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Abstract 25 

Tuberculosis (TB) is the deadliest infectious disease, and yet accurate diagnostics for the disease is 26 

unavailable for many sub-populations. In this study, we investigate the possibility of using human 27 

breath for the diagnosis of active TB among TB suspect patients, considering also several risk factors 28 

for TB as smoker and Human Immunodeficiency Virus (HIV). The analysis of exhaled breath, as an 29 

alternative to sputum-dependent tests, has the potential to provide a simple, fast, non-invasive, and 30 

ready-available diagnostic service that could positively change TB detection. A total of 50 individuals 31 

from a clinic in South Africa were included in this pilot study. Human breath has been investigated 32 

in the setting of active TB using thermal desorption-comprehensive two-dimensional gas 33 

chromatography–time of flight mass spectrometry methodology and chemometric techniques. From 34 

the entire spectrum of volatile metabolites in breath, three machine learning algorithms (Support 35 

Vector Machines, Partial Least Squares Discriminant Analysis, and Random Forest) to select 36 

discriminatory volatile molecules that could potentially be useful for active TB diagnosis, were 37 

employed. Random Forest showed the best overall performance, with sensitivity of 0.82 and 1.00 and 38 

specificity of 0.92 and 0.60 in the training and test data respectively. Unsupervised analysis of the 39 

compounds implicated by these algorithms suggests that they provide important information to 40 

cluster active TB from other patients. These results suggest that developing a non-invasive diagnostic 41 

for active TB using patient breath is a potentially rich avenue of research, including among patients 42 

with HIV comorbidities. 43 

44 

Keywords: Human exhaled breath; pulmonary Tuberculosis; VOCs; metabolomics; comprehensive 45 

two-dimensional gas chromatography; machine learning 46 

47 
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1. Introduction49 

Tuberculosis (TB) is an infectious disease which has been present in humans since ancient times [1]. 50 

The disease is caused by the bacterium Mycobacterium tuberculosis (Mtb) and primarily infects the 51 

lungs (pulmonary TB represents ~85% of TB cases). [1,2]. The World Health Organization estimates 52 

that new infections occur in about 1% of the population each year, which in 2016 resulted in more 53 

than 10 million cases of active TB. There are several factors that increase the risk of active Mtb 54 

infection, such as: malnutrition, tobacco smoking, and several co-pathologies, the most important 55 

being co-infection with human immunodeficiency virus (HIV). People living with HIV are anywhere 56 

from 26 to 31 times more likely to develop active TB than persons without HIV [3]. Symptoms of 57 

active TB disease include at least of one or a combination of the following: cough, fever, night sweats, 58 

or weight loss; which are not specifically diagnostic and may be mild for months prior to clinical 59 

evaluation. 60 

Diagnosis of pulmonary TB, particularly at primary care level, depends on obtaining an adequate 61 

expectorated sputum sample. The gold standard for diagnosis of active TB (bacteriological culture), 62 

as well as Nucleic Acid Amplification (NAA) and smear microscopy, are all sputum-dependent. 63 

However, up to one third of TB cases cannot reliably produce an adequate biological sputum sample 64 

[5]. This can lead to more invasive sampling approaches, including induced sputum or gastric aspirate 65 

or a lack of diagnosis altogether, which occurs in many low resource settings. Moreover, risk factors, 66 

particularly HIV, can decrease the accuracy of several diagnostic tests, leading to challenges in both 67 

the diagnosis and treatment. Therefore, alternative non-invasive samples, such as urine [6] and 68 

exhaled breath [7] may be useful alternatives of adjuncts in TB diagnosis. 69 

Several research groups, using gas chromatography (GC) linked to mass spectrometry (MS), have 70 

investigated the volatile molecules present in breath during Mtb infection in active pulmonary TB, 71 

reporting different panels of marker compounds [8-13]. This lack of overlap is likely due to a 72 
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multitude of considerations, including: use of different sampling methods and analytical tools as well 73 

as patient population heterogeneity, patient co-morbidities (or lack thereof), different control groups, 74 

and statistical approaches used. A first step to overpass this lack of standardization was the 75 

development of technical standards for breath collection, published recently by Horvath et al. [14]. 76 

