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ABSTRACT	

Introduction.	Pain	is	a	complex	and	debilitating	experience.	When	pain	lasts	over	three	months	it	becomes	

chronic,	outlasts	normal	tissue	healing	time	and	doesn’t	serve	to	protective	function.	Patients	with	chronic	

pain	no	longer	exhibit	peripheral	tissue	damage	but	continue	to	feel	pain,	suggesting	an	abnormal	functioning	

of	the	somatosensory	system.	This	process	may	be	due	to	central	sensitization	(CS),	neuroplastic	changes	that	

occur	in	pain	related	central	networks	and	boost	pain	perception	independent	of	peripheral	neural	activation.	

Non-invasive	 brain	 stimulation	 (NIBS)	 seems	 to	 reduce	 chronic	 pain	 by	 directly	 altering	 brain	 activity.	

Trasncranial	direct	current	stimulation	(tDCS),	one	of	the	most	used	NIBS	techniques,	seems	to	be	efficacy	in	

reducing	chronic	pain,	when	used	alone	or	in	combination	with	other	treatments.	Aim	of	this	PhD	project	is	to	

investigate	efficacy	of	brain	stimulation	techniques	on	chronic	pain,	specifically	due	to	temporomandibular	

disorders	(TMDs)	and	 low	back	pain	(LBP).	Furthermore,	we	would	 identify	biomarkers	related	to	chronic	

pain,	using	electroencephalography	and	pain	threshold	assessment	in	people	with	chronic	orofacial	pain.		

Methods.	In	the	first	research	project	we	proposed	tDCS	treatment	in	people	with	chronic	pain	due	to	TMDs.	

Stimulation	was	delivered	for	five	consecutive	days	over	primary	motor	cortex	for	20	minutes	a	day	with	the	

intensity	of	2mA.	Subjects	were	evaluated	before	and	after	treatment	and	at	one-month	follow-up	for	pain	

perception	 and	psychological	 symptoms.	 In	 the	 second	 research	project	 tDCS	was	 combined	with	 group	

exercise	treatment	and	proposed	to	people	with	chronic	LBP.	Stimulation	parameters	and	assessment	points	

were	the	same.	In	the	third	research	project	we	evaluated	people	with	orofacial	pain	due	to	TMDs	using	EEG	

recording	and	pain	threshold	assessment	looking	for	CS	signs.	

Results.	Our	findings	support	the	use	of	tDCS	on	patients	with	chronic	pain	due	to	TMDs.	The	majority	of	the	

sample	had	good	results	for	pain	intensity	and	depressive	symptoms.	One	case,	who	had	severe	degenerative	

disease,	did	not	report	any	beneficial	effects	after	tDCS.	Also	in	subjects	with	chronic	LBP	tDCS	seems	to	be	

effective	in	ameliorating	pain	and	psychological	wellbeing,	but	the	effects	were	evident	only	at	one-month	

follow-up	when	 combined	with	 behavioural	 intervention.	 Reduced	pain	 threshold	 and	 increased	 gamma	

activity	in	frontal	and	central	brain	areas	were	recorded	in	people	with	TMDs	as	chronic	pain’s	biomarkers.	

Discussion	and	Conclusion.	NIBS	can	be	used	to	reverse	maladaptive	changes	that	occur	in	chronic	pain.	In	

people	with	chronic	pain	due	to	TMDs	or	LBP,	tDCS	seems	to	be	efficacy	on	symptoms	intensity	and	pain-

related	 quality	 of	 life.	 tDCS	 efficacy	may	be	 improved	 combining	 its	 top-down	effects	with	 a	 bottom-up	

approach.	Brain	modifications	due	to	chronic	pain	and	presence	of	CS	mechanisms	can	be	assessed	using	

EEG.	Abnormal	EEG	activity	in	central	and	frontal	areas	during	pain	threshold	assessment	may	be	recorded	as	

CS	signs	in	people	with	chronic	pain.	Interpretation	of	our	findings	needs	to	be	confirmed	by	further	studies	

on	people	with	chronic	pain.	
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INTRODUCTION	

Pain:	Definitions,	Epidemiology	and	Models	

Pain	is	a	complex	and	debilitating	experience	that	involves	people	and	clinicians	that	have	to	deal	with	it	for	

assessment	process	and	treatment	delivering.	

The	term	pain	can	refer	to	acute	or	chronic	pain.	The	first	is	a	symptom	of	present	or	potential	tissue	damage,	

with	defined	onset	and	duration.	Acute	pain	works	to	protect	the	human	body	from	tissue	damage	and	can	

be	adequately	treated	using	conventional	therapy	(pharmacological	or	not).	Chronic	pain	occurs	also	when	

tissue	damage	has	already	been	solved	and	it	doesn’t	serve	to	protective	function.	Pain	is	considered	chronic	

when	outlasts	normal	tissue	healing	time;	impairment	is	not	proportional	to	injury	and	occurs	in	absence	of	

identifiable	tissue	damage.	Normally	clinicians	classified	pain	as	chronic	when	it	lasts	over	three	months	(1);	

it’s	difficult	to	treat	and	interdisciplinary	and	bio-psycho-social	approach	to	it	is	recommended.		

The	impact	of	pain	in	everyday	life	may	go	beyond	the	physical	sensation	that	occurs	following	lesion	to	body	

structures	and	can	affect	cognitive	and	emotional	field	of	a	person.	For	this	reason,	the	impact	of	pain	on	

activity	and	participation	should	be	evaluated	when	pain	assessment	is	performed.	Epidemiology	of	pain	is	a	

continuous	challenge	for	clinician	due	to	subjectivity	of	symptoms	and	absence	of	consensus	about	diagnoses	

and	definitions.	Pain	conditions	need	to	be	studied	from	its	onset	at	an	early	age.	Pain	study	in	children	and	

adolescents	gain	great	interest	in	recent	years	because	it	seems	to	be	predictive	of	pain	development	in	adult	

age,	 in	 addition	 to	 contribute	 to	 physical	 inactivity	 and	 other	 negative	 health	 behaviours	 (2–4).	 Most	

represented	pain	at	a	young	age	seems	to	be	low	back	pain,	headache,	and	abdominal	pain	(5).	In	adulthood	

the	most	represented	pain	is	spinal	pain	and	pain	due	to	other	musculoskeletal	conditions,	fibromyalgia	and	

chronic	widespread	pain.	Chronic	pain	affects	20%	of	people	worldwide	and	the	most	common	sites	reported	

as	sources	of	pain	are	the	low	back	(30%),	hip	(25%),	neck	and	shoulder	(25%)	and	knee	(24%)	(6).	Distress,	

demoralization	 and	 functional	 impairment	 often	 accompany	 chronic	 pain,	 making	 it	 a	 major	 source	 of	

suffering	and	economic	burden.	Early	life	factors	as	premature	birth,	very	low	birth	weight	and	hospitalisation	

for	a	motor	vehicle	accident	at	young	ages	seem	to	be	linked	to	chronic	pain	in	adulthood	(7).	Advanced	age,	

womankind,	 socio-economic	 deprivation	 and	 negative	 health	 behaviours	 are	 associated	 with	 higher	

prevalence	of	pain	(8).		

Pain	is	defined	by	the	International	Association	for	the	Study	of	Pain	(IASP)	as	an	unpleasant	sensory	and	

emotional	 experience	 associated	 with	 actual	 or	 potential	 tissue	 damage	 or	 described	 in	 terms	 of	 such	

damage	(9).	This	definition	not	only	coupled	the	sensory	and	emotional	dimensions	of	the	experience,	but	

also	recognised	the	association	between	tissue	injury	and	pain	(10).	However,	pain	can	be	the	result	of	tissue	

damage	 that	 involves	 nociceptors,	 but	 it	 can	 occur	 also	 without	 any	 lesion	 to	 body	 structures.	 Pain	 is	
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damage	 that	 involves	 nociceptors,	 but	 it	 can	 occur	 also	 without	 any	 lesion	 to	 body	 structures.	 Pain	 is	

subjective	and	multidimensional,	 involving	not	only	 the	body	unpleasant	perception	of	pain	but	 also	 the	

emotional	experience	linked	to	it.	

