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SUMMARY

In this paper we present an efficient semi-implicit scheme for the solution of the Reynolds-Averaged-Navier-
Stokes (RANS) equations for the simulation of hydrostatic and non-hydrostatic free surface flow problems.
A staggered unstructured mesh composed by Voronoi polygons is used to pave the horizontal domain, while
parallel layers are adopted along the vertical direction. Pressure, velocity and vertical viscosity terms are
taken implicitly, while the nonlinear convective terms as well as the horizontal viscous terms are discretized
explicitly by using a semi-Lagrangian approach, which requires an interpolation of the three-dimensional
velocity field to integrate the flow trajectories backward in time. To this purpose, a high order reconstruction
technique is proposed, which is based on a constrained least squares operator that guarantees a globally
and pointwise divergence-free velocity field. A comparison with an analogous reconstruction which is not
divergence-free preserving is also presented to give evidence of the new strategy. This allows the continuity
equation to be satisfied up to machine precision even for high order spatial discretizations. The reconstructed
velocity field is then used for evaluating high order terms of a Taylor method that is here adopted as ODE
integrator for the flow trajectories. The proposed semi-implicit scheme is validated against a set of academic
test problems, and proof of convergence up to fourth order of accuracy in space is shown. Copyright c©
0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Free surface flows represent one of the most widespread phenomena which characterize

environmental problems in engineering, namely involving oceanic currents, propagation of tsunami

waves, sea tides and general water flows in mountain rivers and lakes. As a consequence, a lot

of efforts have been invested in the development of numerical methods for the solution of the free

surface governing equations, that are given by the incompressible Navier-Stokes equations. Because

such a physical model is quite complex, several simplified models have been derived in order to

solve specific flow problems, and different numerical schemes have also been designed accordingly.
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In this work we consider the three-dimensional equations describing free surface flows that are

obtained after averaging over turbulent time scales the incompressible Navier-Stokes equations,

hence leading to the so called Reynolds-Averaged-Navier-Stokes (RANS) equations. The presence

of viscous terms in both the horizontal and the vertical direction, together with the free surface wave

speed, typically arises a very severe CFL stability condition which penalizes explicit numerical

schemes, by drastically reducing the admissible time step that guarantees the stability of the

numerical method. For this reason, in [1, 2, 3, 4] a set of very efficient semi-implicit schemes

have been proposed for the solution of different simplified models derived from the incompressible

Navier-Stokes equations. Specifically, the shallow water equations have been considered in two [1]

and three [2] space dimensions, while a semi-implicit finite element scheme has been discussed

in [3]. For a better and rigorous simulation of vertical flows in the three-dimensional case, the

hydrostatic pressure assumption must be released and the non-hydrostatic component of the pressure

has to be included in the model by solving the vertical momentum equation, as done in the approach

proposed in [5, 6]. In all those works, a staggered grid is adopted where the scalar normal velocity

components are defined at the cell interfaces, whereas the pressure, i.e. the free surface elevation, is

evaluated at the center of the control volumes. There, the pressure terms as well as the terms related

to the velocity and the vertical viscosity are discretized implicitly, while the nonlinear convective and

horizontal viscous terms are discretized explicitly. Specifically, the implicit velocities are used for a

conservative discretization of the continuity equation and for the bed friction term in the momentum

equation. On the other hand, a semi-Lagrangian method, like the ones presented in [7, 8, 9, 10], is

employed for the remaining explicit terms. Such a choice is motivated by the fact that this is the

only explicit method that is not constrained by a CFL-type stability condition and allows for large

time steps. However, it requires the integration of the fluid trajectories backward in time, thus it

needs an appropriate interpolation of the vector velocity field from the known scalar normal velocity

components.

A finite-difference scheme is used for the discretization of the momentum equations, differently

from the finite volume type approach employed for the free surface equation. As a consequence

the method is fully conservative for mass, but not for momentum. A formulation that conserves

momentum has been presented in [11], while the development of a mass-conservative treatment

of wetting and drying is addressed in [12]. The efficient use of subgrid resolution has also been

included in the same framework in [13].

Semi-implicit methods have been extended to Discontinuous Galerkin (DG) schemes [14, 15,

16, 17, 18, 19, 20] for viscous and inviscid hydrodynamics and magnetohydrodynamics, while in

[21, 22] they are used for the simulation of compressible flows in tubes. Fully implicit DG methods

can be found in [23, 24, 25, 26] for the numerical solution of both compressible and incompressible

Navier-Stokes equations.

In [1, 2, 3, 4] a fractional step method is adopted to achieve at most second order of accuracy

in time, and a second order interpolation of the velocity field is also included for evaluating the

fluid trajectories needed in the semi-Lagrangian discretization of the convective terms. To improve

the spatial accuracy of the scheme, a high order semi-implicit method has been designed in [27]

in the context of polygonal Voronoi meshes, which makes use of a polynomial based high order

reconstruction, on the lines of [28, 29].

In this paper we extend the method presented in [27] to non-hydrostatic flows and we

propose a strategy for preserving the divergence-free constraint imposed by the equation for mass

conservation. This condition is automatically fulfilled for a first order scheme simply by adopting a

staggered mesh discretization with the scalar normal velocity components defined at cell interfaces,

while this does not hold anymore in the case of a high order method, since the high order

reconstruction polynomial that is recovered for the velocity field is not, in principle, divergence-free.

In [30] a linear velocity field is reconstructed within a particle tracking numerical method that is able

to preserve local mass conservation on two-dimensional triangular meshes. Here, a methodology

will be illustrated that aims at satisfying the continuity equation of a free surface flow up to machine

precision in fully three-dimensional flows. A globally and pointwise divergence-free velocity field

This article is protected by copyright. All rights reserved.
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is reconstructed for each control volume of the computational mesh, which is discretized by using

Voronoi prisms.

The outline of this article is as follows: Section 2 presents the physical model with the governing

equations considered in this work, while Section 3 contains all the details of the semi-implicit

numerical scheme. The high order divergence-free reconstruction is fully discussed in Section 4

and in Section 5 a wide set of benchmark test problems is run in order to assess the accuracy and

the validity of the new scheme. Finally, conclusions and outlook to future work are given in Section

6.

2. GOVERNING EQUATIONS

The conservation laws which govern free surface flows can be derived by the incompressible

Navier-Stokes equations after averaging over turbulent time-scales. Let the physical space be

described by the position vector x = (x, y, z), while let the velocity components in x, y and z
direction be denoted by u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t), respectively, with t being the

time. Furthermore, g = 9.81
[

m/s2
]

is the gravitational acceleration and ν represents a viscosity

coefficient which is assumed to be constant, hence no turbulence model is required. Finally, the fluid

pressure p(x, y, z, t) is taken to be the sum of three contributions, namely the atmospheric pressure

pa(x, y, t), the hydrostatic pressure ph(x, y, z, t) = g (η(x, y, t)− z) and the non-hydrostatic part

q(x, y, z, t), hence explicitly yielding

p(x, y, z, t) = g (η(x, y, t)− z) + q(x, y, z, t), (1)

with the assumption of pa(x, y, t) := 0 and η(x, y, t) denoting the free surface elevation, as

illustrated in Figure 1.

Then, in the three-dimensional space, conservation of mass and momentum is given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −g ∂η

∂x
− ∂q

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

, (3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −g ∂η

∂y
− ∂q

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

, (4)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂q

∂z
+ ν

(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

, (5)

∂η

∂t
+

∂

∂x

[∫ η

−h

udz

]

+
∂

∂y

[∫ η

−h

vdz

]

= 0. (6)

The last equation (6) is referred to as free surface equation and is obtained by integrating the

continuity equation (2) over depth and using a kinematic condition at the free surface. According

to Figure 1, h(x, y) is the bottom topography measured from the undisturbed water depth given at

z = 0, whereas H(x, y, t) = h(x, y) + η(x, y, t) represents the total water depth.

3. NUMERICAL SCHEME

In order to discretize the governing system (2)-(6), we propose to adopt the semi-implicit scheme

presented in [6], in which pressure, velocity and vertical viscosity terms are discretized implicitly,

whereas the terms of nonlinear convection and horizontal viscosity are taken explicitly. According

to [27], unstructured Voronoi meshes are used to discretized the computational domain on the x− y
plane, while the velocity field is reconstructed by means of a high order polynomial which exactly

preserves the divergence-free constraint, that is nothing but the continuity equation (2).

This article is protected by copyright. All rights reserved.
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Figure 1. Notation adopted along the vertical direction z: free surface elevation η, bottom topography h and
total water depth H .