In General, classical clinical parameters, food, drug medications,  and smoking habits can also 77 

influence breath content. Age and gender may affect breath profiles [15], but their effect are more 78 

subtle than smoking behaviors, that can influence the breath profile creating subpopulations [16]. In 79 

addition, the profile of Volatile Organic Compounds (VOCs) possibly produced during Mtb infection 80 

may be modified by the host at different times during infection [17] and can be variable during the 81 

progression/regression of TB disease [12]. 82 

In this study, exhaled breath was evaluated from a pilot cohort of 50 patients living in an endemic TB 83 

region who were suspected of having TB and includes smokers and subjects with HIV infection. 84 

Breath volatile molecules were collected using a multiple-bed sorbent trap and then desorbed, 85 

separated, and detected by comprehensive two-dimensional gas chromatography (GC×GC) coupled 86 

to a time-of-flight mass spectrometer (TOF MS). Using a variety of machine learning algorithms, we 87 

were able to determine volatile metabolic patterns that could be helpful to discriminate between Mtb 88 

infected and TB suspect individuals. TB status was confirmed by GeneXpert MTB/RIF® (a NAA 89 

test), in combination with bacteriological culture in case of patients with HIV infection. 90 

91 

2. Materials and Methods92 

2.1 Patient demographics and tuberculosis infection confirmation 93 

A total of 50 individuals, including 32 with active pulmonary TB and 18 controls with TB symptoms, 94 

but confirmed Mtb-negative  (Johannesburg, South Africa; 2015-2016), were included in the present 95 

study. Sputum samples were collected following WHO guidelines for TB [18]. An Institutional 96 
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Review Board at the collaborating sites (Wits Reproductive Health and HIV Institute) and Dartmouth 97 

approved the research. All subjects gave their signed informed consent to participate and were at least 98 

18 years old. TB status was confirmed by GeneXpert MTB/RIF assay (Cepheid, Sunnyvale, CA, 99 

USA). This NAA test is a rapid, automated, cartridge-based test that can detect Mtb along with 100 

rifampicin resistance directly from sputum [19]. In individuals with HIV infection, the accuracy of 101 

GeneXpert to classify patients with Mtb infection may be unreliable [20], therefore the standard 102 

Mycobacteria growth indicator tube (MGIT) bacteriological culture test was employed to confirm 103 

Mtb-negative status in HIV-positive subjects (n=4).   Patient demographic information is reported in 104 

Table 1. 105 

Table 1. Study subject demographic information where n=50. 106 

Mtb positive (+) Mtb negative (-) p-value 

Number (%) 32 (64%) 18 (36%) 0.001 

Age, mean (±SD) 35 (±10) 35 (±10) 0.918 

Gender (M/F) 18/14 11/7 0.950 

Active smoker (Y/N) 7/25 4/14 0.591 

HIV (Y/N) 21/11 4/14 0.006 

HIV Treatment (Y/N) 8/24 3/15 0.591 

107 

2.2 Breath and room air sampling 108 

Prior to breath collection, patients rinsed their mouth with water to avoid some volatile molecule 109 

contamination from the oral cavity [21] and then exhaled normally for 2 s into the room [22]. One L 110 

Tedlar bags (SKC Inc., Eighty Four, PA, US), pre-conditioned by flushing pure nitrogen gas, were 111 

used for the collection of breath over three to five minutes of regular breathing. On the same day of 112 
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collection, breath was drawn from the Tedlar bag through a 0.22-μm filter (for the removal of 113 

potential pathogens), and onto the thermal desorption tube at a rate of 150 ml/min, for a final breath 114 

sampling volume of 1 L. The three-bed thermal desorption (TD) tube containing Carbopack Y, X, 115 

and Carboxen 1000 (Supelco, Bellefonte, PA), a sorbent combination previously optimized for the 116 

collection of a wide range of breath molecules, was used to concentrate and store volatile molecules 117 

[23]. TD tubes containing breath molecules were hermetically sealed and stored at room temperature 118 

until further analysis which occurs within a month from collection, as previously reported [13,24-119 

25].  One liter of room air was directly collected into the TD tube on the day of collection. 120 

