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Summary

We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 

pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one 

genes showed single or cross-cancer associations, including novel associations of SDHA in 

melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 

additional large deletions in tumor suppressors, including ATM, BRCA1 and NF1, showed low 

gene expression and frequent (43%) loss of heterozygosity/biallelic two-hit events. We also 

discovered 33 such variants in oncogenes, including missenses in MET, RET, PTPN11 associated 

with high gene expression. We nominated 47 additional predisposition variants from prioritized 

VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, 

expression effect, and co-localization with mutations and modified residues. Our integrative 

approach links rare predisposition variants to functional consequences, informing future guidelines 

of variant classification and germline genetic testing in cancer.

Graphical abstract
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Introduction

A sizable fraction of cancer is heritable (Lichtenstein et al., 2000), yet known common 

variants explain only a limited percentage of the genetic burden in cancer (Bodmer and 

Tomlinson, 2010). More than 100 genes, mostly tumor suppressors, have been found to 

harbor rare, predisposing alleles (Rahman, 2014). Most reports on germline variants have 

focused on single cancer types, although mounting evidence has suggested shared 

predisposition factors across cancer types. Previous pan-cancer studies have highlighted 

pathogenic germline variants in tumor suppressor genes, including ATM, BRCA1, BRCA2, 

BRIP1, and PALB2 in adult cancers in The Cancer Genome Atlas (TCGA) (Lu et al., 2015b) 

and the Collaborative Oncological Gene-environment Study (COGS) (Southey et al., 2016), 

as well as TP53, APC, BRCA2, NF1, PMS2, and RB1 using 1,120 pediatric cancer cases 

from the Pediatric Cancer Genome Project (PCGP) (Zhang et al., 2015). As sequencing 

projects expand, large-scale, systematic analyses are needed to increase statistical power and 

to compare predisposition factors among gene categories and cancer types.

Clinical interpretation of germline variants is a pressing challenge. Conflicting claims 

resulting from variability in sequencing technologies, analysis pipelines, and interpretations 

hinder the application of such knowledge (Amendola et al., 2016). Recent American College 

of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG–AMP) 

guidelines provide a systematic method for interpretation of sequence variants for genetic 

disorders (Richards et al., 2015); however, a high fraction of variants are relegated to the 

unknown significance (VUS) category, often due to rarity and conflicting results in existing 

databases and the primary literature. Systematic analyses of high-throughput data associated 

with germline variants, such as matching tumor sequencing and mRNA sequencing data, can 

Huang et al. Page 3

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provide evidence of functional consequences and further inform clinical interpretation. For 

example, paired normal-tumor sequencing analysis of allele fraction can validate whether 

variants of tumor suppressors are undergoing positive selection in the context of the classic 

two-hit model (Knudson, 1971; Knudson, 2001; Lu et al., 2015b) and mRNA analysis can 

validate whether a germline truncation results in reduced expression. Of note, the current 

ACMG/AMP guidelines do not make use of this type of somatic analysis evidence for 

evaluation of germline variants.

In this study, we analyzed the landscape of pathogenic variants from 10,389 individuals 

across 33 cancer types in the TCGA cohort. We identified 8% of cases carrying pathogenic 

or likely pathogenic germline variants, ranging in prevalence from a striking 22.9% in PCPG 

to a scarce 2.2% in CHOL. Notably, we identified 33 such variants within oncogenes. In 

contrast to variants of tumor suppressor genes showing association with low expression 

(47.6% in bottom 25% of the carrier sample's respective cancer cohort) and LOH (38.5%), 

variants in oncogenes are associated with high expression (62% in top 25%). We further 

investigated the functionality of these variants through validation in other cancer cohorts and 

experiments on RET alleles. Finally, we discovered another 18 copy number deletions and 

nominated 47 VUSs based on multiple lines of evidences suggesting functionality. 

Altogether, our study represents the largest systematic discovery of rare, germline 

predisposition variants and provides a firm basis for addressing their functionality in cancer.

Results

Data Generation and Sharing on Cloud

The TCGA PanCanAtlas Germline Working Group analyzed germline predisposing variants 

in 10,389 samples across 33 cancer types (Table 1). A focus group conducted variant calling 

on the Institute for Systems Biology Cancer Genomics Cloud (ISB-CGC) and the resulting 

calls were shared among all investigators for quality control and downstream analyses 

(Figure 1A). Specifically, we dockerized the GenomeVIP variant calling system 

(github.com/ding-lab/GenomeVIP) (Mashl et al., 2017) and deployed more than 121,000 

virtual machines running for over 600,000 hours on the ISB-CGC during the course of the 

project. Variant calls from GATK (McKenna et al., 2010), VarScan2 (Koboldt et al., 2012), 

and Pindel (Ye et al., 2009; Ye et al., 2015) were merged, filtered, and annotated (Methods), 

resulting in 286,657,499 total exonic variants, ranging from an average of 33,037 exonic 

variants per individual of African ancestry to 26,640 of European ancestry (Figure 1B). Our 

data-sharing paradigm effectively facilitated the analyses required by such an enormous 

project, avoiding both redundant computation in variant calling/processing and storage of 

intermediate analysis files in various local computational clusters.

The final set of 10,389 samples passed stringent quality control criteria, showing good 

coverage, no outlying numbers of variants called, and high concordance with SNP array data 

(Methods). Sample quality control analysis of germline-normal samples revealed an average 

coverage of 18 ∼ 174× for the predisposition genes known to harbor rare, pathogenic 

variants (Methods, Table S1, Figure S1). The passed variant calls achieved an average 

precision above 0.99 when compared to the genotypes obtained through SNP array data 

(Figure S1). The germline exomes displayed high quality, with an average TiTv value of 
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2.88 ± 0.17 and lambda value (Koire et al., 2016) of 0.034 ± 0.003. The median predicted 

percent false positive calls across 33 cancer types was less than 5%, ranging from 1.2% 

(MESO) to 16.1% (KIRC, Figure S1). These resources are shared with the cancer researcher 

community on the cloud for further evaluation across institutions worldwide.

Pathogenic Variant Discovery across 33 Cancer Types

We developed an automatic variant classification pipeline called CharGer (Characterization 

of Germline Variants, https://github.com/ding-lab/CharGer) by adopting and extending the 

ACMG–AMP guidelines (Richards et al., 2015) specifically for rare variants in cancer. 

CharGer queries information from ClinVar (Landrum et al., 2015), including variant entry 

submissions and disease-gene associations reported. We also generated gene-specific 

databases for known susceptibility genes, including TP53, BRCA1, BRCA2, RET, and 

TERT (Methods). Further, in total, we curated 152 genes that contribute to cancer 

susceptibility, adding 15 genes from the St. Jude PCGP germline study (Zhang et al., 2015), 

11 from Cancer Gene Census-Germline, and 12 from recent literature (reference listed in 

Table S1) to a published list of 114 known predisposition genes (Rahman, 2014) (Table S1). 

Overall, each variant is evaluated using data available for any of 12 pathogenic evidence 

levels and 4 benign evidence tags from ACMG-AMP that contribute to a composite score 

used for automatic classification. After CharGer evaluation, known pathogenic variants in 

ClinVar and curated databases are marked as pathogenic, whereas variants with CharGer 

score > 8 as likely pathogenic, and those with CharGer score > 4 as prioritized VUSs 

(Methods, Figure S2, Table S1). We bench-marked this automated classification and 

demonstrated its high performance: achieving a sensitivity of 88% and a false-positive rate 

of 4.9% for detecting pathogenic variants out of 883 germline variants found in pediatric 

cancer classified by the PCGP expert panel (Zhang et al., 2015).

We applied CharGer to classify variants found in our TCGA cohort into pathogenic, likely 

pathogenic, and prioritized VUS groups. CharGer initially prioritized 31,963 variants in 

these samples, 1,393 of which were labeled as rare variants (≤ 0.05% AF in 1000 Genomes 

and complete ExAC r.3.0.1) relevant to cancer, passing manual review in both normal and 

tumor samples (Methods). Combining existing database curation and CharGer results, we 

classified these into 435 pathogenic variants, 418 likely pathogenic variants (Table S2), and 

540 prioritized VUSs (Table S2, Figure 1C). This catalog of 853 pathogenic or likely 

pathogenic germline variants expanded significantly from our previous study, which had 

focused solely on variants that truncate tumor suppressors in 12 TCGA cancer types (Lu et 

al., 2015a).

Across all cancer types, 4.1% of cases (n=428) harbored pathogenic variants and another 

3.8% (n = 390) carried likely pathogenic variants (Figure 2A). The frequencies of 

pathogenic or likely pathogenic variants vary greatly across cancer types (Table S3), with the 

expected high rates in OV (19.9%) and BRCA (9.9%). Other cancer types that involve tissue 

types exposed to environmental factors, such as SKCM (6.2%) and UVM (5%), had lower 

percentages of carriers. Notably, 22.9% of PCPG (Fishbein and Nathanson, 2012), 14.1% of 

PAAD (Solomon et al., 2012), and 12.5% of SARC (Ballinger et al., 2016) cases carried 
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such variants, suggesting significant contributions of rare germline predisposition in these 

cohorts.

We investigated genes with enriched pathogenic or likely pathogenic variants in each cancer 

type. Briefly, we first identified cancer types with potential higher enrichment by comparing 

to pathogenic or likely pathogenic variants identified in the ExAC non-TCGA cohort. We 

then conducted Total Frequency Testing (TFT) (Basu and Pan, 2011) for one cancer type 

against all other cancer types, subtracting the ones with potential enrichment for each gene 

(Methods). We identified 28 specific cancer-gene associations (FDR < 0.05) and 16 

additional suggestive (FDR < 0.15) associations (Figure 2C, Table S3). The majority of 

these findings from the burden test are known associations. For example, pathogenic or 

likely pathogenic variants of BRCA1 and BRCA2 are highly enriched in OV and BRCA 

(FDR < 1.15E-05), as expected, while BRCA2 also showed significant enrichment in PAAD 

(FDR = 0.012). PCPG is associated with a wide array of predisposition factors, including 

RET, SDHB, VHL, NF1, SDHD, and MAX.

There were several new findings that may suggest unexpected germline susceptibility gene/

tumor associations (Table S3). For example, 5 stomach adenocarcinoma patients carried 5 

different PALB2 LOF variants (FDR = 0.038, nonsense and frameshift) with variable LOH 

(2 of 5 tumors) similar to that seen in other PALB2-associated tumors. Only one other recent 

report suggests this potential association (Sahasrabudhe et al., 2017). Similarly, three 

melanoma patients carried three different LOF variants in SDHA (FDR = 0.035, and very 

low expression levels) - a gene not previously associated with melanoma susceptibility. 

Strikingly, 2 LUSC and 3 GBM patients carry the same rare BUB1B missense variant, 

namely p.Q912H. A prior mouse model suggested that haploinsufficiency for BUB1B 
increases the development of carcinogen-induced lung carcinomas (Dai et al., 2004). Thus, 

our results may have revealed novel cancer susceptibility associations require further study.

At the variant level, we identified 659 pathogenic or likely pathogenic variants in 66 tumor 

suppressor genes (TSGs) (Figure 2D). We also discovered 33 pathogenic or likely 

pathogenic variants in 5 oncogenes RET, AR, PTPN11, MET, and CBL. Twenty-one RET 
variants were found across 11 cancer types. Some appear to be cancer specific; for example, 

all of the 3 pathogenic MET p.H1112R variants are observed in KIRP (papillary renal 

carcinoma), validating the previously observed co-segregation of the variant in hereditary 

KIRP (Schmidt et al., 1998). For tumor suppressors, we identified a total of 57 ATM 

variants, 36 BRIP1, and 29 PALB2, all in at least 18 cancer types. In contrast, multiple other 

tumor suppressor genes showed enrichment in specific cancer types, such as BRCA1, 

BRCA2 variants in BRCA and OV (Figure 2C). For example, all of the 4 tumors containing 

the pathogenic BRCA1 p.C61G variants in the ring domain are breast invasive carcinoma.

