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Abstract
This study involves the histological analysis of samples taken during autopsies in cases of COVID-19 related death to 
evaluate the inflammatory cytokine response and the tissue localization of the virus in various organs. In all the selected 
cases, SARS-CoV-2 RT-PCR on swabs collected from the upper (nasopharynx and oropharynx) and/or the lower respira-
tory (trachea and primary bronchi) tracts were positive. Tissue localization of SARS-CoV-2 was detected using antibodies 
against the nucleoprotein and the spike protein. Overall, we tested the hypothesis that the overexpression of proinflammatory 
cytokines plays an important role in the development of COVID-19-associated pneumonia by estimating the expression of 
multiple cytokines (IL-1β, IL-6, IL-10, IL-15, TNF-α, and MCP-1), inflammatory cells (CD4, CD8, CD20, and CD45), and 
fibrinogen. Immunohistochemical staining showed that endothelial cells expressed IL-1β in lung samples obtained from the 
COVID-19 group (p < 0.001). Similarly, alveolar capillary endothelial cells showed strong and diffuse immunoreactivity 
for IL-6 and IL-15 in the COVID-19 group (p < 0.001). TNF-α showed a higher immunoreactivity in the COVID-19 group 
than in the control group (p < 0.001). CD8 + T cells where more numerous in the lung samples obtained from the COVID-19 
group (p < 0.001). Current evidence suggests that a cytokine storm is the major cause of acute respiratory distress syndrome 
(ARDS) and multiple organ failure and is consistently linked with fatal outcomes.
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Introduction

On December 2019 the China Health Authority alerted the 
World Health Organization (WHO) about several cases of 
pneumonia with unknown etiology [1–5]. Laboratory diag-
nosis of a new disease, termed coronavirus disease 2019 
(COVID-19), was performed using throat swab samples of 
41 patients hospitalized on January 2, 2020 [6–12].

On March 11, 2020, the WHO characterized the COVID-
19 outbreak as a pandemic on the basis of its alarming spread 
and severity [13–16]. The WHO classified the causal agent 
of COVID-19, called the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). Taxonomically, SARS-CoV-2 
has been classified as a member of the species SARS-related 
coronavirus (SARSr-CoV) in the genus betacoronavirus 
(βCoV) of the family Coronaviridae [17]. A closely related 
SARSr-CoV genome sequence, RaTG13, which shares a 
96% whole-genome sequence identity with SARS-CoV-2, 
has been identified [18]. The SARS-CoV-2 genetic sequence 
showed about 79% and 50% similarity with severe acute res-
piratory syndrome coronavirus and Middle East respiratory 
syndrome–related coronavirus, respectively [19]. The occur-
rence of infections between families supported the idea that 
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droplets, contact, and aerosols were the probable routes of 
person-to-person transmission; transmission via the gastroin-
testinal system was also proposed as a possible route [20, 21]. 
Human lung epithelial cells have been indicated as a major 
target of the coronavirus. The receptor-binding domain of 
the viral spike protein interacts with the receptor of cellular 
angiotensin-converting enzyme 2 (ACE-2) [22–24]. In the 
early stages of the infection, patients are asymptomatic or 
mildly symptomatic, wherein they exhibit symptoms of fever, 
cough, fatigue, headache, hemoptysis, and diarrhea triggered 
by the initial local inflammatory response. In this phase, the 
virus infiltrates and damages the lung parenchyma progres-
sively, and when the host inflammatory response continues to 
amplify, systemic inflammation damages other organs, lead-
ing to conditions such as acute kidney injury [25]. A cascade 
of biomolecular events occurs in an intricate network after 
exposure infection of SARS-COV-2 including the production 
of interleukins 1β, 6, 10 (IL-1β, IL-6, IL-10, MCP-1), and 
tumor necrosis factor-α (TNF-α). These molecules have a var-
ious set of functions. A proinflammatory behavior is reported 
for TNF-α, IL-1β and IL-6, which are important mediators 
of acute inflammatory response, such as for the recruitment 
of neutrophil leukocytes. Other molecules recognized with 
an immunosuppressant role include IL-10, which inhibits 
cytokine production and receptor expression.

Autopsy has been used as the gold standard for identi-
fying the cause of death in COVID-19 cases [26–31], and 
several techniques have been recommended for the safety 
of pathologists and to reduce the risk of infection during 
autopsy [32–39]. Despite these recommendations, autopsies 
in COVID-19 cases are often limited to biopsies or mini-
mally invasive thoracotomies [40–46]. Craniotomies, and 
dissection of the central nervous system is generally avoided 
to minimize the risk of exposure to aerosols [47–49]. Finally, 
only a few cases of complete postmortem investigations in 
these cases have been reported [50–80].

The aim of this study was to clarify the correlation 
between infection due to SARS-COV-2 and the inflamma-
tory response, and to investigate the expression of cytokines 
such as TNF-α, IL-1β, IL-6, MCP-1, IL-10, IL-15, and leu-
kocyte marker (CD 4, CD 8, CD20, CD 45), in an attempt 
to verify and define the role and expression of cytokines and 
mechanisms of cell death triggered in cases of COVID-19 
deaths. We performed both immunohistochemical analysis 
and electron microscopy to analytically evaluate the infec-
tion status and its impact on various organs.