121 

2.3 Analytical instrumentation 122 

 TD tubes were desorbed into a Pegasus 4D (LECO Corporation, St. Joseph, MI) GC×GC-TOF MS 123 

instrument with an Agilent 7890 GC equipped with a thermal desorption unit (TDU), cooled injection 124 

system (CIS), and a MultiPurpose Sampler (MPS) autosampler (Gerstel, Linthicum Heights, MD). 125 

Solvent venting time: 10 min (30 °C; 60 mL/min); cryofocusing time: 5 min (−100 °C), sample 126 

desorption time: 180 s; CIS temperature: 330 °C; injection mode: splitless. Chromatographic analysis 127 

was performed using a Rxi-624Sil (60 m × 250 μm × 1.4 μm) as first dimension (1D)- GC column 128 

and a Stabilwax (1.5 m × 250 μm× 0.5 μm) as second dimension (2D)-GC column, both purchased 129 

from Restek (Bellefonte, PA, US). Modulation time was 2 s total and helium as carrier gas (flowrate: 130 

2 mL/min). TOF MS was employed as detector, with the following parameters: electron impact at 70 131 

eV; acquisition range: 30–500 m/z; acquisition rate: 200 spectra/s; ion source temperature: 200 °C. 132 

Data acquisition and analysis was performed using ChromaTOF software, version 4.50 (LECO 133 

Corp.).  134 

135 

2.4 Processing and analysis of chromatographic data 136 
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Chromatographic data were processed and aligned using ChromaTOF. For peak identification, a 137 

signal-to-noise (S/N) cutoff was set at 150:1 in at least one chromatogram and a minimum of 50:1 138 

S/N ratio in all others. The resulting peaks were identified by a forward search of the NIST 2011 139 

library. For putative peak identification, a forward match score of ≥ 800 (of 1000) was required. For 140 

the alignment of peaks across chromatograms, maximum first and second-dimension retention time 141 

deviations were set at 6 s and 0.2 s, respectively, and the inter-chromatogram spectral match threshold 142 

was set at 600. Compounds eluting prior to 300 s and artifacts (e.g., siloxane, phthalates, etc.) were 143 

removed prior to statistical analysis with the support of the script tool available in ChromaTOF®, 144 

using the script reported in [26]. An additional data cleaning step was performed to remove common 145 

environmental contaminants, artifacts coming from the Tedlar® bag (e.g. phenol and N,N-146 

dimethylacetamide), not included in the script (the complete list of compounds removed is reported 147 

in  [24]). The most discriminatory features were assigned to a chemical class (Level 3) according to 148 

the criteria established by the Metabolomics Standards Initiative (MSI) [27], based on mass spectral 149 

similarities to the NIST 2011 mass spectral library, with a match score ≥ 750 (of 1000). Most 150 

hydrocarbons were generally assigned as “alkylated hydrocarbons”, as it is almost impossible to 151 

assign them a specific name based only on the mass spectra similarity, due to the intense 152 

fragmentation of this class of compounds into the MS ion source. However, the chemical class of 153 

these compounds can be assigned by considering both their location in the two-dimensional 154 

chromatogram and their mass spectral fragmentation pattern. 155 

156 

2.5 Statistical analysis 157 

All statistical analyses were performed using R v3.4.3 (R Foundation for Statistical Computing, 158 

Vienna, Austria) using “caret” package [28].  Prior to statistical analyses, the relative abundance of 159 

compounds across chromatograms was normalized using Probabilistic Quotient Normalization [29] 160 
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and peak intensities were log-transformed, mean-centered, and then unit-scaled. 161 

Data was randomly subdivided into training (60% of samples) and validation sets (40% of samples). 162 

Three machine learning algorithms were used to identify the most discriminatory volatile metabolites 163 

and predict the class (Mtb infected versus TB suspect) to which samples in the validation set 164 

belonged: Random Forest (RF) [30], Support Vector Machines with a linear kernel (linear SVM) 165 

[31], and Partial Least-Squares Discriminant Analysis (PLS-DA) [32]. For each machine learning 166 

algorithm, a 5-fold repeated cross validation was employed with 10 repeats [33-34]. Mean Decrease 167 

in Accuracy (MDA), feature specific Area Under the Receiver Operating Characteristic (AUROC or 168 