Two-hit Events

To better understand the biological impacts of the discovered variants, we examined the 

extent of loss of heterozygosity (LOH) using a statistical test we developed previously (Lu et 

al., 2015b) (Methods). We discovered 157 significant (FDR < 5%) LOH of pathogenic or 

likely pathogenic germline variants in tumors (Figure 3A), 148 of which were found in 

tumor suppressor genes. In contrast, significant LOH is only observed in 4 variants of 
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oncogenes, possibly due to their gain-of-function nature and less selection requirement for 

the activated mutated allele to be homozygous. To validate the allele specificity of the 

discovered LOH events, we further characterized both the normal/tumor read-count data and 

tumor CNV calls using GISTIC (Table S4, Methods). Variants showing suggestive LOH 

(FDR < 0.15 or tumor VAF > 60%, Methods) showed similar extents of deletion to variants 

with significant LOH (Figure 3B). Thus, many of these are likely true events failing to reach 

statistical significance due to insufficient sequencing reads, adding up to 38.5% of variants 

(n=254) in tumor suppressors showing LOH. We further confirmed 154 of these LOH in 

tumor suppressors are due to deletion of the wild type allele (Figure 3C).

As expected, strong LOH is observed in cancer types having high hereditary predisposition. 

The four OV samples containing BRCA1 p.Q1777fs, p.D825fs, p.W372* and p.E797* each 

showed highly significant LOH (FDR ≤ 3.43E-20), whereas BRCA2 p.E1857fs, p.E294*, 

and p.Y1762* also showed strong LOH in the other 3 OV samples (FDR ≤ 3.27E-11). We 

further compared rates of LOH in BRCA1/2 across cancers, finding most BRCA1/2 variants 

exhibit LOH in OV and a slightly lower fraction in BRCA, and an even lower fraction but 

notable 11 such events in other cancers (Figure S3). The BRIP1 p.S624* variant showed 

pathogenic evidence from three independent ClinVar submitters and displayed strong LOH 

evidence (FDR = 1.31E-16) in an OV sample. RAD51C p.R193* showed LOH in both 

BRCA and OV (FDR = 3.04E-12 and 5.79E-05, respectively), but not SKCM (FDR=0.933). 

MET p.H1112R, which was previously shown to cause malignant transformation of NIH 

3T3 cells (Schmidt et al., 1998) showed LOH due to amplification of the variant allele in 

two of the three KIRP samples (FDR = 2.24E-05, 6.98E-3, 0.26, respectively). The positive 

selection of these germline variants in the tumor further validates their clinical relevance.

Another manifestation of the two-hit hypothesis is a pathogenic or likely pathogenic 

germline variant coupled with a somatic mutation in the other copy of the predisposition 

gene. We identified 37 candidate biallelic events when analyzing the tumors in our cohort 

(Methods, Exact Poisson test, P < 1E-5, Figure 3D, Table S4). Six germline variants of 

ATM, including two p.T2332fs and one each of p.S2289fs, p.R23*, p.E1267fs and a start 

loss variant, were coupled with somatic ATM mutations in PRAD, READ, STAD, ESCA, 

PRAD, and BLCA, respectively. Three cases carrying distinct BRCA2 germline truncations, 

including p.T1598fs, p.A2314fs, and p.Q1037* also harbored BRCA2 somatic mutations 

(Figure 3D). A COAD case carried MSH6 p.R248fs germline variant/p.R248* somatic 

mutation that are mutually exclusive in all sequencing reads, clearly supporting the two-hit 

abruption of both alleles (Figure S3).

Multiple tumor suppressor genes also showed expression patterns consistent with the two-hit 

hypothesis: an African American KIRP patient with an age onset of 35 carried the 

pathogenic FH p.S187* germline variant and a somatic splice site FH mutation and showed 

low FH expression (at 2.07% of KIRP). A BLCA sample carried the CHEK2 germline 

p.W93* compounded by 4 different CHEK2 somatic mutations subsequently showing low 

CHEK2 expression (at 1.7% of BLCA). Overall, these results provide supporting evidence 

of the two-hit hypothesis through LOH and biallelic events of predisposing alleles across 

many tumor types.
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Altered Gene Product Expression in Variant Carriers

In addition to expression associated with two-hit events, we systematically investigated the 

gene and protein expression in carriers of pathogenic or likely pathogenic germline variants 

of the respective gene. Briefly, we calculated the percentile of gene expression for variant 

carriers relative to other cases in the same cancer cohort. We then conducted a differential 

expression analysis to look for genes expressed at different levels in variant carriers 

(Methods). We identified 15 significant (FDR < 0.05, linear regression) and 6 suggestive 

(FDR < 0.15) gene-cancer associations (Figure 4A-B, Figure S4, Table S5).

In breast cancer, FANCM, ATM, BRCA2, CHEK2, and BRCA1 carriers all showed 

significant lower-expression of the respective gene (Figure 4A-B). In PCPG, RET carriers 

showed higher RET expression, whereas SDHB, NF1, and SDHD carriers have lower 

expression. In addition to breast cancer, ATM carriers exhibited significantly lower 

expression in LUAD and LGG. We then conducted the same analysis using RPPA data, 

investigating whether the effects extend to the protein/phosphoprotein levels (Figure 4C-D, 

Table S5). Notably, ATM carriers were significantly associated with lower protein 

expression in 5 cancer types, namely STAD, PAAD and PRAD in addition to validating 

mRNA expression signals in BRCA and LGG. CHEK2 carriers also showed lower protein 

expression of the Chk2 marker in BRCA and suggestively in BLCA (FDR = 0.053).

Overall, the associated gene expression showed distinct distributions for oncogenes vs. 

tumor suppressors (Figure 4B). Pathogenic or likely pathogenic germline variants in tumor 

suppressors are associated with lower distributions in gene expression than those in 

oncogenes (Two-sample Kolmogorov-Smirnov test, p = 5.70E-7): 47.6% of such variants in 

tumor suppressors were associated with the bottom quartile of gene expression. In contrast, 

62.1% of those in oncogenes were associated with the top quartile, suggesting divergent 

transcriptional regulation of tumor suppressor genes and oncogenes carrying pathogenic or 

likely pathogenic variants.

On the variant level, all three tumors with the MET p.H1112R variant were in the top 25% 

MET gene expression in KIRP. Twelve cases carrying predisposing RET alleles showed high 

RET expression in their respective cancer cohorts, including 9 PCGP cases and, notably, 3 

RET carriers from other cancer types not typically associated with multiple endocrine 

neoplasia type 2, including p.I852M in LGG (96%), p.D631Y in KIRP (84%), and p.R912P 

in READ (80%). The two breast cancer carriers of PTPN11 variants p.N58S and p.T411M 

also showed high expression (>88%). The high expression of the variant-associated 

oncogenes in tumor, many without detected copy number amplifications, suggests that 

cancer cells may preferentially up-regulate pathogenic alleles in these oncogenes.

Rare Germline Copy Number Alterations

We systematically scanned for rare, germline CNVs in the same 10,389 samples, using both 

SNP-array data and XHMM analysis as previously described (Fromer and Purcell, 2014; 

Ruderfer et al., 2016) on whole exome sequence data (Methods). We identified 42,208 rare 

(AF < 0.6% considering 50% overlaps) CNVs using SNP-array data and 53,726 using 

XHMM on the WES data (Figure 5A). 3,584 of overlapping CNVs in both datasets passed 
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rare, frequency filters. On average, each case had 0.38 overlapping deletion and 0.96 

overlapping duplications; 44% of the CNVs affected only one single gene while 56% 

impacted multiple genes (Figure 5B).

Given the large amount of discovered CNVs, we hypothesized that the pathogenic CNVs 

likely reside in genes showing enrichment in specific cancers. Using the 28 associated 

cancer-gene pair from this cohort (Table S3), we found 18 events (2 were jointly identified 

using both WES and SNP array) that marked copy number deletions of 11 tumor suppressor 

genes (Figure 5C, Figure S5). We found 3 BRCA and 2 OV cases showing BRCA1 
deletions. Two KIRC cases carried VHL deletions and 1 each of BRCA and PRAD cases 

carried ATM deletions. Other genes affected by deletions included FH, MSH6, NF1, PALB2 
and PTEN.

Notably, we further validated the transcriptional effect of these deletions detected in 

predisposition genes for specific cancer types: 9 of the 14 cases with highlighted events with 

expression data showed bottom quantile expression in their respective cancer cohorts (Figure 

5D), whereas other deletions did not correspond with lower gene expression in the affected 

samples (Figure S5).

Independent Genomic Evidence Supporting Pathogenicity

We then sought independent evidence to corroborate the pathogenicity of the 853 identified 

pathogenic or likely pathogenic variants, including (1) significant enrichment in cancer vs. 

non-cancer cases at a single variant level, (2) co-localization of variants with pathogenic 

germline alleles found in pediatric cancers or with recurrent somatic mutations, and (3) co-

localization with post-translational modification (PTM) sites.

To determine whether the pathogenic or likely pathogenic variants are enriched in cancer 

cases, we conducted association testing by comparing allele frequencies in TCGA cases vs. 

non-TCGA cases in the most-powered Non-Finnish European cohort in the Exome 

Aggregation Consortium (ExAC r.0.3.1) data comprised of 33,370 individuals (Lek et al., 

2016) (Methods). We found 30 unique variants showing suggestive associations (One-tailed 

Fisher's Exact test, P < 0.05, Figure 6A, Table S6). The top 4 associated variants passing 

multiple-testing threshold (FDR < 0.05) include ATM p.E1978* (P = 3.50E-06), BRCA1 
p.Q1777fs (P = 2.97E-05), POT1 p.R363* (P = 3.11E-05), and PALB2 p.R170fs (P = 

5.20E-04). The results also provided supporting evidence of pathogenicity for oncogenic 

variants such as MET p.H1112R (P = 2.00E-03) and MPL p.F126fs (P = 0.0161).

In our TCGA cohort, we observed 28 pathogenic or likely pathogenic variants previously 

discovered in 1,120 pediatric cancers (Zhang et al., 2015)(Figure 6B), including stop-gained 

variants in BRIP1, ERCC3, FANCC, MSH2, and WRN. Further, we observed 23 incidences 

of germline variants co-localizing with recurrent (n ≥ 3) somatic mutations found in the 

TCGA MC3 cohort (Figure 6B, Table S6). Considering unique variants, these include 8 

missense variants in TP53, 4 NF1 truncations, and 2 RET missenses. For example, the TP53 
p.R248W is a highly recurrent somatic mutation (n=94) while being observed as a germline 

variant in both pediatric rhabdomyosarcoma (Zhang et al., 2015) and LGG. The MEN2-

associated allele RET p.M918T seen in PCPG and associated with MEN2B disorder was 
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also found as a recurrent somatic mutation (n=4). Overall, we observed significant overlaps 

between both recurrent somatic mutations and PCGP variants and pathogenic or likely 

pathogenic variants we found in TCGA (Exact Poisson test, P < 2.2e-16 in both tests), 

implying shared oncogenic processes in predisposition across pediatric/adult cancers and 

germline/somatic genomes.

To further evaluate whether this set of 853 pathogenic or likely pathogenic variants 

discovered in TCGA can impact a broader patient population, we examined the direct 

overlap with these variants in an independent (primarily metastatic) tumor cohort collected 

at The University of Texas MD Anderson Cancer Center (MDACC), which consists of 3,026 

patients in 19 tumor types. Targeted panel sequencing of 201 cancer-related genes, covering 

39/99 genes with pathogenic variants, were previously sequenced from these patients based 

on an institutional clearinghouse protocol for cancer patients (Chen et al., 2015). We 

rediscovered 29 specific variants found in TCGA (0.96% carrier frequency) in the MDACC 

cohort from 8 tumor types including breast, colorectal, melanoma, head and neck, and 

glioblastoma multiforme (Table S6). In comparison, we identified 0.58% carriers of these 

variants of the same genes in the 53,105 non-TCGA samples in the ExAC cohorts, validating 

the enrichment of these variants in cancer (Fisher's Exact Test, P = 0.015).

Variants in Post-Translational Modification (PTM) Sites

To investigate the potential functional impact of germline variants on protein signaling, we 

mapped the 853 variants to 316,216 experimentally collected known post-translational 

modification (PTM) sites from ActiveDriverDB (Krassowski et al., 2018), PhosphoSitePlus 

(Hornbeck et al., 2015) and the UniProt Knowledge Base (Consortium, 2017) (Methods). 

Overall, we found 65 amino acids substitutions (missenses) directly overlaps or sits adjacent 

to 34 unique PTMs (Table S6), showing a significant enrichment to those variants observed 

in the 1000 Genomes data set (Methods, permutation test, P < 2×10-11). The top six genes 

with pathogenic PTM-associated substitutions include VHL (n=10), CHEK2 (n=9), BUB1B 
(n=9), TP53 (n=8), and RET (n=6). This agrees with our earlier observation that PTM sites 

are depleted of substitutions in the general human population while the sites are enriched in 

disease mutations (Reimand et al., 2015).

