eliminates
the ceramic substrate plates, while filling the empty space
between the p- and n-type legs with a proprietary polymer
material, i.e. polyurethane filler foam [26]. The adhesive
strength between the foam and the p- and n-type legs, as well
as between the foam and the copper connections is high
enough to make the F-TEG reliable to be used on the curved
shapes of the body [26].

While considering the thermal resistance of the F-TEG,
RTEG, it is modelled by the parallel combination of the ther-
mal resistance of the p- and n-type legs, Rle, with the thermal

resistance of the filler, Rfi, which can be estimated as [27]:

κRle =
h

2Nw2

1
κle

(7)

κRfi =
h

A− 2Nw2

1
κfi

(8)

where A is the entire area of the F-TEG, h is the height and
w the width of a leg, and κle, κfi are the thermal conductivity
of the legs and the filler, respectively. The value of κle is the
average of p-type, κp, and n-type, κn, thermal conductivity
values.

The internal electrical resistance of the F-TEG, R, can
be calculated as the sum of the electrical resistances of the
p- and n-type legs, and the electrical resistance of the copper
contacts that connect each leg of the F-TEG [14]:

R = N
(
hpρp
Ap
+
hnρn
An
+ 2

hCuρCu
ACu

)
(9)

where hp = hn are the lengths of each leg crossed by the heat
flow, Ap = An are the cross-sectional areas of the legs, hCu
is the length and ACu the cross-sectional area of each contact,
and ρp, ρn, ρCu are the electrical resistivity of the elements.
Fig. 5 shows the electrical circuit for the measurement

of the voltage output, VL, across a resistor load, RL. The
op-amp serves to amplify the voltage output signal tomeet the
requirements given by the input voltage range of the analog-
to-digital converter of the DAU. The input impedance of the
op-amp, Zin = 50 k�, is much larger than RL, so it is
negligible for the calculation of VL.

FIGURE 5. Electrical circuit for the measurement of the F-TEG voltage
output across a resistor load.

While measuring VL, it is important to consider the electri-
cal resistances of the copper connection wires, Rwire, because
the wires are 110 cm long, and their resulting resistance value
differs by only an order of magnitude with respect to the value
of R, so as Rwire can distort the effectivemeasured values, VL,
which is given by the following equation:

VL= E
RL

(RL + R′)
(10)

where R′ = R + 2Rwire, (about values for the calculation of
thermal and electrical resistances, see Table IS in Supplemen-
tary Material).

According to the maximum power transfer theorem,
the optimum value for the electrical resistance load,
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RL, should match the value of R′, (RL = R′), in order to
obtain the maximum value of power generated by the F-TEG:

PLMAX =
E2

4R′
(11)

However, since the F-TEG is a non-linear device, the value
of RL is shifted to a larger resistance value, which is usually
estimated to be ∼1.4 R′ [28], but it can also reach the value
of ∼1.8 R′ [29]. For that reason, the formula for the calcula-
tion of the power generated by the F-TEG is as follows:

PL =
V2
L

RL
= E2 RL

(RL + R′)2
(12)

While performing the experiments, a 3.3 � resistor load,
RL, was connected to the ends of the F-TEG. This value was
carefully established in a previous work done by our research
group [30]. The device and thermoelectric parameters are
summarized in Table 1.

TABLE 1. F-TEG – device and thermoelectric parameters.

2) ACCELEROMETER
The accelerometer chosen for this work is the ADXL362,
Analog Devices. It is a micropower, 3-axis, digital output
inertial sensor that communicates with the DAU via an
SPI interface.

The placement of the accelerometer above the ankle guar-
antees the calculation of the frequency value of the performed
activity. We selected the data in the sagittal plane of the
3D-accelerometer. To obtain frequency-based features, Fast
Fourier Transform (FFT) was applied to calculate the result-
ing frequency value for each activity performed.

About rehabilitation purposes, the inertial sensor mounted
on the lower leg returns the most accurate information for
estimating spatial and temporal parameters of normal and
impaired gaits [31], [32].

3) DATA ACQUISITION UNIT – DAU
Acquisition of data was performed by using an Arduino Uno
board equippedwith anAdafruit data logging shield. The data
logging shield serves to enable the saving of the measured
data on an SD card via SPI digital communication. A case

with 6 AA batteries was attached to the DAU as well, in order
to provide power to the Arduino with a voltage of 9 V.

