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Abstract 

Over the last few decades, many different groups have been engaged in studies of new roles 

for mitochondria, particularly the coupling of alterations in the redox pathway with the 

inflammatory responses involved in different diseases, including Alzheimer’s disease, Parkinson’s 

disease, atherosclerosis, cerebral cavernous malformations, cystic fibrosis and cancer. 

Mitochondrial dysfunction is important in these pathological conditions, suggesting a pivotal role 

for mitochondria in the coordination of pro-inflammatory signaling from the cytosol and signaling 

from other subcellular organelles. In this regard, mitochondrial reactive oxygen species are 

emerging as perfect liaisons that can trigger the assembly and successive activation of large 

caspase-1-activating complexes known as inflammasomes. This review offers a glimpse into the 

mechanisms by which inflammasomes are activated by mitochondrial mechanisms, including 

reactive oxygen species production and mitochondrial Ca2+ uptake, and the roles they can play in 

several inflammatory pathologies. 
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Introduction 

 

Over the last few years, it has been demonstrated that perturbations in mitochondrial 

activities are sufficient to activate innate immune responses (Randow and Youle, 2014; Tschopp, 

2011; van der Burgh and Boes, 2015; Wellen and Hotamisligil, 2005), suggesting the elegant 

hypothesis that cells use intracellular stress responses to initiate innate immunity programs when 

pathogens or environmental stresses perturb cell functions. In this regard, mitochondrial reactive 

oxygen species (ROS) are emerging as the perfect liaisons.  

Mitochondria are essential organelles in living cells and are characterized by a double 

membrane and a circular double-stranded DNA molecule. The double membrane is composed of a 

outer layer (mitochondrial outer membrane; OMM), which allows the passage of ions (particularly 

Ca2+) and metabolites, and the more selective inner membrane (IMM), which is characterized by 

invaginations known as cristae (Cogliati et al., 2016). Mitochondrial DNA (mtDNA) encodes 13 

proteins, all of which are known components of the mitochondrial electron transport chain (mETC) 

(Anderson et al., 1981; Bibb et al., 1981). Due to their biosynthetic capacities, mitochondria play a 

central role in supplying the large amount of energy required for many different cellular functions, 



as reviewed in (Braschi and McBride, 2010). Substrates derived from other intracellular processes, 

such as glycolysis or fatty acid metabolism, are converted to acetyl-CoA, which enters the 

tricarboxylic acid cycle (TCA), and its complete degradation is coupled with the production of 

NADH and FADH2, which are the effective electron donors for the mETC. The energy is stored as 

an electrochemical gradient across the IMM, which explains the presence of the negative 

mitochondrial membrane potential (ΔΨ). F1Fo-ATP synthase allows H+ to cross the IMM and 

reenter the matrix, coupling the energy derived from the proton gradient with the phosphorylation 

of ADP to produce ATP (Johnson and Ogbi, 2011). The new ATP molecules are then ready to leave 

the mitochondria.  

Although the roles of mitochondria and the endoplasmic reticulum (ER) are classically 

distinct, accumulating evidence indicate a privileged interplay and cooperation with the ER, which 

is essential for several mitochondrial functions, such as lipid metabolism, modulation of Ca2+ 

signaling, selective autophagy, apoptotic death and inflammation (Contreras et al., 2010; Giorgi et 

al., 2015; Lopez-Crisosto et al., 2015; Marchi et al., 2014; Raturi and Simmen, 2013; Vance, 2014). 

ER-mitochondria Ca2+ transfer modulates mitochondrial bioenergetics (Glancy and Balaban, 2012), 

mitophagy (segregation and elimination of the damaged mitochondria) (Rimessi et al., 2013) and 

cell fate (Rimessi et al., 2008), which significantly affects the mitochondrial ROS production 

capacity.  

Over the last few decades, many different groups have been engaged in studies to 

comprehend new roles for the mitochondria, particularly in coupling the alterations in the redox 

pathway with the inflammatory responses involved in different pathological conditions, such as 

neurodegenerative diseases, motor neuron disorders, genetic diseases, aging and cancer.  

The aim of the present review is to discuss the role of the mitochondria in coordinating pro-

inflammatory signaling from the cytosol and signaling from other subcellular organelles. 

 

Mitochondrial ROS production systems 

 

For years, mitochondria were considered the main source of intracellular ROS in both 

physiology and pathology. In the 1970s, Chance et al. first proposed that 1-2% of the cellular 

oxygen used in oxidative phosphorylation, which accounts for 90-95% of the total cellular oxygen 

consumption, can be converted to anion superoxide (O2
•-) as a result of electron leakage from the 

respiratory chain (Chance et al., 1979). Although it was propagated through the literature, this 

percentage was not accurate, as it was valid for only a particular set of experimental conditions 

(Murphy, 2009). The greatest criticism against this dogma was presented in 2012 by Brown and 



Borutaite, who presented a list of examples demonstrating that mitochondria do not seem to be the 

main source of ROS under physiological conditions (Brown and Borutaite, 2011). Other authors 

who used different experimental settings estimated that approximately 0.1% of the cellular oxygen 

can be converted to O2
•- in the mitochondrion, leaving open the possibility that the ER and 

peroxisomes may have greater capacities to produce ROS than the mitochondria, at least in the liver 

(Fridovich, 2004). Many different sites of ROS production have been identified in mammalian 

mitochondria, including complex I and complex III of the mETC and the dihydrolipoamide 

dehydrogenase enzyme (Kudin et al., 2008; Mailloux et al., 2013; Murphy, 2009; Quinlan et al., 

2013). Complex I produces superoxide in two ways: a) a reduced flavin mononucleotide (FMN) site 

on complex I (a high ratio of NADH/NAD+) and b) reverse electron transfer from the coenzyme Q 

(CoQ) pool back to complex I.  

Under physiological conditions, ROS production by complex III is much lower than ROS 

production by complex I. However, the role of complex III in superoxide production is much more 

important when it is inhibited. Complex II (succinate dehydrogenase) was not considered a ROS 

producer per se; however, its contribution to ROS formation is related to reverse electron transfer, 

the process by which electrons are transferred from succinate to ubiquinone via complex II and then 

back to complex I, where ROS are produced (Liu et al., 2002; Yankovskaya et al., 2003). 