3.1. Staggered unstructured Voronoi meshes

The computational domain Ω is first split into two parts, that is the horizontal domain Ωxy and

the vertical domain Ωz. On the horizontal plane x− y the computational grid is composed by a

Voronoi tessellation which is, by construction, an orthogonal unstructured mesh, as required by the

algorithm developed in [6]. In other words, a Voronoi mesh guarantees that the segment connecting

two centroids of two adjacent elements always crosses orthogonally the shared edge that they have

in common. In this work, such a mesh is constructed fully in parallel on several MPI threads as

follows:

• the starting point is a coarse primary triangular unstructured mesh that covers the horizontal

flow domain with non-overlapping control volumes Cγ , as shown in Figure 2. This mesh

counts a total number of NC triangles, hence γ ∈ [1, NC ];
• the coarse mesh is then partitioned using the free graph partitioning software METIS [31]

among the total number of threads NCPU and each MPI rank locally refines its portion of

the primary mesh by an arbitrary refinement factor χ. A structured refinement is used, where

each big triangle Cγ is divided into a total number of χ2 sub-triangles Tk. Both NCPU and χ

have to be specified by the user at the beginning of the mesh generation. As a result, Ωxy is

discretized by a fine primary triangular grid composed by NT cells Tk with k ∈ [1, NT ];
• at this point each thread proceeds by generating the associated dual mesh, which is designed to

be a Voronoi tessellation: for each triangle Tk the corresponding circumcenter is computed and

all circumcenters provide the nodes for the Voronoi elements. Contrariwise, the centroids of

the Voronoi cells are simply given by the nodes of the primary triangular mesh. Consequently,

a dual Voronoi polygon Pi is obtained by connecting all circumcenters of the triangular

elements Tk which share the primary vertex i under consideration. Both primary and

dual meshes are displayed in Figure 3 to clarify how the primary and the dual grids are

linked together. The horizontal computational domain results in a discretization of NP non-

overlapping Voronoi cells Pi with i ∈ [1, NP ].

The only requirement for the successful construction of the Voronoi mesh as suggested above is

that the coarse primary triangular grid must be a Delaunay tessellation with all angles of the mesh

being less than 90 degrees of amplitude. Under this assumption, an unstructured Voronoi mesh can

always be generated, fulfilling all the properties required by the algorithm:

1. orthogonality;

2. non-empty intersection between the segment connecting two centroids and the associated

shared edge of the Voronoi cell on the entire computational mesh.

This article is protected by copyright. All rights reserved.
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Figure 2. Steps for the generation of an unstructured Voronoi mesh on parallel threads with NCPU = 4:
primary coarse triangular mesh with NC cells (top), primary fine triangular mesh with NT cells (middle),

dual Voronoi mesh with NP polygons (bottom). Each MPI thread is identified with a different color.

Note that the first condition can be always obtained if the primary mesh is a Delaunay triangulation,

while for the second requirement we additionally need to deal only with acute angles in the primary

grid.

The final (time-dependent) three-dimensional computational domain Ω(t) consists of prisms

whose horizontal bottom and top faces are given by a Voronoi cell Pi, and whose height is a

vertical thickness ∆z, that results from a discretization of the water column along the vertical

direction. Figure 3 plots a portion of the resulting 3D computational grid, which is Ω(t) =
{

x ∈ R3|(x, y) ∈ Ωxy ∧ −h(x, y) ≤ z ≤ η(x, y, t)
}

.

A staggered discretization is then adopted on the Voronoi unstructured mesh, which is illustrated

in Figure 4. Let Pi be the Voronoi cell and ∂Pi its boundary, which is composed by a total number of

Nj edges denoted by λj . The left and right elements that share a common edge λj are addressed with

L(j) and R(j), respectively, and the straight line segment connecting their corresponding centroids

cL(j) and cR(j) is δj , according to Figure 4. Furthermore, we introduce a grid orientation through a

sign function σi,j which is defined for each edge λj between L(j) and R(j) as follows:

σi,j =
R(j)− 2i+ L(j)

R(j)− L(j)
. (7)

This article is protected by copyright. All rights reserved.
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Figure 3. Left: primary triangular (black lines) and associated dual Voronoi (red lines) mesh. Right: three-
dimensional computational grid composed by prisms with Voronoi base and thickness ∆zn.

The so-called z−layer discretization is used along the vertical direction, hence partitioning each

water column by layers of thickness ∆znj,k, which can be either uniform or non-uniform. The

number of active layers Nn
z,j , i.e. those layers which are wet, is a function of the free surface

level that changes in time. Specifically, the index of the layer containing the bottom is addressed

with mj , whereas the index of the layer crossed by the free surface is denoted with Mn
j , hence

Nn
z,j =

(

Mn
j −mj + 1

)

. If no water is present on edge λj , then Nn
z,j = 0 and that edge is dry. We

underline that we do not consider sediment transport phenomena, hence the bottom index mj is not

time-dependent.

At the aid of Figure 4, let us also explain where the physical variables appearing in the governing

system (2)-(6) are defined on the staggered unstructured Voronoi grid:

• the free surface ηi is evaluated at the centroid ci of polygon Pi and is taken to be constant

within each Voronoi cell;

• the bottom topography hj as well as the total water depth Hn
j are located on each edge λj ;

• due to the unstructured grid, the horizontal velocity is no longer stored in terms of u and

v components, but a face-averaged velocity unj,k is computed in normal direction to each

face of the prism given by
[

Pi ×∆znj,k
]

. In this way, the horizontal velocity is defined at the

intersection point between the edge λj and the segment δj at height zj,k which is the center

along the vertical direction of the kth layer;

• the non-hydrostatic component qni,k is defined for each cell at the centroid ci at height zi,k;

• finally, the vertical velocity component wn
i,k+ 1

2

is computed at the centroid ci,k at zi,k+ 1
2

for

each active layer in vertical direction.

3.2. Semi-implicit algorithm for hydrostatic and non-hydrostatic free surface flows

We adopt a semi-implicit scheme to solve numerically the free surface flow equations (2)-(6),

following the work presented in [6]. Velocity, pressure and vertical viscosity are discretized

implicitly, while the convective and diffusive terms are computed explicitly, so that the stability

of the resulting numerical algorithm is independent of the celerity, but only depends on the

discretization of the nonlinear convective and the horizontal viscosity terms. The scheme is

composed of two main steps, namely the hydrostatic prediction and the non-hydrostatic correction,

which will be detailed hereafter.

Hydrostatic prediction The first part of the algorithm aims at computing provisional values for

the free surface elevation as well as for the flow velocity by neglecting the implicit contribution

This article is protected by copyright. All rights reserved.
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Figure 4. Notation and variable definition used on a staggered unstructured Voronoi mesh on the horizontal
plane x− y (left) and along the vertical direction z (right).

of the non-hydrostatic pressure. Relying on Galilean invariance, one can write the horizontal

momentum conservation laws (3) and (4) in the normal direction nj for each computational

edge λj and each active layer k, hence obtaining only one evolution equation for the scalar

normal component of the horizontal velocity. According to [6], a semi-implicit finite difference

discretization is adopted for the momentum conservation laws of ũn+1
j,k and w̃n+1

i,k+ 1
2

, while a mass-

conservative finite volume scheme is used for the evolution of the free surface η̃n+1
i :

ũn+1
j,k = Funj,k − (1− θ)

∆t

δj

[

g
(

ηnR(j) − ηnL(j)

)

+
(

qnR(j),k − qnL(j),k

)]

− θg
∆t

δj

(

η̃n+1
R(j) − η̃n+1

L(j)

)

+ ν
∆t

∆znj,k

[

ũn+1
j,k+1 − ũn+1

j,k

∆zn
j,k+ 1

2

−
ũn+1
j,k − ũn+1

j,k−1

∆zn
j,k− 1

2

]

∀k ∈ [mj ,M
n
j ], (8)

w̃n+1
i,k+ 1

2

= Fwn
i,k+ 1

2

− (1− θ)
∆t

∆zn
i,k+ 1

2

[

qni,k+1 − qni,k
]

+ ν
∆t

∆zn
i,k+ 1

2

[

w̃n+1
i,k+ 3

2

− w̃n+1
i,k+ 1

2

∆zni,k+1

−
w̃n+1

i,k+ 1
2

− w̃n+1
i,k− 1

2

∆zni,k

]

∀k ∈ [mi,M
n
i − 1], (9)

η̃n+1
i = ηni − θ

∆t

|Pi|
∑

λj∈∂Pi



|λj |σi,j
Mn

j
∑

k=mj

∆znj,kũ
n+1
j,k





− (1− θ)
∆t

|Pi|
∑

λj∈∂Pi



|λj |σi,j
Mn

j
∑

k=mj

∆znj,ku
n
j,k



 ∀i ∈ [1, NP ]. (10)

Here, ∆t = tn+1 − tn denotes the time step, |Pi| is the surface of the polygonal Voronoi cell

Pi, while the symbol˜ is used to indicate the provisional values that need to be corrected in the

second step of the algorithm. Funj,k and Fwn
i,k+ 1

2

represent two explicit operators that contain the

This article is protected by copyright. All rights reserved.
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discretization of the nonlinear convective and horizontal viscous terms. As done in [27], a semi-