Each leg of the subject was equipped with the F-TEG,
the output of which was loaded with a 3.3 � resistor. The
voltage difference on the load was then amplified by an
LM386 low voltage amplifier to meet the requirement given
by the range scale of the analog-to-digital converter of the
DAU. The internal gain of the amplifier is set by default
to 20 and can only be increased by adding an external resistor.
For the purpose of this experiment, this default amplification
value was used. The output of LM386 is biased to half the
supply voltage. The supply voltage from the Arduino was
supposed to be 5V, but whenmeasuredwith a voltmeter it was
closer to 4.36 V. The lower voltage decreases the resolution
of the ADC. The ADC on the Arduino input pins is 10-bit,
which should provide a resolution of 4.9 mV if the signal
ranges from 0 to 5 V. With the gain of 20 used in this circuit,
the resulting data will have a resolution of 0.245 mV. This
means that the maximal value of the TEG signal before ADC
saturation should be 2.5 V divided by a gain of 20. That would
be 125 mV. However, with the supply closer to 4.36 V, the
maximal value read from the TEG device is about 93 mV.
The amplification circuit with LM386 is soldered on the data
logging shield.

The device can be started by plugging in the battery
power supply. Arduino first initializes the SPI bus, sets the
accelerometers for the ±4 g range and then starts the mea-
surement. In each loop of the program, all the measured
data were saved as one line of a comma-separated value file
created on the SD card. The collected data include the x, y,
z axes of both accelerometers, voltages measured from the
F-TEGs and time since the start of the measurement. Each
start of the device creates a new numbered file on the SD card.
The data collection sampling frequency was set to 19 Hz.

4) TESTING THE F-TEG AS POWER SOURCE TO SUPPLY
ENERGY TO AN ANALOG ACCELEROMETER
To test the performance of F-TEG as a power source, an ana-
log accelerometer was chosen as the sensor to be powered.

An analog sensor has been selected instead of the
ADXL362 digital one since the latter must be connected to a
microcontroller through a serial interface, in which a voltage
passage occurs. Thus, to be sure to get the only voltage
source, the voltage given by the F-TEG, the FXLN8361Q
analog accelerometer was chosen to perform this experiment.
The supply voltage for this sensor is from 1.71 to 3.6 V, with
a current consumption of 180 µA.

The F-TEG voltage output is stepped up through the
LTC3108 DC-DC converter, which uses a small transformer
to provide a complete power management solution. The
FXLN8361Q analog accelerometer is the load of the circuit.
The hardware schematic is shown in Fig. 2S (see Supplemen-
tary Material).

The voltage output of the LTC3108, VOUT, charges
a 660 µF capacitor to 3.3 V. Once the capacitor has been
charged to this voltage value, the LTC3108 enables the
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charging, to 5V, of an auxiliary 100 µF capacitor, which
is connected between the VSTORE pin of the DC-DC con-
verter and the ground. The accelerometer was then manually
switched on when both capacitors were fully charged.

B. THERMAL MEASUREMENTS
Fig. 6 highlights the temperature gradients of the thermal
system, which consists of the human body, the F-TEG, and
the air. In the same way as Fig. 1,1T = TH −TC is the tem-
perature difference between the body and the environment,
while1T ′ = T ′H −T

′
C is the temperature difference between

the hot and the cold side of the TCs, which form the F-TEG.

FIGURE 6. Temperature gradients of thermal system, and positions where
the thermistor probes are placed to measure 1Tmeas.

Once the voltage value VL is measured across the load,
the value of 1T ′ is easily calculated through Eqs. (3)
and (10). However, there is a difference between the value
of 1T ′ and the value of temperature difference across the
F-TEG, 1Tmeas, which is experimentally measurable with
a multichannel recording system composed by integrated
thermistor probes that can be directly placed on the hot and
cold side of the F-TEG.

To monitor the value of 1Tmeas, the temperature of the
hot side of the F-TEG is measured by placing a thermistor
probe at the interface between the skin and the F-TEG, while
the temperature of the cold side is measured with another
thermistor probe placed between the F-TEG and the heatsink.
The integrated thermistor probes are the NTC 10K3MBD1,
having time response of 400 ms and resolution ±0.2 ◦C in
the temperature range from 0 ◦C to+70 ◦C. The temperature
measurement system used to monitor the value of 1Tmeas is
custom made and it has already been used by our research
group in [33]–[35].

Temperature measurements of the skin and the environ-
ment were carried out with a SkyRC ITP380 Thermometer;
it is equipped with a high-speed infrared sensor: precision of
±0.5 ◦C in the temperature range from 0 to 60 ◦C. Temper-
ature values of both the left and right leg of each participant
where the F-TEG is worn were measured at the beginning
and the end of the experiment. These measurements serve to
verify the decrease of the temperature on the skin due to the
direction of the heat transfer from the core to the environment,
which takes place perpendicular to the surface of the body.