In addition to the above-mentioned mitochondrial respiratory chain complexes, other 

mitochondrial proteins also participate in ROS production. Mitochondrial enzymes, such as acyl-

CoA dehydrogenase and glycerol α-phosphate dehydrogenase (both flavoproteins), are involved in 

ROS generation in tissues during the oxidation of lipid-derived substrates (Lambertucci et al., 2008; 

St-Pierre et al., 2002). Other enzymes, such as pyruvate and α-ketoglutarate dehydrogenase, which 

both contain the flavoenzyme dihydrolipoyl dehydrogenase subunit, are additional mitochondrial 

ROS sources (Starkov et al., 2004). In addition, monoamine oxidase and dihydroorotate 

dehydrogenase are other documented sources of ROS in the mitochondria (Cadenas and Davies, 

2000; Lenaz, 2001). Other examples of mitochondrial enzymes that are involved in superoxide 

production include the adrenodoxin reductase-adrenodoxin-cytochrome P450scc (cholesterol side 

chain cleavage) system, which is coupled with the NADPH pool in the mitochondrial matrix 

(Hanukoglu et al., 1993). In addiction, anion superoxide may react with other radicals, including 

nitric oxide (NO), producing reactive nitrogen species (RNS) (Radi et al., 2002). The RNS interact 

with mitochondrial components, leading to a range of biological responses spanning from 

modulation of mitochondrial respiration to apoptotic cell death. In particular, NO is a signaling 

molecule that plays a key role in the pathogenesis of inflammation, as a toxic agent towards 

infectious organisms or as immunoregulator (Bogdan et al., 2000; Brunet, 2001). NO functions as a 



pro-inflammatory mediator at low concentrations by inducing vasodilatation and neutrophil 

recruitment, whereas at high concentrations, it down-regulates adhesion molecules, suppresses 

activation and induces apoptosis of inflammatory cell (Albina et al., 1991; Lu et al., 1996; Shin et 

al., 1996). NO is a mediator of Natural Killer (NK) cell killing of target cells and regulates NK cell 

function (Cifone et al., 2001); it inhibits mast cell activation and can enhance or inhibit neutrophil 

activation, depending on its concentration (Armstrong, 2001; Bidri et al., 2001; Forsythe et al., 

2001). NO induces vasodilatation in the cardiovascular system and is involved in immune responses 

by cytokine-activated macrophages (Coleman, 2001). 

Another protein, p66Shc, binds cytochrome c (cyt c) when it is translocated to the 

mitochondrial inter membrane space (IMS) and then subtracts electrons from the mitochondrial 

respiratory chain and acts as a redox-enzyme, generating H2O2 (Giorgio et al., 2005). 

A more detailed description of the sites where different ROS are produced is presented in 

Table 1. 

 

The multitarget effects of mitochondrial ROS: mtDNA, mitochondrial membranes (lipids) and 

pivotal mitochondrial proteins 

 

Excessive ROS levels may be generated by mechanisms that produce ROS in a nonregulated 

fashion, including ROS production by the mETC, the most quantitatively important source of ROS 

in higher organisms. Thus, mitochondrial structures are particularly susceptible to oxidative 

damage, as evidenced by mtDNA mutations, lipid peroxidation and protein oxidation (Cadenas and 

Davies, 2000). 

Mitochondrial DNA 

The mitochondrial genome displays an interesting feature. The subunits of the complexes in 

the mETC are produced partially from nuclear DNA transcription and partially from mtDNA 

transcription. However, mitochondrial transcription is coupled to mtDNA replication; therefore, a 

high mtDNA copy number and frequent replication are essential to maintaining the integrity of the 

mETC and a high level of ATP production (Kelly et al., 2012; Moyes et al., 1998; Trounce, 2000). 

The integration of the majority of mitochondrial proteins into the nuclear DNA reduced the size of 

mtDNA; the double-stranded closed circular mitochondrial genome is 16 kb and encodes only 13 of 

the subunits of the mETC, along with 22 tRNAs and 2 rRNAs (Anderson et al., 1981; Bibb et al., 

1981). In addition, mtDNA displays a regulatory non-coding region, the displacement loop (D-

loop), which primes DNA transcription and replication (Kucej and Butow, 2007) and which is a 

target of nuclear-encoded proteins. 



The reduced dimensions and absence of histones allow the mtDNA to rapidly respond to replicative 

stimuli; however, its close proximity to the IMM, where the majority of ROS are generated, makes 

it very susceptible to oxidative damage when ROS production exceeds the antioxidant defenses 

(Brondani et al., 2012).  

The hydroxyl radical represents the most effective mtDNA damaging radical, as it is able to directly 

react with all components of DNA, such as purine and pyrimidine bases and the deoxyribose sugar 

backbone. 

The D-loop region can be highly vulnerable compared with the rest of the mtDNA (Tewari et al., 

2012a). Oxidative damage to this promoter region may reduce the number of mtDNA copies 

(Tewari et al., 2012b) and subsequently decrease the transcription of the mETC gene set, resulting 

in structural alteration of the multi-protein complexes and increased free radical production. When 

these ROS exceed the antioxidant defenses, a vicious cycle of DNA damage, impaired protein 

translation, and increased ROS production may begin. 

Lipid alterations 

As the mETC is the major ROS producer in mitochondria, the phospholipids present in 

mitochondrial membranes are particularly prone to ROS-induced oxidative attack. Their oxidation 

may result in the rearrangement of lipids from a fluid lamellar phase to different structures 

(Sankhagowit et al., 2016). In turn, these alterations in membrane fluidity and permeability may 

affect all of the functions associated with the IMM, including the mETC, the mitochondrial 

permeability transition pore (mPTP) and ATP synthase activities and the mitochondrial Ca2+ 

buffering capacity. Consistently, when Szeto-Schiller peptides coupled with an antioxidant have 

been used to target cardiolipin (CL) in the IMM (Szeto, 2014b), the prevention of CL oxidation 

optimizes cristae architecture, improves mitochondrial bioenergetics, and reduces ROS production. 