AUC) curve, and the weighted sums of the absolute regression coefficients were used as the measures 169 

of variable importance for RF, linear SVM, and PLS-DA, respectively [28,35]. Features were then 170 

selected using the “elbow method” where feature importance was plotted and then a cuttoff was 171 

selected in such a way that it captures the “elbow” of the graph. This ensures that any large increases 172 

in feature importance were captured and eliminates features which demonstrated only incremental 173 

increases in importance [35]. Principal Component Analysis (PCA) [37] was used to visualize the 174 

variance between samples in the dataset given our selection of important features. Similarly, 175 

Hierarchical clustering analysis (HCA) [38] was used to visualize distance between each sample 176 

using Jaccard’s distance [39] and a heat map is shown to visualize the relative expression of each 177 

feature. 178 

179 

3. Results and Discussion180 

3.1 Breath evaluation and selected molecules 181 

Contaminants and artifacts (e.g., siloxanes, phthalates) were removed, resulting in a reduction to 1023 182 

features. Moreover, features present in room air sample with a frequency of observation (FOO) ≥50% 183 
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were deleted from the matrix, reducing the number of volatile features to 251. At this point, 50% of 184 

FOO was applied within the groups to removing sparse features, leading to 128 features which were 185 

dominated by hydrocarbons (48%), followed by aromatics (11%), alcohols (8%), halogen-containing 186 

compounds (8%), esters (5%), ketones (5%), nitrogen-containing compounds (4%), sulfur-containing 187 

compounds (4%), aldehydes (3%), acids (2%), terpenes (1%), and unknowns (1%) (Figure 1b). Prior 188 

to any further elaboration the data matrix was normalized using the PQN method, which accounts for 189 

dilution of the biological samples. This method uses median values for normalization insuring a 190 

stability towards outliers and sampling variability, which can occur in metabolomics [29]. Then, after 191 

log-transformation and mean centering, RF, linear SVM, and PLS-DA, were used to identify the most 192 

highly discriminatory volatile metabolites from the 128 features list in the discovery set and used to 193 

predict the class to which samples in the validation set belonged. A Venn diagram of the panel of 23 194 

features obtained from each machine learning approach is reported in Figure 1c. 195 

196 

<insert Figure 1> 197 

198 

Figure 1. (a) Scheme for feature reduction, (b) chemical class of the 128 features used for data used 199 

for statistical elaboration, (c) Venn diagram of the panel of 23 features obtained for the three different 200 

machine learning techniques (RF, SVM, and PLS-DA). 201 

 Due to the high dimensional nature of -omics data, it is essential that machine algorithms are selected 202 

which can handle when the number of features far outweigh the number of samples. Moreover, these 203 

algorithms need to also be able to handle highly correlated features (multicollinearity) [40-41]. 204 

Practically, feature selection to a manageable size is necessary in order to translate biomarker to a 205 

handheld or benchtop system in a clinic or diagnostic laboratory. [42]. RF algorithms generate many 206 

classification trees, using randomly selected subsamples of both features and data points. Features 207 
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10 

are ultimately selected based on which variables best divides the data according to class at each split 208 

[30]. Random Forest has proven to be particularly resilient in -omics classification [40]. SVM is a 209 

non-parametric method which projects data into some highly dimensional subspace, and then 210 

identifies a hyperplane to separate the classes geometrically [43]. The objective of the PLS-DA 211 

algorithm is to maximize the covariance between samples and their dependent variable (such as case 212 

status) in high dimensional data. To achieve this, it finds a linear sub- space of explanatory variables 213 

[44-45].  Each of these models has their own sets of parameters which require tuning. To reduce the 214 

risk of overfitting, we employed 5-Fold Cross Validation (CV), where our training model was split 215 

into 5 approximately even sized pieces, and then we trained the model on 4/5 of these pieces and 216 

tested on the remaining piece. We then withhold a separate piece of the data and retrain the model on 217 

the remaining 4/5 pieces. We iterate through this process until each piece has been withheld for 218 

testing. This allows us to develop an accuracy distribution based on each model’s performance on the 219 

withheld piece of the data. We repeated our CV scheme 10 times so that multiple different cuts of the 220 

training data are considered, thus reducing the variability of the results [46]. We used the entire 5-221 

fold repeated cross validation procedure twice – first to rank our feature importance and apply feature 222 

selection, and then again to tune our model parameters used the subset of selected features. The final 223 

models after feature selection and tuning were then used on the validation data to evaluate their 224 

performance on unseen data. 225 

For each model, we evaluated the accuracy, sensitivity, specificity and AUC in order to assess 226 

prediction errors [47]. Table 2 shows each statistic for each of the three final models in both the 227 

training and validation datasets. While the performance of all three models on the validation set is 228 

strong, both the SVM and PLS-DA models had slightly poorer performance in the validation data. 229 