To illustrate putative mechanisms of germline variants on signaling networks, we 

systematically mapped the PTM-associated substitutions to known site-specific enzyme-

substrate interactions (Hornbeck et al., 2015; Krassowski et al., 2017) (Methods, Figure 6C). 

Over 60% (21/34) of unique substitutions in 9/18 genes occur in known protein sites bound 

by upstream kinases and other classes of enzymes. For example, five substitutions in TP53 

potentially affect binding sites of kinases, such as Aurora kinase A (AURKA) and CHEK2, 

and other signaling enzymes, such as MDM2 and EP300, that are known to activate or 

inhibit TP53 in response to cellular stimuli. Five VHL variants occur in binding sites of the 

NEK1 kinase that promotes its degradation (Patil et al., 2013). Similarly, CHEK2 p.S428F 

may affect the auto-phosphorylation and activation of CHEK2 kinase (Gabant et al., 2008). 

RET p.V804M and p.R921P potentially affect its auto-phosphorylation sites required for 

RET kinase activity (Kawamoto et al., 2004; Plaza-Menacho et al., 2016). BRCA1 

p.R1699W significantly weakens binding to the BACH1 peptide through disruption of the 

Huang et al. Page 10

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BRCT repeats (Shiozaki et al., 2004). Collectively these results suggest that a subset of 

pathogenic germline cancer predisposition variants may manifest their function by 

disrupting and rewiring complex protein signaling networks.

Functional Assessment of Germline RET Alleles

We adapted HotSpot3D (Niu et al., 2016) to conduct co-clustering analysis of pathogenic or 

likely pathogenic germline variants and somatic mutations on 3D protein structures 

(Methods). We identified 56 hybrid clusters containing somatic mutations and 21 pathogenic 

germline variants in 35 genes (Table S6). For example, we observed co-localized VHL 
germline variants p.C162F, p.L188V and p.R167Q/W co-clustering with somatic mutations 

affecting 7 other nearby residues.

Interestingly, we observed hybrid clusters in the kinase domain of RET: one includes the co-

localized germline variants p.R912P/p.M918T and 10 other somatic mutations (Figure 7A-

B) while the other adjacent cluster includes p.I852M along with 5 somatic mutations. 

Additionally, we also observed germline VUSs co-clustering with somatic mutations in the 

kinase domain of RET and MET (Figure 7B) potentially providing additional evidence for 

pathogenicity. One MET kinase domain cluster centered around residue p.H1112, where the 

known pathogenic germline variant p.H1112R and the somatic mutation p.H1112Y resides. 

This cluster contained additional somatic mutations including p.T1114S and the pathogenic 

p.V1110I and a germline VUS p.H1097R. We further identified a RET kinase domain 

cluster containing co-localized germline VUSs p.R844L/Q, p.R846V and co-clustered VUSs 

p.R817C, p.E843K (Figure 7B), some of which show additional evidence of functionality. 

For example, RET p.E843K is associated with high expression (97th percentile) and 

potential enrichment in the cancer population (p=1.7E-4) (Table S2).

Because of the preponderance of variants in RET especially in and around the kinase 

domain, we assessed their functionality by conducting experimental validation of 12 unique 

germline variants in RET, including 3 pathogenic variants and 9 VUSs (Methods). 

Additionally, we selected a constitutively-active positive control p.C618F (Wells 1994) and a 

kinase-dead negative control p.K758M (Table S6).

We evaluated the activity of the RET variants by monitoring the downstream pMAPK levels 

by Western blot in the absence of its ligand GDNF (Methods). We first measured RET 

activity through the ratio of pMAPK/RET/GAPDH (Figure 7C). As expected, the 

constitutively-active p.C618F showed ligand-independent activation, whereas the kinase-

dead p.K758M showed background level of pMAPK. The MEN2B syndrome-associated 

p.M918T also exhibited higher activity consistent with the severe disease phenotype, 

whereas all other germline VUSs found in this study did not show significant change in 

activity when pMAPK was used as readout.

Activating mutations tend to couple with up-regulation of the oncogenes as seen for RET 

MEN2 alleles and MET p.H1112R in our cohort (Figure 4B) and somatic mutations of 

receptor tyrosine kinases (Bose et al., 2013). We thus analyzed the results by measuring 

RET activity by pMAPK/GAPDH not controlled for the dynamic RET expression (Figure 

7C). While p.R912P was previously shown to co-segregate in familial medullary thyroid 
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carcinoma (Jimenez et al., 2004), our results demonstrate that it may also show ligand-

independent activation (T-test using pooled SD, unadjusted P = 0.0019). Multiple other 

variants also showed minor up-regulation of activity that could be adaptive in a permissive 

environment, warranting further investigation (Figure 7D).

Nomination of VUSs Using Combined Evidences

Promisingly, our integrative approaches can be further applied to nominate VUSs, 

connecting them to potential functionality. Among the 540 prioritized VUSs (Figure 1), we 

discovered 47 additional predisposition variants while requiring at least two lines of 

evidence involving case-control frequency, loss of heterozygosity, expression effect, and co-

localization with recurrent mutations and PTMs (Figure S2, Table S2). These include 6 

incidences of cancer-enriched (p =1E-4) ERCC2 p.F544fs, 3 each of FANCC and FANCL 

truncations, and 1 each of LOH-associated POLH and FANCM variant, whose carriers all 

showed bottom 25% expression in their respective cancer cohorts. These approaches of 

functional assessment will likely inform future guidelines of variant classification.

Discussion

We present the largest catalog of germline variants of cancer to date in 10,389 individuals 

spanning 33 cancers (Figure 1). A total of 853 pathogenic or likely pathogenic variants 

discovered in 8% of adult cancer cases, a fraction comparable to recent investigations in 

smaller cohorts of pediatric and adult cancers (Cheng et al., 2017; Parsons et al., 2016; 

Zhang et al., 2015). This comprehensive survey allowed us to establish enrichment of 

pathogenic or likely pathogenic factors in each cancer (Figure 2) from BRCA1/2 in OV and 

BRCA to RET/SDHB/VHL/NF1/SDHD in PCPG. Our analysis also identified putative new 

associations, e.g. PALB2 in STAD and BUB1B in GBM/LUSC that warrant further study. 

Further, the concurrent systematic discovery of CNVs revealed 18 rare events, including 

deletion of ATM, BRCA1 and NF1 associated with clear expression changes (Figure 5), 

suggesting the importance of other genomic events beyond SNPs and small insertions/

deletions.

We fully acknowledge that although this cohort presents one of the largest systematic 

analysis to date, our power to detect predisposition genes harboring rare variants is still 

limited, potentially requiring 100,000 samples to achieve 80% power for rare variants of 

95% penetrance (Figure S7). Similar power limitation applies to clinical association. We 

validated previously found predisposition genes associated with onset ages in various cancer 

types (Table S7). We also investigated variants found in 552 cancer cases with known 

familial history (Figure S7). While difficulties abound for collecting family information (i.e. 

non-cohesive family history collection, absent family history for many projects), improved 

curation of such data will be pivotal for investigation of predisposing variants.

Most of the known predisposing factors in cancer are found in tumor suppressors, however 

an intriguing smaller set of conditions are associated with heritable activating mutations in 

oncogenes, such as MET p.H1112R in hereditary papillary renal carcinoma (Schmidt et al., 

1998). By conducting the first systematic discovery of germline variants we discovered 33 

such variants in oncogenes, including missenses in MET, RET, PTPN11. Particularly, we 
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found pathogenic RET variants associated with high gene expression not only in PCPG but 

also in LGG, KIRP and READ. The pathogenic RET allele p.R912P (Figure 7) showed 

potential ligand-independent activation. However, our assay failed to establish functional 

change in other alleles of familial medullary thyroid cancer, including p.I852M (currently 

with conflicting evidence in ClinVar) and p.R844Q (currently a VUS in ClinVar). It is 

possible that MEN2-associated alleles exhibit higher expressivity and have easier to detect 

molecular functional changes. Weaker gain-of-function RET alleles may exhibit activity 

depending on cellular context. Additional epigenetics mechanisms such as up-regulation of 

gene expression may be required for these alleles to achieve their activating potential, such 

as the candidate germline RET VUS p.E843K, which is associated with enrichment in 

cancer population, high gene expression, and conservation among homologs but showed no 

gain of activity in our assay. Our results demonstrate the importance of experimental 

investigation of the pathogenic variants.

Historically, germline variants have often been overlooked by classification systems due to 

the lack of evidence in currently available databases and the lack of somatic mutation 

information in the current ACMG-AMP classification system. In particular, our approach 

demonstrated the utility of tumor/normal matched sequencing for germline variant 

interpretation in that they are required to discover two-hit events, including LOH or biallelic 

events (Figure 3). Within each individual cancer case, we observed that 34% and 4.3% of 

pathogenic or likely pathogenic germline variants exhibit LOH and biallelic events, 

respectively (Figure 3C). At the cohort level, we identified germline variants and somatic 

mutations affecting the same residues. While these approaches provide systematic evaluation 

germline variants, careful assessments are required to separate effects from compounding 

factors, such as passenger somatic copy number events that may induce LOH. Such 

information may also help validate oncogenic effects of variants in pleiotropic genes (Table 

S2).

Further, by analyzing tumor expression data from RNA-Seq, we identified that 

approximately half of the variants in tumor suppressors were associated with low gene 

expression and 62% of variants in oncogenes associated with high expression (Figure 4B), 

confirming and expanding findings of germline variants in BRCA1/2 and MSH genes 

associated with low gene expression (Hilton et al., 2002; Morak et al., 2017). While the 

association between truncating mutations and reduced gene expression is intuitive, it should 

not be taken for granted: even for predisposition genes, we observed various degrees of 

reduced gene expression in truncation carriers (Figure S4). Such evidence was used to 

highlight potentially functional genes affected by somatic mutations (Ding et al., 2015) and 

can also likely validate transcriptional effect of germline variants (Figure 4).

Germline variants overlapping PTMs suggest signaling as a possible predisposition 

mechanism of cancer. Beyond the two pathogenic variants that directly overlapped PTM 

sites (TP53 and PTEN) and additional proximal variants (Figure 6C), selected prioritized 

VUSs also showed potential of modulating PTMs (Table S6). For example, multiple TP53 
variants directly replace arginine residues affected by protein methylation (R156H, R158C, 

R290C, and R333G), potentially affecting the target gene specificity of TP53 (Jansson et al., 

2008). The BRCA1 p.Q1281P variant occurs in a known binding site of the ATR kinase that 
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phosphorylates BRCA1 site p.S1280 in response to DNA damage (Tibbetts et al., 2000). The 

substitution replaces a known kinase binding motif of ATR and induces a new motif 

preferred by cyclin dependent kinases (CDKs) (Figure S6) and potentially rewires signaling.

Overall, we systematically examined predisposition variants and their corresponding 

functional evidence of more than ten thousand samples. The catalog of pathogenic variants 

in 33 cancer types informs our knowledge of genetic inheritance of cancer. Further, the 

results showed that each germline allele should be carefully evaluated within the relevant 

context of its corresponding somatic genome and downstream expression. Such evidence 

will not only aid validation of pathogenic variants, but also prioritization within large pools 

of VUSs and discovery into the non-coding genome.

Star Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Li Ding: lding@wustl.edu

Experimental Model and Subject Details

TCGA samples—The Cancer Genome Atlas (TCGA) collected both tumor and non-tumor 

biospecimens from 10,224 human samples with informed consent under authorization of 

local institutional review boards (https://cancergenome.nih.gov/abouttcga/policies/

informedconsent). TCGA sequence information was obtained from the database of 

Genotypes and Phenotypes (dbGaP). Sequence data from germline and tumor samples were 

downloaded by the Institute for Systems Biology Cancer Genomics Cloud (ISB-CGC) from 

the GDC legacy (GRCh37/hg19) archive.

Cell Lines—For the RET functional assay, we used HEK293T cells. The sex of the 

HEK293T cells is female. Cells were cultured at 37°C in DMEM (Corning) supplemented 

with 5% fetal bovine serum (FBS) (Thermo Fisher).