Under hydroxyl radical attack, polyunsaturated fatty acids may undergo fragmentation to 

produce several reactive by-products, two of which are the reactive aldehydes malondialdehyde 

(MDA) and 4-hydroxynonenal (HNE) (Uchida, 2003). MDA and HNE covalently react with the 

side chains of histidine, cysteine, and lysine residues (Schaur, 2003), resulting in the attachment of 

a free carbonyl to the protein or the formation of inter- or intraprotein crosslinks at lysine side 

chains (Bruenner et al., 1995). These modifications can occur at the enzyme active site and can 

inactivate protein function. Alternatively, these modifications can create hydrophobic patches that 

mediate the interactions between oxidized proteins and determine the formation of protein 

aggregates (Levine et al., 1994). In particular, MDA and HNE interact with and inactivate mETC 

components, including complexes I (a rate-limiting step for the mETC), III and IV (Musatov et al., 

2002; Paradies et al., 2002). 



Cyt c is a small hemoprotein residing in the IMS and is an essential component of mETC, 

where it carries one electron. As a member of the mETC, cyt c is often associated with the external 

side of the IMM but can be released to the cytosol as part of the intrinsic apoptotic signaling 

pathway. In addition to its electron transfer activity, cyt c can catalyze several reactions, such as 

hydroxylation and peroxidation. In particular, peroxidative activity is greatly increased after 

oxidation of its Met80 residue by the action of H2O2 and lipid hydroperoxides (Chen et al., 2002); 

subsequently, the binding of CL further increases peroxidase activity (Kagan et al., 2005). 

Peroxidation is principally exerted on CL itself, generating CL hydroperoxides. 

Protein carbonylation 

In contrast to the oxidation of -SH residues, which can be reversed by glutathione 

peroxidase and peroxiredoxin activities, protein carbonylation and other aldehydic modifications 

cannot be repaired; consequently, the modified proteins and aggregates must be degraded by 

selective proteolysis (Kastle and Grune, 2011). When these modified proteins and aggregates are 

not properly removed, they can significantly impair cellular functions and can contribute to cellular 

dysfunction. However, proteasomes are not present in mitochondria. The essential function of 

removing oxidized proteins is handled by three ATP-stimulated proteases in mitochondria: Lon 

protease, Clp-like protease and AAA protease. The first two proteases are located in the matrix, and 

the third is localized to the IMM. Together, these proteases maintain oxidized proteins at the lowest 

possible levels (Bota et al., 2005; Escobar-Henriques and Langer, 2006). 

 

Mitochondrial ROS detoxification systems 

 

O2
•- is a highly reactive state of oxygen; it exhibits a short half-life and is present at low 

concentrations in mitochondria (Giorgio et al., 2007). O2
•- can be detoxified through the action of 

the mitochondrial manganese superoxide dismutase (MnSOD), a matrix-abundant and highly 

efficient enzyme that can convert superoxide to hydrogen peroxide under physiological conditions 

at a rate faster than the rate at which the O2
•- can oxidize its potential targets. H2O2 is the more 

stable and less reactive form of oxygen radical; consequently, H2O2 has a longer diffusion radius 

and can exit the mitochondrion and enter other subcellular organelles, such as the nucleus, to act on 

DNA (Candas and Li, 2014). The increased half-life and concentration of H2O2 make it a suitable 

second messenger, although it becomes a proapoptotic/necrotic agent when it exceeds a threshold 

amount (Giorgio et al., 2007). In the mitochondrial IMS, O2
•- dismutation is predominantly 

performed by the cytosolic copper-zinc-SOD (Okado-Matsumoto and Fridovich, 2001).  



H2O2 can be broken down by catalases (Kirkman and Gaetani, 2007). Catalase is a Fe-heme-

containing enzyme; in its tetrameric form, it exhibits one of the highest turnover numbers among all 

enzymes. This property makes catalase a non-saturable enzyme or, in other words, an enzyme 

whose reaction rate is limited only by substrate diffusion. Catalase is an oxidoreductase that 

catalyzes the following reaction: H2O2 + H2R → 2H2O + R. Catalase can decompose two molecules 

of H2O2 to water and oxygen (R=O2); alternatively, it can use H2O2 to oxidize various metabolites 

and toxins. Catalase is expressed at higher levels in peroxisomes than in the mitochondria, where 

other enzymes, such as glutathione peroxidases (GPx) and peroxiredoxins (Prx) (Koopman et al., 

2010; Murphy, 2009), cooperate with catalase to detoxify H2O2. GPx uses glutathione (GSH) as a 

cofactor and electron source to directly reduce H2O2 to water. GSH is produced in the cytosol and is 

then transported into the mitochondrial matrix, where 2 molecules of GSH can be oxidized to 

GSSG through the formation of an intermolecular disulfide bridge. GSH is regenerated from GSSG 

by the action of glutathione reductase, which requires NADPH. Prx is another antioxidant enzyme 

that is present at high levels in the mitochondria (Chang et al., 2004). The conversion of H2O2 into 

H2O requires Prx oxidation, rendering it inactive; Prx requires the donation of electrons from 

reduced thioredoxin to restore its catalytic activity. In turn, the latter requires NADPH and the 

action of thioredoxin reductase-2 to be regenerated. 

Decomposition of H2O2 can also be achieved through a non-enzymatic mechanism known as 

the Fenton reaction, which requires the participation of metal ions (iron or copper) as a catalyst. 

This reaction uses H2O2 as a reactant; it can use O2
•- or other electron donors to reduce the metal to 

its active form and results in the degradation of H2O2 to produce water and a highly reactive, non-

selective oxidant, the hydroxyl radical (OH•) (Giorgio et al., 2007). This molecule displays the 

highest reactivity and, consequently, the lowest half-life and concentration among the ROS. Unlike 

O2
•- and H2O2, OH• cannot be scavenged through enzymatic reactions; its detoxification occurs 

through the actions of a wide number of antioxidants, which terminate the oxidative action of the 

radical that is subsequently regenerated by the actions of other antioxidants. Among these 

antioxidants, GSH plays a pivotal role because it not only directly neutralizes the lipid radicals 

formed by the hydroxyl radical attack but also restores the reduced form of hydrosoluble 

antioxidants, such as ascorbic acid, and lipid-soluble reductants, including tocopherols, tocotrienols, 

carotenoids, flavonoids and lipoic acid (Valko et al., 2007). When these compounds are partitioned 

into the mitochondrial membranes, they are able to trap and scavenge lipid peroxyl radicals, thereby 

preventing the propagation of lipid peroxidation (Smith et al., 1999). 