Materials and methods

This study was approved (N 342/2020/Oss/AOUFe0) on 
April 7th, 2020 by the competent Ethic Committee (CE-
AVEC: Comitato Etico di Area Vasta Emilia Centro della 

Regione Emilia-Romagna) according to the Helsinki Decla-
ration of 1975 and according to the Italian law.

Case selection

A total of 60 COVID-19-positive subjects were included 
(Group 1); the demographic data are shown in Table 1. As 
controls (Group 2), we selected a total of 20 subjects, who 
died of multi organ failure from polytrauma (n = 10) and 
gunshot head injuries (n = 10) prior to 2018, with an aver-
age survival of about 10 days in intensive care wards. The 
case exclusion criterion was the presence of concomitant 
known infectious lung diseases. Samples were anonymized 
by assigning them an alphanumeric code.

Tissue localization of SARS-CoV-2 was detected using 
antibodies against the nucleoprotein and the spike protein. 
Overall, we tested the hypothesis that the overexpression of 
proinflammatory cytokines plays an important role in the 
development of COVID-19-associated pneumonia by esti-
mating the expression of multiple cytokines (IL-1β, IL-6, 
IL-10, IL-15, TNF-α, MCP-1), inflammatory cells (CD4, 
CD8, CD20, CD45), and fibrinogen.

SARS‑CoV‑2 RNA detection

The viral titer in each specimen was estimated using real-
time reverse transcription polymerase chain reaction (RT-
PCR). Swabs of the upper respiratory tract (nasopharynx and 
oropharynx) were taken before the autopsy, whereas swabs 
of the lower respiratory tract (trachea and primary bronchi) 
were taken during the autopsy. Postmortem swabs were pro-
cessed using the reagent system for SARS-CoV-2 RT-PCR 
(RealStar®, Altona Diagnostics, Germany). The limit of 
detection of the RT-PCR was 2000 copies of viral RNA/
mL. RNA was quantitatively assessed to distinguish RNA of 
βCoV lineage B (B-βCoV) from that of SARS-CoV-2. For 
this, structural E-genes, specific for B-βCoV, and S-genes, 
specific for SARS-CoV-2, were amplified using RT-PCR, 
and the cycle threshold (Ct) values were used for analysis.

Autopsies and tissue processing

Autopsies were performed in infection isolation rooms. His-
tological samples obtained after the autopsy were fixed in 
10% buffered formalin for 48 h.

Histological and immunohistochemical analysis

We performed routine hematoxylin–eosin staining for histo-
pathologic evaluation of each sample. Immunohistochemi-
cal analysis to evaluate the distribution of SARS-CoV-2 in 
the tissue samples was performed on 5 µm thick paraffin-
embedded sections of the brain (5 samples each case), heart 
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(7 samples each case), lung (7 samples each case), trachea 
(1 sample each case), kidney (2 samples each case), liver (2 
samples each case), spleen (1 samples each case), stomach 
(1 samples each case), gut (2 samples each case), thyroid (2 
samples each case), and testicles (2 samples each case). We 
utilized anti-nucleocapsid (Santa Cruz Biotechnology, CA, 
USA) and anti-spike (Sino Biological, Germany) antibodies 
to detect viral particles. Lung sections were evaluated for 
the expression of multiple cytokines (IL-1β, IL-6, IL-10, 
IL-15, TNF-α, MCP-1), inflammatory cells (CD4, CD8, 

CD20, CD45), and fibrinogen. The dilution of antibodies 
and pretreatments for antigen retrieval are shown in Table 2.

Primary antibodies were detected using a biotinylated 
secondary antibody and horseradish peroxidase-conjugated 
streptavidin (4plus HRP Universal Detection, Biocare Medical, 
CA, USA). 3,3’-Diaminobenzidine (DAB, Biocare Medical, 
CA, USA) and H2O2 (Betazoid DAB Chromogen Kit, Bio-
care Medical, CA, USA) were used as the chromogen and sub-
strate, respectively. Subsequent counterstaining with hematoxy-
lin–eosin allowed visualization of cell morphology and nuclei.

Table 1  Demographics and 
clinical characteristics of the 
COVID 19 positive cases 
(Group 1) and control cases 
(Group 2)

Demographics and clinical characteristics of the cases (N = 60)
Gender M 28 F 32
Age Total 20–40 years 40–50 years 50–60 years 60–70 years  > 70 years

1 2 5 8 44
No comorbidity known 6 1 1 1 1 2
Arterial Hypertension 33 1 1 2 29
Malignancy 8 1 1 2 4
Chronic Kidney disease 10 10
Overweight 3 1 1 1
Diabetes Mellitus 11 1 3 7
Chronic pulmonary 

disease
20 1 1 18

Demographics and clinical characteristics of the control cases (N = 20)
Gender M 8 F 12
Age Total 20–40 years 40–50 years 50–60 years 60–70 years  > 70 years

2 3 4 6 5
No comorbidity known 2 1 1
Arterial Hypertension 10 3 5 2
Malignancy 2 1 1
Chronic Kidney disease 3 1 1 1
Overweight 3 2 1
Diabetes Mellitus 4 2 2
Chronic pulmonary 

disease
9 3 2 4

Table 2  Antibodies, dilution and pretreatments for SARS-CoV-2 immunohistochemical study