The RF model had similar performance in both the training and validation sets. While the specificity 230 

in the validation data is low, this may be partly driven by the low number of ‘true negatives’ in our 231 
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validation set (n=5). The high level of sensitivity in the validation data may indicate that the selected 232 

volatile features may be useful in the development of a ‘rule-out’ TB diagnostic, wherein a negative 233 

result from a diagnostic developed from these features would ‘rule-out’ a TB diagnosis with a high 234 

degree of certainty. This would have utility in the clinic as a tool which could be used to screen 235 

patients who have a low probability of having TB so they can avoid unnecessary invasive testing 236 

using the gold standard diagnostic [3]. 237 

238 

Table 2. Accuracy, Sensitivity, Specificity, and AUROC obtained by the machine learning 239 

techniques used 240 

RF SVM  PLS-DA 

Training Validation Training Validation Training Validation 

Accuracy 0.87 0.90 1.00 0.85 0.90 0.80 

Sensitivity 0.82 1.00 1.00 0.87 0.94 0.87 

Specificity 0.92 0.60 1.00 0.80 0.84 0.60 

AUROC 0.93 0.96 1.00 0.89 0.99 0.85 

241 

The Receiving Operator Characteristic curves (ROC) for the training and validation sets in each of 242 

the three models are shown in Figure 2. The final SVM model had an AUC of 1 in the training data 243 

and 0.89 in the withheld validation data. The final PLS-DA model had an AUC of 0.99 in the training 244 

data, and 0.85 in the validation data. The final RF model had an AUC of 0.93 in the training data, and 245 

0.96 in the validation data. Given the RF models superior performance in the withheld validation 246 

data, we selected it as the best model for classification of active TB patients in this particular data set. 247 

<insert Figure 2> 248 

Figure 2. Receiver (or Relative) Operating Characteristic (ROC) Curve by using SVM, PLS-DA, and 249 
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12 

RF algorithms. For each machine learning technique, the set of molecules generated in Training set 250 

(n=30) were tested in the Validation set (n=20). 251 

252 

To assess whether a bias due to class imbalance was present due to the limited number of HIV-/Mtb+ 253 

samples, the accuracy of the model within this particular subgroup of data was evaluated. Overall, 254 

the RF model classified 75% of this group correctly, and hence we do not think class imbalance 255 

greatly affected our results. 256 

There was significant overlap of selected features across our three models. In total, 23 features were 257 

selected in total from all three models, with 12 features in common to all models. The high 258 

conservation of volatile features across these three disparate models increases our confidence that 259 

these features are potentially discriminatory molecules for active TB diagnosis on this study 260 

population.  In Table 3, the rank of each feature for each model is given for the three machine learning 261 

techniques, the match of the feature with the NIST library, and retention time of each feature in the 262 

first and second dimensions are reported. More than 60% of volatile metabolites detected can be 263 

attributed to chemical classes related to the lipid oxidation pathways, namely ketones, aldeheydes, 264 

alcohols, and in paricular hydrocarbons (around 50%). These sorts of molecules have been reported 265 

to originate largely from free radical oxidative fragmentation of lipids due to oxidative stress [48]. 266 

To visualize the ability of these features to discriminate active TB among TB suspects, we used an 267 

HCA and PCA developed using all 23 features selected by any of the three models which is shown 268 

in Figure 3. 269 

<insert Figure 3> 270 

Figure 3. A Heatmap showing the unsupervised clustering of all 23 features discovered across the 271 

three machine learning techniques (RF, SVM, and PLS-DA). 272 
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273 

Table 3. Machine learning model feature ranking and analytical context 274 

<Insert Table 3> 275 

The HCA and subsequent heatmap shown in Figure 3 shows the HCA analysis where the distance 276 

between samples was calculated using Jaccard’s Index, a distance metric which has previously shown 277 

to be resilient to noise [39].  All features selected by any of our models are shown on the vertical axis 278 

while the unique patient number and their TB and HIV status are shown on the horizontal axis. 279 