Although all these antioxidant molecules have shown great potential for mitochondria 

protection in vitro, many extensive clinical trials using conventional antioxidants such as vitamin E 



or vitamin C did not confirm the expectations (Bjelakovic et al., 2008; Cocheme and Murphy, 

2010). The hypothesis of a nonselective biodistribution, with only trace amount of drugs being 

taken up by mitochondria, can represent a reasonable explanation of these unexepected results. 

Therefore, new classes of mitochondrial ROS scavengers have been developed to specifically target 

biologically active molecules to mitochondria. Szeto-Schiller peptides spontaneously target and 

accumulate at the IMM, where they bind CL and exert antioxidant activity (Szeto, 2014a). 

Prevention of CL oxidation has been shown to optimize cristae architecture, improving 

mitochondrial bioenergetics and reducing ROS production.  

Alternatively, coupling a lipophilic triphenylphosphonium moiety to several antioxidants, 

such as coenzyme Q and vitamin E, allows these antioxidants to be able to be taken up by and 

enriched in the mitochondria by several hundred fold (Smith and Murphy, 2011), greatly improving 

their antioxidant capacities in several pathologies. These compounds protect the mitochondria from 

oxidative damage induced by iron/ascorbate far more effectively than vitamin E itself, whereas 

mitochondria-targeted ubiquinone (MitoQ) can reduce cardiac ischemia/reperfusion injury (Adlam 

et al., 2005). Using MitoQ, inflammatory cytokine production was abolished following LPS 

stimulation in cells from patients with TNF receptor-associated periodic syndrome, an 

autoinflammatory disorder associated with enhanced innate immune responsiveness in which 

mutations of the TNF receptor-1 gene lead to aberrant mitochondrial ROS production (Simon et al., 

2010). 

 

The role of mitochondrial ROS in inflammation-related diseases 

 

Deviation of the mitochondrial biochemical status quo triggers activation of the 

inflammatory response. In general, oxidative stress can incite inflammation, and excess 

inflammation can cause oxidative stress, inducing excessive cell and tissue damage and ultimately 

leading to the destruction of normal tissue and chronic inflammation. This feedback loop is also 

accrued by NLRP3 inflammasome activation, leading to mitochondrial damage and mitophagy 

inhibition (Yu et al., 2014). The accumulation of damaged mitochondria is responsible for ROS 

production and increased interleukin-1β (IL-1β) secretion (Nakahira et al., 2011), although this 

mechanism can work in the opposite direction, as some autophagy proteins are also necessary for 

IL-1β release (Zhang et al., 2015). Defects in mitophagy have been suggested to play roles in 

neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD) 

(Osellame and Duchen, 2013; Wong and Holzbaur, 2015). Both of these pathologies are 

characterized by the accumulation of toxic proteins and their aggregates in mitochondria, leading to 



energy deficits, excessive ROS generation, mutations in both the mtDNA and the proteins 

regulating mitochondrial homeostasis, and impaired mitochondrial dynamics. Together, these 

effects result in neuronal damage as well as constant activation of microglia and astrocytes (Witte et 

al., 2010). A direct link between the NLRP3 inflammasome and the development of AD has been 

shown in transgenic mice that are deficient in both NLRP3 and caspase-1 and that develop chronic 

amyloid-β deposition. These mice display reduced chronic amyloid-β secretion, neuronal 

inflammation and cognitive impairment, in addition to skewed numbers of microglial cells (Heneka 

et al., 2013). In PD, the neurons contain aggregated inclusions that are primarily composed of α-

synuclein (Shulman et al., 2011), a protein that is able to activate the inflammasome by inducing 

caspase-1 activation and mature IL-1β production. This pathway requires phagocytosis, cathepsin 

B, and ROS production, which are thought to lie upstream of NLRP3 activation (Codolo et al., 

2013). 

The evidence gathered from animal and human studies points to central roles for inflammation and 

the mitochondria in the initiation and development of multiple sclerosis (MS). MS is considered a 

prototypic autoimmune disease and is characterized by demyelination, inflammation, gliosis and 

axonal damage (Kidd, 2001). Mitochondrial abnormalities, such as changes in the number and 

shape of the mitochondria and in the levels of components of the respiratory chain complex and 

markers of oxidative stress, drive the inflammatory processes in MS (Bonora et al., 2014; Kalman 

and Leist, 2003). Furthermore, impaired mitochondrial complex I activity in chronic active plaque 

zones was associated with oxidative damage to the mtDNA (Lu et al., 2000) and constitutive 

mitochondrial energy loss as a cause of the intermittent demyelination and profound central nervous 

system symptoms that mimic MS (Powell et al., 1990). The released cytokines, particularly tumor 

necrosis factor-α (TNF-α), induce metabolic changes driven by mitochondrial impairments, ROS 

production and AMP-activated protein kinase (AMPK) activation, resulting in the inhibition of 

oligodendrocyte progenitor cell differentiation (Bonora et al., 2014). NLRP3 expression is 

increased in the spinal cord during the progression of experimental autoimmune encephalomyelitis; 

NLRP3-deficient mice have a dramatically delayed course and reduced severity of this disease (Gris 

et al., 2010; Inoue et al., 2012). In addition, a study using the cuprizone model of MS demonstrated 

that NLRP3-deficient mice exhibited delayed demyelination and oligodendrocyte loss (Jha et al., 

2010). The mitochondria-MS connection was further reinforced by the observation of an increased 

incidence of some LHON (Leber's hereditary optic neuropathy, a mitochondrial disease) mutations 

in patients with MS (Kalman et al., 1995). 

Friedreich ataxia (FA), a mitochondrial disease, is associated with neuroinflammation, 

neurodegeneration, cardiomyopathy and diabetes (Durr and Brice, 2000; Ristow et al., 2003). This 



pathological etiology derives from mutations in the frataxin gene, causing reduced expression of the 

mitochondrial protein and oxidative damage (Campuzano et al., 1997). Frataxin is involved in the 

biogenesis of iron-sulfur clusters, and defects in its expression cause an increase in ROS production 

by decreasing thiol-dependent antioxidant protection and increasing free iron and redox cycling 

(Vaubel and Isaya, 2013). In neural Schwann cells, the loss of frataxin expression induces explicit 

inflammation, oxidative stress, and cell death (Lu et al., 2009). The neuroinflammatory and 

neurodegenerative consequences are mediated by a decrease in antioxidant protection (such as 

peroxiredoxins, glutaredoxins, and glutathione S-transferase) and an induction of prostaglandin 

synthases, specifically cyclooxygenase 2 (COX2) (Hayashi et al., 2014; Shan et al., 2013). 