Antibody Producer Dilution Pretreatment Incubation

IL-1β Santa Cruz Biotechnology, Inc 1:200 HIER 0.1 M citrate buffer 2 h, 20 °C
IL-6 Santa Cruz Biotechnology, Inc 1:500 Proteinase K, 15 min. at 20 °C 2 h, 20 °C
IL-10 Santa Cruz Biotechnology, Inc 1:50 Proteinase K, 15 min. at 20 °C 2 h, 20 °C
IL-15 Santa Cruz Biotechnology, Inc 1:50 HIER 0.25 mM EDTA buffer 2 h, 20 °C
TNF-α Santa Cruz Biotechnology, Inc 1:500 HIER 0.1 M citrate buffer 2 h, 20 °C
MCP-1 Santa Cruz Biotechnology, Inc 1:50 HIER 0.25 mM EDTA buffer 2 h, 20 °C
CD4 Santa Cruz Biotechnology, Inc 1:50 HIER 0.25 mM EDTA buffer 2 h, 20 °C
CD8 Santa Cruz Biotechnology, Inc 1:500 HIER 0.25 mM EDTA buffer 2 h, 20 °C
CD20 Santa Cruz Biotechnology, Inc 1:500 HIER 0.25 mM EDTA buffer 2 h, 20 °C
CD45 Santa Cruz Biotechnology, Inc 1:500 HIER 0.25 mM EDTA buffer 2 h, 20 °C
Fibrinogen Santa Cruz Biotechnology, Inc 1:3000 Proteinase K, 15 min. at 20 °C 2 h, 20 °C
SARS-CoV-2 (nucleocapsid) Santa Cruz Biotechnology, Inc 1:100 HIER 0.25 mM EDTA buffer Overnight, 20 °C
SARS-CoV-2 (spike) Sinobiological 1:1000 HIER 0.25 mM EDTA buffer 2 h, 20 °C
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Cytokines, differentiation-related proteins, and fibrino-
gen were subjected to a semi-quantitative evaluation. Each 
slide was evaluated by 2 different investigators at × 40 mag-
nification. The intensity of immunopositivity was assessed 
semi-quantitatively and expressed on a scale of 0–5 as fol-
lows: − , no immunoreactivity (0%); + /–, basal immunopo-
sitivity (5%); + , mild immunopositivity (10%); + + , isolated 
immunopositivity (33%); + + + , diffuse immunopositivity 
(66%), and + + + + , widespread immunopositivity (> 90%). 
In cases of divergent scores, a third investigator decided the 
final score.

Ultrastructural examination

Lung, heart, and kidney samples were collected and assessed 
for the presence of viral particles using electron microscopy. 
Samples were fixed in glutaraldehyde, post-fixed in 1% 
osmium tetroxide, further processed according to standard 
transmission electron microscopy procedures, and embedded 
in Poly/Bed® 812 (Polysciences, Germany). Suitable thin 
sections were identified by toluidine blue staining and exam-
ined using a Zeiss EM-109 transmission electron microscope 
(Zeiss, Germany).

Statistical analysis

Statistical analysis of the immunohistochemical experimen-
tal results, including those of the semi-quantitative estima-
tion, were performed using the GraphPad Prism 8 software 
for Windows (GraphPad Software, CA, USA). The data was 
analyzed for normality using the Kruskal–Wallis test, fol-
lowed by Dunn’s multiple comparisons test to compare the 
groups. For all statistical tests, a p-value < 0.05 was consid-
ered significant.

Results

RT‑PCR analysis of swabs

Using RT-PCR, all swabs from Group 1 collected from 
the upper (nasopharynx and oropharynx) and/or the lower 
respiratory (trachea and primary bronchi) tracts before and 
during the autopsies, respectively, were positive for SARS-
CoV-2. The control group was always negative on the swab 
result.

Fig. 1  A  Lung tissue showed edema, early stage DAD with hyaline membranes (green arrows) and microvascular thrombi (yellow arrows) 
(H&E, × 40); B Lung: capillary congestion, and microvascular thrombi (black arrows) (H&E, × 60)
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Histopathological analysis

Diffuse alveolar damage (DAD) was found in thirty-
four cases; the main feature was exudative DAD, while 
in eighteen cases DAD was in the proliferative stage. We 
also observed desquamation of hyperplastic pneumocytes, 
presence of multinucleated cells, and foamy macrophages; 
there was also fibrosis and squamous metaplasia in advanced 
stages. Fourteen patients also had superimposed granulo-
cyte focal confluent bronchopneumonia. The pulmonary 
vessel endothelia did not show vasculitis alterations, but the 

small arteries showed fibrin thrombi in twenty-three cases. 
(Fig. 1).

Immunohistochemical analysis

Only some of the analyzed protein markers were significant 
for discriminating the COVID-19 group from the control 
group. IL-10 was excluded from further analyses since it did 
not exhibit any discriminatory power.