Lagrangian scheme is employed, hence obtaining

Funj,k =
(

u(xL
j,k) + ν∆t∇2

hu(x
L
j,k)
)

· nj , (11)

Fwn
i,k+ 1

2

= w(xL
i,k+ 1

2

) + ν∆t∇2
hw(x

L
i,k+ 1

2

), (12)

with x
L
j,k denoting the foot of the Lagrangian trajectory that has started from point xn

j,k, which

is defined on edge λj and layer k for Funj,k. Similarly, for Fwn
i,k+ 1

2

the trajectory begins at

point xn
i,k+ 1

2

, which is located at centroid ci and height zn
i,k+ 1

2

, and it ends at its foot x
L
i,k+ 1

2

.

u(x) = (u(x), v(x)) and w(x) are a continuous interpolation of the horizontal velocity field that

arises from the high order divergence-free reconstruction technique described in Section 4, whereas

∇2
hu and ∇2

hw represent a discretization of the horizontal Laplace operator evaluated at the foot

of the characteristics, which will be discussed in Section 4.1. To improve the time accuracy of the

method, the implicitness factor θ has been introduced in (8)-(9), and for the sake of stability it must

be bounded within the range θ ∈ [0.5, 1], see [32]. In our algorithm, the stability of the scheme only

depends on the horizontal viscosity, therefore the time step must obey the following condition:

∆t ≤ l2min

4ν
, (13)

with lmin = min
√
Pi being the smallest characteristic mesh size of the entire computational grid.

To ease the notation, let us define the vectors

Ũ
n+1
j =



















ũn+1
j,mj

...

ũn+1
j,k

...

ũn+1
j,Mn

j



















, U
n
j =

















unj,mj

...

unj,k
...

unj,Mn
j

















, W̃
n+1
i =



















w̃n+1
i,mi

...

w̃n+1
i,k+ 1

2

...

w̃n+1
i,Mn

i
−1



















, ∆Z
n
j =

















∆znj,mj

...

∆znj,k
...

∆znj,Mn
j

















,

A
n
j =























∆znj,mj
+ ν ∆t

∆zn

j,mj+
1
2

−ν ∆t
∆zn

j,mj+
1
2

0

...

−ν ∆t
∆zn

j,k− 1
2

∆znj,k + ν ∆t
∆zn

j,k− 1
2

+ ν ∆t
∆zn

j,k+1
2

−ν ∆t
∆zn

j,k+1
2

...

0 −ν ∆t
∆zn

j,Mn
j

− 1
2

∆znj,Mn
j
+ ν ∆t

∆zn

j,Mn
j

− 1
2























,

A
n
i =





















∆zn
i,mi+

1
2

+ ν ∆t
∆zn

i,mi+1

−ν ∆t
∆zn

i,mi+1

0

...

−ν ∆t
∆zn

i,k

∆zn
i,k+ 1

2

+ ν ∆t
∆zn

i,k

+ ν ∆t
∆zn

i,k+1

−ν ∆t
∆zn

i,k+1

...

0 −ν ∆t
∆zn

i,Mn
i

−1

∆zn
i,Mn

i
− 1

2

+ ν ∆t
∆zn

i,Mn
i

−1





















,

This article is protected by copyright. All rights reserved.
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T
n
i =























∆zn
i,mi+

1
2

(

Fwn
i,mi+

1
2

− (1− θ)∆t
(

qni,mi+1 − qni,mi

)

)

...

∆zn
i,k+ 1

2

(

Fwn
i,k+ 1

2

− (1− θ)∆t
(

qni,k+1 − qni,k
)

)

...

∆zn
i,Mn

i
− 1

2

(

Fwn
i,Mn

i
− 1

2

− (1− θ)∆t
(

qni,Mn
i
− qni,Mn

i
−1

))























,

G
n
j =























∆znj,mj

(

Funj,mj
− (1− θ)∆t

δj

(

g
(

ηn
R(j) − ηn

L(j)

)

+ qn
R(j),mj

− qn
L(j),mj

))

...

∆znj,k

(

Funj,k − (1− θ)∆t
δj

(

g
(

ηn
R(j) − ηn

L(j)

)

+ qn
R(j),k − qn

L(j),k

))

...

∆znj,Mn
j

(

Funj,Mn
j
− (1− θ)∆t

δj

(

g
(

ηn
R(j) − ηn

L(j)

)

+ qn
R(j),Mn

j
− qn

L(j),Mn
j

))























, (14)

(15)

which are used to rewrite in compact matrix-vector form the discretized governing equations (8)-

(10) as

A
n
j Ũ

n+1
j = G

n
j − θg

∆t

δj

(

η̃n+1
R(j) − η̃n+1

L(j)

)

∆Z
n
j , (16)

A
n
i W̃

n+1
i = T

n
i (17)

η̃n+1
i = η̃ni − θ

∆t

|Pi|
∑

λj∈∂Pi

|λj |σi,j(∆Z
n
j )

T
Ũ

n+1
j

− (1− θ)
∆t

|Pi|
∑

λj∈∂Pi

|λj |σi,j(∆Z
n
j )

T
U

n
j . (18)

Boundary conditions have already taken into account by the auxiliary matrices A
n
j and A

n
i ,

imposing a no-slip wall condition on the bottom, i.e. ũj,mj−
1
2
= 0 and w̃i,mi−

1
2
= 0, while requiring

zero stress on the free surface, hence
∂ũ

j,Mn
j

+1
2

∂z
= 0. The vertical momentum equation (9) is defined

up to layer Mn
i − 1, hence no free surface boundary condition is needed for building matrix A

n
i .

Other choices are possible, considering friction coefficients at z = −h or wind stresses on z = η,

see [6] for more details.

For each cell Pi, the linear tridiagonal system (17) is solved for the vertical velocity unknowns

w̃n
i,k+ 1

2

by a direct method, namely the Thomas algorithm. This is not the case for the horizontal

momentum equations (16) that are coupled with the equations for the unknown free surface elevation

η̃n+1
i . Following [6], formal substitution of expression (16) into (18) yields a symmetric and positive

definite linear system of NP equations with the provisional values η̃n+1
i as the only unknowns:

|Pi|η̃n+1
i − gθ2∆t2

∑

λj∈∂Pi

|λj |σi,j
δj

[

∆Z
T
A

−1
∆Zj

]n

j

(

η̃n+1
R(j) − η̃n+1

L(j)

)

=

|Pi|ηni − (1− θ)∆t
∑

λj∈∂Pi

|λj |σi,j
[

∆Z
T
U
]n

j

− θ∆t
∑

λj∈∂Pi

|λj |σi,j
[

∆Z
T
A

−1
G
]n

j
. (19)

System (19) is solved with the conjugate gradient method by iteration until the residual norm

becomes less than a prescribed tolerance ǫη = 10−12. Once the free surface elevation is computed,
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the provisional horizontal normal velocities Ũ
n
j are efficiently evaluated using again the Thomas

algorithm for the tridiagonal systems (16).

Non-hydrostatic correction The provisional values η̃n+1
i , ũn+1

j,k and w̃n+1
i,k+ 1

2

are now employed

for the non-hydrostatic correction of the pressure. The pressure equation (1) can be discretized by

using either the values at time tn+1 (which are still unknown) or the provisional values coming from

the hydrostatic prediction, that is

pn+1
i,k = g

(

η̃n+1
i − zk

)

+ q̃n+1
i,k , (20)

pn+1
i,k = g

(

ηn+1
i − zk

)

+ qn+1
i,k . (21)

By assuming that the pressure is hydrostatic in the cells containing the free surface, the pressure

correction q̃n+1
i,Mn

i
is obtained at the aid of the following hydrostatic relation:

pn+1
i,M = g

(

η̃n+1
i − zM

)

= g
(

ηn+1
i − zM

)

+ q̃n+1
i,M . (22)

Now, according to [6], a finite volume discretization of the continuity equation (2) for all the cells

below the free surface yields

∑

λj∈∂Pi

|λj |σi,j∆znj,kun+1
j,k + |Pi|

(

wn+1
i,k+ 1

2

− wn+1
i,k− 1

2

)

= 0 ∀k ∈ [mi,M
n
i−1], (23)

where the new velocity components un+1
j,k and wn+1

i,k+ 1
2

are defined by means of the non-hydrostatic

correction as

un+1
j,k = ũn+1

j,k − θ
∆t

δj

(

q̃n+1
R(j),k − q̃n+1

L(j),k

)

, (24)

wn+1
i,k+ 1

2

= w̃n+1
i,k+ 1

2

− θ
∆t

∆zn
i,k+ 1

2

(

q̃n+1
i,k+1 − q̃n+1

i,k

)

. (25)

(26)

At z = η we consider a finite difference approximation of the free surface equation (6), which is

given by

|Pi|ηn+1
i = |Pi|ηni − θ∆t

∑

λj∈∂Pi

[

σi,j |λj |∆znj,Mj
un+1
j,Mj

]