Chronic inflammation plays an essential role in the initiation and progression of metabolic disorders 

such as atherosclerosis. The development of atherosclerosis is associated with excessive 

mitochondrial ROS production within the vasculature. Specific mitochondrial antioxidant enzymes, 

such as MnSOD and Trx2, are known to protect against the endothelial dysfunction induced by 

atherosclerotic lesions in ApoE-deficient mice (Ohashi et al., 2006; Zhang et al., 2007). Similarly, 

in the same mouse model of atherosclerosis, the lack or blockade of IL-1β significantly decreased 

the sizes of the atherosclerotic lesions (Bhaskar et al., 2011; Kirii et al., 2003). Indeed, data 

demonstrated that nitric oxide in ischemic conditions mediates cardioprotection after 

ischemia/reperfusion. The mechanism involves the inhibition of mitochondrial complex I by S-

nitrosation, leading to a subsequent decrease in mitochondrial ROS generation, limiting apoptosis 

and cytotoxicity at reperfusion (Shiva et al., 2007). ROS production also plays a role in ischemia-

reperfusion injury. Although apparently conflicting, convincing evidence indicates that excessive 

ROS production can mediate post-ischemic injury. In fact, an increase in ROS seems to be 

dependent on the integrity of respiratory supercomplexes (Rosca et al., 2008); consequently, 

hypoxic conditions, which lead to mitochondrial fusion, membrane potential impairment and 

supercomplex disassembly, could be responsible for the paradoxical observation associating a low 

[O2] to an increase in ROS production (Baracca et al., 2010; Genova et al., 2008). The detection of 

increased levels of ROS and lipid peroxidation products in post-ischemic tissues, such as the 

protective effect of antioxidants against reperfusion injury, support the involvement of ROS in 

ischemia/reperfusion injury. Moreover, hypertension is also associated with increased ROS 

production, which contributes to blood pressure regulation (Harrison and Gongora, 2009). 

Angiotensin II-induced activation of NADPH oxidase further increases mitochondrial dysfunction 

and mitochondrial ROS production (Doughan et al., 2008). NO may interfere with ROS generation 

by NADPH oxidase, suppressing its activity by S-nitrosylation (Selemidis et al., 2007). 



Importantly, transgenic mice that overexpress Trx2 resist the development of angiotensin II-induced 

hypertension and endothelial dysfunction (Widder et al., 2009).  

Mitochondria are indispensable for energy metabolism, cell signaling and apoptosis 

regulation. The mitochondria in malignant cells differ structurally and functionally from those in 

normal cells and are characterized by ROS overproduction, which promotes metabolic 

reprogramming and genomic instability, modifies gene expression and participates in signaling 

pathways that induce cancer development (Rimessi et al., 2015b). Oncogene hyperactivation has 

long been associated with elevated mitochondrial ROS levels. The expression of oncogenic H-RAS 

and K-RAS promotes mitochondrial changes that lead to ROS overproduction by and damage to 

mitochondria (Hu et al., 2012; Rimessi et al., 2014). Ectopic MYC overexpression induced 

mitochondrial ROS production and concomitantly increased oxidative DNA damage (K et al., 

2006). The contributions of ROS and the inflammasomes that are induced by mitochondria in 

cancer cells are controversial; they can positively affect cell-autonomous death pathways and 

anticancer immunosurveillance, but they may also stimulate autocrine or paracrine processes that 

favor carcinogenic inflammation, tumor growth, metastasis and angiogenesis (Zitvogel et al., 2012). 

A protective role for NLRP3 has been described in hepatocellular carcinoma (Wei et al., 2014); 

NLRP3 and caspase-1 null mice are more susceptible to azoxymethane/dextran sulfate sodium-

induced carcinogenesis (Allen et al., 2010; Zaki et al., 2010). Based on this evidence, the discovery 

of NLRC4 as a downstream transcriptional target of p53 constituted promising evidence for the 

anti-tumorigenic functions of NLR (Sadasivam et al., 2005). Moreover, the lack of the NLRC4 

inflammasome has been associated with the attenuation of p53-mediated cell death, which is 

indicative of a protective role for NLRC4 during tumor development. Given the ambiguity of the 

roles of inflammasomes in cancer, which are strictly dependent on the neoplasm type and stage, the 

cell type recruited and the environmental conditions, it is not possible to formulate an unequivocal 

set of indications to stimulate or inhibit inflammasomes in the context of therapy. 

The pathophysiological importance of the mitochondrial redox status, inflammation and 

apoptosis regulation was also taken into consideration during the study of cerebral cavernous 

malformations (CCMs) (Goitre et al., 2010). CCM1 is an autosomal dominant disease caused by 

mutations in the Krev Interaction Trapped 1 (KRIT1) gene and characterized by multiple brain 

lesions that often result in intracerebral hemorrhage, seizures, and neurological deficits. Emerging 

evidence shows that inflammation and the immune response play roles in CCM1 pathogenesis and 

may be used as predictors of disease severity (Choquet et al., 2014). Krit1 ablation leads to a 

significant increase in intracellular ROS levels due to modulation of the expression of the 

mitochondrial antioxidant MnSOD, a drastic decrease in mitochondrial energy metabolism and 



autophagy suppression, and a subsequent increase in the susceptibility to oxidative damage (Goitre 

et al., 2010; Marchi et al., 2015; Marchi et al., 2016). The inflammatory cytokine genes are 

involved in the pathogenesis of brain vascular disease, as observed in patients with brain 

arteriovenous malformations and in CCM1 subjects with intracerebral hemorrhage (Choquet et al., 

2014; Fontanella et al., 2012). Multiple genetic polymorphisms in inflammatory cytokines have 

been reported to act as modifying factors in numerous diseases, including the severity of pulmonary 

disease in patients with cystic fibrosis (CF) (Pasaniuc et al., 2011). Chronic airway infection by 

Pseudomonas aeruginosa (P. aeruginosa) is a common pathological manifestation in patients with 