Many	changes	occurred	in	definitions	and	interpretation	of	pain	in	the	past	years.	Initially	pain	was	explained	

as	 the	 only	 results	 of	 cutaneous	 stimulation	 of	 pain	 receptors	 (“specificity	 theory”).	 When	 this	 “nerve	

endings”	were	stimulated	they	produced	pain	sensation.	However,	this	theory	lapses	when	we	thought,	for	

example,	to	pain	arising	from	a	phantom	limb,	also	without	peripheral	stimulation	of	pain	receptors.	The	

“pattern	theory”	integrates	previous	concepts	with	the	idea	of	central	pathways	that	transmit	pain	sensation	

to	 supraspinal	 structures.	 In	 1965,	 Melzack	 and	 Wall	 developed	 the	 gate	 control	 theory	 of	 pain	 that	

summarized	concepts	from	specificity	and	pattern	theories	(11)	(Figure	1).	Skin	stimulation	were	transmitted	

to	three	specific	system	located	in	the	spinal	cord:	the	cells	of	the	substantia	gelatinosa	in	the	dorsal	horn,	the	

dorsal-column	fibers	that	project	to	the	brain	and	the	T	cells,	the	first	central	transmission	in	the	dorsal	horn.	

Input	 from	 large-diameter	 and	 small-diameter	 fibers	 converges	 on	 the	 substantia	 gelatinosa	 that	 plays	

inhibitory	effect	on	the	T	cell	and	on	its	function	on	neural	mechanism	activation	like	motor,	sensory	and	

autonomic	response	to	pain.	Melzack	and	Wall	proposed	that	pain	sensation	was	determined	by	interaction	

between	these	three	structures.	When	the	system	is	balanced	there	is	no	pain	sensation.	Input	from	small-

diameters	fibers	 inhibits	the	substantia	gelatinosa	neurons	and	the	T	cell	“opens	the	gate”	to	the	pain	to	

supraspinal	 structures.	 An	 increase	 in	 excitatory	 input	 from	 large-diameter	 afference	 stimulates	 the	

substantia	gelatinosa	and	results	in	“closing	the	gate”	to	pain	perception.	This	theory	has	been	criticised	for	a	

long	time	in	the	following	years,	but	it	was	the	first	attempt	to	recognize	the	role	of	Central	Nervous	System	

(CNS)	in	pain	phenomenon	and	opened	the	way	to	multidimensional	treatment	of	pain,	not	only	restricted	to	

peripheral	approach.		

	

	

Figure	1	The	Gate	control	model,	adapted	from	Melzack	and	Wall,	1965	(11)		

Abbreviations:	SG,	substantia	gelatinosa;	T,	trasmission	cell	
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Three	years	later,	Melzack	and	Casey	proposed	a	three-dimensional	model	of	pain	that	comprised	sensory	

discriminative	aspects	of	pain,	motivational	affective	and	cognitive	evaluative	(12).	The	first	component	is	the	

sensory	 component	 and	 is	 influenced	 primarily	 by	 the	 rapidly	 conducting	 spinal	 systems.	 The	 second	 is	

subserved	 by	 activities	 of	 the	 reticular	 and	 limbic	 structures	 that	 are	 influenced	 primarily	 by	 the	 slow	

conducting	 spinal	 systems.	 The	 latter,	 that	 provide	 cognitive	 evaluation	 of	 the	 input	 in	 terms	 of	 past	

experiences,	 is	controlled	by	neocortical	or	higher	CNS	processes.	All	 the	three	components	 interact	with	

each	other	to	provide	the	complex	experience	of	pain.		

In	1991,	starting	from	the	gate	control	theory	of	pain,	Melzack	proposed	the	neuromatrix	theory	(13)	(Figure	

2).	The	neuromatrix	is	distributed	throughout	many	areas	of	the	brain	and	comprises	a	widespread	network	

of	 neurons	 that	 generates	 patterns	 and	 processes	 information	 that	 flows	 through	 it.	 The	 neuromatrix	 is	

initially	genetically	determined,	then	adapted	on	sensory	inputs	and	personal	attitude	and	experiences.	Areas	

involved	 in	 pain	 experience	 are	 the	 thalamus,	 the	 cortex	 and	 the	 limbic	 system;	 this	 complex	 network	

produces	output,	 the	neurosignature,	 that	 projects	 to	other	 brain	 areas	 for	 awareness	of	 pain	or	motor	

output.	 The	 neurosignature	 is	 a	 fluid	 and	 plastic	 system	 modulated	 by	 sensory	 inputs,	 cognitive	 and	

emotional	aspects	of	each	other,	and	it	produces	customised	output	to	every	noxious	stimulus.	The	theory	of	

neuromatrix	gives	to	the	brain	cortex	a	primary	role	in	awareness	of	painful	sensation	but	considers	also	the	

nociceptor	activation	following	peripheral	stimulus,	the	role	of	spinal	and	subcortical	structures,	in	addition	to	

many	other	neuronal	and	non-neuronal	systems	that	influence	pain	experience.	All	these	structures	play	a	

key	role	in	sensory,	cognitive	and	affective	aspects	of	pain.	

	

	

Figure	2	The	Neuromatrix	theory,	adapted	from	Melzack	1991	(13)	
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In	the	following	years	the	neuromatrix	theory	has	been	questioned	by	pain	researchers.	One	of	the	most	

criticized	aspects	of	this	theory	was	the	attribution	of	pain	sensation	and	features	to	specific	brain	areas,	while	

pain	experience	seems	to	emerge	from	the	flow	and	integration	between	these	areas	and	their	activation	in	

concert	(14).	In	recent	years	attention	shifts	from	brain	areas	involved	to	cognitive	and	attentional	processes	

that	characterized	pain	experience.	Saliency	of	pain	like	a	way	to	survive	to	immediate	threat	emphasises	the	

role	of	attention	in	the	study	of	all	processes	characterizing	nociception.	The	whole	brain-wide	network,	the	

connectome,	include	also	pain-	and	attention-related	circuits,	and	the	connection	between	them	is	dynamic	

and	spontaneously	fluctuating	in	time.	For	this	reason,	pain	starts	to	be	considered	a	dynamic	experience	

encoded	 by	 a	 “pain	 connectome”,	 a	 network	 communication	 that	 represents	 integration	 of	 cognitive,	

affective	 and	 sensorimotor	 aspects	 of	 pain	 (15).	 Functional	 magnetic	 resonance	 imaging	 (fMRI)	 studies	

identified	 three	 key	 brain	 systems,	 and	 their	 dynamic	 interactions,	 involved	 in	 spontaneous	 attentional	

fluctuation	toward	and	away	from	pain	(16).	One	system	is	the	salience	network	(SN):	activity	in	this	region	is	

recorded	during	attention	to	pain.	A	second	system,	the	default	mode	network	(DMN)	 is	activated	when	

subject	drives	its	attention	away	from	the	present	sensory	world.	A	third	system,	the	antinociceptive	system	

(AS),	 is	 characterized	 by	modulatory	 descending	 pathways	 and	 is	 associated	 with	 pain	modulation.	 The	

complex	interaction	between	the	three	brain	systems	underlies	new	theories	on	nociception	and	attentional-

sustained	pain	(Figure	3).		