+ θ∆t|Pi|wn+1
i,M− 1

2

− (1− θ)∆t





∑

λj∈∂Pi

|λj |σi,j
Mn

∑

k=m

∆znj,ku
n
j,k



 , (27)

after using the discrete continuity equation (23) and setting wn+1
i,m− 1

2

= 0. Following [6], relation

(22) is used to write the above expression (27) as

|Pi|q̃n+1
i,M = g|Pi|

(

ηni − η̃n+1
i

)

− gθ∆t
∑

λj∈∂Pi

[

σi,j |λj |∆znj,Mj
un+1
j,Mj

]

+ gθ∆t|Pi|wn+1
i,M− 1

2

− g(1− θ)∆t





∑

λj∈∂Pi

|λj |σi,j
Mn

∑

k=m

∆znj,ku
n
j,k



 . (28)

At this point the velocity discretizations (24) and (25) are substituted into the approximations (23)

and (28), leading to the following systems of equations for the non-hydrostatic correction below the
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free surface q̃n+1
i,k and at the free surface q̃n+1

i,M , respectively:

θ∆t





∑

λj∈∂Pi

|λj |σi,j∆znj,k
q̃n+1
L(j),k − q̃n+1

R(j),k

δj
+ |Pi|

(

q̃n+1
i,k − q̃n+1

i,k+1

∆zn
i,k+ 1

2

−
q̃n+1
i,k−1 − q̃n+1

i,k

∆zn
i,k− 1

2

)





= |Pi|
(

w̃n+1
i,k+ 1

2

− w̃n+1
i,k− 1

2

)

+
∑

λj∈∂Pi

|λj |σi,j∆znj,kũn+1
j,k ∀k ∈ [mi,M

n
i−1], (29)

and

θ∆t





∑

λj∈∂Pi

|λj |σi,j∆znj,M
q̃n+1
L(j),M − q̃n+1

R(j),M

δj
− |Pi|

q̃n+1
i,M−1 − q̃n+1

i,M

∆zn
i,M− 1

2



+
|Pi|
gθ∆t

q̃n+1
i,M

= |Pi|w̃n+1
i,M− 1

2

−
∑

λj∈∂Pi

|λj |σi,j∆znj,M ũn+1
j,M +

|Pi|
θ∆t

(

ηni − η̃n+1
i

)

− (1− θ)

θ





∑

λj∈∂Pi

|λj |σi,j
Mn

∑

k=m

∆znj,ku
n
j,k



 . (30)

Expressions (29)-(30) constitute a positive definite system with at most NP ×max
{

Nn
z,i

}

that

is solved relying on a conjugate gradient algorithm. The iterations stop when the residual norm is

smaller than a given tolerance ǫq = 10−10. In vertical direction, an impenetrable boundary is used

at the bottom, hence w̃i,mi
= 0.

On the horizontal plane, zero normal flux is imposed across wall-type boundary conditions,

whereas a prescribed value for ũn+1
j,k or q̃n+1

i,k is provided for open boundaries. Once the solution

of systems (29)-(30) is obtained, the horizontal normal velocity is updated according to (24), while

for the sake of conservation the vertical velocity component is derived from the continuity equation

(23) as

wn+1
i,k+ 1

2

= wn+1
i,k− 1

2

− 1

|Pi|
∑

λj∈∂Pi

|λj |σi,j∆znj,kun+1
j,k . (31)

Finally, the new free surface elevation and the non-hydrostatic component of the pressure are given

by

ηn+1
i = η̃n+1

i +
q̃i,Mn

i

g
∀i ∈ [1, NP ] (32)

qn+1
i,k = q̃n+1

i,k − q̃i,Mn
i

∀i ∈ [1, NP ], ∀k ∈ [mn
i ,M

n
i ], (33)

where the last relation (33) directly follows from equating the discrete forms (20)-(21) of the

pressure equation (1).

4. HIGH ORDER DIVERGENCE-FREE VELOCITY RECONSTRUCTION

The numerical scheme presented so far makes use of pointwise horizontal normal velocity

components unj,k and pointwise vertical velocity components wn+1
i,k+ 1

2

. Nevertheless, a continuous

interpolation of the velocity field is required for the computation of the Lagrangian trajectories

needed to discretize the nonlinear convective terms Funj,k and Fwn
i,k+ 1

2

. Therefore, a reconstruction

step is carried out in order to obtain a high order description of the velocity field in each

computational cell. Here, a polynomial of degree N is defined within each control volume

Pi ×
[

zk− 1
2
, zk+ 1

2

]

and is used to recover a spatial order of accuracy N + 1 for the velocity

field. First, a reconstruction step is performed on the horizontal plane x− y for each active layer
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k, which generates the high order polynomials ui,k(x) = (ui,k(x), vi,k(x)) and wi,k(x). Then,

along the vertical direction z, the velocity reconstruction at a generic point x = (x, y, z) is based

on classical Lagrange interpolation through a set of N + 1 velocity values (degrees of freedom)

computed using the horizontal velocity polynomials defined on a local set of layers. Furthermore,

the reconstruction developed in this work is designed to preserve the divergence-free constraint

up to machine precision. The choice of a decoupled reconstruction for horizontal and vertical

flow directions allows the scheme to be computationally less expensive compared to a fully three-

dimensional reconstruction.

The final reconstruction polynomial will then be referred to as ū(x) = [u(x),w(x)] which gives

a fully three-dimensional high order interpolation of the velocity field at any generic point x in the

entire computational domain.

The high order divergence-free reconstruction procedure is carried out following the steps listed

hereafter.

Reconstruction on the horizontal plane The unknown high order polynomials which reconstruct

the horizontal velocity field are expressed at the current time tn in terms of a normalized Taylor

series of degree N . The normalizing factor li =
√
Pi is needed in order to avoid ill-conditioned

reconstruction matrices [33], while the centroid ci = (xi, yi) is used as center of expansion. For the

horizontal normal velocity, the reconstruction polynomial is defined at height zni,k, whereas for the

vertical velocity the horizontal plane is considered at height zn
i,k+ 1

2

, according to the definition of

the corresponding velocities displayed in Figure 4. To be clear, Einstein notation is adopted in the

formulae which follow hereafter, implying summation over repeated indexes.

For each control volume, the horizontal reconstruction step aims at defining two polynomials

which read

v̄
n
i,k(x, y) =

∑

p+q≤N

(x− xi)
p

p! lpi

(y − yi)
q

q! lqi
· ∂p+q

∂xp∂yq
v̂
n
i,k := ψl v̂

l
i,k, (34)

w̄
n
i,k+ 1

2

(x, y) =
∑

p+q≤N

(x− xi)
p

p! lpi

(y − yi)
q

q! lqi
· ∂p+q

∂xp∂yq
ŵn

i,k+ 1
2

:= ψl ŵ
l
i,k+ 1

2

, (35)

with the unknown expansion coefficients given by the normalized derivatives, hence

v̂
l
i,k := ∂p+q

∂xp∂yq v̂
n
i,k with l ∈ [1, 2N ],

ŵ
l
i,k+ 1

2

:= ∂p+q

∂xp∂yq ŵ
n
i,k+ 1

2

with l ∈ [1,N ]. (36)

The modal basis functions are denoted by ψl which are from the space of piecewise polynomials

P
N . The mono-index l covers all degrees of freedom which sum to N = (N+1)(N+2)

2 for each

spatial direction. The unknowns are recovered by solving a linear system composed by a set of

equations defined on a certain reconstruction stencil that provides the known values, which the

reconstruction procedure is built on. For the horizontal normal velocity, the stencil Sλ
i is composed

by a total number nS of edges λj , while for the vertical velocity we consider entire cells Pj for

filling the stencil SP
i . Typically, on unstructured meshes, the number of items (edges or polygons)

in the stencil is bigger than the necessary minimum number N of unknown expansion coefficients

required to obtain the formal order of accuracy O(N) = N + 1. Therefore, we set nS = 2N , so that

overdetermined linear systems arise in the context of high order reconstructions on polygonal grids.

The reconstruction stencil is obtained by a recursive algorithm which adds neighbor items (either

edges or cells) to the stencil until the prescribed number nS is reached. Specifically, the first item in

the stencil is always given by the element Pi under consideration, then the Neumann neighborhood

enters the stencil, that is composed by the direct side neighbors surrounding Pi. The stencil search

algorithm proceeds by recursively adding Neumann neighbors of the previous neighbors, thus the

higher is the reconstruction polynomial degree N the larger is the associated reconstruction stencil.