CF and is associated with an excessive inflammatory response characterized by the accumulation of 

large amounts of cytokines, including IL-1 (Levy et al., 2009). IL-1β levels are increased in the 

bronchoalveolar lavage fluid (BALF) of patients with CF, and IL-1 gene polymorphisms have 

been associated with varying degrees of disease severity in patients with CF (Douglas et al., 2009; 

Levy et al., 2009). Recently, we demonstrated that the degree and quality of the inflammatory 

response in CF are supported by P. aeruginosa-dependent mitochondrial perturbations, in which the 

mitochondrial Ca2+ uniporter (MCU) is a signal-integrating organelle that mediates mitochondrial 

ROS-dependent inflammasome activation (Rimessi et al., 2015a). Manipulation of the MCU has 

indicated a link between mitochondrial Ca2+ signaling and P. aeruginosa-dependent inflammasome 

activation in CF, demonstrating that the exacerbated inflammatory response in CF is sustained by 

the recruitment of both the NLRP3 and NLRC4 inflammasomes (Fig. 1). This result suggests that 

the inflammasome is a highly dynamic macromolecular platform that is able to recruit different 

Nod-like receptors (NLRs), as also shown by Salmonella infection that simultaneously activates 

NLRC4 and NLRP3 in an apoptosis-associated speck-like protein ring-like structure (Man et al., 

2014). 

 

Inflammation-associated or sensing proteins: Inflammasomes 

 

Nod-like receptors are an evolutionarily conserved family of receptors that reside in the 

cytoplasm and recognize pathogen- and danger-associated molecular patterns (PAMPS and 

DAMPs) to activate pro-inflammatory responses through specific intracellular signaling pathways 

(MacMahon, 1991). Certain NLRs induce the assembly of a large caspase-1-activating complex 

known as the inflammasome, which leads to the processing and secretion of the pro-inflammatory 

cytokines IL-1 and IL-18 (Martinon et al., 2002). To date, four inflammasomes have been well 

characterized and defined according to the NLR protein that they contain: NLRP1, NLRC4, NLRP3 



and AIM2 (absent in melanoma 2). Among them, the best-characterized inflammasome coupled to 

mitochondria is NLRP3 (Martinon et al., 2006). 

Several DAMPs, such as extracellular ATP, alum hydroxide, silica crystals, urea crystals, 

nigericin, and bacteria, viruses, and fungal infections, activate the NLRP3 inflammasome (Anand et 

al., 2011). Longstanding questions in this field include how NLRP3 recognizes these different 

ligands and whether a common signal converges downstream of PAMPs and DAMPs to activate 

NLRP3. NLRP3 activation requires two signals: a priming signal that is required to upregulate 

NLRP3 and pro-IL1 and an activation signal that prompts NLRP3 to assemble the inflammasome 

complex (Fig. 1). The requirement for a second signal to activate NLRP3 may constitute a fail-safe 

mechanism to ensure that potent inflammatory responses are induced only in the presence of a bona 

fide stimulus. The bona fide stimuli include potassium efflux out of the cell, the generation of 

mitochondrial ROS, the translocation of NLRP3 to the mitochondria, the release of mitochondrial 

DNA or CL, and the release of cathepsins into the cytosol following lysosomal destabilization 

(Lamkanfi and Dixit, 2014). The role of ROS in activating the inflammasome is supported by 

studies using a variety of different inflammasome signaling modulators (reviewed in (Martinon, 

2010; Tschopp and Schroder, 2010)). There are examples of specific inflammasome-activating 

signals that are associated with the mitochondria and ROS, such as silica (Hu et al., 2007), ATP 

(Cruz et al., 2007) and bacterial infection (Rimessi et al., 2015a), which result in NLRP3 activation 

and pro-inflammatory cytokine release. 

The link between NLRP3 and mitochondria is strengthened by its subcellular localization 

and through mitochondrial antiviral signaling protein (MAVS). Under resting conditions, the 

NLRP3 protein is localized to the ER, and upon inflammasome stimulation, it relocates to the 

mitochondria-associated ER membranes (Zhou et al., 2011), a "hot spot" for intracellular signaling 

from important pathways (Giorgi et al., 2015). MAVS is an adaptor protein located on the OMM 

that regulates signal transduction from cytosolic RNA sensors. MAVS activity depends on 

mitochondrial dynamics and function, which promotes mitochondrial recruitment and the 

pathophysiological activity of NLRP3 through the assembly of a large signaling complex on the 

mitochondria (Koshiba et al., 2011). The administration of NLRP3 activators generates O2
•-, which 

is sequestered by mitochondria-specific autophagy (mitophagy) to suppress inflammasome 

activation (Zhou et al., 2011). Notably, extracellular ATP causes a rapid pulse of ROS production in 

alveolar macrophages via purinergic receptors (P2X7 receptor) (Cruz et al., 2007), but it leads to 

the loss of intracellular K+ in human and murine neutrophils, inducing NLRP3 activation (Karmakar 

et al., 2016). Indeed, NLRP3 activation was highly impaired in macrophages in which 

mitochondrial activity was reduced by depletion of the mtDNA or by inactivation of the OMM 



protein voltage-dependent anion channel (VDAC) (Nakahira et al., 2011; Zhou et al., 2011). 

VDACs are the major channels for the exchange of metabolites and ions (i.e., Ca2+) between the 

mitochondria and the ER. In cells with diminished VDAC expression, caspase-1 activation was 

considerably impaired upon the addition of NLRP3 activators.  

It has been recently proposed that Ca2+ is a novel molecular activator of the NLRP3 inflammasome. 

In support of the intimate correlation between Ca2+ signaling and the inflammasome, Lee G.S. et al. 

showed that a murine Ca2+-sensing receptor activated NLRP3 by increasing the intracellular Ca2+ 

concentration, independent of the P2X7 receptor (Lee et al., 2012). Indeed, Murakami and 

colleagues showed that several NLRP3 activators mobilized Ca2+, whereas blocking the Ca2+ signal 

inhibited NLRP3 activation (Murakami et al., 2012). Additional evidence of the contribution of 

Ca2+ signaling to NLRP3 activation, particularly in mitochondria, is sustained by the role of the 

MCU. Specifically, the loss of the MCU blunts NLRP3 activation induced by both the complement 

membrane attack complex in human lung epithelial cells (Triantafilou et al., 2013) and P. 

aeruginosa in airway epithelial cells in patients with CF (Rimessi et al., 2015a), thus preserving 

mitochondrial dysfunction and limiting ROS production (Fig. 2).  