	

	

	

	

	

	

Figure	3	The	dynamic	pain	connectome	by	Kucyi	et	al.	2015	(15)		

	

	

	

Abbreviations:	 aINS,	 anterior	 insula;	 amPFC,	 anterior	 medial	 prefrontal	 cortex;	 dlPFC,	 dorsolateral	

prefrontal	 cortex;	 dmPFC,	 dorsomedial	 prefrontal	 cortex;	 mPFC,	 medial	 prefrontal	 cortex;	 MTL,	 medial	

temporal	lobe;	PAG,	periaqueductal	gray;	PCC,	posterior	cingulate	cortex;	RVM,	rostroventral	medulla;	TPJ,	

temporoparietal	junction	
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Physiology	of	pain	

Peripheral	Nociceptive	Pathways	

Pain	 is	widely	mediated	by	activity	of	peripheral	nervous	system	that	participates	 in	pain	perception	and	

transmission	to	the	CNS.	After	an	acute	injury	a	cascade	of	events	occurs	in	the	site	of	lesion	and	in	the	whole	

body.	Pain	signal	is	mediated	by	nociceptors.	All	pain	messages	are	driven	to	the	CNS	by	thinly	myelinated	Aδ	

fibers	and	unmyelinated	C	fibers.	A	nociceptor	is	a	sensory	receptor	that	responds	to	noxious	stimulation:	its	

role	is	to	convert	mechanical,	thermal	and	chemical	energy	into	electrical	sign	and	carry	this	information	to	

the	spinal	cord.	Cutaneous	nociceptors	are	characterized	by	free	nerve	endings	of	Aδ	fibers	and	C	nociceptors	

that	respond	to	mechanical	and	thermal	stimuli,	polymodal	nociceptors	for	multiple	noxious	stimuli.	Muscle	

and	joint	nociceptors	are	characterized	by	free	nerve	endings	activated	by	capsular	joint	stretching	or	muscle	

pressure	 and	 ischemia.	 Visceral	 nociceptors	 are	 polymodal	 and	 they	 are	 triggered	 by	 distention.	 Some	

nociceptors	 are	 normally	 silent	 and	 are	 triggered	 by	 inflammatory	 mediators	 activated	 following	 tissue	

damage.		Activity	of	nociceptors	is	sensitive	to	peripheral	stimulation	and	can	change	in	response	to	noxious	

stimulation	on	the	basis	of	the	state	of	the	all	the	somatosensory	system.		

	

Central	Nociceptive	Pathways	

The	processing	of	nociceptive	information	to	the	CNS	is	mediated	by	three	systems	of	neurons	involved	in	

transmission	 of	 painful	 sensation	 through	 primary	 afferent	 fiber,	 spinothalamic	 tract	 (STT)	 and	 thalamo-

cortical	neuron.	At	spinal	level	sensory	fibers	lead	noxious	information	to	the	most	superficial	layers	of	spinal	

cord,	 laminae	 I,	 II	and	V.	 In	 the	dorsal	horn	of	 the	spinal	 cord,	neurons	 that	project	 to	 the	 thalamus	are	

classified	as	high-threshold,	wide	dynamic	range	(WDR)	and	low-threshold	neurons.	Nociceptive	information	

activates	 high-threshold	 and	 WDR	 neurons.	 Many	 neurotransmitters	 and	 receptors	 are	 involved	 in	

nociceptive	transmission	at	spinal	level,	like	glutamate,	neuropeptides,	adenosine	and	γ-Aminobutyric	Acid	

(GABA).	An	increase	of	neurotransmitters	in	the	dorsal	horn	contributes	to	hyperalgesia	and	sensitization	to	

pain.		

From	the	spinal	cord,	nociceptive	information	is	driven	to	supraspinal	structures	through	several	ascending	

pathways.	The	STT	is	the	main	pathway	for	transmission	of	noxious	stimulus	to	the	thalamus	and	to	higher	

centres	 involved	 in	pain	processing.	Other	 ascending	pathways	 are	 involved	 in	 visceral	 pain	 transmission	

(dorsal	column),	integration	for	descending	inhibition	or	autonomic	response	to	pain	(spino-mesencephalic	

and	spino-reticular	pathway).		

The	 STT	 projects	 directly	 to	 neurons	 located	 in	 the	 ventral	 posterolateral	 (VPL)	 nucleus	 and	medial	 and	

posterior	nuclei	of	thalamus.	The	VPL	projects	to	primary	and	secondary	somatosensory	cortex	for	sensory-
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discriminative	component	of	pain;	projections	from	medial	and	posterior	thalamic	nuclei	are	more	diffuse	

and	participate	to	motivational-affective	component	of	pain.		

	

Descending	modulation	of	pain	

Supraspinal	 structures	 can	 participate	 in	 descending	modulation	 through	 facilitation	 or	 inhibition	 of	 pain	

transmission.	 Periaqueductal	 grey	 (PAG),	 pontine	 nuclei,	 amygdala	 and	 anterior	 cingulate	 cortex	 (ACC)	

facilitatory	activity	is	mediated	by	rostroventromedial	medulla	(RVM).	The	RVM	projects	to	the	spinal	cord	for	

modulation	 of	 dorsal	 horn	 neuron	 activity	 and	 nociceptive	 information.	 Amygdala	 and	 its	 connection	 to	

prefrontal	cortex	play	an	important	role	in	emotional	aspects	of	pain;	altered	or	sensitized	connection	was	

found	in	pain	patients	(17).	ACC	is	involved	in	nociceptive	processing	and	avoidance	of	noxious	stimuli	(18).	

Decreased	grey	matter	volume	was	found	in	people	with	chronic	pain.		

Inhibition	of	pain	 transmission	 is	mediated	by	PAG	and	nucleus	 raphe	magnus	 (NRM)	 through	 the	RVM.	

Activation	of	these	nuclei	produces	analgesia	and	inhibits	spinal	neurons	that	respond	to	noxious	stimulation.	

Many	others	cortical	and	non-cortical	areas	relay	directly	or	 indirectly	to	the	RVM	that	produces	the	final	

pathway	 to	 the	spinal	cord	 for	pain	suppression.	Different	 types	of	neurons	with	 facilitatory	or	 inhibitory	

effect	 located	 in	 the	 RVM	 explain	 their	 role	 in	 descending	 nociceptive	 modulation.	 Actors	 involved	 in	

descending	pain	modulation,	with	different	role	in	pain	facilitation	or	inhibition,	are	opioid	receptors	located	

specifically	on	peripheral	terminals	of	primary	afferent	fibers,	serotonin	in	PAG	and	RVM	and	norepinephrine	

terminals	in	the	spinal	cord.	

	

Sensitization	to	pain	

Sensitization	is	defined	by	the	IASP	as	an	increased	responsiveness	of	nociceptive	neurons	to	their	normal	

input	or	recruitment	of	a	response	to	normally	sub-threshold	inputs	(19).	Sensitization	can	occur	at	peripheral	

or	central	level.	

Peripheral	sensitization	is	characterized	by	increased	responsiveness	and	reduced	threshold	of	nociceptors	to	

stimulation	of	their	receptive	fields	(19).	This	phenomenon	occurs	in	response	to	chemical	mediators	released	

by	nociceptors	and	other	inflammatory	cells	at	the	site	of	tissue	lesion	or	inflammation.	Furthermore,	silent	

nociceptors	 can	 be	 activated	 by	 peripheral	 inflammation	 and	 begin	 to	 respond	 to	 stimulation,	 not	 only	

noxious	but	also	innocuous.	All	these	messages	are	driven	to	the	spinal	cord	and	the	CNS	as	painful.	Pain	and	

sensitization	 can	 be	 produced	 by	 primary	 afferent	 fibers	 itself	 or	 by	 non-neuronal	 activators	 and	

inflammatory	mediators.	Neurogenic	 inflammation	 is	mediated	by	the	release	of	 the	neuropeptides	 from	

nociceptors	 (20).	Neuropeptides	act	 in	 the	development	and	maintenance	of	peripheral	 inflammation,	as	



	 7	

glutamate	and	other	molecular	mediators	(nitric	oxide,	eotaxin).	Inflammatory	cells	participate	in	nociceptors	

sensitization	 through	 release	 of	 substances	 that	 can	 directly	 activate	 or	 sensitize	 primary	 afferent	 fibers.	

Between	them	we	can	found	cytokines	released	by	macrophages,	nerve	growth	factor	produced	by	muscles	

and	during	tissue	injury,	and	adenosine	triphosphate,	released	from	muscle	fibers	during	exercise	and	cause	

of	enhanced	nociceptive	activity.	

Central	sensitization	(CS)	is	defined	as	an	increased	responsiveness	of	nociceptive	neurons	in	the	CNS	to	their	

normal	or	sub-threshold	afferent	input	and	it	was	first	described	by	Woolf	in	1983	on	animal	models	(21).	