For cells lying on physical boundaries no special care is adopted, therefore the reconstruction stencil
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is filled in the same manner, resulting in a one-sided stencil because stencil items can be added only

where the mesh exists, i.e. the internal part of the computational domain. As usually done for high

order finite volume schemes [34, 29], the reconstruction relies on integral conservation of known

quantities, thus allowing the reconstruction system to be fed by the following nS equations for

v̄
n
i,k(x, y) and w̄

n
i,k+ 1

2

(x, y):

1

|λj |

∫

λj

v̄
n
i,k(x, y) · nj ds = unj,k ∀λj ∈ Sλ

i , (37)

1

|Pj |

∫

Pj

w̄
n
i,k+ 1

2

(x, y) dA = wn
j,k+ 1

2

∀Pj ∈ SP
i . (38)

Furthermore, for the vertical velocity component, an additional linear constraint is imposed to the

system, which requires that equation (38) holds exactly on polygon Pi at height zk+ 1
2

, that is

1

|Pi|

∫

Pi

w̄
n
i,k+ 1

2

(x, y) dA = wn
i,k+ 1

2

. (39)

All the integrals are computed using Gaussian quadrature rules of suitable order of accuracy, see

[35]. The reconstruction systems (37) and (38)-(39) set up above can be written in matrix-vector

form as

MuV = B
n
u, (40)

{

MwW = B
n
w

CwW = DwB
n
w

, (41)

with B
n
u and B

n
w representing the known edge- and cell-defined velocity values, that are listed in the

corresponding reconstruction stencils Sλ
i and SP

i . The vectors of unknown expansion coefficients

V and W contain the reconstructed velocity components (û, v̂) and ŵ on the horizontal plane and

all higher order normalized spatial derivatives, i.e.

V
T = v̂

l
i,k = (û, ûx, ûy, ûxx, ûxy, ûyy, . . . v̂, v̂x, v̂y, v̂xx, v̂xy, v̂yy . . .)

n

i,k
, (42)

W
T = ŵ

l
i,k+ 1

2

= (ŵ, ŵx, ŵy, ŵxx, ŵxy, ŵyy, . . .)
n

i,k+ 1
2

. (43)

The solution of (40) is directly computed using the normal equation

V = M
T
u

(

M
T
uMu

)−1
B

n
u := Ru B

n
u, (44)

where the reconstruction matrix Ru is evaluated once and for all in the preprocessing stage for all

cells. On the other hand, the constrained least squares (CLSQ) method is adopted for solving system

(41), therefore a functional g(W) is defined and minimized by requiring its derivatives to vanish,

thus

g(W) = (MwW −B
n
w)

T
(MwW −B

n
w)− µ

T (CwW −DwB
n
w) , (45)

∂g

∂W
= 2MT

wMwW − 2MT
wB

n
w −C

T
wµ = 0, (46)

∂g

∂µ
= − (CwW −DwB

n
w) = 0, (47)

where µ is the vector of Lagrange multipliers to enforce the linear constraint. The associated

enlarged linear system of normal equations then reads
(

2MT
wMw −C

T
w

Cw 0

)(

W

µ

)

=

(

2MT
w

Dw

)

B
n
w, (48)

whose solution can be simply obtained as

(

W

µ

)

=

(

2MT
wMw −C

T
w

Cw 0

)−1(
2MT

w

Dw

)

B
n
w := R

L
B

n
w. (49)
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We are only interested in the solution of the expansion coefficients W, therefore the reconstruction

matrix Rw for the vertical velocity on plane x− y is a subset of the CLSQ matrix R
L, that is

Rw := R
L
[N×nS ].

Once the reconstruction matrices have been computed in the preprocessing stage for all cells, at

each time step tn the reconstruction step on the horizontal plane is efficiently carried out by two

matrix-vector products, namely

V
n = Ru B

n
u, W

n = Rw B
n
w. (50)

Remark on the total water depth. The same reconstruction matrices Ru and Rw can

be directly used to obtain a high order description of the bottom topography bj and the

free surface elevation ηi, respectively. The corresponding unknown expansion coefficients, b =
(

b̂, b̂x, b̂y, b̂xx, b̂xy, b̂yy, . . .
)

and η = (η̂, η̂x, η̂y, η̂xx, η̂xy, η̂yy, . . .), are simply evaluated as

b(x, y) = Ru Bb, η
n(x, y) = Rw B

n
η . (51)

Therefore, the total water depth is easily and accurately evaluated both on each edge λj and at each

polygonal centroid ci by

Hn
j = max [ 0, bj + η

n(xj , yj)] , Hn
i = max [ 0, b(xi, yi) + ηni ] . (52)

Reconstruction along the vertical direction In order to obtain a continuous high order

polynomial even along the z−axis at a generic coordinate z, a classical one-dimensional Lagrange

interpolation is used. The staggered discretization implies that the horizontal reconstruction for

the normal velocity u is defined at height zk, while at zk+ 1
2

the high order polynomials for w are

reconstructed, according to Figure 4. Therefore, depending on the chosen reconstruction degree N ,

the vertical reconstruction stencil is composed by a total number of N + 1 layers, that are selected

starting from the kth layer containing the z coordinate at which the vertical reconstruction has to be

carried out. For the sake of clarity and without loss of generality, ifN = 3 the vertical reconstruction

stencil for w is given by Sw
i,k =

(

k − 3
2 , k − 1

2 , k +
1
2 , k +

3
2

)

, and the corresponding stencil for u
results in Sv

i,k = (k − 1, k, k + 1, k ± 2). The choice of the last stencil point k ± 2 is taken according

to an upwind choice that is based on the local interpolation of the vertical velocity w, thus if w < 0
the stencil is filled with k + 2, otherwise layer k − 2 is used. Close to the bottom and the free

surface, the vertical stencils are filled with layers containing water, thus obtaining fully upward and

downward pointing stencils for k ∈ [m,m+N ] and k ∈ [Mn −N,Mn], respectively.

Let Lv,w
k+r(z) be the Lagrange polynomials passing through the points zk+r and let w̄n

i,k+r− 1
2

(x, y)

and v̄
n
i,k+r(x, y) denote the high order velocities on plane x− y obtained as previously described.

The vertical reconstruction polynomial for a cell Pi, which gives a fully three-dimensional

representation of the velocity field, is then given by

wi,k(x) =
∑

r∈Sw
i,k

Lw
k+r(z) w̄

n
i,k+r− 1

2

(x, y), ui,k(x) =
∑

r∈S
v,±

i,k

Lv
k+r(z) v̄

n
i,k+r(x, y), (53)

with

Lv,w
k+r(z) =

∏

m 6=r

(z − zk+m)

∏

m 6=r

(zk+r − zk+m)
, ∀m, r ∈ Sv,w

i,k . (54)

Divergence-free reconstruction The reconstruction polynomials obtained so far constitute a

preliminary result, and they must be modified in order to preserve the divergence-free constraint

dictated at the continuous level by the continuity equation (2). Indeed, at point xP = (xP , yP , zP )
the high order polynomials w(xP ) and u(xP ) in (53) do in general yield the inequality

∂

∂x
u(xP ) +

∂

∂y
u(xP ) +

∂

∂z
w(xP ) 6= 0. (55)
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To fulfill the constraint, we rely on a constrained L2 projection [36] that aims at slightly modifying

the degrees of freedom V
T for the horizontal velocity previously evaluated from (40). More

precisely, the sought divergence-free polynomial v(x) has to be as close as possible to the original

reconstruction polynomial v̄(x) and has to satisfy the following two requirements:

• the velocity field has to be locally and globally divergence-free, thus v(x) together with w(x)
must obey the continuity equation at each and every point inside the three-dimensional control

volume Pi,k =
[

Pi ×∆zni,k
]

;

• the normal velocity components uj,k defined on each edge λj,k must be exactly reconstructed

when evaluating v(xj,k, yj,k). This condition has to be imposed on all edges of polygon Pi

except one because if the velocity field is locally divergence-free, Gauss’ theorem ensures that

the boundary integral is automatically divergence-free.

Therefore, the divergence-free reconstruction is obtained by minimizing

∫

Pi,k

(

v
n
i,k(x, y)− v̄

n
i,k(x, y)

)2
dA, (56)

under the following constraints:

∫

Pi,k

ψ
′

q

(

∂

∂x
v
n
i,k(x, y) +

∂

∂y
v
n
i,k(x, y)

)

dA = −
∫

Pi,k

ψ
′

q

∂

∂z
w(x, y, zk) dA, (57)

∫

λj∈P⊂
i

1

|λj |
v
n
i,k(x, y) · nj ds = unj,k ∀λj ∈ P⊂

i , (58)

with P⊂
i denoting an arbitrary subset of edges of cell Pi excluding one of them and ψ

′

q representing

a set of test functions (which are chosen to be equal to the Taylor basis functions) belonging to the

space of piecewise polynomials of degree N − 1. In our approach only the horizontal degrees of

freedom V
T
l in v̄

n
i,k(x, y) are modified, while the vertical expansion coefficients WT are shifted to

the right hand side of (57), hence they remain the same obtained after the reconstruction (49). Note

that the right hand side of Equation 57 contains the derivative along the vertical direction ∂
∂z

, that has

to be approximated using a Lagrange interpolation polynomial for w(x, y, zk) with degree N + 1
in (53), in order to guarantee and maintain the formal accuracy of the horizontal reconstruction.