Results of the immunohistochemical analyses, including 
the semi-quantitative analysis, are described using an ordinal 

Fig. 2  Statistically significant difference in the group of COVID-19-related death (grey columns) compared to the control group (black columns) 
for the following cytokines: IL-1β, IL-6, IL-15, TNF-α, MCP1, CD4, CD8, CD20, CD45, fibrinogen: NS: p > 0.05; **: p < 0.01; ***: p < 0.001 

Table 3  Expression and localization of SARS-CoV-2 antigen (nucleocapsid and spike) in principal organs using immunohistochemistry.1

1  The immunohistochemical findings and the gradation of the immunohistochemical reaction have been described with an ordinary scale and the 
median value has been reported. The reactions were graded as follows: 0 ( −) not expressed; 1 ( +) isolated and disseminated expression; 2 (+ +) 
expression in scattered foci; 3 (+ + +) expression in widespread foci; 4 (+ +  + +) widespread expression. The Group 1 are COVID-19-positive 
subjects and the Group 2 are controls

Lungs and trachea Liver Heart Kidney Stomach and 
bowel

Spleen

Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

SARS-
CoV-2 
(nucle-
ocap-
sid)

 +  +  + -  +  +  + -  +  +  +  + -  +  +  +  + -  +  + -  +  +  + -

SARS-
CoV-2 
(spike)

 +  +  + -  +  +  + -  +  +  +  + -  +  +  +  + -  +  + -  +  +  + -
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scale, and the median value is reported. Morphometry-based 
microscopic analysis revealed that the immunohistochemi-
cal reaction generated by antibodies against TNF-α, IL-1β, 
IL-15, IL-6, MCP-1, CD8, CD20, and CD45 was signifi-
cantly different between the COVID-19 group and the con-
trol group (Fig. 2). Results of the immunohistochemical 
analysis of lung specimens from the COVID-19 and control 
groups are presented in Tables 3 and 4.

Immunohistochemical staining showed that endothelial 
cells expressed IL-1β in lung samples obtained from patients 
of COVID-19 but not in those obtained from control indi-
viduals (p < 0.001) (Fig. 3A, B). Similarly, alveolar capillary 
endothelial cells showed strong and diffuse immunoreactiv-
ity for IL-6 (Fig. 3C, D) and IL-15 (Fig. 4A, B), observed as 
red dots in the cytoplasm, in the COVID-19 group but not in 
the control group (p < 0.001). In all twenty-three cases, the 
finding of microthrombi in the pulmonary vessels correlated 
with intense positivity to the immunohistochemical reaction 
with pro-inflammatory cytokines (IL-1 β, IL-6, TNF- α). 
TNF-α showed a higher immunoreactivity in the COVID-
19 group (Fig. 4C, D) than in the control group (p < 0.01). 
CD8 + T cells were more numerous in the lung samples 
obtained from COVID-19 patients than in those obtained 
from control individuals (p < 0.01), whereas the number 
of CD4 + T cells present adjacent to the alveolar epithelial 

Table 4  Semi-quantitative evaluation and statistical analysis of the 
immunohistochemical findings and gradation of the immunohisto-
chemical reaction in the lung samples.1

1  Intensity of immunopositivity was assessed semi-quantitatively 
in the scale 0–5 as follows: − : no immunoreactivity (0%); ± : basal 
immunopositivity (5%); + : mild immunopositivity (10%); +  + : 
isolated immunopositivity (33%); +  +  + : diffuse immunopositiv-
ity (66%) and +  +  +  + : widespread immunopositivity (> 90%). NS: 
p > 0.05; **: p < 0.01; ***: p < 0.001

Antibody Group 1
(COVID-19 positive)

Group 2
(controls)

Statistical 
value
Group 1 
vs. Group 
2

IL-1β  +  +  +  + +/- ***
IL-6  +  +  +  + +/- ***
IL-10 +/- - NS
IL-15  +  +  +  + +/- ***
TNF-α  +  +  + +/- **
MCP-1  +  + - ***
CD4 +/- +/- NS
CD8  +  + +/- ***
CD20  +  + +/- ***
CD45  +  + +/- ***
Fibrinogen  +  + - ***

Fig. 3  A, B  Immunohistochemical reaction of IL-1β in group of 
COVID-19-related death showed a wide endothelial expression and 
positivity (brown reactions indicated with black arrows) in lung sam-
ples (× 60, × 100); Insert in (a): control case (× 60); C, D IL-6 showed 

a strong (black arrows) and diffusely positive reactions in capillary-
alveolar endothelial cells in the COVID-19 group, expressed by 
brown dots in the endothelial cells than the negative control case 
(× 80, × 40); Insert in (c): control case (× 60)
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Fig. 4  A, B  Immunohistochemical reaction of IL-15 in group of 
COVID-19-related death showed a showed a strong positive reac-
tion (arrows) in capillary-alveolar endothelial cells in lung samples 
(× 100, × 60); insert in (a): control case (× 60); C, D TNF-α showed a 

diffusely positive reaction in capillary-alveolar endothelial cells in the 
COVID-19 group, expressed by brown dots in the endothelial cells 
than the negative control case (× 100, × 60); insert in (c): control case 
(× 60)

Fig. 5  A  Immunohistochemical reaction to CD4 + T cells demon-
strated a greater positivity in lungs from control group (Group 2) 
than in COVID-19 group (Group 1); B  (× 60, × 80); C, D  CD8 + T 
cells were more numerous adjacent to the alveolar epithelial lin-

ing in the COVID-19 group than in the control group expressed by 
brown reactions in the endothelial cells than the negative control case 
(× 80, × 80)
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lining was lesser in the lung samples obtained from COVID-
19 patients than in those obtained from control individuals 
(Fig. 5).