C. PROCEDURE AND DATA PROCESSING
Two structured scenarios were investigated in the proposed
experiment: (1) a task to be carried out solely into a laboratory
environment (L-task), and (2) a task to be carried out both
in the laboratory, corridor, and stairs of the VSB-Technical
University of Ostrava (LCS-task). Each task is divided into
diverse motor activities, as it follows.

Task in laboratory (L-task):
• Activity 1. Begin; to sit.
• Activity 2. Walk slowly.
• Activity 3. Standing: first rest.
• Activity 4. Walk at preferred speed.
• Activity 5. Standing: second rest.
• Activity 6. Walk quickly.
• Activity 7. Standing: third rest.
• Activity 8. Walking to the rhythm of 120 bpm.
• Activity 9. Standing: fourth rest.
• Activity 10. Go biking to the rhythm of 60-bpm.
• Activity 11. On the exercise bike: fifth rest.
• Activity 12. Go biking to the rhythm of 90-bpm.
• Activity 13. On the exercise bike: sixth rest.
• Activity 14. Go biking to the rhythm of 120-bpm.
• Activity 15. On the exercise bike: seventh rest.
• Activity 16. End; to sit.
Task in laboratory, corridor and stairs (LCS-task):
• Activity 1. Begin; to sit in laboratory.
• Activity 2. First walk in the corridor.
• Activity 3. Standing in the corridor: first rest.
• Activity 4. Second walk in the corridor.
• Activity 5. Standing in the 3rd floor of the stairs: second
rest.

• Activity 6. Going downstairs.
• Activity 7. Standing in the 1st floor of the stairs: third
rest.

• Activity 8. Going upstairs.
• Activity 9. Standing in the 3rd floor of the stairs: fourth
rest.

• Activity 10. End; to sit in laboratory.
The raw data of the accelerometers and F-TEGs were

stored on an SD card as.csv files. The data processing was
done offline when users concluded performing the task,
whether it was an L- or LCS-task.

F-TEG output data, i.e., voltage signals VL, were smoothed
by a third-order, low-pass, Butterworth filter with a cut-off
frequency of 8 Hz.
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Then, each signal was manually segmented to differenti-
ate the diverse motor activities; indeed, voltage values are
increasing or decreasing over the time based on the activity
performed.

In order to recognize the performance of different motor
activities, the computing of a mathematical method for the
detection of semi-stationary parts of the signal can be useful.
The recognition of an activity can be detected if the signal
shape does not change excessively over the time. Conversely,
if the signal amplitude quickly changes, it will mean that a
change from the previous activity has occurred.

The calculation of the signal gradient is a technique to
separate the stationary and dynamic parts of a signal. The
gradient represents the direction of a slope, and it is a dif-
ferential operator. The result of the calculated gradient is a
vector field, which expresses the direction and magnitude of
the highest change of the scalar field.

While analyzing the F-TEG voltage output signal, station-
ary parts will have an insignificant down to zero gradient
level. Conversely, for dynamic parts of the signal, the calcu-
lated gradient level will be large. Therefore, it is necessary
to set a gradient threshold to determine the aforementioned
signal parts. To do it, the global maximum of the gradient,
Gmax, is computed. Moreover, the square value of the signal
gradient, G2, is calculated because it ensures the emphasis of
the information on the highest gradient, as opposed to the low
values of the gradient that are suppressed. The formula used
to recognize, or not, an activity is as follows:

G2 > xGmax ⇒ activity not recognized (13)

G2
≤ xGmax ⇒ recognized activity (14)

where x is the percentage of the gradient maxima to compute
the threshold.

III. RESULTS
Four participants performed the L-task (age: 22–25 years,
body weight: 52–72 kg, height: 160–176 cm; three
females), and six participants performed the LCS-task (age:
22–25 years, body weight: 51–88 kg, height: 160–188 cm;
five females). All of them are students of VSB-Technical
University of Ostrava. They have no motor disorders and
before starting the experiment they gave written informed
consent for carrying out the experiment.

Based on the physical characteristics of the participants,
the body mass index was calculated (BMI; in kg m−2); the
BMI value indicates if the weight is healthy [36]. Signif-
icant subcutaneous fat deposits counteract the core-to-skin
heat dissipation, resulting in less energy harvested by the
F-TEG [37]. Anyway, participants were in the healthy weight
range because all calculated BMI values are between 18.5 and
24.9 (Tables 2S and 3S in Supplementary Material) [38].