Adopting a Lagrangian multiplier technique [29] as done for the horizontal reconstruction of the

vertical velocity (49), the divergence-free reconstruction functional G to be minimized takes the

form

G =

∫

Pi,k

(

v
n
i,k(x, y)− v̄

n
i,k(x, y)

)2
dA

− µ







∫

Pi,k

ψ
′

q

(

∂

∂x
v
n
i,k(x, y) +

∂

∂y
v
n
i,k(x, y)

)

dA+

∫

Pi,k

ψ
′

q

∂

∂z
w(x, y, zk) dA







− γ

(

∫

λj∈P⊂
i

1

|λj |
v
n
i,k(x, y) · nj ds− unj,k

)

, (59)

This article is protected by copyright. All rights reserved.



A
c
c
e
p

te
d

A
r
ti

c
le

16

leading to the following linear system for the unknown divergence-free degrees of freedom û
l(Pi,k)

as well as for the Lagrange multipliers µ and γ:

∂G
∂ûl

=






2

∫

Pi,k

ψqψl dA







(

û
l − v̂

l
)

− µ







∫

Pi,k

ψ
′

q∇ψl dA






− γ

(

∫

λj∈P⊂
i

1

|λj |
ψl nj ds

)

= 0,

∂G
∂µ

=







∫

Pi,k

ψ
′

q∇xyψl dA






· ûl +







∫

Pi,k

ψ
′

q ∇zψl dA






· ŵl = 0,

∂G
∂γ

=







∫

Pi,k

1

|λj |
ψl · nj ds






· ûl − unj,k = 0, (60)

with ψl denoting the Taylor basis functions used in (34)- (35) as well as for the approximation of

v(x). The above system can be written in matrix-vector notation and cast into form (49), then solved

with a constrained least squares method as done for the CLSQ system for the vertical velocity. At

this point, the vector of expansion coefficients Vn in (50) for the horizontal velocity is overwritten

and assigned the new values ûl computed from the solution of (60).

4.1. Operator Fn: nonlinear convection and horizontal diffusion

The explicit operators Funj,k and Fwn
i,k+ 1

2

appearing in the discrete momentum equations (8) and

(9) are computed via a semi-Lagrangian discretization for the convective terms and a finite volume

formulation for the horizontal diffusion, which will be briefly discussed hereafter.

Convection Following the work presented in [27], the Lagrangian trajectory of a flow particle

located at a generic spatial point x = (x, y, z) is described by the ODE system

dx

dτ
= −ū(x), with τ ∈ [0,∆t], (61)

where τ is the rescaled time w.r.t. the global time step ∆t. The velocity vector ū(x) = (v(x), w(x))
is evaluated relying on the high order three-dimensional divergence-free velocity field which is

available from the reconstruction procedure discussed in the previous section. The initial condition

of (61) is x(0) = x
n
j,k for the edge based operator Funj,k, whereas it reads x(0) = x

n
i,k+ 1

2

for

Fwn
i,k+ 1

2

. The ODE system (61) is then approximated by means of a high order Taylor expansion,

leading to the new point position at local time τl+1:

xl+1 = xl +∆τ
dx

dτ
+

∆τ2

2

d2x

dτ2
+

∆τ3

6

d3x

dτ3
+ (O4) with ∆τ = cmin

(

di
|v(xl)|

,
∆znk

|w(xl)|

)

,

(62)

where the local time step ∆τ is determined under a local CFL condition with c = 0.5, by considering

the minimum between a local horizontal and vertical restriction. We use the current element Pi with

diameter di and layer k in which the current point xl is located, and the velocity vector evaluated

at point xl for determining ∆τ in (62). At the aid of the chain rule, the time derivatives in (62)

are replaced by spatial derivatives that are readily computed from the high order reconstruction

polynomials v(x) and w(x), hence obtaining the following method for the backward integration of

the trajectory equation (61):

xl+1 = xl −∆τ ūl +
∆τ2

2

(

∂ū

∂x
ū

)

l

− ∆τ3

6

(

∂2ū

∂x2
ūū+

(

∂ū

∂x

)2

ū

)

l

+ (O4). (63)
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The integration stops either when τ = ∆t or when a boundary of the computational domain Ω(tn)
is reached by the trajectory. If no boundaries are crossed, the foot of the characteristics is simply

given by the last position vector x
L(τ) = x(∆t), otherwise we take the intersection xb between

the boundary edge and the particle trajectory, i.e. xL(τ) = xb. The order of accuracy for the Taylor

expansion (62) is chosen to be the same of the order adopted in the reconstruction procedure, so that

all high order terms can be easily evaluated.

Horizontal viscosity In order to discretize the horizontal viscosity terms, a conservative finite

volume method is employed together with the numerical viscous flux proposed in [37]. Such a

discretization holds for each polygon Pi and each layer k, and both velocities and gradients are

computed again using the high order velocity field reconstruction:

∇2
i ūk =

1

|Pi|

∫

∂Pi

∇hūk · nj ds with ∇hūk · nj =
1

2

(

∇ū
+
k +∇ū

−
k

)

· nj +
1

δj

√

1
2π

(

ū
+
k − ū

−
k

)

,

(64)

where ū
−
k and ū

+
k denote the high order boundary extrapolated data on ∂Pi from within cell Pi and

from the neighbor polygon, respectively. The viscosity term for feeding the operators Fn is taken in

those element containing the foot of the characteristics xL, i.e. ∇2
ū(xL), previously determined by

the backward integration of the Lagrangian trajectory.

5. NUMERICAL RESULTS

Several test problems are presented and discussed in order to validate the numerical scheme

proposed in this work. In total, five different numerical experiments have been chosen, each one

targeting a specific part of the algorithm:

1. high order velocity field reconstruction (Section 4): convergence studies with and without the

novel divergence-free technique on a sequence of successively refined computational meshes;

2. nonlinear convective terms (Section 4.1): integration of circular trajectories on the horizontal

x− y plane as well as along the vertical x− z plane;

3. horizontal viscosity terms (Section 4.1): first problem of Stokes;

4. solution of the hydrostatic pressure component (Section 3.2): steady vortex flow with a perfect

balance between hydrostatic pressure gradient and centrifugal force;

5. non-hydrostatic pressure correction (Section 3.2): oscillating basin with a non-negligible

vertical velocity.

All simulations are carried out with the implicitness factor θ = 0.55 and a divergence-free

reconstruction degree of N = 2, if not explicitly written.

5.1. Convergence studies

The accuracy of the high order divergence-free reconstruction presented in this paper is assessed by

considering a smooth velocity field which simply reads:

u = sin
(π

2
x
)

cos

(

Π

2
y

)

cos

(

Π

2
z

)

,

v = cos
(π

2
x
)

sin

(

Π

2
y

)

cos

(

Π

2
z

)

,

w = cos
(π

2
x
)

cos

(

Π

2
y

)

sin

(

Π

2
z

)

(−2) . (65)

The computational domain is the unit cube Ω = [0, 1]3 and is discretized with a fixed number of

active vertical layers Nz = 25. Each horizontal layer is then paved with an unstructured Voronoi
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mesh and a sequence of four successively refined grids is considered. Once the reconstruction

procedure has been carried out, the errors ǫ are evaluated on the entire computational domain, i.e.

for each polygon Pi ∈ [1, NP ] lying on each layer k ∈ [1, Nz] the L1, L2 and L∞ norms are given

by

ǫL1
=

∫

Ω

‖(se(x) − sh((x)))‖ dA, ǫL2
=

√

∫

Ω

‖(se(x)− sh((x)))‖2 dA,

ǫL∞
= max

Pi

‖(se(x)− sh((x)))‖ , (66)

where s represents a generic velocity component, while se(x) and sh(x) denote the exact and

the numerical (reconstructed) solution, respectively. Table I shows the convergence rates for the

high order divergence-free reconstruction, while Table II reports the results for a high order velocity

reconstruction without the divergence-free algorithm, as done in [27].

In both cases the desired order of accuracy is achieved for N = 2 and N = 3, but the divergence-

free reconstruction systematically generates a lower error in terms of absolute value for all norms,

except the L∞ with N = 3, as depicted in Figure 5.
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Figure 5. Dependency of the error norms (L1, L2, L∞) reported in Table II on the mesh size for N = 2
(drawn in black) and N = 3 (drawn in blue). The divergence-free results (solid lines) are addressed
with “DF” and they are compared against the error norms obtained without using the divergence-free

reconstruction technique (dashed lines).