What	Woolf	was	explaining	was	a	disorder	recorded	in	spinal	mechanism	responsible	of	increased	ongoing	

peripheral	nociceptive	input.	The	phenomenon	described	by	Woolf	differed	from	“windup”,	a	progressively	

increasing	output	during	the	course	of	a	train	of	 identical	stimuli;	CS	was	characterized	by	facilitation	that	

appears	after	the	end	of	the	conditioning	stimuli	and	that	remain	autonomous	for	some	time	once	triggered,	

or	required	sub-threshold	nociceptive	input	to	be	activated	or	sustained.	Furthermore,	in	CS	condition,	the	

nociceptive	input	amplified	response	of	CNS	also	to	other	non-painful	stimuli.	This	was	the	first	attempt	to	

manage	the	concept	that	pain	we	experience	might	not	necessarily	reflect	the	presence,	or	the	entity,	of	a	

peripheral	noxious	stimulus.	Pain	perception	is	instead	a	particular	function	of	the	CNS	and	of	its	state.		After	

CS	discovery,	became	more	clear	that	a	noxious	stimulus	while	sufficient	was	not	necessary	to	produce	pain	

(22).	Sub-threshold	inputs	can	activate	pain	pathways	and	pain	sensation	can	be	evoked	by	innocuous	stimuli.	

In	this	case	pain	cannot	be	termed	as	nociceptive,	but	rather	it	reflects	hypersensitivity	of	CNS	that	produces	

pain	sensation.	After	many	years	of	discussions	about	uncertainty	of	pain	without	any	causal	mechanism,	CS	

was	recognized	as	an	amplification	of	neural	signalling	within	the	CNS	that	elicits	pain	hypersensitivity	(23).		

Starting	 from	pain	perception,	sensitization	occurs	when	high-threshold	and	WDR	neurons	become	more	

sensitive	to	noxious	and	innocuous	stimuli	(allodynia),	they	develop	or	increase	their	spontaneous	activity,	

reduce	their	activation	threshold	to	peripheral	stimuli,	increase	their	response	to	supra-threshold	stimulation	

and	 enlarge	 their	 receptive	 fields.	 At	 spinal	 level	 central	 sensitization	 is	 driven	 by	 neurotransmitters	 and	

receptors	activities.	An	increase	of	glutamate	in	the	dorsal	horn	contributes	to	hyperalgesia	and	maintenance	

of	painful	sensation.	

Proceeding	 in	 perception	 of	 pain	 stimulation	 towards	 supra-spinal	 level,	 the	 STT,	 the	 most	 important	

ascending	pathway	that	drives	noxious	information,	can	become	more	sensitive	to	painful	and	non-painful	

stimulation	and	its	responsiveness	enhanced	after	inflammation.	STT	originates	primarily	by	laminae	I	and	V;	

sensitization	of	WDR	cells	located	in	lamina	V	may	be	responsible	of	pain	perception	also	with	non-painful	

stimulation.	Furthermore,	increased	sensitiveness	in	the	spinal	cord	seems	to	be	mediated	by	nitric	oxide	that	

contribute	to	development	of	hyperalgesia	(24).	
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At	supra-spinal	level	sensitization	involves	neurons	in	thalamic	and	cortical	areas	that	become	more	sensitive	

to	spinal	afferences	after	inflammatory	or	neuropathic	processes.	In	sensitization,	central	processing	of	pain	

activates	brain	areas	not	normally	involved	in	pain	perception	or	that	are	silent	when	painful	stimulation	is	

removed	

Many	studies	on	healthy	volunteers	were	made	to	explain	mechanisms	responsible	for	CS	(22).	However,	all	

the	attempts	made	to	sensitize	the	CNS	through	different	ways	of	activating	nociceptors	may	not	reflect	over	

activation	of	a	sensitized	NS,	rather	than	pain	hypersensitivity	mediated	by	peripheral	sensitization.	For	this	

reason,	pain	hypersensitivity	by	itself	is	not	enough	to	make	diagnosis	of	central	sensitization.	Many	other	

features	of	patient	whose	pain	can	be	associated	to	CS	need	to	be	identified,	like	spread	of	pain	sensitivity	in	

areas	not	involved	by	pathology,	after-sensations,	enhances	temporal	summation,	and	the	maintenance	of	

pain	by	low	frequency	stimuli	that	normally	do	not	evoke	any	pain.	All	these	signs	should	be	associated	to	

objective	 measures	 of	 central	 activity	 related	 to	 pain	 stimulation,	 like	 fMRI	 parameters	 or	

electroencephalography	(EEG)	activity	(25).	

CS	seems	to	play	a	role	in	a	multitude	of	painful	and	other	medical	conditions,	in	particular	in	chronic	pain,	

representing	a	 third	 core	mechanism	 for	pain,	beyond	 the	well-known	nociceptive	and	neuropathic	pain	

mechanisms	(26).	Pathologies	where	CS	found	a	primary	role	 in	their	development	and	maintenance	are	

fibromyalgia	 (27,28),	 irritable	 bowel	 syndrome	 (29,30),	 temporomandibular	 disorder	 (31–33),	 low	back	

pain	(34,35),	migraine	(36),	chronic	pelvic	pain	(37),	chronic	whiplash	(38),	rheumatoid	arthritis	(39).		

	

Pain	Assessment	

Due	to	 its	 subjective	nature,	pain	cannot	be	directly	observed	 in	patients	or	measured	through	objective	

evaluation,	and	pain	assessment	 relies	 largely	on	the	use	of	self-report.	Assessing	pain	 requires	valid	and	

reliable	measurement,	as	well	as	an	ability	to	communicate	through	the	use	of	language	and	movements.	

Another	challenge	in	pain	assessment	is	the	definition	of	the	time	frame	when	pain	need	to	be	evaluated,	due	

to	variable	nature	of	pain	experience.	Most	of	the	scales	used	for	pain	assessment	consider	the	current	pain	

or	 pain	 over	 the	 past	 one/two	 weeks	 but	 longer	 time	 frames	 may	 be	 necessary	 for	 pain	 assessment,	

introducing	 memory	 biases	 that	 can	 influence	 the	 evaluation.	 In	 addition,	 pain	 is	 a	 multidimensional	

experience	and	all	its	components	should	be	assessed	separately.			

Most	of	tools	used	for	pain	assessment	focus	their	attention	on	pain	intensity,	rated	over	a	relatively	brief	

period	of	time.	The	most	commonly	used	methods	to	quantify	pain	intensity	in	clinical	practice	are	Verbal	

Rating	 Scale	 (VRS),	 Numerical	 Rating	 Scale	 (NRS)	 and	 Visual	 Analog	 Scale	 (VAS)	 (40–42).	 Self-reported	

questionnaires	are	used	to	evaluate	quality	of	pain,	its	multidimensional	aspects	and	its	impact	on	quality	of	
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life.	One	example	of	them	is	the	McGill	Pain	Questionnaire	(MPQ),	used	to	investigate	sensory-discriminative,	

affective-motivational,	 and	cognitive-evaluative	dimension	of	pain	 (43).	Particular	assessment	 instruments	

were	developed	for	the	evaluation	of	pain	due	to	specific	medical	conditions,	like	the	Low	Back	Pain	Rating	

Scale	(LBPRS)	(44)	or	the	Neck	Disability	Index	(NDI)	(45)	for	musculoskeletal	conditions	or	linked	to	specific	

health	 status	 like	 the	King's	 Parkinson's	 disease	pain	 scale	 (KPDPS)	 (46)	or	 Pain	Assessment	 in	Advanced	

Dementia	 Scale	 (PAINAD)	 (47).	 Shifting	 the	 focus	 on	 pain	 research,	 Dworkin	 et	 al.	with	 the	 Initiative	 on	

Methods,	 Measurement,	 and	 Pain	 Assessment	 in	 Clinical	 Trials	 (IMMPACT)	 reviewed	 measures	 of	 pain	

intensity,	 physical	 functioning,	 emotional	 functioning,	 and	 other	 pain-relevant	 outcome	domains,	making	

recommendations	for	the	selection	of	outcome	measures	for	clinical	trials	of	pain	treatments	(48).	Different	

assessment	tools	were	proposed	on	the	basis	of	mechanism	responsible	of	pain	production.	One	of	them	is	

the	PainDETECT	questionnaire	(PD-Q),	a	self-report	questionnaire	to	identify	neuropathic	components	of	low	

back	pain	 (49),	 or	 the	Neuropathic	Pain	Questionnaire	 (NPQ)	 to	 identify	 the	presence	of	 components	of	

neuropathic	pain	(50).	The	use	of	standardized	noxious	stimulation	under	controlled	conditions	constitutes	an	

important	strategy	to	perform	an	objective	evaluation	of	pain.	The	use	of	quantitative	sensory	testing	(QST)	is	

proposed	 in	pain	assessment	and	 is	 characterized	by	pain	 induced	 through	several	modalities	of	noxious	

stimulation	 (thermal,	 mechanical,	 chemical	 etc.);	 typical	 parameters	 that	 are	 measured	 include	 pain	

threshold,	pain	tolerance,	and	ratings	of	supra-threshold	noxious	stimuli	using	NRS,	VAS,	or	VRS	(51).	