Figs. 7 and 8 show the patterns of the power generated
by the F-TEG (black line), the accelerometer magnitude
(grey line) that indicates the difference between static and
dynamic activities and the total energy harvested by the

F-TEG (red line). About the accelerometer magnitude sig-
nal, the unit of measurement is not displayed because such
a signal was only used to distinguish the diverse activities
carried out in the experiment, so that to help for the signal
segmentation in order to create data groups for comparing the
different activities.

The values of power generated by the F-TEG were calcu-
lated with Eq. (12) by using the measured voltage signals VL,
while values of the energy harvested were computed through
cumulative trapezoidal numerical integration, i.e. cumtrapz
MATLABr function. Fig. 7 shows the signals related to the
right leg of student four, while Fig. 8 to the right leg of
student six. The pattern of signals in these figures are like
those obtained for all students. In Supplementary Materi-
als, the F-TEG voltage signals of each student are shown
in Figs 3S, 4S.

Tables 2 and 3 list the average and standard deviation
values of power, PL, and temperature difference across the
TCs of the F-TEG, 1T ′ (calculated using Eqs. 9 and 3); the
total energy harvested for each student, and the time taken
to perform both the L-and LCS-task. The maximum average
value of PL was approximately 1.5 mW, corresponding to
2 J of energy harvested in about 22 min of activity, for an
average value of 1T ′ of 1.95 K (student three – right leg,
L-task). Conversely, the calculated minimum value of PL
was approximately 0.5 mW, coinciding to 0.5 J of energy
harvested in about 15 min of activity, for an average value
of 1T ′ equals to 1.15 K (student one – left leg, LCS-task).

In Tables 2 and 3, the letter ‘‘L’’ indicates the left leg and
the letter ‘‘R’’ indicates the right leg.

TABLE 2. L-task, calculated values for all students.

TABLE 3. LCS-task, calculated values for all students.

Since the average values in Tables 2 and 3 were calculated
considering the entire duration of tasks, the resulting standard
deviation values are large because the activities carried out in
the experiments differ between static and motion activities.
For instance, the values generated by the F-TEG while the
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FIGURE 7. Pattern of generated F-TEG voltage (black line), accelerometer magnitude (grey line) and total energy
harvested (red line) L-task.

FIGURE 8. Pattern of generated F-TEG voltage (black line), accelerometer magnitude (grey line) and total energy
harvested (red line) LCS-task.

student is sitting are lower than the values generated by
the F-TEG when the same student is walking. To compare
average and standard deviation values of a single motor

activity carried out by each student, signal segmentation was
performed to create the data groups. The dotted blue lines
in Figs. 7 and 8 show the points used for signal segmentation,
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and the activities that form the data group are labeled with
numbers. For the L-task, the data groups are: ‘‘Sit’’, ‘‘Walk’’,
‘‘Rest after walking’’, ‘‘Go biking’’ and ‘‘Rest after biking’’.
About the LCS-task, the data groups are: ‘‘Sit’’, ‘‘Walk’’, ‘‘Go
down and up the stairs’’ and ‘‘Rest’’ (see Tables 4S-8S and
Tables IXS-XIIS in Supplementary Materials for all results).

For each data group, to graphically compare the multiple
pattern signals between them, we use the ‘shadedErrorBar’
MATLABr function that computes data over the same
period. About the L-task groups, the period for ‘‘Sit’’ is 210 s;
for ‘‘Walk’’ is 90 s; for ‘‘Rest after walking’’ and ‘‘Rest after
biking’’ is 15 s, and for ‘‘Go biking’’ is 50 s. About the groups
of LCS-task, the period for ‘‘Sit’’ is 180 s; for ‘‘Walk’’ is
45 s; for ‘‘Go down and up the stairs’’ is 25 s, and for ‘‘Rest’’
is 20 s.

Thus, Figs. 9 and 10 show the comparison of average and
standard deviation values of the voltage signal, VL, for each
data group of both the L-task and LCS- task (central lines are
the mean voltage values and the areas around them represent
the standard deviation values).

Fig. 9a shows the signals related to the two activities of
the ‘‘Sit’’ group; the blue curve represents the beginning, and
the black curve is the end of the task. It is clear to note that
the blue curve starts from a high value of voltage (95 mV),
since it is the exact moment in which the user wears the F-
TEG, and then quickly drops to an almost constant value like
the value of the black curve: between 35 and 45 mV. Anyhow,
the black track shows a larger value of standard deviation than
the blue one. This is because the black signals were acquired
almost 20minutes later than the blue ones, and the differences
in the voltage values are higher at the end rather than at the
beginning of the task.