Furthermore, we explicitly want to demonstrate that our new reconstruction technique is

divergence-free up to machine precision, therefore we have also computed the integral average of

the divergence of the velocity field over the whole computational domain, that is

divh(ū) =

∫

Pi,k

(

∂ψl

∂x
v̂
l +

∂ψl

∂y
v̂
l +

∂ψl

∂z
ŵ

l

)

dA ∀Pi ∈ [1, NP ], ∀k ∈ [1, Nz]. (67)

Table III clearly demonstrates the capability of our new reconstruction to obtain a fully divergence-

free velocity field, contrarily to what can be achieved by simply applying a high order reconstruction

technique without any special care about the discrete divergence operator.
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Table I. Numerical convergence rates obtained with third and fourth order accurate reconstruction with
divergence-free constraints. Errors in L1, L2 and L∞ are reported for all velocity components u, v, w. The

characteristic mesh size is h(Ω) = max
Pi

√

|Pi|.

N = 2

horizontal velocity u
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 3.9061E-05 - 3.3009E-05 - 3.6911E-05 -

5.21E-03 1.0901E-05 3.1 9.3511E-06 3.1 1.0619E-05 3.1

3.90E-03 4.3764E-06 3.2 3.7546E-06 3.2 4.4496E-06 3.0

3.12E-03 2.1732E-06 3.1 1.8592E-06 3.1 2.2676E-06 3.0

horizontal velocity v
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 3.9107E-05 - 3.2459E-05 - 3.0867E-05 -

5.21E-03 1.0840E-05 3.2 9.1198E-06 3.1 1.1060E-05 2.5

3.90E-03 4.3332E-06 3.2 3.6474E-06 3.2 4.6291E-06 3.0

3.12E-03 2.1481E-06 3.1 1.8056E-06 3.2 2.3574E-06 3.0

vertical velocity w
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 3.2521E-04 - 2.4981E-04 - 1.3927E-04 -

5.21E-03 9.3169E-05 3.1 7.2113E-05 3.1 4.2367E-05 2.9

3.90E-03 3.8609E-05 3.1 2.9975E-05 3.1 1.8185E-05 2.9

3.12E-03 1.9564E-05 3.0 1.5211E-05 3.0 9.5321E-06 2.9

N = 3

horizontal velocity u
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 2.3978E-06 - 2.0559E-06 - 3.0432E-06 -

5.21E-03 4.6373E-07 4.1 3.9941E-07 4.0 7.0964E-07 3.6

3.90E-03 1.4616E-07 4.0 1.2562E-07 4.0 2.2667E-07 4.0

3.12E-03 6.0971E-08 3.9 5.2869E-08 3.9 9.0077E-08 4.1

horizontal velocity v
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 2.4080E-06 - 2.0114E-06 - 1.7160E-06 -

5.21E-03 4.7213E-07 4.0 3.9734E-07 4.0 3.4434E-07 4.0

3.90E-03 1.4808E-07 4.0 1.2482E-07 4.0 1.3235E-07 3.3

3.12E-03 6.1823E-08 3.9 5.2787E-08 3.9 6.0953E-08 3.5

vertical velocity w
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 1.3919E-05 - 1.2097E-05 - 1.0554E-05 -

5.21E-03 2.5474E-06 4.2 2.2506E-06 4.1 2.6183E-06 3.4

3.90E-03 7.9034E-07 4.1 7.0286E-07 4.0 7.4232E-07 4.4

3.12E-03 3.2785E-07 3.9 2.9228E-07 3.9 3.0097E-07 4.0
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Table II. Numerical convergence rates obtained with third and fourth order accurate reconstruction without
divergence-free constraints. Errors in L1, L2 and L∞ are reported for all velocity components u, v, w. The

characteristic mesh size is h(Ω) = max
Pi

√

|Pi|.

N = 2

horizontal velocity u
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 1.6048E-04 - 1.2212E-04 - 6.1184E-05 -

5.21E-03 4.6141E-05 3.1 3.5407E-05 3.1 1.6865E-05 3.2

3.90E-03 1.9126E-05 3.1 1.4738E-05 3.0 7.4675E-06 2.8

3.12E-03 9.6775E-06 3.1 7.4755E-06 3.0 3.8281E-06 3.0

horizontal velocity v
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 1.5954E-04 - 1.2113E-04 - 5.7251E-05 -

5.21E-03 4.5796E-05 3.1 3.5083E-05 3.1 1.5912E-05 3.2

3.90E-03 1.8956E-05 3.1 1.4574E-05 3.1 6.6745E-06 3.0

3.12E-03 9.5921E-06 3.1 7.3902E-06 3.0 3.4053E-06 3.0

vertical velocity w
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 3.2521E-04 - 2.4981E-04 - 1.3927E-04 -

5.21E-03 9.3169E-05 3.1 7.2113E-05 3.1 4.2367E-05 2.9

3.90E-03 3.8609E-05 3.1 2.9975E-05 3.1 1.8185E-05 2.9

3.12E-03 1.9564E-05 3.0 1.5211E-05 3.0 9.5321E-06 2.9

N = 3

horizontal velocity u
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 6.2277E-06 - 4.7003E-06 - 2.0167E-06 -

5.21E-03 1.2131E-07 4.0 9.2033E-07 4.0 4.1289E-07 3.9

3.90E-03 3.8013E-07 4.0 2.8912E-07 4.0 1.3210E-07 4.0

3.12E-03 1.5479E-07 4.0 1.1796E-07 4.0 5.1742E-08 4.2

horizontal velocity v
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 6.2584E-06 - 4.7268E-06 - 2.3223E-06 -

5.21E-03 2.5474E-06 4.2 9.3110E-07 4.0 5.0537E-07 3.8

3.90E-03 7.9034E-07 4.1 2.9177E-07 4.0 1.6783E-07 3.8

3.12E-03 3.2785E-07 3.9 1.1868E-07 4.0 7.0099E-08 3.9

vertical velocity w
h(Ω) ǫL1

O(L1) ǫL2
O(L2) ǫL∞

O(L∞)
7.81E-03 1.3919E-05 - 1.2097E-05 - 1.0554E-05 -

5.21E-03 2.5474E-06 4.2 2.2506E-06 4.1 2.6183E-06 3.4

3.90E-03 7.9034E-07 4.1 7.0286E-07 4.0 7.4232E-07 4.4

3.12E-03 3.2785E-07 3.9 2.9228E-07 3.9 3.0097E-07 4.0
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Table III. Errors in L1, L2 and L∞ norm of the integral average of the divergence of the velocity field
computed using the third and fourth order accurate reconstruction with and without the divergence-free

constraints.

Reconstruction with divergence-free constraints

N = 2 N = 3

h(Ω) ǫL1
ǫL2

ǫL∞
ǫL1

ǫL2
ǫL∞

7.81E-03 3.4866E-15 1.0760E-16 2.2118E-17 5.5908E-15 1.5331E-16 1.9461E-17

5.21E-03 4.9333E-15 1.0249E-16 1.0286E-17 7.3968E-15 1.3998E-16 1.1953E-17

3.90E-03 6.4804E-15 1.0340E-16 9.8662E-18 9.4952E-15 1.3571E-16 1.0991E-17

3.12E-03 8.2151E-15 1.0766E-16 7.3319E-18 1.1326E-14 1.3048E-16 7.3319E-18

Reconstruction without divergence-free constraints

N = 2 N = 3

h(Ω) ǫL1
ǫL2

ǫL∞
ǫL1

ǫL2
ǫL∞

7.81E-03 1.1441E-03 2.9545E-05 2.0314E-06 1.0354E-04 2.2937E-06 1.1829E-07

5.21E-03 4.3618E-04 7.4789E-06 3.8500E-07 3.0019E-05 4.4344E-07 1.5588E-08

3.90E-03 2.1157E-04 2.7161E-06 9.8958E-08 1.2968E-05 1.4502E-07 4.4339E-09

3.12E-03 1.3533E-04 1.4530E-06 3.7736E-08 7.0176E-06 6.7277E-08 2.8425E-09

5.2. Integration of circular trajectories

The assessment of the high order Taylor method (63) for the backward integration of the Lagrangian

trajectories is carried out by prescribing a rigid body rotation as velocity field, which reads

ū(x) = ω × x, (68)

where the angular velocity vector ω is chosen to be either ω = (0, 0, 1) or ω = (0, 1, 0) for a circular

rotation on the x− y plane or on the x− z plane, respectively. The final time is set to tf = 2π, so that

one complete period of rotation is considered and the final point of the trajectory exactly matches

the starting point. In other words, starting from a generic point xP ∈ Ω, the exact solution is simply

given by a closed circle, which is numerically evaluated using the divergence-free reconstruction

technique together with the Taylor method for the integration of the trajectory. The computational

domain is the box Ω = [−0.5; 0.5]× [−0.5; 0.5]× [0; 1], which is discretized by using a uniform

vertical mesh spacing of ∆z = 0.1 and a total number of polygons NP = 1177 for each layer, as

shown in Figure 6.