Method Details

Data Generation

Germline variant calling and filtering: For TCGA sequence data downloaded from the 

GDC, we selected one germline sample and up to one tumor sample per case according to 

the following procedure. Files designated as TCGA MC3 BAMs were prioritized due to 

their harmonization. A dockerized version of GenomeVIP (Mashl et al., 2017) was used to 

coordinate germline variant calling in the guise of integrating multiple tools: Germline 

SNVs were identified using Varscan (Koboldt et al., 2012) (version 2.3.8 with default 

parameters, except where –min-var-freq 0.10, --p-value 0.10, --min-coverage 3, --strand-

filter 1) operating on a mpileup stream produced by SAMtools (version 1.2 with default 

parameters, except where -q 1 -Q 13) and GATK (McKenna et al., 2010) (version 3.5, using 

its haplotype caller in single-sample mode with duplicate and unmapped reads removed and 

retaining calls with a minimum quality threshold of 10). Germline indels were identified 

using Varscan (version and parameters as above) and GATK (version and parameters as 
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above) in single-sample mode. We also applied Pindel (Ye et al., 2009) (version 0.2.5b8 with 

default parameters, except where -x 4, -I, -B 0, and -M 3 and excluded centromere regions 

(genome.ucsc.edu)) for indel prediction. For all analyses, we used the GRCh37-lite 

reference and specified an insertion size of 500 whenever this information was not provided 

in the BAM header.

All resulting variants were limited to coding regions of full-length transcripts obtained from 

Ensembl release 70 plus the additional two base pairs flanking each exon that cover splice 

donor/acceptor sites. Single nucleotide variants (SNVs) were based on the union of raw 

GATK and VarScan calls. We required that indels were called by at least two out of the three 

callers (GATK, Varscan, Pindel). In addition, we also included high-confidence, Pindel-

unique calls (at least 30× coverage and 20% VAF).

We then further required the variants to have an Allelic Depth (AD) ≥ 5 for the alternative 

allele. A total of 49,123 variants passed these filters. We then conducted readcount analyses 

for these variants in both normal and tumor samples. We used bam-readcount (version 0.8.0 

commit 1b9c52c, with parameters -q 10, -b 15) to quantify the number of reference and 

alternative alleles. We required the variants to have at least 5 counts of the alternative allele 

and an alternative allele frequency of at least 20%, resulting in 31,963 variants. Of these, we 

filtered for rare variants with ≤0.05% allele frequency in 1000 Genomes and ExAC (release 

r0.3.1).

We then selected for cancer-relevant pathogenic variants, based on whether they were found 

in the curated cancer variant database or in the curated cancer predisposition gene list, and 

their associated ClinVar trait. This resulted in 1,678 variants for manual review using the 

Integrative Genomics Viewer (IGV) software (Robinson et al., 2011). For candidate 

germline variants having the same genomic change as somatic mutations, we further filtered 

for the germline variants that may have originated from contaminated adjacent normal 

samples by eliminating variants called from adjacent normal, the VAF in normal < 30%, and 

co-localizing with any known somatic mutation. This results in the final 1,393 pass-QC 

variants for downstream analysis.

We further annotated the corresponding genes of variants as oncogenes or tumor 

suppressors. We compiled a gene list by combining the oncogenes and tumor suppressors 

from Vogelstein et al. (Vogelstein et al., 2013) and the GSEA database (Downloaded 

2014-11-25). We removed NOTCH1 and NOTCH2 from the oncogene classification in 

GSEA given their controversial roles. We then further curated several genes, including 

additional tumor suppressors (ATR, BARD1, ERCC1, FANCI, FANCL, FANCM, POLD1, 
POLE, POLH, RAD50, RAD51, RAD51C, RAD51D, RAD54L, MAX) and additional 

oncogenes (AR, STAT3, TERT, MAP2K2).

Genotype data: We used SNP-array derived genotype data of 522,606 SNPs to infer the 

ethnicity of each sample. Birdseed genotype files of 11,459 samples were downloaded by 

ISB-CGC from the Genome Data Commons (GDC) legacy (GRCh37/hg19) archive and 

converted by us to individual VCF files (github.com/ding-lab/birdseed2vcf) for merging into 
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a single combined VCF file. SNP-array genotypes were also used to assess the precision of 

germline variant calling in the exome (median precision: 0.99).

Somatic mutation calls: We used TCGA MC3 MAF v3 (updated 17 June 2016) for 

comprehensive somatic mutation calls across TCGA cancer samples. Specifically, we used 

mc3.v0.2.8.PUBLIC.maf (www.synapse.org/#!Synapse:syn7214402/files/) (Kyle et al., in 

review).

Somatic copy number variation: We used somatic CNV calls generated using GISTIC for 

the PanCanAtlas analyses working groups (https://www.synapse.org/#!

Synapse:syn5049520.1).

The threshold for calling a somatic CNV was defined using a step-wise process:

1. We calculated the median log2 copy-ratio level for each arm.

2. We found the highest and lowest arm medians, H and L.

3. We opened a small margin H′=H+delta and L′=L-delta (delta=0.1).

4. We assigned +2 to any segment that is above H′, and -2 to segments below L′.

5. Segments that were between +delta and H′ get a +1 and segments between -

delta and L′ get a -1.

6. Segments between -delta and +delta get a 0.

-2 scores track with homozygous deletions because whole arms are never homozygously 

deleted. However, since many tumors have undergone whole genome doubling, in tetraploid 

tumors and above the min arm level can be 2 copies, and so these -2 scores can represent 

those with either 0 or 1 copy of a gene. +2 scores track with high level focal amplification 

since these are usually beyond the highest arm level change. We considered somatics with -1 

or -2 as a deletion and +1 or +2 as an amplification.

Clinical data: We used the clinical data provided by the PanCanAtlas clinical working 

group (https://www.synapse.org/#!Synapse:syn3241074/files/). For family history 

information, we used the Clinical data used by the MC3 working group. Ancestry calls of 

each sample was provided by the PanCanAtlas Ancestry Informative Markers (AIM) 

working group.

Bioinformatics Analyses

Database curation for variant classification: At the gene level, we extended the 114 

cancer predisposition genes compiled by Rahman et al. (Rahman, 2014) to a total of 152 

genes that contribute to cancer susceptibility based on literature review (Table S1). We 

added 15 genes based on the St. Jude PCGP germline study (both the autosomal dominant 

and autosomal recessive cancer predisposition genes), 11 genes from our curation of 

literature, 11 genes from Cancer Gene Census-Germline (Downloaded 1/5/2016 from http://

cancer.sanger.ac.uk/census/) and DROSHA (personal communication with Gang Wu, St. 

Jude). Source and reference for each gene is attached in Table S1.
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At the variant level, in addition to the ClinVar database, we compiled multiple curated gene-

specific databases for more comprehensive coverage of known pathogenic variants. These 

included the IARC TP53 germline mutation database, NHGRI BRCA1 and BRCA2 BIC 

database (http://research.nhgri.nih.gov/bic/), ARUP MEN2 database for mutations in RET 
(http://www.arup.utah.edu/database/MEN2/MEN2_display.php), and the ASU database 

(http://telomerase.asu.edu/diseases.html) for TERT mutations. We included only the BRCA1 
and BRCA2 variants marked as clinically important in the BIC database. We also limited our 

TP53 variants to those that were carried by an affected proband and confirmed as a germline 

variant in the IARC database. We used TransVar (Zhou et al., 2015) and customized scripts 

to convert all variant entries to standard HGVSg format to ensure proper matching.

Variant classification pipeline and panel review: Briefly, we developed an automatic 

pipeline termed CharGer (https://github.com/ding-lab/CharGer) to annotate and prioritize 

variants by adopting the AMP-ACMG guideline. For the automatic pipeline, we defined 12 

pathogenic evidence levels and 4 benign evidence levels using a number of datasets, 

including ExAC and ClinVar (parsed through MacArthur lab ClinVar: https://github.com/

macarthur-lab/clinvar), and computational tools including SIFT (Kumar et al., 2009) and 

PolyPhen (Adzhubei et al., 2013). The detailed implementation and score of each evidence 

level is as follows (Table S3):

PVS1, PSC1, PM4, PP2, and PPC1: variants in predisposing genes: Variants in the 

predisposition gene receive one of these evidence level assignments based on variant type 

and mode of inheritance. Truncations in susceptibility genes that harbor variants with a 

dominant mode of inheritance are assigned PVS1, but recessive variants in these genes are 

assigned PSC1. Considering the PVS1 criteria “null variant in a gene where LOF is a known 

mechanism of disease”, we only assigned this evidence to truncations in tumor suppressor 

genes but not oncogenes. Protein length changes due to inframe insertions or deletions or 

nonstop variants in genes that harbor variants with a dominant mode of inheritance receive a 

PM4, whereas recessives receive a PPC1. Finally, missense variants in susceptibility genes 

are tagged as PP2.

PS1 and PM5: pathogenic peptide changes: Variants that result in identical peptide changes 

as a previously known pathogenic variant on ClinVar (only those marked as Pathogenic but 

not Likely Pathogenic) or the compiled list are assigned a PS1. Variants that result in a 

different amino-acid change at the same position are assigned a PM5.

PM1: hotspot variants: HotSpot3D (Niu et al., 2016) was run on MC3 somatic mutation 

calls (hypermutators removed). The protein structure analysis of HotSpot3D identifies 

mutation clusters, enriched by recurrent and neighboring pockets of mutations. If a germline 

variant was found to be a somatic mutation with recurrence in at least two samples among 

all cancer types in a HotSpot3D cluster, then the variant is flagged with a pathogenic 

characterization of PM1.

PM2 and BA1: minor allele frequency in populations: Variants that are absent or that show 

extremely low frequency (MAF < 0.0005) in the ExAC dataset are assigned a PM2, whereas 

common variants (MAF > 0.05) receive a BA1.
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PP3 and BP4: in silico analyses: Several ACMG scores use in silico evidence to determine 

disease association. We used evidence from SIFT (Kumar et al., 2009) and PolyPhen 

(Adzhubei et al., 2010), as annotated by VEP (McLaren et al., 2016). Each in silico analysis 

was taken as one piece of evidence and if both analyses identified as “damaging” or 

“deleterious” in SIFT (score <0.05) and “probably damaging” from PolyPhen (score 

>0.432), the variant was assigned a pathogenic characterization of PP3. Conversely, if both 

in silico analyses identify in opposition to PP3 characterization (>0.05 for SIFT, <0.432 for 

PolyPhen), then the variant achieves a benign characterization of BP4. The score from each 

fulfilled evidence level is then summed and classified as described in Figure 1C.

Detection of germline copy number variation events: Whole exome sequencing data on 

normal samples from 10,389 cases were used for germline CNV detection. XHMM was run 

as previously described (Ruderfer et al., 2016). Base-resolution coverage was calculated by 

the GATK DepthOfCoverage module (mapping quality > 20) on 209,486 Ensembl coding 

exon intervals (build GRCh37) retrieved from UCSC Table Browser. Exon targets with 

extreme GC content (> 90% or < 10%) or high fraction of repeat-masked bases (> 25%) or 

extreme length (< 10bp or > 10kbp) or low mean depth (< 10) were filtered out. The target-

by-sample depth matrix was mean-centered by target dimension. Then principal component 

analysis was run to remove the systematic bias, where the top 152 components were 

removed (whose variances were higher than 70% of the mean variances of all components). 

The resulting depth matrix was normalized to sample-level z-score. During normalization, 

targets with high variance (standard deviation>50) were filtered out. CNVs discovery was 

performed using the Viterbi hidden Markov model (HMM) with default XHMM parameters. 

Quality for each called CNV was calculated by the forward-backward HMM algorithm, as 

previously described (Fromer and Purcell, 2014).

Array-based CNVs were filtered based on the number of probes (>10), length (>10kb), 

frequency (<1%), and absolute segment mean value (|log2(copy-number/2)| > 0.1). After 

filtering, the array-based CNV callset consisted of 209,559 CNVs found across 6464 

individuals.

Analysis of germline variants in post-translational modification (PTM) sites: The 

dataset of pathogenic germline predisposition variants corresponding to amino acid 

substitutions were mapped to preferred isoforms and four types of post-translational 

modification (PTM) sites (phosphorylation, ubiquitination, acetylation, and methylation) 

using multiple databases, including ActiveDriverDB (Krassowski et al., 2018), 

PhosphoSitePlus (Hornbeck et al., 2015) and UniProt Knowledge Base (Consortium, 2017). 