Expression and localization of SARS-CoV-2 antigen 
(nucleocapsid and spike) were demonstrated in principal 
organs such as heart, liver and spleen using immunohisto-
chemistry (Fig. 6).

Ultrastructural results

Electron microscopy revealed viral particles within the cells 
of the lungs, trachea, kidney, and large intestine (Fig. 7A, 
B) in the COVID-19 group. Renal glomerular endothelial 
cells exhibited free viral particles (74–82 nm in diameter) 
localized in the cytoplasm or within a vacuole (Fig. 7C, D).

Fig. 6  A Heart: immunohisto-
chemistry demonstrated strong 
reactions (arrows) into the myo-
cardiocytes (× 100); B, C Liver 
cells colonized by numerous 
viral particles (arrows); diffuse 
positivity (arrows) to SARS-
CoV-2 antigen [nucleocapsid 
(black arrows) and spike (red 
arrows)] into the spleen (× 100)

Fig. 7  A, B Lung: transmission electron microscopy demonstrated viral particles into the endothelial cells (× 6300, × 10,000; bar 500 nm); C, 
D Glomerular endothelial cells colonized by numerous viral particles (× 40,000, × 50,000; bar 100 nm)
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Discussion

Current evidence suggests that a "cytokine storm" is the 
major cause of ARDS and multiple organ failure, and it 
has been consistently linked with fatal outcomes [81, 82]. 
Activated white blood cells, B cells, T cells, natural killer 
(NK) cells, macrophages, dendritic cells, neutrophils, 
monocytes, and resident tissue cells, such as epithelial and 
endothelial cells, release large amounts of proinflammatory 
cytokines. High levels of proinflammatory cytokines, such 
as IL-1, IL-6, IL-7, IL-12, IFN-γ, TNF-α, IP-10, MIP-1A, 
MCP-1, GCSF, and IP-10, have been observed in COVID-
19 patients and are generally associated with severe lung 
damage [83–85]. Activated resident macrophages and pneu-
mocytes initiate an inflammatory response triggered by the 
presence of SARS-CoV-2 in the lungs, leading to the over-
production of proinflammatory cytokines and chemokines, 
which are involved in endothelial cell apoptosis, increased 
vascular permeability, pulmonary exudation, hypoxia, and 
multiple organ failure [86]. Overproduction of cytokines is 
related to the development of clinical symptoms. For exam-
ple, IFN-γ can cause fever, chills, headaches, dizziness, and 
fatigue; TNF-α is associated with flu-like symptoms [87]; 
and IL-6 is associated with activation of the complement 
and coagulation cascade, which leads to diffuse intravascular 
coagulation (DIC). IL-6 also promotes myocardial dysfunc-
tion [88]. Together with reactive oxygen species, IL-6, IL-8, 
IL-1β, GM-CSF, and other chemokines cause ARDS, lead-
ing to pulmonary fibrosis and death. In the early stages of 
the infection, a hyper-inflammatory state is followed by an 
immunosuppressed state, and this is potentially associated 
with a decrease in CD4 + and CD8 + T cells [89]. COVID-19 
patients are characterized by a distinct decrease in memory 
T cells and cytotoxic CD8 + T cells. A decrease in total lym-
phocytes (CD4 + and CD8 + T cells, B cells, and NK cells) 
has also been reported [80]; however, the mechanism of lym-
phopenia is unclear and needs to be investigated further. It 
has been hypothesized that a direct infection of T cells with 
SARS-CoV-2 triggers a cytopathic effect; however, the lack 
of ACE-2 receptors on the lymphocytes seems to exclude the 
possibility of a direct injury and indicates that SARS-CoV-2 
infects human T cell lines through the CD147 spike protein 
on the surface of T lymphocytes, leading to cell apoptosis 
[90]. The dysfunction of lymphocytes impairs the adaptive 
immune response of the host, and an uncontrolled viral 
infection leads to the increased macrophage infiltration, fur-
ther worsening the damage to the lungs. Finally, the spread 
of the virus in the bloodstream directly impacts other organs 
and leads to a dysfunction of the systemic microcirculation, 
while the systemic inflammatory response causes viral sep-
sis. Some authors have proposed the role of neutrophils 
in the exacerbation of the host response to SARS-CoV-2, 

wherein they trigger a cascade of inflammatory reactions 
that facilitate micro-thrombosis and result in damage to the 
pulmonary, cardiovascular, and renal systems [70, 80, 91].

Clinical characteristics of patients infected with SARS-
CoV-2, such as pneumonia, ARDS, sepsis, and multiple 
organ failure, provide evidence for the fact that the ACE-2 
receptors on the ciliated cells of the airway epithelium and 
alveolar type II cells are the route of viral entry. It is well 
known that the coronavirus spike protein has 2 domains, 
S1 and S2. The S1 domain binds to the host ACE-2 recep-
tor, while the S2 domain is responsible for cell membrane 
fusion. The inflammatory response induced by a viral infec-
tion is critical to inhibiting viral replication; however, an 
excessive immune response could be crucial to the pathogen-
esis of a disease. The interaction between the spike protein 
and ACE-2 receptor leads to the downregulation of ACE-2, 
resulting in the local enhancement of angiotensin II produc-
tion and unrestricted stimulation of the angiotensin receptor 
(AT1-R). Additionally, binding of ACE-2 receptor with the 
SARS-CoV-2 spike glycoprotein induces the formation of 
syncytial multinucleated cells.