Fig. 9b shows the signals related to the activities of
the ‘‘Walk’’ group. Here, the participants were walking
with diverse speed, such as slowly, at a preferred walking
speed, quickly and following the beat of a metronome set
at 120 bpm. As a result, it is easy to note that after 80 s
of activity, all mean values converge to a similar value of
approximately 60 mV. This means that the frequency of the
activity does not affect the value of the voltage generated by
the F-TEG. Again, while looking at these signals in the first
twenty seconds, the blue curve has a lower mean value than
others. This is because the blue curve, which relates to the
slowwalking, starts after a long period of inactivity, i.e. ‘‘Sit’’
(∼4 min), rather than the other walking activities that start
after ‘‘Rest’’ (∼30 s).

Fig. 9c shows signals related to the activities of the
‘‘Go biking’’ group. Participants were biking following three
rhythms: 60 bpm, 90 bpm and 120 bpm, which were given by
a metronome. After 50 s, the mean value of the three curves
is approximately 50 mV. Here, the trend of the blue curve,
i.e. biking at 60 bpm, differs from the others; this is because
it starts after a walking activity where the voltage generated
by the F-TEG was the highest measured one. Conversely,
the mean values of the black and red curves at the beginning
of the activity are almost the same because they both start

FIGURE 9. L-task – comparison of voltage signals, VL, generated by the
F-TEG during the following activities: ‘‘Sit’’ (a); ‘‘Walk’’ (b); ‘‘Go biking’’
(c); ‘‘Rest’’ (d); ‘‘Rest after biking’’ (e).

after a biking activity. However, the red curve, i.e. biking at
120 bpm, reaches a higher value than the other two because
biking in a stationary position at a larger speed generates a
higher heat flux exchange in respect to the environment.
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FIGURE 10. LCS-task – comparison of voltage signals, VL, generated by
the F-TEG during the following activities: ‘‘Sit’’ (a); ‘‘Walk’’ (b); ‘‘Go down
and up the stairs’’ (c); ‘‘Rest’’ (d).

Figs. 9d and 9e compare the curve trends of the activities of
two ‘‘Rest’’ groups: ‘‘Rest after walking’’ (Fig. 9d) and ‘‘Rest

after biking’’ (Fig. 9e). In both graphs, the plotted mean value
of voltages decrease by approximately 5 mV; for ‘‘Rest after
walking’’ from 65 to 60 mV, while for ‘‘Rest after biking’’
from 50 to 45 mV. This difference in values depends on the
fact that when walking, the F-TEG generates voltage values
larger than those generated while users were biking.

Fig. 10a shows the signals related to the activities of the
‘‘Sit’’ group. As already observed in Fig. 9a, the mean values
of the signals of the blue and black curves of Fig. 10a are
almost the same at the end of the activity: in the range between
30 and 40 mV. Again, it is easy to note that the blue curve
is the beginning of the task, since its average starting value
is 95 mV without any standard deviation. The signals where
the standard deviation is not present indicates the exact time
when participants wear the F-TEG.

Fig. 10b shows the two curves of the ‘‘Walk’’ group: the
blue one represents the performance of the former activity,
while the black is the latter one. Here, the initial mean value
of voltage for the blue curve is lower than the mean value of
the black one. It is because the first walking activity was per-
formed after the sitting activity, which lasts for approximately
4 min, while the second walking activity was carried out
after resting for approximately 1 min. Anyway, both curves
in Fig. 10b end at a mean value of approximately 65 mV.

Fig 10c shows the curves of the activities of the ‘‘Go down
and up the stairs’’ group. The going downstairs activity is the
blue curve while going upstairs is the black one. The mean
values of both voltage signals are approximately 60 mV at
the end of the activity. However, the black area representing
the standard deviation of the signal generated when users
were going upstairs is larger than the blue area. It is due to
the temperature measured in the stairs being lower than the
temperature measured in the corridor, and when participants
started to go upstairs, they were on the stairs for a longer time
compared to when they started to go downstairs.

Fig. 10d shows the curves related to the activities of the
‘‘Rest’’ data group. The blue curve represents the activity
of having a rest in the corridor while others are referring to
having a rest on the stairs. Indeed, the mean value of the blue
signal is the highest at the beginning, but it ends as the lowest.
It is due to the temperature in the stairs being lower than
the temperature in the corridor, so that the voltage signals
measured while participants were having rest in the stairs
decreased with a lower slope than the signals measured when
the participants were in the corridor. However, the ending
mean values for all signals are in the range from 55 to 60 mV
after 20 s of activity.