This compiled dataset contains information about previously published PTM sites from 

experimental studies, such as mass spectrometry and western blots. Variants were considered 

to affect PTM sites if the corresponding amino acid substitutions affected protein sequence 

within +/- seven amino acids of the PTM site, similar to earlier studies (Reimand et al., 

2013, 2015). Four categories of PTM site substitutions were considered: direct substitutions 

replaced the central amino acid undergoing post-translational modification, proximal 

substitutions affected amino acids within +/- two amino acids around the nearest PTM site, 

and distal substitutions affected amino acids within +/- three to seven amino acids around 
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the nearest PTM site. This resulted in a total number of 316,216 experimentally collected 

sites; 239,559 phosphorylation sites, 39,493 ubiquitination sites, 13,376 methylation sites, 

and 23,787 acetylation sites. We further noted network-rewiring substitutions that induced or 

removed an amino acid near a PTM site that occurred within a kinase binding motif as 

predicted by the MIMP algorithm (Wagih et al., 2015). Evidence of kinases and other 

enzymes involved in the mutated PTM sites was also extracted from the databases and 

associated to primary literature.

Co-localizing and co-clustering of somatic mutations and germline variants: We used 

somatic mutation calls from the TCGA MC3 MAF, defining germline variants located at the 

same protein residue as recurrent (n ≥ 3) somatic mutations as co-localizing. We adapted our 

previously published tool HotSpot3D (Niu et al., 2016)(v.1.8.0) to conduct co-clustering of 

TCGA MC3 somatic mutations and pathogenic or likely pathogenic germline variants in 

genes with available PDB structures.

RET variant function assays: HEK293T cells were authenticated by DNA finger printing 

targeting short tandem repeat (STR) profiles through Genetica Cell Line Testing. They are 

negative for mycoplasma as determined by the absence of extranuclear signals in DAPI 

staining. Cells were cultured at 37°C in DMEM (Corning) supplemented with 5% fetal 

bovine serum (FBS) (Thermo Fisher). Constructions expressing RET variants were 

generated by Q5 site-directed mutagenesis (New England BioLabs) using a plasmid 

expressing a wild-type RET (pcDNA3RET9) (Chatterjee et al., 2012) as a template. All 

constructs were confirmed by sequencing. Cells were transiently transfected with wild-type 

or mutant RET constructs using Lipofectamine 2000 (Invitrogen Life Technologies) in six-

well plates. Twenty-four hours after transfection, cells were switched to medium containing 

0.5% FBS for 24 h before the initiation of 20 minutes of treatment with GDNF (100nM) in a 

subset of samples. Cells were lysed in buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM 

sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate, and 1 

μg/ml leupeptin (Cell Signaling Technology). Protease and phosphatase inhibitors (Roche) 

were added immediately before use. Samples (15 ug/lane) were boiled in standard 

commercial SDS-gel loading buffer and run on SDS 10% polyacrylamide gels. 

Immunoblotting was performed on Immobilon-P PVDF membrane (Millipore). The 

following antibodies were used for immunoblotting: rabbit monoclonal anti-phospho-p44/42 

MAPK (Erk1/2) (Thr202/204) antibodies (Cell Signaling #4370S, at 1:1000 dilution), rabbit 

polyclonal anti-RET (C31B4) antibodies (Cell Signaling #3223S, at 1:1000 dilution), rabbit 

monoclonal anti-GAPDH antibodies (Cell Signaling #5174, at 1:1000 dilution), rabbit 

monoclonal anti-phospho-RET (Tyr905) antibodies (Cell Signaling #3221 1:1000 dilution), 

rabbit monoclonal anti-phospho-AKT (Ser473) antibodies (Cell Signaling #4060 1:1000 

dilution), mouse monoclonal anti-RET (C-3) antibodies (Santa Cruz Biotechnologies 

#sc-365943 1:100 dilution). Appropriate secondary antibodies with infrared dyes (LI-COR) 

were used, such as donkey anti-rabbit antibodies for the 680nm channel (LI-COR 926-6807) 

and donkey anti-mouse antibodies for the 800nm channel (LI_COR 926-32212). Protein 

bands were visualized using the Odyssey Infrared Imaging System (LI-COR) and further 

quantified by ImageJ.
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Quantification And Statistical Analysis

Burden testing of pathogenic variants—We adapted the Total Frequency Test (TFT) 

(Basu and Pan, 2011) by collapsing pathogenic and likely pathogenic germline variants to 

the gene level. We then used total allele counts of pathogenic variants identified in the ExAC 

nonTCGA cohort using the same CharGer classification pipeline for comparison. We 

deemed one cancer type shows potentially increased burden of a specific gene if the TFT test 

against ExAC returned FDR < 0.15.

We then tested burden of pathogenic variants for each cancer type and each gene against all 

other cancer cohorts as controls, subtracting out the cohorts showing suggestive enrichment 

for the specific gene in the ExAC analyses. Since all our cohorts are called using the same 

variant calling pipeline, it avoids the potential danger of comparing against ExAC, which 

was done in a different batch of variant calls. The resulting P values were adjusted to FDR 

using the standard Benjamini-Hochberg procedure. We subsequently defined significant and 

suggestive events in terms of FDR thresholds of 0.05 and 0.15, respectively.

Loss of heterozygosity (LOH) and biallelic events analysis—We applied our 

previously developed statistical analysis method regarding LOH (Lu et al., 2015b) to 

individually test the missense and truncation germline variant sets. We tested variants in 

genes carrying pathogenic or likely pathogenic variants and used variants in other genes to 

build the null distribution. The resulting P values were adjusted to FDR again using the 

standard Benjamini-Hochberg procedure. We subsequently defined significant and 

suggestive events in terms of FDR thresholds of 0.05 and 0.15, respectively. We further 

captured additional events of suggestive LOH using a criteria of tumor VAF > 0.6 and 

normal VAF < 0.6.

We then devised an algorithm to classify observed LOH events (both significant and 

suggestive, FDR < 0.15) as:

1. Wild-type allele copy number deletion (of the wild type allele): GISTIC CNV 

result shows lower ploidy below threshold in the gene region. In these reads, the 

variant allele is significantly enriched compared to the wild type allele, which is 

likely loss.

2. Alternative allele copy number amplification: GISTIC CNV result shows higher 

ploidy above threshold in the gene region. In these reads, the variant allele, 

which is likely amplified, is significantly enriched compared to the wild type 

allele.

For biallelic events analysis, we systematically examined the cases carrying both a 

pathogenic or likely pathogenic germline variant and a missense or truncating somatic 

mutation in the same gene. The lolliplots are constructed and modified from the PCGP 

protein paint (https://pecan.stjude.org/proteinpaint) based on the specified RefSeq transcript.

Gene expression analysis—TCGA level-3 normalized RNA expression data were 

downloaded from Firehose (2016/1/28 analysis archive). The expression percentile of 

individual genes in each cancer cohort was calculated using the empirical cumulative 
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distribution function (ecdf), as implemented in R. We then used the two-sample 

Kolmogorov-Smirnov test to compare the expression percentile distribution between variants 

of oncogenes and tumor suppressors. We also applied the linear regression model to evaluate 

the protein/phosphoprotein expression percentile difference between carriers of pathogenic 

or likely pathogenic variant and non-carriers in cancers where there are at least 3 carriers. 

The resulting P values were adjusted to FDR again using the standard Benjamini-Hochberg 

procedure.

To examine the possible location-based effect of truncations, we fitted a linear regression 

model using expression percentile as the dependent variable and a Boolean indicator to label 

whether or not the truncation is located at the last 50 base pair of the transcript, controlling 

for variant classification and truncation variant type.

RPPA analysis—TCGA level-3 normalized RPPA expression data of the tumor samples 

were downloaded from Firehose (2016/1/28 analysis archive). The expression percentile of 

individual genes in each cancer cohort was calculated using the empirical cumulative 

distribution function (ecdf), as implemented in R. We then applied the linear regression 

model to evaluate the protein/phosphoprotein expression percentile difference between 

carriers of pathogenic or likely pathogenic variant and non-carriers in cancers where there 

are at least 3 carriers. The resulting P values were adjusted to FDR again using the standard 

Benjamini-Hochberg procedure.

Association testing of single variants—We conducted association testing of 

pathogenic germline variants using a one-tailed Fisher's exact test where the alternative 

hypothesis assumes the tested variant is enriched in TCGA cases compared to non-TCGA 

cases in the ExAC data (release r0.3.1). To avoid potential false discovery due to population 

structures, we used the most powered cohort in ExAC, the Non-Finnish European that 

included 33,370 samples. For allele numbers (AN) and allele counts (AC), we used the 

adjusted counts, where only individuals with genotype quality (GQ) ≥ 20 and depth (DP) ≥ 

10 were included. Vcfanno (Pedersen et al., 2016) was used to annotate allele frequencies of 

the germline variants. TCGA allele counts were inferred through subtracting ExAC non-

TCGA allele counts from ExAC total allele counts. We conducted the single variant 

association analysis for all alleles.

Enrichment of variants overlapping somatic mutation and PCGP pathogenic 
variants—To test whether there is a significant overlap between pathogenic germline 

variants and (1) recurrent somatic mutation, and (2) PCGP pathogenic variants, we 

conducted a one-sided exact Poisson test where the alternative hypothesis is that the true 

event rate (overlapping rate) is higher than the background rate. The background event rate 

is defined as the number of (1) recurrent somatic mutation and (2) PCGP variants divided by 

the size of the exon (49,586,385 bp) that we conduct our analysis based on. The time base of 

the event is defined as the number of likely pathogenic or pathogenic variants we observed 

(n=852).

Enrichment of variants in PTM sites—To evaluate the enrichment of pathogenic 

variants in PTM sites, we conducted an empirical permutation-based enrichment test by 
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sampling protein substitutions from the 1,000 Genomes dataset as controls. We only focused 

on the subset of proteins with at least one PTM site. We then sampled substitutions equal to 

the number of observed pathogenic amino acid substitutions for 100,000 iterations. The 

median number of PTM-associated substitutions expected by chance alone was eight. We 

then used this estimate as the rate parameter to the Poisson distribution, deriving a p-value 

from the probability of observing an equal or greater number of PTM-associated 

substitutions to our observed number of unique PTM-associated substitutions among 

pathogenic cancer variants.

Age at onset association analysis—We used a linear regression model to identify 

associations between age at onset and germline variant carrier of predisposition genes. We 

then tested genes with greater than or equal to 3 pathogenic and likely pathogenic variants 

and 1% carriers in individual cancer cohorts. For both the ethnicity and age at onset 

association analyses, the resulting P values were again adjusted using the Benjamini-

Hochberg procedure.

Statistical analysis of activity of RET variants—Statistical testing of the western 

blotting data quantified using ImageJ was conducted using the R programming language. T-

test using pooled SD was applied to compare the normalized ratio of pMAPK/RET/GAPDH 

or pMAPK/GAPDH for cells carrying each of the mutant construct vs. wilt-type construct.

Data and Software Availability

Data Availability—Researchers who are authorized can apply for access to the data 

through the germline project hosted on the ISB cancer genome cloud (ISB-CGC). Detailed 

procedure can be found on the ISB-CGC website: http://isb-cancer-genomics-

cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-

Data.html. Resource for familiarizing with related cloud computational tools are 

documented in the github page: https://github.com/ding-lab/PanCanAtlasGermline. 

Intermediate files used in this study are listed here: https://docs.google.com/document/d/

1ymdfAnRR4o4-20bwHI3vPaRPRuoqtqc0pNUVYO2oiPc/edit?usp=sharing. All final 

results published in this study used the germline variant call data from release1.1. All de-

identified pathogenic or likely pathogenic variants and prioritized VUSs used in this study, 

along with their attributes, can be found in Table S2.

Code Availability—Analysis codes are available at github.com/ding-lab/

PanCanAtlasGermline. GenomeVIP Code for is available at github.com/ding-lab/

GenomeVIP. CharGer code is available at github.com/ding-lab/CharGer. Birdseed 

conversion code is available at github.com/ding-lab/birdseed2vcf.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Huang et al. Page 22

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html
http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html
http://isb-cancer-genomics-cloud.readthedocs.io/en/latest/sections/webapp/Gaining-Access-To-Contolled-Access-Data.html
https://github.com/ding-lab/PanCanAtlasGermline
https://docs.google.com/document/d/1ymdfAnRR4o4-20bwHI3vPaRPRuoqtqc0pNUVYO2oiPc/edit?usp=sharing
https://docs.google.com/document/d/1ymdfAnRR4o4-20bwHI3vPaRPRuoqtqc0pNUVYO2oiPc/edit?usp=sharing
https://github.com/ding-lab/PanCanAtlasGermline
https://github.com/ding-lab/PanCanAtlasGermline
https://github.com/ding-lab/GenomeVIP
https://github.com/ding-lab/GenomeVIP
https://github.com/ding-lab/CharGer
https://github.com/ding-lab/birdseed2vcf


Acknowledgments

The authors wish to acknowledge The Cancer Genome Atlas. This work was supported by the following grants: 
U54 HG003273, U54 HG003067, U54 HG003079, U24 CA143799, U24 CA143835, U24 CA143840, U24 
CA143843, U24 CA143845, U24 CA143848, U24 CA143858, U24 CA143866, U24 CA143867, U24 CA143882, 
U24 CA143883, U24 CA144025, U24 CA210969, U24 CA210988, U24 CA211006, R01 CA180006 and R01 
HG009711.