Studies involving cadavers are often limited to a single case 
or minimally invasive approaches, such as biopsies and thora-
cotomies, and those involving a large number of cases remain a 
rarity (Table 2). DAD (exudative/proliferative) with interstitial 
lymphocytic infiltration and atypical large pneumocytes has 
been reported in some cases of COVID-19. Mild infiltration of 
interstitial mononuclear inflammatory cells has been occasion-
ally observed in cardiac samples, and the neuroinflammatory 
response to COVID-19 is still debated. Spleen atrophy, lymph 
node necrosis, focal hemorrhage, and infiltration of inflamma-
tory cells in the kidney and liver have been reported, demon-
strating the impact of the SARS-CoV-2 infection on multiple 
organs [42, 54, 56, 63, 72, 73]. Immunohistochemistry is cru-
cial in postmortem investigations, and immunohistochemical 
staining for various inflammatory cells, such as lymphocytes, 
macrophages, neutrophils, and endothelial cells, is generally 
performed in autopsy studies [43, 50–52, 60, 65, 77]. On the 
other hand, electron microscopy allows for the visualization 
of intracellular viral particles with distinctive spikes and solar 
corona distribution [44, 46, 62, 66–70, 75, 92].

Lungs and the respiratory system

Clinical studies have reported a correlation between elevated 
serum levels of proinflammatory cytokines, such as IFN-γ, 
TNF-α, IL-6, and IL-8, and lung injury and poor progno-
sis [93]. Postmortem specimens of SARS-CoV-2-infected 
lungs exhibited histological features of DAD with necrosis 
of the alveolar lining, hyperplasia of type II pneumocytes, 
intra-alveolar fibrin deposition, mild interstitial edema, and 
infiltration of lymphocytes in the perivascular space in the 
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early phase of the infection [43, 44, 51, 65, 70, 72]. Our 
results confirm the presence of these histological findings 
in all cases examined. A recent report has described the 
following 3 fundamental characteristics that connote pul-
monary changes induced by COVID-19: severe endothe-
lial injury associated with the intracellular localization of 
SARS-CoV-2 and disruption of endothelial cell membrane, 
widespread vascular thrombosis with microangiopathy and 
occlusion of alveolar capillaries, and growth of new vessels 
via intussusceptive angiogenesis [50]. Another report also 
suggested that the magnitude of cytokine secretion is associ-
ated with severity of COVID-19 and that postmortem lung 
samples showed higher endothelial expression of IL-6 and 
TNF-α in the diseased condition than in control condition. 
These pathological modifications reflect endothelial dys-
function, which when combined with pyroptosis can lead to 
systemic thrombosis [94].

Our findings support this. Immunohistochemical evalua-
tion of pro-inflammatory cytokines showed a high and wide-
spread lung expression of IL1β, IL-6, IL-15 and TNF-α in 
deaths caused by severe COVID-19 pneumonia. We also 
found an increase in MCP-1 expression compared to con-
trols, which is consistent with local macrophage activation.

Infiltration of inflammatory cells, represented by 
CD4 + and CD8 + lymphocytes in the perivascular space, 
ranged from scarce to moderate according to disease sever-
ity. Some authors have described a paucity of CD8 + , 
CD57 + , and NK cells in the alveolar septa, lymphoid 
organs (spleen and lymph nodes), and peripheral blood of 
COVID-19 patients [43, 70]. A paucity of CD20 + B cells 
has also been reported in a few cases.

Our results do not confirm these data. The immunohisto-
chemical investigations carried out in our study revealed the 
presence of abundant lymphocytes (CD45 +) in the alveolar 
septa. These were mainly identified as CD8 + T lymphocytes 
and B (CD20 +) lymphocytes. CD4 + T lymphocytes were 
few in number, even less numerous than in the control group 
(difference not statistically significant). This difference could 
be attributed to the clinical history of our cases: almost all 
subjects died outside a hospital setting and therefore did not 
receive specific or symptomatic therapies that could have 
modulated the inflammatory response [95].

CD68 + macrophages and atypical giant cells have been 
observed in alveolar spaces in COVID-19 patients, and 
type II pneumocytes with the enlarged, bright, eosinophilic 
nucleoli have been reported to increase in size in the dis-
eased condition [70]. Intraluminal CD61 + megakaryo-
cytes, associated with the production of fibrin and platelets, 
exhibited nuclear hyperchromasia and atypia in COVID-19 
patients [60]. In some cases of COVID-19, superimposed 
bronchopneumonia has been reported, and vascular throm-
bosis with microangiopathy and occlusion of alveolar cap-
illaries has also been observed in lung samples of patients 

with COVID-19 [63]. Immunohistochemical investigations 
showed a higher number of ACE-2-positive cells in the 
lungs of patients with COVID-19 than that in uninfected 
controls. Studies have reported that Ki-7 was expressed in 
alveolar and bronchiolar cells, indicating a high index of 
epithelial cell proliferation, in COVID-19 patients [43]. 
Squamous metaplasia in the distal airways and alveoli refers 
to the proliferation of bronchiolar basal cells in response 
to an epithelial injury. Electron microscopic analysis has 
revealed significant changes in endothelial morphology, 
including disruption of intercellular junctions, cell swelling, 
and a loss of contact with the basal membrane, in COVID-
19 patients. Round viral particles were also observed in the 
tracheal, bronchial, type I, and type II alveolar epithelial 
cells in COVID-19 patients.