The	disparity	between	chronic	pain	manifestation	and	the	severity	of	tissue	damage	make	the	assessment	of	

this	 condition	 particularly	 challenging.	 Chronic	 pain	 assessment	 can	 be	 performed	 through	 self-reported	

questionnaires;	 QST	 are	 particularly	 helpful	 in	 chronic	 pain	 assessment	 and	 to	 identify	 mechanisms	

underlying	it.	However,	the	un-proportionality	recorded	in	people	suffering	from	chronic	pain	may	be	due	to	

sensitization	 processes	 that	 characterize	 people	with	 pain	 lasting	 beyond	 the	 tissue	 healing	 time.	Many	

misconceptions	 arise	 from	 differentiation	 of	 sensitization	 and	 neuropathic	 mechanism.	 As	 sensitisation	

phenomena	 are	 readily	 recognised	 across	 neuropathic	 pain	 conditions,	 the	 CS	 features	 have	 often	 been	

interchanged	with	the	neuropathic	pain	terminology	and	caused	some	confusion	(52).	Neuropathic	pain	is	

defined	 as	 pain	 caused	 by	 a	 lesion	 or	 disease	 of	 the	 somatosensory	 nervous	 system	 (53);	 pain	with	 CS	

features	instead,	does	not	require	lesion	or	disease	of	CNS	and	can	underlie	many	chronic	pain	conditions.	

Starting	 from	 IASP	 definition	 of	 CS,	 the	 term	 “central”	may	 refer	 to	 several	manifestations	 of	 pain,	 like	

ipsilateral	 sensitisation	 associated	 with	 the	 local	 nociceptive	 focus,	 segmental	 and	 extrasegmental	

sensitisation	contralateral	to	the	local	nociceptive	focus,	extraterritorial	spreading	sensitisation	around	local	

nociceptive	focus,	or	generalised	widespread	sensitisation.	In	practice,	the	assessment	of	clinical	history	(e.g.	

intensity,	 character/modality,	 spatial	 and	 temporal	 characteristics,	 spontaneous/provoked,	 and	 possible	
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exacerbating	factors	of	the	pain),	bedside	sensory	testing	(hypo-	or	hyper-phenomena,	windup	like	pain	and	

after-sensation),	 and	mapping	 of	 areas	 with	 sensory	 abnormalities	 can	 be	 used	 to	 identify	 sensitization	

phenomena.	The	above-mentioned	QST	can	be	used	 in	more	 research-based	environments	 to	 study	 the	

nociceptive	excitability	of	the	nervous	system,	testing	the	excitability	of	different	pain	pathways,	providing	

information	 about	 pain	 transduction,	 transmission	 and	 perception	 under	 normal	 and	 pathophysiological	

conditions	(54).		

Assessing	 sensitization	 is	 important	 to	distinguish	between	peripheral	 and	 central	mechanism.	 	 Recently,	

topographical	pain	sensitivity	mapping	techniques	have	been	developed	to	assess	pain	threshold	of	a	defined	

body	area	(52).	The	topographical	mapping	technique	permits	to	identify	areas	characterized	by	changed	

pain	 sensitivity.	 Peripheral	 sensitization	 can	 be	 addressed	 when	 a	minimum	 of	 two	 locations	 from	 two	

different	segmental	levels	show	differences	when	compared	with	normative	data	provided	from	a	pain-free	

population.	If	CS	is	present,	all	threshold	or	pain	ratings,	assessed	locally	and	distantly	to	injured	tissue,	will	be	

affected	and	relevant	at	the	comparison	with	pain-free	normative	data.	Furthermore,	CS	is	most	pronounced	

in	pain	conditions	with	a	neuropathic	component	(22,55).		

Experimental	tools	have	been	developed	to	test	the	presence	of	CS.	QST	permit	to	identify	the	presence	of	

widespread	 sensitization	 in	 CS,	 comparing	 patients’	 assessment	with	 pain-free	 normative	 data.	 A	 clinical	

feature	 of	 sensitised	 subject	 is	 the	 presence	 of	 temporal	 summation,	 a	 progressive	 increase	 in	 neuronal	

output	during	the	course	of	a	train	of	identical	afferent	nociceptive	stimuli.	Pain	in	these	patients	lasts	over	

nociceptive	generator	removal.	Subject	with	CS	frequently	present	also	spatial	summation	phenomenon,	an	

increase	 in	pain	 intensity	when	the	size	of	 the	stimulated	area	 is	expanded.	Descending	pain	modulation	

system	 is	 generally	 affected	 in	people	with	CS	 and	may	 contribute	 to	development	 and	maintenance	of	

symptoms.	The	assessment	of	the	descending	pathways	is	named	conditioning	pain	modulation	(CPM)	(56–

59).	When	 pain	 patients	 have	 impaired	 CPM,	 it’s	 difficult	 to	 establish	 if	 the	 inhibition	 is	 reduced	 or	 the	

facilitation	 is	 increased.	All	 this	 features	of	CS	 can	be	easily	 identify	 in	patients	with	 chronic	pain	due	 to	

temporomandibular	disorders,	low	back	pain,	myofascial	pain,	fibromyalgia,	tension-type	headache,	irritable	

bowel	syndrome,	pelvic	pain	(52).	

New	 insights	on	pain	 assessment	 come	 from	brain	 imaging.	 	 Brain	 imaging	 technologies,	 including	 fMRI,	

positron	 emission	 tomography	 (PET),	 EEG	 and	 magnetoencephalography	 (MEG),	 have	 the	 potential	 to	

provide	objective	measurements	of	patterns	of	brain	activity	that	underlie	pain	experience	(25).	During	brain	

imaging	assessment	problems	arise	because	nociceptive	stimuli	trigger	a	great	variety	of	cognitive,	emotional,	

autonomic	and	motor	mechanisms	that	are	not	specific	to	pain,	but,	due	to	multifactorial	dimension	of	pain	

experience,	are	part	of	it.	Most	of	the	features	of	brain	activity	recorded	during	pain	are	not	specific	to	it	and	
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make	inferences	about	personal	experience	of	pain	is	difficult.	Generally,	functional	brain	imaging	can	be	used	

to	measure	three	different	types	of	activity	relevant	to	chronic	pain:	evoked	activity,	task-free	resting	state	

brain	activity	and	activity	related	to	particular	attribute	of	ongoing	clinical	pain	(25).	During	pain	stimulation,	

brain	responses	can	be	recorded	to	differentiate	between	patients	with	chronic	pain	and	healthy	individuals,	

or	between	responses	elicited	by	stimuli	applied	to	affected	and	unaffected	areas	of	the	same	patient	(60–

63).	Brain	activity	in	chronic	pain	can	be	out	of	sync	or	completely	disconnected	from	the	timing	and	duration	

of	the	applied	stimulus	(64–67).	Resting-state	brain	activity	involves	the	acquisition	of	brain	response	in	the	

absence	of	any	stimulus	or	task.	During	this	type	of	assessment	can	be	measured	brain	connectivity	related	to	

spontaneous	 processes,	 included	 those	 involved	 in	 ongoing	 pain	 (15).	 However,	 in	 absence	 of	 defined	

chronic	pain	patterns,	it’s	difficult	to	establish	if	a	particular	resting-state	connectivity	is	related	to	pain	itself	or	

thoughts	or	other	spontaneous	processes.	Finally,	brain	activity	related	to	ongoing	pain	can	be	recorded	to	

assess	brain	areas	and	networks	related	to	emotional,	cognitive	and	motivational	processes	of	pain	(15,68).		