Notably, as seen by the blue and yellow annotation bar, all of the TB+ cases cluster together, with 280 

only 2 out of 14 of the TB-/HIV- cases clustering away from the TB- group. Of note, both of these 281 

cases are HIV-, which indicates that these cases are not clustering away from the other TB- cases due 282 

to confounding by HIV status. Hence, we believe that the volatile biomarkers selected by our 283 

algorithms are not sensitive to HIV status. 284 

285 

<insert Figure 4> 286 

Figure 4. (a) PCA of the 23 discriminatory features obtained after 3 different machine learning 287 

techniques (RF, SVM, and PLS-DA). (b) Boxplot showing the first PC component score for each of 288 

the TB/HIV subgroups of interest, as well as a global Kruskall-Wallis p-value. Two-way comparisons 289 

between TB+/TB- subgroups are also shown, where the number of stars indicate the significance of 290 

a Wilcoxon rank-sum test. 291 

292 

A PCA developed using all 23 selected features is shown in Figure 4a, where the color maps to 293 

TB/HIV case status (blue is TB-, yellow is TB+, while the darker shades are HIV- and the bright 294 

shades HIV+). While we do not observe distinct clusters by case status, a general assortment of TB- 295 
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cases to TB+ cases along the PC1 axis is observed. To further examine this effect, we examine the 296 

distribution of the PC1 scores across the TB/HIV sub-groups of interest using a boxplot in Figure 4b. 297 

We can clearly see differences between the TB+/TB- patients by the PC1 score. A global Kruskal-298 

Wallis test rejected the hypothesis that these samples originated from the same distribution with a 299 

highly significant p-value of 9.1e-7. We also conducted to two-way comparisons between the various 300 

TB+/TB- subgroups using Wilcoxon’s rank-sum test. All comparisons were significant at a 301 

Benjamini-Hochberg corrected significant level of 𝛼 = 0.05. With additional samples, we expect this 302 

effect to become clearer.  303 

Similar behavior was observed using the discriminatory features obtained after cross validation 304 

considering the single machine learning technique applied (14 for RF, 21 for SVM, and 17 for PLS-305 

DA), but also considering the 12 common features within each model (Figure 1c).  HCA and PCA 306 

plots for each machine learning model utilized in our analyses are available in the supplementary data 307 

(Figure S1-S3), while Figure S4 shows HCA and PCA plots of the 12 common features for each 308 

model  309 

3.2. Study strengths and limitations 310 

In the present, pilot study, we evaluated the potential ability of volatile molecules in the breath for 311 

discriminating between Mtb-infected and TB-suspect individuals using three different machine 312 

learning algorithms. Twenty-three discriminatory features were selected using the different 313 

algorithms (PLS-DA, SVM, and RF).  Although a good match with the library was obtained (20 out 314 

of 23 features had a match > 800/1000 and the other 3 > 750/1000), we preferred to not report a 315 

putative identification of these possible biomarkers, since a large cohort study is necessary to validate 316 

the biomarkers. Future studies should include a greater proportion of patients who TB suspects that 317 

end up being negative for Mtb infection, but who are also co-infected with HIV, as well as a higher 318 
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number of co-infected subjects. In addition, other co-morbidities in the patient population e.g., 319 

diabetes, would also assist in generating universal biomarkers. Despite the limitations, we plan to 320 

evaluate the panel of 23 breath molecules in future studies and hopefully confirmed and validated as 321 

biomarkers by using an external dataset. It is important to highlight that the percentage of chemical 322 

classes of the 23 breath molecules reported as discriminatory in this pilot study (Table 3) is in 323 

according with previous GC based techniques studies on human exhaled breath in the setting of TB 324 

disease [8-13]. 325 

326 

4. Conclusion327 

This pilot study (n = 50) is part of a larger, ongoing TB breath biomarker initiative. Here, we 328 

demonstrated that volatile metabolites present in human exhaled breath can also be used to 329 

discriminate between individual with a positive Mtb infection and people with one or more TB 330 

symptoms, but with a confirmed negative Mtb infection. In the validation set, accuracy value was 331 

about 0.8-0.9 for all the three machine learning techniques applied, with an AUROC between 0.85 332 