Heart and cardiovascular system

The mechanisms underlying the pathogenesis of SARS-
CoV-2 in patients with cardiovascular comorbidities are still 
not completely understood. Increasing cardiac stress due to 
respiratory failure and hypoxemia, myocardial viral infec-
tion, indirect injury from a systemic inflammatory response, 
or a combination of all 3 mechanisms has been proposed as 
the underlying mechanism [96–98]. It has been hypothesized 
that the downregulation of ACE-2 in response to a SARS-
CoV-2 infection leads to myocardial dysfunction, potentiat-
ing angiotensin II release and AT1-R stimulation [99].

In the literature, papers highlight the presence of vascular 
endotheliitis, thrombosis and angiogenesis in COVID-19. 
Endothelial and platelet dysfunction are considered impor-
tant players in the multifactorial pathogenesis of COVID-
19-associated coagulopathy [61].

The mechanisms involved can be summarised as follows:

1. Endothelial cell dysfunction and apoptosis could lead 
to basal membrane exposure resulting in macro- and/or 
micro-thrombotic angiopathy.

2. Endothelial cell damage due to ATII upregulation would 
underlie organ or generalised vasoconstrictive responses.

3. Endothelial cells have often been recognised as part of 
the innate immune system and could be responsible for 
an exacerbated response in the inflammatory phase of 
the disease.

4. Microangiopathy could be supported locally by an 
endotheliitis demonstrated by perivascular inflamma-
tory infiltrates.

5. Generalised cellular hypoxia may finally result from 
mitochondrial dysfunction conducting to endothelial 
cell dysfunction [100].

The damaging action may occur through tissue factor 
(TF) activation, which occurs mainly in the endothelium, 
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platelets and perivascular cells. Due to the increase in 
angiotensin 2 (AT2) in response to down-regulation of 
angiotensin-converting enzyme 2 (ACE-2), TF overex-
pression is most likely a trigger for TF activation [101]. 
The SARS-CoV-2 virus uses ACE2 and transmembrane 
serine protease 2 (TMPRSS2) to infect cells. The balance 
between circulating ACE2 and membrane-bound ACE2 
receptor is therefore crucial to prevent SARS-CoV-2 entry 
into target cells, a mechanism dependent on membrane-
bound ACE2 receptors [102].

It is interesting to stress the importance of pericytes. 
These perivascular cells are responsible for maintaining 
the integrity of microvessels and show high expression 
of the ACE2 receptor. The authors hypothesised that the 
decrease in pericytes and the apoptotic mechanism due to 
direct damage by SARS-COV-2 could be the initial trigger 
of microvasculopathy [103]. The virus affects not only the 
epithelial cells of the lung parenchyma via ACE2, but also 
endothelial cells throughout the body, thus leading to gen-
eralised endothelial damage and inflammation, so-called 
endotheliitis. In patients with severe COVID-19 infection, 
endotheliitis is demonstrated both by an increase in the 
number of circulating endothelial cells and by elevated 
levels of soluble endothelial cell adhesion molecules and 
inflammatory cytokines [104]. In post-mortem studies, 
the accumulation of lymphocytes, plasma cells and mac-
rophages under the endothelial cells and in the perivas-
cular spaces is described [61]. Histological findings from 
both in vivo biopsies and post-mortem investigations, 
showed lymphocytic endotheliitis with apoptotic bodies 
and viral inclusion in various organs. Severe inflammation 
with endotheliitis may lead to disseminated intravascular 
coagulation with subsequent thrombosis of small or large 
vessels [98]. Pathological findings such as cell swelling, 
severe endothelial injury, disruption of intercellular junc-
tions and loss of basement membrane contact in COVID-
19 patients indicate the progression from activation to 
dysfunction until destruction of endothelial cells, which, 
supported by vascular endotheliitis, leads to the formation 
of capillary microthrombi [50, 105].

Myocardial damage and heart failure have been reported 
to be associated with high levels of troponin I and B-type 
natriuretic protein and high mortality rates [106]. There are 
no studies that have demonstrated the presence of SARS-
CoV-2 within the myocardial tissue, and reports of infil-
tration of the myocardium by macrophages and CD4 + T 
lymphocytes is limited to single case studies [25, 62, 107].

In the evaluation about the localization of the virus, we 
detected the presence of cytoplasmic inclusions in the heart 
stained with both anti-SARS-CoV-2 antibodies used by 
us. We interpreted the result as the presence of the virus in 
myocardiocytes. It is emphasized that myocarditis or signs of 
local inflammation were not detected in any case in our study.