In Figs. 9 and 10, all the measured values for the voltage
output, VL, were approximately in the range between 35 to
95 mV. These values correspond to the gradient of tempera-
ture across the TCs, 1T ′, between 1.0 and 2.6 ◦C. However,
the thermal contacts at the skin/F-TEG and F-TEG/heatsink
interfaces cause a value of 1T ′ to be lower than the gra-
dient of temperature between the two sides of the F-TEG,
1Tmeas, which can be easily measured. By simultaneously
placing an integrated thermistor probe on the skin and one
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between the F-TEG and the heatsink, the value of1Tmeas was
measured when a user was sitting.

Table 4 shows the obtained result to compare the values
of 1T ′ and 1Tmeas.

TABLE 4. Values of measured temperature gradient 1Tmeas and voltage
VL to calculate the value of the ratio 1Tmeas/1T ′ .

From the result of Table 4, thermal contacts at the interfaces
cause a temperature drop of 2.58 times between the values
of 1Tmeas and 1T ′. Such a result is qualitatively shown
in Fig. 11, where the trend of the temperature profile from the
body to the environment is explained. As it is clearly visible
in Fig. 11, the human tissues act as an excellent heat insulator
and most of the temperature drop occurs at the skin/TEG
interface because of the large thermal contact resistance,
which is due to the rough surface of the skin [39], [40].

FIGURE 11. Temperature profile from the body to the environment.

Moreover, Table 5 and 6 summarize the temperature values
measured when participants carried out the L- and LCS-task,
respectively. The measured values refer to the temperatures
of the environment and the temperatures of the left and right
legs at the beginning and the end of both the tasks.

Regarding the laboratory temperatures for the L-task,
the values are about the same except for the third participant
(L-task) where it is 3 degrees lower than the other measured
values. For the LCS-task, the temperatures measured in the
laboratory are higher than those measured in the corridor and
stairs; the only exception regards the third participant where
the temperature of the corridor is higher than the temperature
measured in the laboratory.

While wearing the F-TEG, the value of the leg tempera-
ture decreases due to the transfer of the heat flow from the

TABLE 5. L-Task, measured temperatures for all students.

TABLE 6. LCS-Task, measured temperatures for all students.

skin surface to the environment. From the values of the leg
temperature measured at the beginning and the end of both
the tasks, the largest difference is approximately 5 ◦C for the
fifth participant (LCS-task), while the smallest is about 2 ◦C
for the fourth participant (L-task).

To recognize different motor activities, the calculation of
the signal gradient was the technique used to separate the sta-
tionary and dynamic parts of the F-TEGvoltage signal output.
A gradient threshold was set to determine insignificant down
to zero gradient levels (stationary parts of the signal) and large
gradient levels (dynamic parts of the signal). Stationary parts
were then defined as the recognized activities, while dynamic
parts as the activities not recognized. The threshold value
was set to 1% of the gradient maxima for both the L- and
LCS-tasks.

Fig. 12 shows the signals related to the right leg of student
four (L-task), while Fig. 13 relates to the right leg of student
six (LCS-task). As is clearly visible for the L-task, the rec-
ognized activities are much better defined than in the case of
the LCS-task. This could be due to the time of each performed
activity for LCS-task being shorter than the time of activities
of the L-task.
In Supplementary Materials, the F-TEG voltage sig-

nals of each student with the corresponding comparison
between the activity recognized and not recognised are shown
in Figs 5S and 6S.

Fig. 14 shows the result of the experiment where the
F-TEG was used as the power source to supply energy for
the FXLN8361Q analog accelerometer. The experimental
test was carried out in a laboratory of the VSB-Technical
University of Ostrava at a temperature of approximately
23.5 ◦C. While performing the ‘‘Go biking’’ activity at a
preferred speed, using an exercise bike, the user was wearing
the measurement system on the left leg over the ankle, and
the FXLN8361Q analog accelerometer was placed on a desk
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FIGURE 12. L-task – the top of the picture shows the calculated signal
gradient, while the bottom side shows the corresponding recognized
activities (red parts of the signal).

FIGURE 13. LCS-task – the top of the picture shows the calculated signal
gradient, while the bottom side shows the corresponding recognized
activities (red parts of the signal).

close to the user. According to the datasheet, the accelerom-
eter output on the z-axis for such a placement is 1 g.

As it clearly visible from Fig. 14, when VOUT reached
3.3 V, the voltage stored in the capacitor, VSTORE, started to
increase, getting to 5 V in approximately 350 s. Then, once
the switch was closed to supply energy to the load, the result-
ing operating time for the FXLN8361Q accelerometer was
approximately 25 s.

According to the FXLN8361Q datasheet, the voltage out-
put of the accelerometer had to be around 1 V, and the mea-
sured output was 1.1 V, thereby confirming its proper func-
tioning. Once the accelerometer was powered on, VSTORE
started to decrease. The accelerometer turned off when
VSTORE dropped to approximately 1.5 V. To allow VSTORE
to recharge the auxiliary capacitor to 5 V, the load should be
disconnected from the circuit.