Imaging	of	pain-related	processes	in	patients	is	challenging	due	to	variability	in	imaging	within	and	between	

patients,	 specificity	of	 the	 imaging	 findings,	 the	possibility	of	 reverse	 inference	and	various	 technical	 and	

statistical	issues	(25).	Defined	set	of	brain	areas	responding	to	nociceptive	stimulation	has	been	identified	but	

these	findings	are	subjected	to	personal	variability,	influenced	by	sensitive,	cognitive	and	emotional	processes	

linked	 to	pain	and,	 for	 this	 reason,	variable	across	 time,	people	and	context	 (69,70).	 Furthermore,	brain	

imaging	linked	to	pain	lack	of	specificity.	No	brain	areas	or	networks	have	been	specifically	and	exclusively	

linked	 to	 chronic	 pain	 yet.	 The	 complex	 network	 recorded	 in	 people	 suffering	 from	 chronic	 pain	 is	 also	

present	in	depression,	anxiety	and	other	mental	disorders	frequently	associated	to	long-lasting	pain.	Last	but	

not	least	the	reverse	inference	problem	must	be	take	into	account.	Reverse	inference	means	the	inference	of	

a	particular	mental	state	(for	example,	the	perception	of	pain)	from	a	given	pattern	of	brain	activation	(25).	

Accurate	assessment	of	whether	a	reverse	inference	is	true	requires	not	only	assessment	of	how	often	the	

pattern	of	brain	activity	occurs	when	pain	is	experienced,	but	also	how	often	the	pattern	is	present	when	pain	

is	not	experienced.		

On	the	basis	of	these	considerations,	even	though	recordings	from	different	brain	areas	can	be	associated	to	

chronic	pain,	it’s	not	possible	to	say	with	any	degree	of	certainty	that	a	person	does	or	does	not	have	chronic	

pain	based	on	brain	imaging	(25).	

	

Central	sensitization	in	chronic	low	back	pain	

Chronic	low	back	pain	(CLBP)	is	one	of	the	pathology	we	investigated	in	our	project.	CLBP	seems	to	present	

typical	 features	 of	 CS.	 Studies	 on	 animal	models	 shown	 activation	 of	 glial	 cells	 and	 release	 of	 cytokines	
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comparable	 to	 those	 observed	 in	 other	 neuropathic	 pain	 models	 (71).	 QST	 measurements	 have	 found	

localised	or	generalised	hyperalgesia	in	patients	with	CLBP,	in	particular	pressure	pain	thresholds,	frequently	

impaired	in	CS	(72–74).	Another	positive	finding	of	CS	in	CLBP	patients	is	temporal	summation	of	nociceptive	

stimuli.	Temporal	summation	during	QST	has	been	significantly	associated	with	pain	severity	and	disability	

(75).	Several	studies	provided	evidence	about	impaired	descending	modulation	in	CLBP,	supporting	the	idea	

of	CS	mechanism	(75–77).	Furthermore,	it	 is	demonstrated	that	continued	painful	stimulation	may	results	

into	cortical	changes	and	growing	evidence	supports	changes	in	the	brain	structure,	brain	function,	and	brain	

chemistry	in	CLBP	patients	(78–82).	fMRI	studies	revealed	that	people	with	CLBP	have	functional	connectivity	

reorganisation	 in	 several	 brain	 regions:	 increased	 activation	 in	 the	 medial	 prefrontal	 cortex	 (22,83–86),	

cingulate	 cortex	 (84,85,87),	 amygdala	 (84,85),	 and	 insula	 (87,88),	 and	 a	disrupted	default	mode	network	

connectivity	(89–92).	Studies	that	explored	the	brain	responses	to	noxious	stimuli	in	people	with	CLBP	found	

increased	 activation	 in	 brain	 regions	 involved	 in	 somatosensory-discriminative,	 affective,	 and	 cognitive	

processing	of	pain,	including	the	primary/secondary	somatosensory	cortex,	anterior	and	posterior	cingulate,	

insula,	prefrontal	cortices,	and	the	thalamus	(93,94).	

	

Central	sensitization	in	temporomandibular	disorders	

Chronic	 pain	 due	 to	 temporomandibular	 disorder	 (TMD)	 is	 investigated	 across	 this	 project.	 TMDs	 are	

frequently	associated	with	other	pathologies	where	CS	has	been	widely	documented,	 like	myofascial	pain	

syndrome,	 tension-type	 headache	 and	migraine,	 fibromyalgia,	 irritable	 bowel	 syndrome,	 chronic	 fatigue	

syndrome	and	multiple	chemical	sensitivity	(95–97).	As	in	other	chronic	pain	pathologies,	altered	CPM	was	

found	also	in	TMDs	and,	in	particular,	in	PAG	functioning	(98–100).	Brain	imaging	studies	revealed	consistent	

functional	and	structural	changes	in	the	thalamus	and	the	primary	somatosensory	cortex	of	subjects	with	

chronic	pain	due	to	TMDs,	in	addition	to	neuroplastic	modifications	in	the	prefrontal	cortex	and	basal	ganglia,	

supporting	the	role	of	cognitive	involvement	in	chronic	orofacial	pain	(101).	In	TMDs,	like	other	chronic	pain	

pathologies,	CS	starts	from	a	peripheral	 injury	or	dysfunction.	In	this	case,	temporomandibular	joint	(TMJ)	

dysfunction	due	to	muscular	or	articular	impairment	or	dental	malocclusion	can	be	considered	the	peripheral	

triggers	 (102,103).	Once	established,	 the	CS	process	becomes	 independent	 from	 injury	or	damage	at	 the	

peripheral	tissue	level	and	maintains	pain	despite	healing	or	disappearance	of	the	original	damage	(104).		

Indirect	evidence	of	the	presence	of	CS	in	TMD	subjects	is	given	by	the	effectiveness	of	centrally	acting	drugs	

in	 several	 studies	 where	 the	 use	 of	 benzodiazepines	 (105,106),	 tricyclic	 antidepressants	 (106,107),	 beta	

blockers	(108),	gabapentinoids	(109,110),	and	melatonin	(111,112)	seems	to	reduce	pain	and	other	related	

symptoms	(sleep	disorders	and	affective-emotional	disorders).	Recently,	a	systematic	review	on	CS	in	TMDs	
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revealed	 increased	 pressure	 pain	 sensitivity	 in	 patients	 with	 TMDs	 when	 compared	 with	 asymptomatic	

subjects,	 which	 is	 suggestive	 of	 sensitization	 of	 peripheral	 and	 CNS	 (32).	 Signs	 of	 TS	 and	 widespread	

mechanical	hyperalgesia	were	found	in	these	patients,	proving	the	existence	of	a	process	of	CS	(104).		

	

Central	Sensitization	treatment	

Treatment	of	chronic	pain	with	CS	components	represents	a	continuous	challenge	for	clinicians.	Chronic	pain	

usually	 starts	 from	a	peripheral	nociceptive	 input	 that	 should	be	 the	 first	 target	of	 the	 treatment.	Many	

approaches	can	be	used	 to	eliminate	peripheral	nociceptive	 input,	according	 to	 the	nature	of	 the	 trigger	

(bottom-up	 approach).	 Pharmacological	 treatments	 like	 non-steroidal	 anti-inflammatory	 drugs	 have	

peripheral	effects	and	can	be	the	first	attempt	to	reduce	nociceptive	input	to	the	somatosensory	system.	

Physiotherapy	or	 cognitive	behavioural	 treatments	 can	be	proposed	when	 the	primary	nociceptive	 input	

arises	from	the	musculoskeletal	system.	Surgery	procedures	can	be	an	alternative	in	more	serious	conditions	

like	 osteoarthritis,	 where	 nociceptive	 pain	 starts	 from	 structural	 joint	 damage	 (113).	 However,	 limited	

evidence	supports	treatment	strategies	that	eliminate	peripheral	nociceptive	input	in	patients	with	chronic	

pain	due	to	CS	(114–118).	Hence,	the	focus	of	the	treatment	of	chronic	pain	should	be	targeted	at	the	brain	if	

CS	is	considered	the	dominant	feature	underlying	the	pain	(top-down	approach).	