Viral particles have been observed within endothelial 
cells using electron microscopy, demonstrating the direct 
cellular impact of SARS-CoV-2 on the cardiovascular sys-
tem [108]. Direct endothelial cell damage is associated with 
the dysregulation of vascular tone and homeostasis, micro-
vascular vasoconstriction and ischemia, and a pro-coagulant 
state. Ischemic injury of myocytes has been reported by Buja 
et al. [68] and Menter [44]. Arrhythmias, such as tachy-
cardia, bradycardia, and asystole, have also been reported 
in COVID-19 patients and are associated with hypoxemia, 
metabolic derangements, systemic inflammation, or myo-
carditis. A possible role of the prothrombotic state has been 
hypothesized in COVID-19 patients exhibiting acute coro-
nary syndromes and myocardial infarction [109].

It has been hypothesized that a thrombophilic state could 
be induced as a result of SARS-CoV-2 infection via the 
activation of the coagulation system. Prothrombin time and 
activated partial thromboplastin time are increased during 
activation of coagulation and decreased in cases of consump-
tive coagulopathy in patients with COVID-19; fibrinogen 
expression is also increased in these patients [110]. Further, 
the thrombin-antithrombin complex, fibrin-degradation prod-
ucts and D-dimers were found to be increased in the late 
stages of the disease. In addition, platelet counts decreased 
in the late stages of the infection. The mechanism under 
DIC in COVID-19 patients has not been clearly identified, 
and infection-induced coagulopathy and secondary hyperfi-
brinolysis are hypothesized to be involved [111]. In a study 
by Wichmann et al. [63], of the 12 autopsies performed, deep 
vein thrombosis occurred in 58% of the cases, and in one-
third of these, pulmonary thromboembolism was the cause 
of death. Fatal pulmonary thromboembolism has also been 
described by Lax et al. [56]. A causal relationship between 
the inflammatory and reparative process, involving DAD, is 
hypothesized to lead to endothelial damage [62, 112].

Renal system

The impact of a SARS-CoV-2 infection on the renal system 
has been reported in a clinical study, wherein the patients 
exhibited proteinuria, hematuria, elevated blood urea nitro-
gen levels, and acute kidney injury [69]. In a study by Pei 
et al. [113], a higher mortality was observed in the early 
stages of infection in patients who exhibited symptoms of 
renal involvement. The severity of pneumonia triggered by 
the SARS-CoV-2 infection is a risk factor for acute kidney 
injury in COVID-19 patients. Ischemic injury, cytokine 
storm, and direct viral infection are plausible mechanisms of 
renal injury in COVID-19. In addition, acute tubular necro-
sis, loss of brush border cells, vacuolar degeneration, dilata-
tion of the tubular lumen with cellular debris and necrosis, 
and detachment of the epithelium from the tubular base-
ment membrane have been observed via light microscopy 
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in patients with COVID-19 [44]. Immunohistochemical 
staining revealed an altered ACE-2 expression pattern in 
the kidneys of COVID-19 patients, with elevated expression 
in proximal tubular cells in areas of severe acute tubular 
injury. The tubular and glomerular visceral epithelial cells 
of the kidney are the main targets of SARS-CoV-2, while the 
endothelium seems to be excluded from direct damage. In 
the kidneys, ACE-2 is expressed in the apical brush border 
cells of the proximal tubules and in the podocytes, while it is 
not expressed in the endothelial cells. This peculiar distribu-
tion may explain the presence of viral particles in the tubular 
epithelium and podocytes in autopsy samples subjected to 
electron microscopic analysis [69, 92]. Recently, the involve-
ment of CD147, a transmembrane glycoprotein that is highly 
expressed on the surface of proximal tubular epithelial cells 
and infiltrating inflammatory cells and is targeted by SARS-
CoV-2, in diseases of the kidney has been hypothesized. 
Ischemic changes with accumulation of plasma in Bowman’s 
space have also been reported in some COVID-19 cases.

Conclusions

Our study highlights the morphological impact of the 
cytokine storm triggered by SARS-CoV-2 infection and the 
potent inflammatory response involved in the pathogenesis 
of COVID-19. The cytokines involved are a complex group 
of mediators, particularly proinflammatory cytokines such as 
IL-1β, IL-6, IL-15, and TNF-α, which are produced at sites 
of tissue inflammation [83, 114, 115].

We have experimentally confirmed that there is a specific 
immune response, with a cytokine storm linked to coagulopa-
thy [53]. Further autopsy studies are needed to expand this 
evidence and highlight the pathognomonic signs of the disease, 
as well as to facilitate the establishment of standard practices 
for collection of autopsy and postmortem data [116, 117].

Key points

1. The aim of this study was to clarify the correlation 
between infection due to SARS-COV-2 and the inflam-
matory response, and to investigate the expression of 
cytokines such as TNF-α, IL-1β, IL-6, MCP-1, IL-10, 
IL-15, and leukocyte markers (CD 4, CD 8, CD20, CD 
45) in cases of COVID-19 deaths.

2. Our study highlights the morphological impact of the 
cytokine storm triggered by SARS-CoV-2 infection and 
the potent inflammatory response involved in the patho-
genesis of COVID-19.

3. The cytokines involved are a complex group of mediators, 
particularly proinflammatory cytokines such as IL-1β, 
IL-6, IL-15, and TNF-α, which are produced at sites of 
tissue inflammation.

4. Post the cytokine storm, the virus targets organs that 
express ACE-2, such as the lungs, heart, and kidneys.
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