IV. DISCUSSIONS
Nowadays, wearable devices are increasingly used for remote
health monitoring as they represent a technological break-
through in the diffusion of digital health. However, commer-
cially available wearables do not fully meet the users’ needs
in terms of battery life.

Harvesting the energy from the body heat dissipated in
the environment can be an interesting solution to prolong

FIGURE 14. Result of the experiment where the F-TEG was used as the
power source to supply energy for the FXLN8361Q analog accelerometer.

the operating time of wearables. In 1996, Thad Starner was
one of the first researchers to investigate the feasibility study
to develop a self-powered wearable computing device [19].
In the first decade of 2000s, Vladimir Leonov designed many
health-oriented wearable devices powered by TEGs [41].
These devices were bulky, which made them uncomfortable
to be worn by humans. Nowadays, the research effort in
this field focuses on developing wearable devices based on
flexible TEGs, which can easily follow the irregular shape of
the skin ensuring the comfort for the end user [24], [42].

In the proposed work, a wearable F-TEG was analyzed
in terms of harvesting the body heat energy and to prelim-
inarily understand if it is possible to distinguish between
different motor activities from the voltage signal generated by
the F-TEG.

Usually, wearable devices are placed on legs to detect
motor activities, so the F-TEG equipped with the accelerom-
eter was worn above the ankle.

Students of VSB-Technical University of Ostrava were
recruited to carry out two tasks with multiple motor activities:
the L-task in the laboratory, and the LCS-task between the
laboratory, the corridor and the stairs of the university.

Regarding the L-task, the acquired data were divided into
groups such as ‘‘Sit’’, ‘‘Walk’’, ‘‘Rest after walk’’, ‘‘Go
biking’’ and ‘‘Rest after biking’’, while for the LCS-task the
resulting groups were ‘‘Sit’’, ‘‘Walk’’, ‘‘Go down and up the
stairs’’ and ‘‘Rest’’.

Since there are redundant groups of activities between the
L- and LCS-tasks and the values of energy harvested by the
students do not differ much between them (see the results
in Tables 2 and 3), the data discussion concerns the following
set of motor activities:

• ‘‘Sit’’ (both L- and LCS-tasks).
• ‘‘Walk’’ (both L- and LCS-tasks).
• ‘‘Rest’’ (both L- and LCS-tasks).
• ‘‘Go biking’’ (only L-task).
• ‘‘Go down and up the stairs’’ (only LCS-tasks).

Out of ten recruited students, four carried out the L-tasks
and six the LCS-tasks. A total of twenty measurements were
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acquired since each student wore the F-TEG on both the left
and right leg.

The following Table 7 summarizes the obtained results
for the above set of motor activities, in terms of voltage,
rate of energy harvesting and power density. It shows the
mean values with the standard deviation for all the acquired
measurements except for the case of the third student per-
forming the L-task. For this case, the laboratory temperature
was 19 ◦C, a value far below the values of the laboratory
temperature measured while the other participants were per-
forming the L-task, so that it was excluded from the final
discussion.

TABLE 7. Values of temperature gradient, voltage, rate of energy
harvesting, power density and F-TEG conversion efficiency.

In Table 7, the mean value of the difference of temperature
across the TCs varies from 1.1 to 1.7 ◦C. While users were
performing the mentioned activities, the resulting voltage
values, generated by the F-TEG, were between 38.2 and
61.0 mV. These values correspond to a rate of energy harvest-
ing between 0.5 and 1.1 mJ s−1, and a power density in the
range from 8.3 to 21 µW cm−2. The conversion efficiency of
the F-TEG, η, is calculated as the ratio between the electrical
power output across the load and the rate of heat dissipated
from the body to the F-TEG. As result, the calculated value
of η is between 0.05% and 0.08%.

In comparison with the current scientific literature for
which flexible thermoelectric generators are used for har-
vesting the thermal energy on the body, the chosen F-TEG
is one of the most powerful devices. Indeed, by considering
the steady state of the ‘‘Sit’’ activity, the F-TEG generated
38.2 mV, and from Eq. (12) the corresponding power across
the load is approximately 440 µW. Such a value is compara-
ble to the result obtained by Nozariasbmarz, et al., in which
a TEG-based armband generated 340 µWof electrical power
to turn on an LED [39]. Under steady state conditions, Kim
et al. used the F-TEG for harvesting the body heat on the
forearm by generating a power density of 13 µW cm−2 [25].
This value is larger than the value obtained in our study (8.3
µW cm−2) because the skin temperature on the leg is lower
than that on the forearm.