Pharmacological	 options	 can	 be	 considered	 for	 predominant	 CS	 pain.	 Centrally	 acting	 drugs	 such	 as	

antidepressants	can	be	considered	 for	 the	treatment	of	CS	 in	patients	having	chronic	pain	 (119),	but	not	

opioids	 as	 their	 effects	 are	 small	 in	 size	 and	 long-term	 use	 results	 in	 opioid-induced	 hyperalgesia	 and	

consequently	 aggravation	 of	 CS,	 as	 well	 as	 problems	 associated	 with	 dependence	 (120,121).	 Preferred	

pharmacologic	 treatment	 includes	 tricyclic	 compounds,	 serotonin-norepinephrine	 reuptake	 inhibitors,	and	

α2δ	ligands	(122).	All	these	approaches	target	key	mechanisms	that	are	often	dysfunctional	in	patients	having	

chronic	pain	and	CS,	 like	dysfunctional	endogenous	analgesia,	 increased	activity	 in	descending	nociceptive	

facilitation	 and	 neuro-inflammation.	 Unfortunately,	 observed	 effects	 of	 centrally	 acting	 drugs	 in	 patients	

having	 chronic	 pain	 and	 CS	 are	 often	 limited,	 and	 the	 prevalence	 of	 side-effects	 is	 high	 (121,123).	 The	

uncertainty	about	efficacy	of	pharmacological	treatments	should	be	due	to	the	high	variability	of	mechanisms	

underlying	CS:	this	phenomenon	is	complex	and	comprises	several	pathological	processes	and	each	of	the	

tested	drugs	targets	one	or	two	of	those	mechanisms	from	a	purely	biomedical	viewpoint.	A	multimodal	and	

complex	 biopsychological	 approach	 should	 be	 recommended.	 Exercise	 therapy	 is	 often	 a	 crucial	 part	 of	

evidence-based	guidelines	for	chronic	pain	disorders	(124–126).	Exercise	therapy	has	the	capacity	to	activate	

brain-orchestrated	endogenous	analgesia	in	patients	with	chronic	pain	(127).	In	healthy	people	and	patients	

with	 chronic	 pain	 (CLBP	 (128,129),	 shoulder	myalgia	 (130),	 rheumatoid	 arthritis	 (131)),	 exercise	 activates	



	 14	

powerful	 top-down	pain	 inhibitory	action,	 typically	 referred	 to	as	exercise-induced	endogenous	analgesia	

(132).	However,	many	studies	on	patients	with	CS	pain,	including	chronic	whiplash	associated	disorders	(125),	

chronic	 fatigue	 syndrome	 and	 fibromyalgia	 (124,130),	 describe	 inability	 of	 sensitized	 subjects	 to	 activate	

endogenous	analgesia	following	exercise	(127).	Looking	at	a	multidimensional	approach	to	CS,	combination	of	

exercise	therapy	and	modern	pain	neuroscience	education	should	be	the	right	way	to	trigger	mechanisms	

involved	in	CS.	Several	studies	shown	that	pain	neuroscience	education	combined	with	cognition-targeted	

time-contingent	exercise	therapy	resulted	in	marked	improvements	in	self-reported	symptoms	of	CS	as	well	

as	psychophysiological	evidence	of	decreased	CS	in	patients	with	chronic	spinal	pain	(119).	Pain	neuroscience	

education	is	therapeutic	on	its	own,	with	level	A	evidence	supporting	its	use	for	changing	pain	beliefs	and	

improving	health	status	in	patients	with	CS	pain	(e.g.,	fibromyalgia,	chronic	fatigue	syndrome,	CLBP)	(133).	

Detailed	pain	neuroscience	education	is	required	to	reconceptualise	pain	and	to	convince	the	patient	that	

hypersensitivity	of	the	CNS	rather	than	local	tissue	damage	may	be	the	cause	of	their	presenting	symptoms.	

Therapeutic	pain	neuroscience	education	can	change	inappropriate	pain	beliefs	and	cognitions,	such	as	pain	

catastrophizing,	anxiety,	hypervigilance	and	kinesiophobia,	that	contribute	to	sensitization	of	the	dorsal	horn	

spinal	cord	neurons	(through	inhibition	of	descending	tracks	in	the	CNS)	(134–137).		

To	 address	 the	 cognitive-emotional	 aspects	 of	 chronic	 pain,	 interventions	 such	 as	 cognitive	 behavioural	

therapy	 target	maladaptive	 pain	 cognitions	 (138).	 Cognitive	 behavioural	 strategies	 increase	 the	 ability	 of	

subject	to	cope	with	their	pain.	This	approach	aims	to	increase	self-control	over	the	cognitive	and	affective	

responses	to	pain,	deactivating	brain-orchestrated	top-down	pain	facilitatory	pathways	(139).		

In	 addition	 to	 more	 cognitive	 approaches,	 rehabilitation	 provides	 opportunities	 for	 treating	 CS.	 Manual	

therapy,	originally	aimed	at	exerting	peripheral	effects,	seems	to	produce	central	analgesia	through	activation	

of	descending	anti-nociceptive	pathways	(140–143).	However,	the	short-term	nature	of	the	central	analgesic	

effects	 of	 manual	 therapy	 limits	 is	 clinical	 utility	 as	 a	 treatment	 strategy	 for	 desensitizing	 the	 CNS.	

Transcutaneous	 electric	 nerve	 stimulation	 (TENS)	 is	 frequently	 used	 in	 patients	 with	 chronic	 pain.	 TENS	

targets	mechanisms	known	to	be	involved	in	central	sensitization,	activating	large	diameter	afferent	fibers,	

which	in	turn	activate	descending	nociceptive	inhibitory	mechanisms	through	the	ventrolateral	PAG	and	the	

rostral	ventromedial	medulla	(144,145).		

For	several	years	non-invasive	brain	stimulation	(NIBS)	techniques	are	getting	growing	interest	for	chronic	

pain	treatment.	NIBS	aims	to	induce	an	electrical	stimulation	of	the	brain	in	an	attempt	to	reduce	chronic	pain	

by	directly	altering	brain	activity.	Between	 them,	 the	more	used	 in	 chronic	pain	 treatment	are	 repetitive	

transcranial	 magnetic	 stimulation	 (rTMS)	 and	 transcranial	 direct	 current	 stimulation	 (tDCS)	 (146).	 rTMS	

involves	 stimulation	of	 the	cerebral	 cortex	by	a	 stimulating	coil	 applied	 to	 the	scalp.	Electric	 currents	are	
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induced	 in	 the	 neurons	 directly	 using	 rapidly	 changing	magnetic	 fields	 (147).	 Trains	 of	 these	 stimuli	 are	

applied	to	the	target	region	of	the	cortex	to	induce	alterations	in	brain	activity	both	locally	and	in	remote	

brain	 regions	 (148).	 tDCS	 involves	 the	 safe	 and	painless	 application	 of	 low-intensity	 (commonly	 ≤	 2	mA)	

electrical	current	 to	 the	cerebral	cortex	 (147,149,150).	 tDCS	has	been	developed	as	a	clinical	 tool	 for	 the	

modulation	of	brain	activity	and	uses	relatively	large	electrodes	that	are	applied	to	the	scalp	over	the	targeted	

brain	area	to	deliver	a	weak	constant	current	(151).	Both	tDCS	and	rTMS	have	been	shown	to	modulate	brain	

activity	specific	to	the	site	of	application	and	the	stimulation	parameters.	The	observed	alterations	in	cortical	

excitability	 following	 rTMS	and	 tDCS	 that	 last	beyond	 the	 time	of	 stimulation	are	 the	 result	of	 long-term	

synaptic	changes	(151).	NIBS	can	be	used	to	trigger	many	different	brain	areas	and	to	modulate	their	role	on	

sensory,	motivational	 or	 cognitive	 components	 of	 pain	 experience.	However,	 a	 recent	 systematic	 review	

found	lack	of	high-quality	evidence	to	support	or	refute	the	effectiveness	of	NIBS	techniques	for	chronic	pain	

treatment	(146).		

	



	 16	

Aim	of	the	study	

The	aim	of	this	PhD	project	is	to	identify	features	of	pain	in	subjects	with	chronic	pain	and	to	test	efficacy	of	

NIBS	in	treatment	of	this	pathological	condition.	