References

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using 
PolyPhen-2. Curr Protoc Hum Genet. 2013; Chapter 7(Unit 7):20.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev 
SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7:248–
249. [PubMed: 20354512] 

Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, Berg JS, Biswas S, 
Bowling KM, Conlin LK, et al. Performance of ACMG-AMP Variant-Interpretation Guidelines 
among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum 
Genet. 2016; 98:1067–1076. [PubMed: 27181684] 

Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, Niedermayr E, Puri A, Schiffman 
JD, Dite GS, Cipponi A, et al. Monogenic and polygenic determinants of sarcoma risk: an 
international genetic study. Lancet Oncol. 2016; 17:1261–1271. [PubMed: 27498913] 

Basu S, Pan W. Comparison of statistical tests for disease association with rare variants. Genet 
Epidemiol. 2011; 35:606–619. [PubMed: 21769936] 

Bodmer W, Tomlinson I. Rare genetic variants and the risk of cancer. Current Opinion in Genetics and 
Development. 2010:262–267. [PubMed: 20554195] 

Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, 
Li S, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer 
Discovery. 2013; 3:224–237. [PubMed: 23220880] 

Chatterjee R, Ramos E, Hoffman M, Vanwinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, 
Hruska K, et al. Traditional and targeted exome sequencing reveals common, rare and novel 
functional deleterious variants in RET-signaling complex in a cohort of living US patients with 
urinary tract malformations. Hum Genet. 2012

Chen K, Meric-Bernstam F, Zhao H, Zhang Q, Ezzeddine N, Tang LY, Qi Y, Mao Y, Chen T, Chong Z, 
et al. Clinical actionability enhanced through deep targeted sequencing of solid tumors. Clin Chem. 
2015; 61:544–553. [PubMed: 25626406] 

Cheng DT, Prasad M, Chekaluk Y, Benayed R, Sadowska J, Zehir A, Syed A, Wang YE, Somar J, Li 
Y, et al. Comprehensive detection of germline variants by MSK-IMPACT, a clinical diagnostic 
platform for solid tumor molecular oncology and concurrent cancer predisposition testing. BMC 
Med Genomics. 2017; 10:33. [PubMed: 28526081] 

Consortium T.U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017; 45:D158–
D169. [PubMed: 27899622] 

Dai W, Wang Q, Liu T, Swamy M, Fang Y, Xie S, Mahmood R, Yang YM, Xu M, Rao CV. Slippage of 
mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer 
Res. 2004; 64:440–445. [PubMed: 14744753] 

Fishbein L, Nathanson KL. Pheochromocytoma and paraganglioma: understanding the complexities of 
the genetic background. Cancer Genet. 2012; 205:1–11. [PubMed: 22429592] 

Fromer M, Purcell SM. Using XHMM Software to Detect Copy Number Variation in Whole-Exome 
Sequencing Data. Curr Protoc Hum Genet. 2014; 81(7):23 21–21. [PubMed: 24763994] 

Gabant G, Lorphelin A, Nozerand N, Marchetti C, Bellanger L, Dedieu A, Quemeneur E, Alpha-Bazin 
B. Autophosphorylated residues involved in the regulation of human chk2 in vitro. Journal of 
molecular biology. 2008; 380:489–503. [PubMed: 18538787] 

Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, DeYoung B, Buller RE. Inactivation of 
BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst. 2002; 94:1396–1406. [PubMed: 
12237285] 

Huang et al. Page 23

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: 
mutations, PTMs and recalibrations. Nucleic Acids Res. 2015; 43:D512–520. [PubMed: 
25514926] 

Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, La Thangue NB. Arginine 
methylation regulates the p53 response. Nat Cell Biol. 2008; 10:1431–1439. [PubMed: 19011621] 

Jimenez C, Dang GT, Schultz PN, El-Naggar A, Shapiro S, Barnes EA, Evans DB, Vassilopoulou-
Sellin R, Gagel RF, Cote GJ, et al. A novel point mutation of the RET protooncogene involving the 
second intracellular tyrosine kinase domain in a family with medullary thyroid carcinoma. J Clin 
Endocrinol Metab. 2004; 89:3521–3526. [PubMed: 15240641] 

Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, Kato M, Suzuki H, Takahashi M, 
Nakashima I. Identification of RET autophosphorylation sites by mass spectrometry. The Journal 
of biological chemistry. 2004; 279:14213–14224. [PubMed: 14711813] 

Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National 
Academy of Sciences of the United States of America. 1971; 68:820–823. [PubMed: 5279523] 

Knudson AG. Two genetic hits (more or less) to cancer. Nat Rev Cancer. 2001; 1:157–162. [PubMed: 
11905807] 

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, 
Wilson RK. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by 
exome sequencing. Genome Research. 2012; 22:568–576. [PubMed: 22300766] 

Koire A, Katsonis P, Lichtarge O. Repurposing Germline Exomes of the Cancer Genome Atlas 
Demands a Cautious Approach and Sample-Specific Variant Filtering. Pac Symp Biocomput. 
2016; 21:207–218. [PubMed: 26776187] 

Krassowski M, Paczkowska M, Cullion K, Huang T, Dzneladze I, Ouellette BFF, Yamada JT, Fradet-
Turcotte A, Reimand J. ActiveDriverDB: human disease mutations and genome variation in post-
translational modification sites of proteins. Nucleic Acids Res. 2017

Krassowski M, Paczkowska M, Cullion K, Huang T, Dzneladze I, Ouellette BFF, Yamada JT, Fradet-
Turcotte A, Reimand J. ActiveDriverDB: human disease mutations and genome variation in post-
translational modification sites of proteins. Nucleic Acids Res. 2018; 46:D901–D910. [PubMed: 
29126202] 

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein 
function using the SIFT algorithm. Nat Protoc. 2009; 4:1073–1081. [PubMed: 19561590] 

Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover 
J, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic acids 
research. 2015; 44:D862–868. [PubMed: 26582918] 

Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, 
Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. 
Nature. 2016; 536:285–291. [PubMed: 27535533] 

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, 
Hemminki K. Environmental and heritable factors in the causation of cancer--analyses of cohorts 
of twins from Sweden, Denmark, and Finland. The New England journal of medicine. 2000; 
343:78–85. [PubMed: 10891514] 

Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MD, Huang KL, Wyczalkowski MA, 
Jayasinghe R, Banerjee T, et al. Patterns and functional implications of rare germline variants 
across 12 cancer types. Nature communications. 2015a; 6:10086.

Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MDM, Huang KL, Wyczalkowski Ma, 
Jayasinghe R, Banerjee T, et al. Patterns and functional implications of rare germline variants 
across 12 cancer types. Nature communications. 2015b; 6:10086.

Mashl RJ, Scott AD, Huang KL, Wyczalkowski MA, Yoon CJ, Niu B, DeNardo E, Yellapantula VD, 
Handsaker RE, Chen K, et al. GenomeVIP: a cloud platform for genomic variant discovery and 
interpretation. Genome Res. 2017

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, 
Gabriel S, Daly M, et al. The genome analysis toolkit: A MapReduce framework for analyzing 
next-generation DNA sequencing data. Genome Research. 2010; 20:1297–1303. [PubMed: 
20644199] 

Huang et al. Page 24

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The 
Ensembl Variant Effect Predictor. Genome Biol. 2016; 17:122. [PubMed: 27268795] 

Morak M, Kasbauer S, Kerscher M, Laner A, Nissen AM, Benet-Pages A, Schackert HK, Keller G, 
Massdorf T, Holinski-Feder E. Loss of MSH2 and MSH6 due to heterozygous germline defects in 
MSH3 and MSH6. Fam Cancer. 2017

Niu B, Scott AD, Sengupta S, Bailey MH, Batra P, Ning J, Wyczalkowski MA, Liang WW, Zhang Q, 
McLellan MD, et al. Protein-structure-guided discovery of functional mutations across 19 cancer 
types. Nat Genet. 2016; 48:827–837. [PubMed: 27294619] 

Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K, Kerstein RA, Gutierrez S, Petersen 
AK, Bavle A, et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing 
for Children With Solid Tumors. JAMA Oncol. 2016

Patil M, Pabla N, Huang S, Dong Z. Nek1 phosphorylates Von Hippel-Lindau tumor suppressor to 
promote its proteasomal degradation and ciliary destabilization. Cell Cycle. 2013; 12:166–171. 
[PubMed: 23255108] 

Plaza-Menacho I, Barnouin K, Barry R, Borg A, Orme M, Chauhan R, Mouilleron S, Martinez-Torres 
RJ, Meier P, McDonald NQ. RET Functions as a Dual-Specificity Kinase that Requires Allosteric 
Inputs from Juxtamembrane Elements. Cell Rep. 2016; 17:3319–3332. [PubMed: 28009299] 

Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014; 505:302–308. 
[PubMed: 24429628] 

Reimand J, Wagih O, Bader GD. The mutational landscape of phosphorylation signaling in cancer. Sci 
Rep. 2013; 3:2651. [PubMed: 24089029] 

Reimand J, Wagih O, Bader GD. Evolutionary constraint and disease associations of post-translational 
modification sites in human genomes. PLoS Genet. 2015; 11:e1004919. [PubMed: 25611800] 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, 
et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus 
recommendation of the American College of Medical Genetics and Genomics and the Association 
for Molecular Pathology. Genetics in Medicine. 2015; 17:405–424. [PubMed: 25741868] 

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative 
genomics viewer. Nat Biotechnol. 2011; 29:24–26. [PubMed: 21221095] 

Ruderfer DM, Hamamsy T, Lek M, Karczewski KJ, Kavanagh D, Samocha KE, Exome Aggregation 
C. Daly MJ, MacArthur DG, Fromer M, et al. Patterns of genic intolerance of rare copy number 
variation in 59,898 human exomes. Nat Genet. 2016; 48:1107–1111. [PubMed: 27533299] 

Sahasrabudhe R, Lott P, Bohorquez M, Toal T, Estrada AP, Suarez JJ, Brea-Fernandez A, Cameselle-
Teijeiro J, Pinto C, Ramos I, et al. Germline Mutations in PALB2, BRCA1, and RAD51C, Which 
Regulate DNA Recombination Repair, in Patients With Gastric Cancer. Gastroenterology. 2017; 
152:983–986 e986. [PubMed: 28024868] 

Schmidt L, Junker K, Weirich G, Glenn G, Choyke P, Lubensky I, Zhuang Z, Jeffers M, Vande Woude 
G, Neumann H, et al. Two North American families with hereditary papillary renal carcinoma and 
identical novel mutations in the MET proto-oncogene. Cancer Research. 1998; 58:1719–1722. 
[PubMed: 9563489] 

Solomon S, Das S, Brand R, Whitcomb DC. Inherited pancreatic cancer syndromes. Cancer J. 2012; 
18:485–491. [PubMed: 23187834] 

Southey MC, Goldgar DE, Winqvist R, Pylkas K, Couch F, Tischkowitz M, Foulkes WD, Dennis J, 
Michailidou K, van Rensburg EJ, et al. PALB2 CHEK2 and ATM rare variants and cancer risk: 
data from COGS. J Med Genet. 2016

Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, Abraham RT. Functional 
interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes & 
development. 2000; 14:2989–3002. [PubMed: 11114888] 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz La, Kinzler KW. Cancer genome 
landscapes. Science (New York, NY). 2013; 339:1546–1558.

Wagih O, Reimand J, Bader GD. MIMP: predicting the impact of mutations on kinase-substrate 
phosphorylation. Nat Methods. 2015; 12:531–533. [PubMed: 25938373] 

Huang et al. Page 25

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: A pattern growth approach to detect break 
points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 
2009; 25:2865–2871. [PubMed: 19561018] 

Ye K, Wang J, Jayasinghe R, Lameijer EW, McMichael JF, Ning J, McLellan MD, Xie M, Cao S, 
Yellapantula V, et al. Systematic discovery of complex insertions and deletions in human cancers. 
Nature medicine. 2015:1–10. advance on. 

Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau 
DA, et al. Germline mutations in predisposition genes in pediatric cancer. New England Journal of 
Medicine. 2015; 373:2336–2346. [PubMed: 26580448] 

Zhou W, Chen T, Chong Z, Rohrdanz MA, Melott JM, Wakefield C, Zeng J, Weinstein JN, Meric-
Bernstam F, Mills GB, et al. TransVar: a multilevel variant annotator for precision genomics. Nat 
Methods. 2015; 12:1002–1003. [PubMed: 26513549] 

Secondary author list

Samantha J. Caesar-Johnson, John A. Demchok, Ina Felau, Melpomeni Kasapi, Martin L. 

Ferguson, Carolyn M. Hutter, Heidi J. Sofia, Roy Tarnuzzer, Zhining Wang, Liming Yang, 

Jean C. Zenklusen, Jiashan (Julia) Zhang, Sudha Chudamani, Jia Liu, Laxmi Lolla, Rashi 

Naresh, Todd Pihl, Qiang Sun, Yunhu Wan, Ye Wu, Juok Cho, Timothy DeFreitas, Scott 

Frazer, Nils Gehlenborg, Gad Getz, David I. Heiman, Jaegil Kim, Michael S. Lawrence, Pei 

Lin, Sam Meier, Michael S. Noble, Gordon Saksena, Doug Voet, Hailei Zhang, Brady 

Bernard, Nyasha Chambwe, Varsha Dhankani, Theo Knijnenburg, Roger Kramer, Kalle 

Leinonen, Yuexin Liu, Michael Miller, Sheila Reynolds, Ilya Shmulevich, Vesteinn 

Thorsson, Wei Zhang, Rehan Akbani, Bradley M. Broom, Apurva M. Hegde, Zhenlin Ju, 

Rupa S. Kanchi, Anil Korkut, Jun Li, Han Liang, Shiyun Ling, Wenbin Liu, Yiling Lu, 

Gordon B. Mills, Kwok-Shing Ng, Arvind Rao, Michael Ryan, Jing Wang, John N. 

Weinstein, Jiexin Zhang, Adam Abeshouse, Joshua Armenia, Debyani Chakravarty, Walid 

K. Chatila, Ino de Bruijn, Jianjiong Gao, Benjamin E. Gross, Zachary J. Heins, Ritika 

Kundra, Konnor La, Marc Ladanyi, Augustin Luna, Moriah G. Nissan, Angelica Ochoa, 

Sarah M. Phillips, Ed Reznik, Francisco Sanchez-Vega, Chris Sander, Nikolaus Schultz, 

Robert Sheridan, S. Onur Sumer, Yichao Sun, Barry S. Taylor, Jioajiao Wang, Hongxin 

Zhang, Pavana Anur, Myron Peto, Paul Spellman, Christopher Benz, Joshua M. Stuart, 

Christopher K. Wong, Christina Yau, D. Neil Hayes, Joel S. Parker, Matthew D. Wilkerson, 

Adrian Ally, Miruna Balasundaram, Reanne Bowlby, Denise Brooks, Rebecca Carlsen, Eric 

Chuah, Noreen Dhalla, Robert Holt, Steven J.M. Jones, Katayoon Kasaian, Darlene Lee, 

Yussanne Ma, Marco A. Marra, Michael Mayo, Richard A. Moore, Andrew J. Mungall, 

Karen Mungall, A. Gordon Robertson, Sara Sadeghi, Jacqueline E. Schein, Payal 

Sipahimalani, Angela Tam, Nina Thiessen, Kane Tse, Tina Wong, Ashton C. Berger, 

Rameen Beroukhim, Andrew D. Cherniack, Carrie Cibulskis, Stacey B. Gabriel, Galen F. 

Gao, Gavin Ha, Matthew Meyerson, Steven E. Schumacher, Juliann Shih, Melanie H. 

Kucherlapati, Raju S. Kucherlapati, Stephen Baylin, Leslie Cope, Ludmila Danilova, Moiz 

S. Bootwalla, Phillip H. Lai, Dennis T. Maglinte, David J. Van Den Berg, Daniel J. 

Weisenberger, J. Todd Auman, Saianand Balu, Tom Bodenheimer, Cheng Fan, Katherine A. 

Hoadley, Alan P. Hoyle, Stuart R. Jefferys, Corbin D. Jones, Shaowu Meng, Piotr A. 

Mieczkowski, Lisle E. Mose, Amy H. Perou, Charles M. Perou, Jeffrey Roach, Yan Shi, 

Janae V. Simons, Tara Skelly, Matthew G. Soloway, Donghui Tan, Umadevi Veluvolu, 

Huihui Fan, Toshinori Hinoue, Peter W. Laird, Hui Shen, Wanding Zhou, Michelle Bellair, 

Huang et al. Page 26

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kyle Chang, Kyle Covington, Chad J. Creighton, Huyen Dinh, HarshaVardhan 

Doddapaneni, Lawrence A. Donehower, Jennifer Drummond, Richard A. Gibbs, Robert 

Glenn, Walker Hale, Yi Han, Jianhong Hu, Viktoriya Korchina, Sandra Lee, Lora Lewis, 

Wei Li, Xiuping Liu, Margaret Morgan, Donna Morton, Donna Muzny, Jireh Santibanez, 

Margi Sheth, Eve Shinbrot, Linghua Wang, Min Wang, David A. Wheeler, Liu Xi, Fengmei 

Zhao, Julian Hess, Elizabeth L. Appelbaum, Matthew Bailey, Matthew G. Cordes, Li Ding, 

Catrina C. Fronick, Lucinda A. Fulton, Robert S. Fulton, Cyriac Kandoth, Elaine R. Mardis, 

Michael D. McLellan, Christopher A. Miller, Heather K. Schmidt, Richard K. Wilson, 

Daniel Crain, Erin Curley, Johanna Gardner, Kevin Lau, David Mallery, Scott Morris, 

Joseph Paulauskis, Robert Penny, Candace Shelton, Troy Shelton, Mark Sherman, Eric 

Thompson, Peggy Yena, Jay Bowen, Julie M. Gastier-Foster, Mark Gerken, Kristen M. 

Leraas, Tara M. Lichtenberg, Nilsa C. Ramirez, Lisa Wise, Erik Zmuda, Niall Corcoran, 

Tony Costello, Christopher Hovens, Andre L. Carvalho, Ana C. de Carvalho, José H. 

Fregnani, Adhemar Longatto-Filho, Rui M. Reis, Cristovam Scapulatempo-Neto, Henrique 

C.S. Silveira, Daniel O. Vidal, Andrew Burnette, Jennifer Eschbacher, Beth Hermes, Ardene 

Noss, Rosy Singh, Matthew L. Anderson, Patricia D. Castro, Michael Ittmann, David 

Huntsman, Bernard Kohl, Xuan Le, Richard Thorp, Chris Andry, Elizabeth R. Duffy, 

Vladimir Lyadov, Oxana Paklina, Galiya Setdikova, Alexey Shabunin, Mikhail Tavobilov, 

Christopher McPherson, Ronald Warnick, Ross Berkowitz, Daniel Cramer, Colleen 

Feltmate, Neil Horowitz, Adam Kibel, Michael Muto, Chandrajit P. Raut, Andrei Malykh, 

Jill S. Barnholtz-Sloan, Wendi Barrett, Karen Devine, Jordonna Fulop, Quinn T. Ostrom, 

Kristen Shimmel, Yingli Wolinsky, Andrew E. Sloan, Agostino De Rose, Felice Giuliante, 

Marc Goodman, Beth Y. Karlan, Curt H. Hagedorn, John Eckman, Jodi Harr, Jerome Myers, 

Kelinda Tucker, Leigh Anne Zach, Brenda Deyarmin, Hai Hu, Leonid Kvecher, Caroline 

Larson, Richard J. Mural, Stella Somiari, Ales Vicha, Tomas Zelinka, Joseph Bennett, Mary 

Iacocca, Brenda Rabeno, Patricia Swanson, Mathieu Latour, Louis Lacombe, Bernard Têtu, 

Alain Bergeron, Mary McGraw, Susan M. Staugaitis, John Chabot, Hanina Hibshoosh, 

Antonia Sepulveda, Tao Su, Timothy Wang, Olga Potapova, Olga Voronina, Laurence 

Desjardins, Odette Mariani, Sergio Roman-Roman, Xavier Sastre, Marc-Henri Stern, 

Feixiong Cheng, Sabina Signoretti, Andrew Berchuck, Darell Bigner, Eric Lipp, Jeffrey 

Marks, Shannon McCall, Roger McLendon, Angeles Secord, Alexis Sharp, Madhusmita 

Behera, Daniel J. Brat, Amy Chen, Keith Delman, Seth Force, Fadlo Khuri, Kelly 

Magliocca, Shishir Maithel, Jeffrey J. Olson, Taofeek Owonikoko, Alan Pickens, Suresh 

Ramalingam, Dong M. Shin, Gabriel Sica, Erwin G. Van Meir, Hongzheng Zhang, Wil 

Eijckenboom, Ad Gillis, Esther Korpershoek, Leendert Looijenga, Wolter Oosterhuis, Hans 

Stoop, Kim E. van Kessel, Ellen C. Zwarthoff, Chiara Calatozzolo, Lucia Cuppini, Stefania 

Cuzzubbo, Francesco DiMeco, Gaetano Finocchiaro, Luca Mattei, Alessandro Perin, Bianca 

Pollo, Chu Chen, John Houck, Pawadee Lohavanichbutr, Arndt Hartmann, Christine Stoehr, 

Robert Stoehr, Helge Taubert, Sven Wach, Bernd Wullich, Witold Kycler, Dawid Murawa, 

Maciej Wiznerowicz, Ki Chung, W. Jeffrey Edenfield, Julie Martin, Eric Baudin, Glenn 

Bubley, Raphael Bueno, Assunta De Rienzo, William G. Richards, Steven Kalkanis, Tom 

Mikkelsen, Houtan Noushmehr, Lisa Scarpace, Nicolas Girard, Marta Aymerich, Elias 

Campo, Eva Giné, Armando López Guillermo, Nguyen Van Bang, Phan Thi Hanh, Bui Duc 

Phu, Yufang Tang, Howard Colman, Kimberley Evason, Peter R. Dottino, John A. 

Martignetti, Hani Gabra, Hartmut Juhl, Teniola Akeredolu, Serghei Stepa, Dave Hoon, 

Huang et al. Page 27

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keunsoo Ahn, Koo Jeong Kang, Felix Beuschlein, Anne Breggia, Michael Birrer, Debra 

Bell, Mitesh Borad, Alan H. Bryce, Erik Castle, Vishal Chandan, John Cheville, John A. 