The value of power density obtained for the ‘‘Rest’’ activity
is larger than the value of the ‘‘Sit’’ activity because it was

always after a ‘‘Walk’’ activity, and it had a much shorter
duration than ‘‘Sit’’. Therefore, we cannot state that the
‘‘Rest’’ activity was carried out under a steady state condition.
The same consideration is true for the ‘‘Rest after biking’’
activity. Here, the values are low (8.8 µW cm−2) because
the results obtained for the ‘‘Go biking’’ activity are low too:
10.2 µW cm−2.
The highest values generated by the F-TEG are for the

‘‘Walk’’ and ‘‘Go down& up the stairs’’ activities; the voltage
is 60 mV, the rate of energy harvesting 1.0 mJ s−1, and the
power density 20 µW cm−2, approximately.
The increase of the values generated by the F-TEG when

users were moving is due to an increased convective heat
transfer at the cold side of the F-TEG.
In the steady state position, the human body is subjected

to natural air convection, thus the main variable to deter-
mine the rate of energy harvesting is the temperature gra-
dient across the two sides of the F-TEG. Conversely, while
users are in motion, the speed of the air with respect to
the person generates a forced air convection, resulting in a
further variable that significantly affects the performance of
the F-TEG.
The measurements of skin temperature at the beginning

and the end of the experiments indicate that the heat transfer
lowers the skin temperature via convection. Such a result can
be interpreted in two different ways. Regarding the former,
the lowering of the temperature can cause a cold sensation
resulting in user discomfort. Regarding the latter, the F-TEG
can be used as a skin refrigerator for body thermoregulation,
which in some cases is a benefit for the humans [43]. Thus,
the F-TEG can be used not only to harvest the body heat
energy but also as a sensor to detect temperature and con-
vective heat flux variations [44].

An innovation regarding the use of the F-TEG can be the
correlation between the pattern of the signal output with the
recognition of diverse human motor activities. As is shown
in Figs. 12 and 13, the semi-stationary parts of the F-TEG
signal are recognized after a certain period of performing an
activity or when there is a significative change in the slope
of the curve. Our analysis shows that if the F-TEG amplitude
signal keeps an almost constant value, the activity performed
by the user is continuative and it does not change over time.
Again, in Figs. 12 and 13, the presence of single red dots
shows a variation in the signal direction, which means that
the motor activity changed at that precise instant. Indeed,
the single red dots are always followed by periods where the
activity is not recognized because the amplitude of the F-TEG
signal significantly varies over the time.

About testing the F-TEG as a direct power source to supply
energy to the FXLN8361Q accelerometer, the result shows
that the sensor was operating for only 25 s. This is due to the
power consumption value of the FXLN8361Q accelerometer,
which is approximately 500 µW.

The use of the F-TEG as an on-body energy harvester for
designing a self-powered system is only reasonable if the load
consumes less than 10 µW.
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V. CONCLUSION
In this work, a commercial F-TEG worn on the lower leg,
above the ankle, was used to harvest the body heat energy
while users were carrying out different motor activities in the
form of ‘‘Sit’’, ‘‘Walk’’, ‘‘Rest’’, ‘‘Go biking’’, ‘‘Rest after
biking’’, and ‘‘Go down and up the stairs’’. The maximum
measured value of power density was 20.3 µW cm−2 for the
‘‘Walk’’ activity, corresponding to a gradient of temperature
between the hot and cold side of the TCs constituting the
F-TEG of 1.5 ◦C, while the minimum measured value of
power density was 8.3 µW cm−2 for the ‘‘Sit’’ activity,
corresponding to a gradient of temperature of 1.1 ◦C.
The F-TEG was also used to try to power an analog

accelerometer, which consumes 500µW.As a result, the ana-
log accelerometer was operating for only 25 s, hence indi-
cating that the electrical load should consume much less for
the design of a wearable system powered solely by energy
generated by the F-TEG. Conversely, the use of the F-TEG is
highly advised to be used as a supplementary power source
to increase the operating time of wearables.

Regarding the analysis of the signal pattern generated by
the F-TEG to distinguish diverse motor activities, the mathe-
matical model of signal gradient was adopted. As a prelimi-
nary result, the recognition of an activity can be traced back
to the semi-stationary parts of the signal. Conversely, the non-
stationary part of the signal indicates the occurrence of a
change with respect to an activity carried out previously. It is
a preliminary result that must be deepened through the execu-
tion of several continuous activities without any rest periods.

In future work, machine learning techniques will be
applied and analyzed for the recognition of the different
motor activities.
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