A recent study demonstrated that NLRC4 could also be activated by mitochondrial 

dysfunction (Jabir et al., 2015). Pathogen infection resulted in mitochondrial damage with increased 

ROS production and mtDNA release. The mtDNA directly activated the NLRC4 inflammasome; its 

oxidation by ROS enhanced this effect, whereas macrophages lacking mitochondria failed to 

activate NLRC4 following infection. 

Based on these findings, it is clear that mitochondria integrate distinct signals and relay the 

information to the inflammasomes for recruitment and activation through a dangerous mix of its 

constituents: Ca2+, ROS and mtDNA. 

 

Conclusions 

 

The identification of potential drugs that directly target the inflammasome would be a major 

achievement in research and would be beneficial to many people suffering from certain 

inflammation-related diseases. Currently, the developed drugs that target the inflammasome 

dissociate such molecular scaffolds by directly interacting with the inflammasome or inhibiting the 

ATPase activity of the NLR (Duncan et al., 2007) (Fig. 1). Opsona Therapeutics has developed 

cytokine release inhibitory drug 3 (CRID3, also known as CP-456773 or MCC950), which targets 

ASC oligomerization during NLRP3 and AIM2 activation (Coll et al., 2011). Taking advantage of 



this mechanism, isoliquiritigenin (Honda et al., 2014), a simple chalcone-type flavonoid, exhibits 

antioxidant, anti-inflammatory, and anti-tumor activities (Jung et al., 2014). 

The NF-kappaB inhibitory compound parthenolide and the synthetic I kappaB kinase-beta inhibitor 

Bay 11-7082 are both inhibitors of the ATPase activity of NLRP3 (Juliana et al., 2010). Both 

compounds selectively inhibit NLRP3 activity in macrophages in vitro, independent of their 

inhibitory effect on NF-kappaB activity. In contrast, TherimuneX Pharmaceuticals has produced a 

NLRP3 inflammasome activator, an acetylated 18-mer peptide (acALY18) that is used to enhance 

inflammasome-mediated pathogen clearance and that is beneficial as a broad-spectrum anti-

infective drug (Thacker et al., 2012). The actual limitation in the discovery of drugs targeting the 

inflammasome is the complexity of the activation pathway. Targeting the post-translational 

modifications of inflammasome components could be an alternative strategy useful for modulating 

inflammasome activation. NLRP3 activation is mediated by a two-step deubiquitination mechanism 

identified as an early priming event that is initiated by Toll-like receptor signaling and occurs in 

response to stimulation involving ROS production (Juliana et al., 2012; Wen et al., 2012). Therapies 

that specifically promote NLRP3 ubiquitination or that antagonize the deubiquitination mechanism 

could mitigate NLRP3-dependent pathologic inflammation, promoting NLRP3 degradation by 

proteosome. Another alternative is represented by the many reagents that target the inflammasome 

products IL-1β and IL-18, specific antagonist antibodies (IL-1β antibody Canakinumab or anti-IL-

18 receptor monoclonal antibody) or proteins (the recombinant IL-1 receptor antagonist Anakinra 

or the IL-18-binding protein) that neutralize the released cytokines and their receptors with 

promising therapeutic results. The use of all these therapeutic approaches must be pondered 

inasmuch as not all inflammasome activation can be considered harmful, e.g., for the host response 

to microbial pathogens. Thus, therapeutic inhibition of inflammasome activation needs to be 

balanced against its beneficial contribution. 

However, over the last few years, we have moved into a new research area of intervention 

for inflammation-related diseases: mitochondria-targeting medicine. Increasing evidence confirms 

the roles of mitochondria and mitochondrial ROS in triggering and regulating the amplitude of the 

inflammatory response in different pathologies. It is now apparent that the mitochondria have 

become an area of interest to industry; companies will focus more on investigating direct drug-

induced mitochondrial protection or dysfunction, with the outcome of controlling the inflammatory 

response based on a mitochondrial end-point.  

The mitocans are one of many examples of drugs that have been developed and designed to 

target the mitochondria. The mitocans are vitamin E analogs that selectively target cancer cell 

mitochondria to induce cell death by triggering ROS production (Neuzil et al., 2007). The vitamin E 



(α-tocopherol) analogs (VEA) alpha-tocopheryl succinate (α-TOS) and alpha-tocopheryloxyacetic 

acid (α-TEA) have not only been examined for their anti-tumor activities but have also recently 

been shown to have immunomodulatory properties (reviewed in (Hahn et al., 2013)). The α-TOS 

and α-TEA analogs can suppress the growth of established tumors and can reduce the incidence of 

spontaneous metastases when combined with cancer immunotherapy via dendritic cell vaccination, 

causing immunogenic tumor cell death. The produced or released ROS are danger signals that 

promote an immune reaction and reinforce the response against the cancer, resulting in 

inflammasome activation and the release of pro-inflammatory mediators. In particular, malignant 

cells produce more O2
•- than normal cells and thus are more vulnerable to further inflammasome 

activation and damage by ROS-generating agents (Hileman et al., 2004). 

To reduce mitochondrial ROS production, mitochondria-targeted antioxidants have been 

developed (Oyewole and Birch-Machin, 2015), and preclinical and clinical studies have been 

performed to test their therapeutic effects in the treatments of inflammatory diseases (Jin et al., 

2014; McManus et al., 2011). The antioxidant MitoQ was used several phase I and II studies. 

Among these studies, two double-blind trials, placebo-controlled studies involving patients with PD 

(NCT00329056) and patients with chronic hepatitis C virus (HCV) who are unresponsive to the 

conventional HCV treatments (NCT00433108) were completed and discussed in published reports 

(Smith and Murphy, 2010). In the same manner, the mitochondrial-targeted Szeto-Schiller peptide 

SS-31 (the tetrapeptide D-Arg-dimethylTyr-Lys-Phe-NH2, drug name Bendavia, or MTP-131) was 

analyzed in 13 phase I and II clinical studies, one of which (NCT01572909) was led in patients with 

acute coronary events, to assess its capacity to reduce reperfusion injury (Chakrabarti et al., 2013). 