Copland, Michael Farnell, Thomas Flotte, Nasra Giama, Thai Ho, Michael Kendrick, Jean-

Pierre Kocher, Karla Kopp, Catherine Moser, David Nagorney, Daniel O'Brien, Brian Patrick 

O'Neill, Tushar Patel, Gloria Petersen, Florencia Que, Michael Rivera, Lewis Roberts, 

Robert Smallridge, Thomas Smyrk, Melissa Stanton, R. Houston Thompson, Michael 

Torbenson, Ju Dong Yang, Lizhi Zhang, Fadi Brimo, Jaffer A. Ajani, Ana Maria Angulo 

Gonzalez, Carmen Behrens, Jolanta Bondaruk, Russell Broaddus, Bogdan Czerniak, Bita 

Esmaeli, Junya Fujimoto, Jeffrey Gershenwald, Charles Guo, Alexander J. Lazar, 

Christopher Logothetis, Funda Meric-Bernstam, Cesar Moran, Lois Ramondetta, David 

Rice, Anil Sood, Pheroze Tamboli, Timothy Thompson, Patricia Troncoso, Anne Tsao, 

Ignacio Wistuba, Candace Carter, Lauren Haydu, Peter Hersey, Valerie Jakrot, Hojabr 

Kakavand, Richard Kefford, Kenneth Lee, Georgina Long, Graham Mann, Michael Quinn, 

Robyn Saw, Richard Scolyer, Kerwin Shannon, Andrew Spillane, Jonathan Stretch, Maria 

Synott, John Thompson, James Wilmott, Hikmat Al-Ahmadie, Timothy A. Chan, Ronald 

Ghossein, Anuradha Gopalan, Douglas A. Levine, Victor Reuter, Samuel Singer, Bhuvanesh 

Singh, Nguyen Viet Tien, Thomas Broudy, Cyrus Mirsaidi, Praveen Nair, Paul Drwiega, 

Judy Miller, Jennifer Smith, Howard Zaren, Joong-Won Park, Nguyen Phi Hung, Electron 

Kebebew, W. Marston Linehan, Adam R. Metwalli, Karel Pacak, Peter A. Pinto, Mark 

Schiffman, Laura S. Schmidt, Cathy D. Vocke, Nicolas Wentzensen, Robert Worrell, Hannah 

Yang, Marc Moncrieff, Chandra Goparaju, Jonathan Melamed, Harvey Pass, Natalia 

Botnariuc, Irina Caraman, Mircea Cernat, Inga Chemencedji, Adrian Clipca, Serghei Doruc, 

Ghenadie Gorincioi, Sergiu Mura, Maria Pirtac, Irina Stancul, Diana Tcaciuc, Monique 

Albert, Iakovina Alexopoulou, Angel Arnaout, John Bartlett, Jay Engel, Sebastien Gilbert, 

Jeremy Parfitt, Harman Sekhon, George Thomas, Doris M. Rassl, Robert C. Rintoul, Carlo 

Bifulco, Raina Tamakawa, Walter Urba, Nicholas Hayward, Henri Timmers, Anna 

Antenucci, Francesco Facciolo, Gianluca Grazi, Mirella Marino, Roberta Merola, Ronald de 

Krijger, Anne-Paule Gimenez-Roqueplo, Alain Piché, Simone Chevalier, Ginette 

McKercher, Kivanc Birsoy, Gene Barnett, Cathy Brewer, Carol Farver, Theresa Naska, 

Nathan A. Pennell, Daniel Raymond, Cathy Schilero, Kathy Smolenski, Felicia Williams, 

Carl Morrison, Jeffrey A. Borgia, Michael J. Liptay, Mark Pool, Christopher W. Seder, 

Kerstin Junker, Larsson Omberg, Mikhail Dinkin, George Manikhas, Domenico Alvaro, 

Maria Consiglia Bragazzi, Vincenzo Cardinale, Guido Carpino, Eugenio Gaudio, David 

Chesla, Sandra Cottingham, Michael Dubina, Fedor Moiseenko, Renumathy Dhanasekaran, 

Karl-Friedrich Becker, Klaus-Peter Janssen, Julia Slotta-Huspenina, Mohamed H. Abdel-

Rahman, Dina Aziz, Sue Bell, Colleen M. Cebulla, Amy Davis, Rebecca Duell, J. Bradley 

Elder, Joe Hilty, Bahavna Kumar, James Lang, Norman L. Lehman, Randy Mandt, Phuong 

Nguyen, Robert Pilarski, Karan Rai, Lynn Schoenfield, Kelly Senecal, Paul Wakely, Paul 

Hansen, Ronald Lechan, James Powers, Arthur Tischler, William E. Grizzle, Katherine C. 

Sexton, Alison Kastl, Joel Henderson, Sima Porten, Jens Waldmann, Martin Fassnacht, 

Sylvia L. Asa, Dirk Schadendorf, Marta Couce, Markus Graefen, Hartwig Huland, Guido 

Sauter, Thorsten Schlomm, Ronald Simon, Pierre Tennstedt, Oluwole Olabode, Mark 

Nelson, Oliver Bathe, Peter R. Carroll, June M. Chan, Philip Disaia, Pat Glenn, Robin K. 

Kelley, Charles N. Landen, Joanna Phillips, Michael Prados, Jeffry Simko, Karen Smith-

McCune, Scott VandenBerg, Kevin Roggin, Ashley Fehrenbach, Ady Kendler, Suzanne 

Huang et al. Page 28

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sifri, Ruth Steele, Antonio Jimeno, Francis Carey, Ian Forgie, Massimo Mannelli, Michael 

Carney, Brenda Hernandez, Benito Campos, Christel Herold-Mende, Christin Jungk, 

Andreas Unterberg, Andreas von Deimling, Aaron Bossler, Joseph Galbraith, Laura Jacobus, 

Michael Knudson, Tina Knutson, Deqin Ma, Mohammed Milhem, Rita Sigmund, Andrew 

K. Godwin, Rashna Madan, Howard G. Rosenthal, Clement Adebamowo, Sally N. 

Adebamowo, Alex Boussioutas, David Beer, Thomas Giordano, Anne-Marie Mes-Masson, 

Fred Saad, Therese Bocklage, Lisa Landrum, Robert Mannel, Kathleen Moore, Katherine 

Moxley, Russel Postier, Joan Walker, Rosemary Zuna, Michael Feldman, Federico 

Valdivieso, Rajiv Dhir, James Luketich, Edna M. Mora Pinero, Mario Quintero-Aguilo, 

Carlos Gilberto Carlotti, Jr., Jose Sebastião Dos Santos, Rafael Kemp, Ajith Sankarankuty, 

Daniela Tirapelli, James Catto, Kathy Agnew, Elizabeth Swisher, Jenette Creaney, Bruce 

Robinson, Carl Simon Shelley, Eryn M. Godwin, Sara Kendall, Cassaundra Shipman, Carol 

Bradford, Thomas Carey, Andrea Haddad, Jeffey Moyer, Lisa Peterson, Mark Prince, Laura 

Rozek, Gregory Wolf, Rayleen Bowman, Kwun M. Fong, Ian Yang, Robert Korst, W. 

Kimryn Rathmell, J. Leigh Fantacone-Campbell, Jeffrey A. Hooke, Albert J. Kovatich, Craig 

D. Shriver, John DiPersio, Bettina Drake, Ramaswamy Govindan, Sharon Heath, Timothy 

Ley, Brian Van Tine, Peter Westervelt, Mark A. Rubin, Jung Il Lee, Natália D. Aredes, and 

Armaz Mariamidze

Huang et al. Page 29

Cell. Author manuscript; available in PMC 2019 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

1. 871 predisposition variants/CNVs discovered in 8% of 10,389 cases of 33 

cancers

2. Pan-cancer approach identified shared variants and genes across cancers

3. 33 variants affecting activating domains of oncogenes showed high expression

4. 47 VUSs prioritized using cancer enrichment, LOH, expression and other 

evidence

A pan-cancer analysis identifies hundreds of predisposing germline variants
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Figure 1. Predisposition variant discovery in 10,389 adult cancers of the TCGA PanCanAtlas 
cohort
(A) A scalable variant calling and data sharing model using ISB Cancer Genome Cloud 

(ISB-CGC). (B) Number of germline variants at each step of discovery from more than 1.46 

billion total germline variants called from WES bam files to 1,393 prioritized, manual-

reviewed related to cancer predisposition. The 853 pathogenic or likely pathogenic variants 

are used in downstream analyses. (C) Attributes of the 10,389 cases of 33 cancer types 

included in the final analyses including TCGA abbreviation of the cancer type, gender ratio 

and age at onset. See also Figure S1 and S2, and Table S1.
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Figure 2. Distribution of pathogenic germline variants across genes and cancer types
(A) Percentage of TCGA cases carrying pathogenic and likely pathogenic variants in each of 

the 33 cancer types. (B) Count of pathogenic or likely pathogenic variants in tumor 

suppressors, oncogenes and other genes in each of the cancer type. (C) Carrier frequency of 

pathogenic variants in genes enriched in cancers. The numbers in each box (carrier 

frequency) indicates the percentage of carriers of pathogenic variants of each gene in the 

specified cancer cohort. The black outlines indicate the cancer type is significantly (FDR < 

0.05) enriched for pathogenic variants of that gene. The grey outlines indicate suggestive 

(FDR < 0.15) enrichment. (D) Counts of pathogenic and likely pathogenic variants in the 

oncogenes and tumor suppressors enriched in cancers. See also Figure S2 and S7, and Table 

S2, S3, and S7.
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Figure 3. Systematic identification of two-hit events in TCGA cancers
(A) Identification of loss of heterozygosity (LOH) in oncogenes and tumor suppressors 

through comparison of variant allele frequencies in tumor and normal samples. Each dot 

depicts one variant. The diagonal line denotes neutral selection of the germline variant 

where the normal and tumor variant allele frequencies (VAFs) are identical. (B) Somatic 

copy number changes detected for the tumors showing significant LOH in each gene. 

Significant, suggestive, and no evidence of LOH are shown in red, green and grey, 

respectively. (C) Counts of germline variants showing the various types of classified LOH in 

cancer predisposition genes, highlighting LOH due to deletion of the wild type alleles in 

tumor suppressors (shown in orange). (D) Candidate biallelic events of pathogenic or likely 

pathogenic variants coupled with somatic mutations on gene products of ATM, BRCA2, and 

MSH6. Germline variants are colored in red and somatic mutations are in blue. Coupled 

germline and somatic events observed in the same case are linked with grey lines. See also 

Figure S3 and Table S4.
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Figure 4. Germline variants associated with expression impacts
(A) Plot showing cancer types where the carrier of each gene's germline variant is associated 

with significantly higher or lower expression of the gene transcript. Each dot represents a 

gene-cancer association where the color depicts the cancer type and the shape shows 

significance. (B) Distribution of gene expression of pathogenic variant carriers. Each dot 

corresponds to the gene expression percentile in a case carrying germline variants relative to 

other cases of their corresponding cancer cohort. Variants in oncogenes associated with high 

expression are labeled. (C) Plot showing cancer types where the carrier of each gene's 

germline variant is associated with significantly higher or lower expression of the RPPA 

protein/phosphoprotein marker. Each dot represents a gene-cancer association where the 

color depicts the cancer type and the shape shows significance. (D) Distribution of protein/

phosphoprotein expression of pathogenic variant carriers. Each dot corresponds to the 

expression percentile of the RPPA marker in a case carrying germline variants relative to 

other cases of their corresponding cancer cohort. The genes shown in (B) and (D) are based 

on their significant enrichment of pathogenic variants. See also Figure S4 and Table S5.
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Figure 5. Rare germline copy number variations (CNVs)
(A) Copy Number Variations (CNVs) identified through SNP array data, where the CNV 

value is measured by the log2-transformed segment mean. (B) Copy Number Variations 

(CNVs) identified through whole-exome sequencing data using XHMM, where the CNV 

value is measured by the normalized read depth of the genomic region. (C) Characteristics 

of the 3,582 overlapping CNVs identified using both technologies, including fractions of 

samples carrying deletions/duplications and the number of genes affected by each type of 

CNVs. (D) CNVs identified in predisposition genes associated with specific cancer types, 

along with its CNV value, corresponding gene expression and technology used for detection. 

*The two pair of events discovered by both the SNP array and WES data in the same CNV 

carrier. (E) Expression quantile associated with each CNV events in their respective cancer 

types. Each dot represents one CNV events shown in (D) colored by the cancer type. See 

also Figure S5.
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Figure 6. Independent evidence supporting functionality of pathogenic variants
(A) Pathogenic germline variants showing significant enrichment in TCGA cases compared 

to non-TCGA cases in the ExAC Non-Finnish European cohort. (B) Variants with co-

localizing recurrent somatic mutations (N ≥ 3 in the TCGA PanCanAtlas MC3 dataset) or 

pathogenic germline variants in 1,120 pediatric cancers. (C) Site-specific interaction 

network of predisposition proteins shows how germline substitutions occur in or near 

experimentally determined binding sites of upstream kinases and other enzymes. See also 

Figure S6 and Table S6.
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Figure 7. Germline variants in the kinase domain of the receptor tyrosine kinase RET
(A) Pathogenic or likely pathogenic germline variants along the RET protein observed in the 

TCGA cohort. (B) Co-clustering of somatic mutations and germline variants in the kinase 

domain of RET and MET shown on 3D protein structures (PDB structures: 21VT, 1R0P, and 

1XPD from left to right). Germline variants are colored in red; somatic mutations are 

colored in blue; amino acid residues affected by both type of mutations are colored in 

salmon. (C) Experimental assessment of the signaling functionality of RET germline alleles. 

In the top bar plot, ligand-independent RET activity was measured through pMAPK/RET/

GAPDH normalized to the ratio observed in wild-type. In the bottom barplot, experimental 

assessment of RET germline alleles measured through pMAPK/GAPDH normalized to the 

ratio observed in wild-type. See also Table S6.
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