(PLS-DA), and 0.96 (RF). Although all three models showed great prediction power to discriminate 333 

those infected with Mtb and TB suspect individuals, the RF model was the most consistent, showing 334 

similar performance in both the training and validation sets. This study, along with others, reiterate 335 

that exhaled human breath in diseased individuals contains useful data which should be developed as 336 

a non-invasive clinical tool to be deployed in efforts to curb the spread of Mtb infection. 337 
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463 

Figure Captions 464 

Figure 1. (a) Scheme for feature reduction, (b) chemical class of the 128 features used for data used 465 

for statistical elaboration, (c) Venn diagram of the panel of 23 features obtained for the three different 466 

machine learning techniques (RF, SVM, and PLS-DA). 467 

Figure 2. Receiver (or Relative) Operating Characteristic (ROC) Curve by using SVM, PLS-DA, and 468 

RF algorithms. For each machine learning technique, the set of molecules generated in Training set 469 

(n=30) were tested in the Validation set (n=20). 470 

Figure 3. A Heatmap showing the unsupervised clustering of all 23 features discovered across the 471 

three machine learning techniques (RF, SVM, and PLS-DA). 472 

Figure 4. (a) PCA of the 23 discriminatory features obtained after 3 different machine learning 473 

techniques (RF, SVM, and PLS-DA). (b) Boxplot showing the first PC component score for each of 474 

the TB/HIV subgroups of interest, as well as a global Kruskall-Wallis p-value. Two-way comparisons 475 

between TB+/TB- subgroups are also shown, where the number of stars indicate the significance of 476 

a Wilcoxon rank-sum test. 477 

478 

Table Captions 479 

Table 1. Study subject demographic information   480 

Table 2. Accuracy, Sensitivity, Specificity, and AUROC obtained by the machine learning 481 

techniques used 482 

Table 3. Machine learning model feature ranking and analytical context 483 

484 
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Figure 1 492 
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Figure 2 495 
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497 
Figure 3 498 
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Table 3. Machine learning model feature ranking and analytical context 503 

# Feature RF SVM PLS-DA
Average 

 score
Chemical class

Forward 
similarity

Reverse 
similarity

1
t

R (sec) 
2
t

R (sec) 
47 1 2 1 1.33 Alkylated hydrocarbon 823 847 1876 0.59

97 2 1 2 1.67 Halogen containing 888 888 1738 0.65

103 3 3 4 3.33 Aldehyde 903 903 1466 0.67

12 4 14 3 7.00 Halogen containing 874 874 2561 0.60

36 5 11 7 7.67 Hydrocarbon 842 856 1136 0.60

8 6 6 11 7.67 Alkylated hydrocarbon 877 877 2115 0.60

99 14 4 6 8.00 Alkylated hydrocarbon 921 921 1136 0.57

11 10 5 10 8.33 Acid 753 778 1356 0.64

25 12 9 5 8.67 Alkylated aromatic 850 850 708 0.67

56 8 8 15 10.33 Alkylated hydrocarbon 860 860 2583 0.61

14 7 13 12 10.67 Alkylated hydrocarbon 865 865 804 0.62

89 13 12 14 13.00 Aldehyde 809 867 2418 0.66

54 19 15 9 14.33 Alkylated hydrocarbon 811 827 2386 0.60

53 26 10 8 14.67 Alkylated hydrocarbon 876 876 2742 0.61

124 22 16 18 18.67 Alkylated hydrocarbon 900 900 1507 0.58

74 18 26 13 19.00 Alkylated ester 821 821 1978 1.80

18 9 7 42 19.33 Alkylated alcohol 838 838 2357 0.60

41 20 17 22 19.67 Alkylated hydrocarbon 774 879 1443 0.58

24 27 19 16 20.67 Alkylated hydrocarbon 775 800 1848 0.59

45 16 20 32 22.67 Alkylated hydrocarbon 862 911 1336 0.59

111 11 18 43 24.00 Ester 926 926 1910 0.69

120 29 44 17 30.00 Alkylated alcohol 828 828 2722 0.60

81 54 21 25 33.33 Cyclo-alcohol 881 886 1460 0.80

504 
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