Figure 7 depicts the numerical trajectories obtained for both test problems with a comparison

against the exact solution. An excellent agreement is achieved for the third order scheme, while if a

second order Taylor method is used in (63), the numerical trajectory significantly deviates from the

analytical path. Thus, high order of accuracy is a key ingredient for obtaining a better resolution in

the discretization of the nonlinear convective terms of the governing equations (2)-(6).

5.3. First problem of Stokes

The aim of this test case is to validate the discretization of the horizontal viscosity terms given

by (64). The first problem of Stokes considers an infinite plate which is initially at rest. Suddenly,

the plate is subject to an acceleration with constant speed parallel to the plate itself. To simulate

this problem, a coordinate system which moves with the plate is chosen, therefore the equivalent

problem results in solving an initially uniform flow with constant velocity field ū(x) = (1, 0, 0),
in which a flat plate at rest is located at time t = 0. The computational domain is the box

Ω = [0; 1]× [0; 0.5]× [0; 1] and is discretized with NP = 3469 Voronoi cells and a total number of

Nz = 5 vertical layers. According to [38], the analytical solution reduces to a linear scalar diffusion
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Figure 6. Computational mesh and absolute value of the velocity for the circular flow on the x− y plane
(left) and on the x− z plane (right).
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Figure 7. Trajectories for the circular flow on the x− y plane (left) and on the x− z plane (right) with
starting point xP = (0.4, 0, 0.5). Second and third order results are reported and compared against the exact

solution highlighted by a solid line.

equation for the horizontal velocity u:

∂u

∂t
+ v

∂2u

∂y2
= 0 u(x, 0, t) = 0, (69)

with the exact solution

u = erf

(

y

2
√
νt

)

, (70)

where the horizontal viscosity coefficient is ν = 10−3. The initial free surface elevation is η = 1 and

the simulation is carried out until a final time of t = 0.5 with second and third order of accuracy.

Figure 8 depicts the horizontal velocity profile along the y−direction at x = 0.5 obtained with

second and third order numerical schemes. The higher accurate scheme generates better results

which are closer to the analytical solution, as expected. Figure 9 shows a three-dimensional view

of the third order accurate horizontal velocity component u on the entire computational domain at

different output times.
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Figure 8. Second and third order results compared against exact solution for the first problem of Stokes.
Horizontal velocity component along the y−direction at x = 0.5 is plot at output time t = 0.3 (left) and

t = 0.5 (right).
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Figure 9. Third order horizontal velocity distribution for the first problem of Stokes at output time t = 0.3
(left) and t = 0.5 (right).

To compare the results with the work presented in [27], the first problem of Stokes is simulated

again with N = 2 but using an implicitness factor of θ = 1, hence recovering a first order accurate

scheme in time. A comparison against the exact solution is depicted in Figure 10, in which a

better matching is achieved w.r.t. the results obtained with θ = 0.55 shown in Figure 8. That

result is due to the effect of the numerical viscosity and is not related to the physical kinematic

viscosity. Furthermore, on the right panel of Figure 10 we also show the discrete divergence of the

velocity field computed according to (67) for all the simulations of the first problem of Stokes. The

divergence-free reconstruction proposed in this work maintains the velocity field with divergence

at machine accuracy for all computations, while for classical high order reconstruction schemes the

discrete divergence ranges in the interval [0,−0.17], never reaching the divergence-free condition.

Nevertheless, it is interesting to note that the higher order scheme better approaches the divergence-

free reconstruction, compared to the second order results.
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Figure 10. Left: comparison between exact solution and numerical results with N = 2 and θ = 1 for
the problem of Stokes. Right: evolution of the discrete velocity divergence for second and third order

reconstructions with and without the divergence constraint.

5.4. Stationary vortex

We propose to solve a stationary flow motion involving a vortex, that is generated by a perfect

balance between the pressure gradient and the centrifugal force. Thus, viscous terms are neglected

and hydrostatic pressure is assumed within the entire simulation up to the final time t = 0.5.

Following [27], the fluid is initially given an angular velocity

uφ = r exp

(

−1

2
(r2 − 1)

)

, (71)

and a free surface elevation of

η(r) =

∫

u2φ
gr
dr = η∞ − 1

2g
exp

(

1− r2
)

with η∞ := 1, (72)

which results from the integration of the radial momentum balance equation

∂η

∂r
=
u2φ
gr
, (73)

with r =
√

x2 + y2 denoting the generic radial position. Equations (71) and (72) describe a

stationary flow, therefore the exact solution coincides with the initial condition. When solving this

test problem numerically, the scheme produces a damping of the solution in time, due to numerical

diffusion errors. The higher accurate is the numerical method, the less diffusion is generated. For

our purposes, a circular domain with radius r = 10 is discretized on the horizontal plane with a

total number ofNP = 2340 polygonal elements and Nz = 10 vertical layers bounded in the interval

z ∈ [0; 1]. Figure 11 contains a cut along y = 0 of the free surface elevation and the numerical results

have been produced using from second up to fourth order divergence-free velocity reconstructions.

Indeed, the choice of the reconstruction degree affects the accuracy of the results, as evident

from Figure 11. The fourth order scheme generates less dissipation compared to the others, hence

achieving a better stationary solution. Figure 12 depicts a three-dimensional view of the free surface

elevation at the final time with N = 2 as well as the two-dimensional Voronoi mesh used to carry

out all simulations.

Finally, we show in Figure 13 a comparison between the results obtained with and without

divergence-free reconstruction. Looking at the left panel, for N = 3 the free surface elevation of
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Figure 11. Stationary vortex test case: free surface elevation against exact solution (left) for second, third
and fourth order version of our numerical scheme. A zoom on the vortex curvature is also plot (right).
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Figure 12. Free surface elevation (left) and Voronoi mesh (right) for the stationary vortex problem with
N = 2.

the vortex is better recovered by the divergence-free scheme, while on the right panel for second,

third and fourth order schemes the divergence of the velocity field is zero up to machine precision.

The high order reconstructions do not preserve the divergence constraint, however the most accurate

scheme has the smallest error, as already demonstrated by the results shown in Figure 10.

5.5. Oscillating basin

This test problem has been proposed in [6] in order to check and demonstrate the need of the non-

hydrostatic pressure correction when vertical velocity plays an important role in the fluid flow. The

basin is given by the cube Ω = [0; 10]3 and is discretized on the horizontal plane with a characteristic

mesh size of h = 0.25, while along the z−direction a total constant number of Nz = 20 layers has

been used. The flow is initially at rest and it is driven by an initial pressure gradient given by the

following free surface elevation:

η(x) = 0.02x− 0.1. (74)
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Figure 13. Left: Comparison between fourth order results for free surface elevation with and without
divergence-free reconstruction. Right: evolution of the discrete velocity divergence for second, third and

fourth order reconstructions with and without the divergence constraint for the stationary vortex.

According to [6], horizontal and vertical viscosity are neglected and the final time of the simulation

is t = 10, that is reached with a time step of ∆t = 10−3. The exact solution is a standing wave

of length λ = 2L and frequency f = c
λ

, with L = 10 denoting the length of the basin and c =
√

gλ
2π tanh

(

2πH
λ

)

being the dispersion relation.

The time history of the free surface elevation at (x, y) = (10, 5) is shown in Figure 14, where we

compare the third order numerical results computed with and without the non-hydrostatic correction

for the pressure. As expected, the hydrostatic assumption is no longer valid for achieving reasonably

good results and the analytical solution is much better recovered by the non-hydrostatic scheme, in

terms of both amplitude and frequency.

6. CONCLUSIONS

In this paper we have presented an efficient semi-implicit numerical scheme for the solution of the

three-dimensional Reynolds-Averaged-Navier-Stokes (RANS) equations. A staggered polygonal

Voronoi mesh is employed for the discretization of the horizontal domain together with z−layers

along the vertical direction. The pressure, the horizontal velocity and the vertical viscosity terms are

discretized implicitly, while the convective and horizontal viscous terms are taken explicitly, namely

relying on a semi-Lagrangian scheme that requires the integration of the Lagrangian trajectories of

the flow backward in time. To this end, a new globally and pointwise divergence-free reconstruction

has been designed, which generates a continuous high order velocity field representation within each

control volume. We have proved that the continuity equation is satisfied up to machine precision,

hence the divergence-free constraint is fully respected. The integration of the ODE that governs

the Lagrangian trajectories is subsequently performed using the high order information obtained

by the reconstruction. The proposed method applies to both hydrostatic as well as non-hydrostatic

flows and a set of test problems has been shown in order to assess and validate the new numerical

method. Whenever possible, the numerical results obtained with different order of accuracy have

been compared against the exact solution.

Future work will consider the use of a turbulence model of the type k − ω as well as the inclusion

of suspended sediment transport phenomena, in order to simulate more realistic configurations

typically occurring close to hydroelectric power plants.
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Figure 14. Free surface elevation for the oscillating basin test case. Analytical solution (solid line)
is compared against the hydrostatic (dashed line) and non-hydrostatic (dashed-dotted line) third order

simulation.
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