With the exclusion of the study on patients with HCV, which suggested that MitoQ could 

selectively affect the liver damage associated with HCV infection, other clinical trials demonstrated 

that targeting mitochondria-associated antioxidants did not significantly changed the disease 

progression. This unexpected result may have different explanations: reduced bioavailability in the 

target organs (Snow et al., 2010) or a preexisting predominant lesion (for patients with PD, 

irreversible dopaminergic neuron loss). In contrast, in the time range explored, both MitoQ and 

Bendavia did not show any relevant sign of toxicity. This finding sustains not only the feasibility 

and safety of further investigations but also the possibility to widen the testing to other 

inflammation-related pathologies. The need to refine the approach to the mitochondria-targeted 

therapy has also led to the development of newer drugs, such as SkQ compounds, molecules that 

contain a quinone antioxidant moiety that is covalently conjugated to a lipophilic cation via alkyl 

chains (Izyumov et al., 2010). Among these drugs, SkQ1 (plastoquinonyl-decyl-

triphenylphosphonium) shows the highest membrane-penetrating capacity and potent antioxidant 



activity (Antonenko et al., 2008). Consistent with the oncogenic role of ROS, SkQ1 compounds are 

effective at preventing cancer and as anticancer therapies (Bazhin et al., 2016).  

To date, the mitochondrial dysfunction/ROS/inflammasome axis is increasingly considered 

a druggable line of action to counteract some inflammation-related diseases. Such drugs may not 

always resolve the pathology but are often useful in preserving a functional mitochondrial network 

pivotal for cell viability, preventing impairments in the processes that they regulate. A better 

understanding of the role played by mitochondria in inflammation will help to reveal additional 

therapeutic targets and to increase the activity and selectivity of mitochondria-targeted drugs. 
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Figure legends 

 

Figure 1. The signals required for inflammasome activation: The mitochondrial signals 

NLRP3 activation requires two signals: a priming signal (signal 1) that is required to upregulate 

NLRP3 and pro-IL1 expression and an activation signal (signal 2) that prompts NLRP3 to 

assemble the inflammasome complex. The requirement for mitochondrial signals for NLRP3 

activation constitutes a fail-safe mechanism to ensure that the induction of potent inflammatory 

responses occurs only in the presence of a bona fide stimulus. This figure shows the discussed drugs 

that directly target the inflammasome and mitochondrial ROS production. 

 

  



Figure 2. MCU induces NLRP3 inflammasome activation 

The proposed models show the role of the MCU in inducing NLRP3 activation by producing 

mitochondrial dysfunction in the complement membrane attack complex in human lung epithelial 

cells and by Pseudomonas aeruginosa (P. aeruginosa) infection in the lung epithelial cells of 

patients with CF. In both cases, the complement cascade and the lack of expression of the CFTR 

channel promote intracellular Ca2+ influx. These effects cause Ca2+ release from the ER via the 

ryanodine and inositol-triphosphate receptors (IP3R). Mitochondrial Ca2+ uptake occurs via the 

MCU, leading to mitochondrial dysfunction, loss of membrane potential, ROS production and 

oxidative damage. 

 

  



 

Table 1. Detailed description of the types of ROS generated at different sites in the mitochondrion. 

	

 
Protein/complex 
 

 
Mitochondrial
compartment 
 

Type of 
ROS 
produced 

 
Site of ROS 
production 
 

Ref. 

 
Role in 
pathogenicity/ 
inflammation 

Mitochondrial cytochrome b5 
reductase 
 

OMM O2
•- cytosol or IMS 

(Whatley et al., 
1998) 

 
(Lund et al., 2015) 

Monoamine oxidases  
(MAO-A and MAO-B) 

OMM H2O2 cytosol 
(Kunduzova et al., 
2002) 

(Chaaya et al., 2011; 
Vuohelainen et al., 2015) 

Apoptosis-inducing factor (AIF) IMS O2
•- 

cytosol and 
IMS 

(Miramar et al., 
2001) 

(Thornton and Hagberg, 
2015) 

p66 Shc IMS H2O2 IMS 
(Giorgio et al., 
2005) 

(Tomilov et al., 2010; Yang 
et al., 2016) 

Zn-Cu superoxide dismutase (SOD1) IMS H2O2 IMS 
(Jezek and Hlavata, 
2005) 

(Li et al., 2011; Ni et al., 
2016) 

Dihydroorotate dehydrogenase 
(DHODH) 

IMM 
H2O2 and 
O2

•- 
IMS 

(Forman and 
Kennedy, 1975) 

(Fitzpatrick et al., 2010; 
Leban and Vitt, 2011) 

Glycerol-3-Phosphate 
Dehydrogenase (mGPDH) 

IMM H2O2 IMS 
(Mracek et al., 
2009(Mracek et al., 
2009) 

(Raja Gopal Reddy et al., 
2016) 

NADH: ubiquinone oxidoreductase 
(C.I) 

IMM O2
•- matrix 

(Muller et al., 
2004) 

(Huang et al., 2007; Kelly et 
al., 2015) 

Ubiquinol: cytochrome c 
oxidoreductase (C.III) 

IMM O2
•- IMS and matrix 

(Jezek and Hlavata, 
2005; Muller et al., 
2004) 

(Aguilera-Aguirre et al., 
2009) 

α-ketoglutarate dehydrogenase 
complex 
(α-KGDHC) 

matrix/IMM 
O2

•- and 
H2O2 

matrix 
(Starkov et al., 
2004; Tahara et al., 
2007) 

 

Pyruvate dehydrogenase complex 
(PDC) 

matrix 
O2

•- and 
H2O2 

matrix 
(Tahara et al., 
2007) 

(Meiser et al., 2016; Xu et 
al., 2015) 

Aconitase matrix OH• matrix 
(Vasquez-Vivar et 
al., 2000) 

(Talib and Davies, 2016) 

Mn superoxide dismutase (SOD2) matrix H2O2 matrix 
(Jezek and Hlavata, 
2005) 

(Ishihara et al., 2015; 
Majolo et al., 2015; 
McCarthy et al., 2013) 

Electron transfer flavoprotein matrix O2
•- matrix 

(Jezek and Hlavata, 
2005) 

(Hussain et al., 2006; 
Salomone et al., 2014) 

Electron transfer flavoprotein 
quinone oxidoreductase 

matrix O2
•- matrix 

(St-Pierre et al., 
2002) 

 

 