In	particular	we	would	like	to	identify	biological	marker	related	to	pain	in	people	with	chronic	orofacial	pain	

due	to	TMDs.	We	would	also	propose	treatment	using	transcranial	direct	current	stimulation	to	reduce	pain	

related	to	TMDs	and	CLBP.	
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Abstract
Objective: To test the efficacy of transcranial direct current stimulation (tDCS) in addition to group 
exercise on non-specific chronic low back pain.
Design: Double-blinded randomized control trial.
Subjects: Patients with non-specific chronic low back pain.
Methods: A total of 35 subjects were recruited and allocated to real- or sham-tDCS followed by a group 
exercise protocol. Each patient underwent five sessions of brain stimulation followed by 10 sessions of 
group exercise. Subjects were evaluated before and after tDCS, after group exercise and one month after 
the combined treatment. Outcome measures were Visual Analog Scale for pain intensity, Roland Morris 
Disability Questionnaire, EuroQuol-5 Dimension and Patient Health Questionnaire-9.
Results: Significant between-group difference in pain intensity (–27.7 ± 30.4 mm in real-tDCS group compared 
to –2.2 ± 30.1 mm in sham-tDCS group) and Patient Health Questionnaire-9 (–4.9 ± 4.2 in real-tDCS group 
compared to –1.1 ± 2.7 in sham-tDCS group) was found one month after the combined treatment (P < 0.05).
Conclusion: Our results showed that real-tDCS can induce significant larger effects on pain and 
psychological well-being, compared to sham-tDCS, when it is associated with a group exercise program. 
The effects were observed mostly in the follow-up.
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Introduction
Non-specific chronic low back pain is a widespread 
condition with significant personal, social and eco-
nomic burden.1

According to the most recent guidelines for 
treatment of chronic low back pain, a multidiscipli-
nary approach including group exercise treatment 
is recommended.2 Moreover, research studies have 
shown how transcranial direct current stimulation 
(tDCS), a non-invasive neuromodulation tech-
nique, can be considered a reliable tool for the 
management of chronic pain syndromes, such as 
fibromyalgia or central pain related to spinal cord 
injury.3–5 tDCS applied over the motor cortex is 
able to decrease the intensity and duration of pain, 
modulating the activity of brain areas involved in 
pain regulation.6 It has been hypothesized that 
combining tDCS with a rehabilitative technique 
can foster the effects of single treatments. For 
example, it was combined with a multidisciplinary 
approach for fibromyalgia or a cognitive behavio-
ral therapy in chronic low back pain with inconclu-
sive results.7,8 Although a recent large randomized 
trial did not show significant differences between 
real- and sham-tDCS for chronic low back pain, 
one of the reasons may have been the type of 
behavioral intervention combined with M1 tDCS.8 
In this study, we therefore aimed to test the feasi-
bility of combining tDCS preceding a group exer-
cise program in subjects with non-specific chronic 
low back pain. Specifically, we tested the effects 
on pain intensity, disability, quality of life and psy-
chological well-being.

The differences between this study and previous 
reports with negative results can be explained by 
the type of behavioral intervention and also regi-
men of stimulation, underscoring the important 
notion that tDCS does not enhance the effects of 
any type of behavioral intervention, but it does 
when there is a temporal and spatial correlation 
between stimulation and task.

Methods
This is a double-blinded randomized control trial. 
Participants were contacted by a short phone 

interview and subsequently assessed for eligibility 
with a medical examination. This trial was 
approved by Ferrara University Hospital Ethics 
Committee (Italy), and all procedures were con-
ducted according to the ethical standards of the 
Declaration of Helsinki only when a written con-
sent was provided. The trial protocol has been reg-
istered (NCT01875029).

Inclusion criteria were males and females, 
aged 18–75 years with non-specific chronic low 
back pain diagnosed since more than two years 
with recurrent episodes according to the guide-
lines.2 To be enrolled in the study all patients had 
to have at least an intensity of pain of 20 mm at 
the Visual Analog Scale (VAS) during the two 
weeks before treatment.9 Participants were 
excluded whether submitted to spine surgery 
within the previous six months, presented a cog-
nitive impairment assessed with Mini-Mental 
Status Examination (MMSE)10 inferior to 24/30 
or common contraindications to tDCS: history of 
epilepsy; implantable devices in the skull; major 
neurological or psychiatric diseases; severe car-
diopulmonary, renal and hepatic diseases or preg-
nancy. Participants were randomized to real- and 
sham-tDCS through a block randomization of 
four. The randomization scheme was generated 
using the website http://www.randomization.com. 
The random list was managed by an administrator 
external to the research groups to prevent selec-
tion bias. The experimental group received real-
tDCS and group exercise; the control group 
received sham-tDCS and group exercise. Both 
subject and investigator were blinded about the 
treatment group, as well as the physical therapists 
and medical doctors involved in the study. Pain 
intensity was measured using the 0–100 mm 
VAS.9 Disability was rated using the Roland 
Morris Disability Questionnaire. It is composed 
of 24 items designed to assess chronic low back 
pain–related disability. It is self-administered to 
patient, and it ranges from 0 (none disability) to 
24 (severe disability).11 We used its Italian ver-
sion.12 The EuroQuol-5 Dimension, a widely used 
questionnaire, was administered to evaluate qual-
ity of life and health status in patients with back 
pain.13 We used its validated Italian version.14 
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Psychological well-being was assessed with The 
Patient Health Questionnaire-9 that screened, 
monitored and evaluated depression severity 
symptoms.15 All subjects were evaluated before 
(T0) and after (T1) tDCS, after the group exercise 
program (T2) and at one-month follow-up (T3). 
Pain intensity was also evaluated after every 
tDCS session. The real-tDCS group received five 
consecutive daily stimulation immediately before 
the group exercise program. tDCS was adminis-
tered as follows: if pain was central in the back or 
bilateral, the anode was placed on the primary 
motor cortex (M1) of the dominant hemisphere, 
whereas the contralateral M1 was stimulated in 
the presence of pain irradiated to one side. The 
cathode was placed on the contralateral supraorbi-
tal area. The direct current was delivered through 
a pair of sponge electrodes, with a surface of 
35 cm2 (7 × 5), soaked in saline solution, with a 
low-intensity battery-driven stimulation device 
with rechargeable batteries (BrainSTIM, EMS, 
Italy). Electrodes were secured using soft elastic 
straps. The location of the motor cortex was esti-
mated using the international 10–20 electroen-
cephalogram (EEG) system and placing the center 
of the electrode pad at C3 or C4. This continuous 
stimulation lasted 20 minutes, with an intensity of 
2 mA for five consecutive days.6 In the sham-
tDCS group, the stimulator was turned off after 
30 seconds, and the subjects felt the initial itching 
sensation but receive no current for the rest of 
stimulation session.16 A tDCS side-effects ques-
tionnaire (headache, neck pain, burning, redness 
and/or itching at the site of stimulation) was 
administered after each session to both groups  
of patients. The Group Exercise intervention 
included a class of 10 participants starting with 
one hour lesson where physician explain pain 
neurophysiology and advised on posture at work 
with ergonomics information. A physical therapist 
instructed patients on specific muscle stabiliza-
tion and mobilization exercises for the trunk for 
one hour, two or three times a week for about one 
month. At the end of group exercise (10 sessions), 
a leaflet with home exercises was given to the 
patients. Overall, participants received a program 
of 11 hours. For further details, see Appendix 1.

Data analysis
Descriptive statistics (mean and standard devia-
tion) were reported before treatment, after tDCS 
treatment, after combined treatment and at one-
month follow-up. Baseline characteristics were 
compared among groups to confirm the quality of 
randomization (Wilcoxon rank Pearson’s chi-
square test). Between-group differences were 
explored with the Wilcoxon rank-sum test. 
Moreover, a repeated-measures analysis of vari-
ance (ANOVA) analysis (within-group factor: 
TIME; between-group factor: TREATMENT) was 
conducted to detect main effects for treatment and 
time. A difference of the percentage of responders 
among groups was analyzed using chi-square test. 
A subject was categorized as responder if he or she 
retained a VAS improvement greater than 30% at 
the one-month follow-up compared to baseline.17 
An intention-to-treat analysis was carried out on all 
outcome measures, handling missing data with the 
last observation carried forward approach. 
Statistical analysis was performed using STATA 
13.1 software. Significance was recognized when 
P < 0.05.

Power and sample size calculation
This was a pilot study, and thus, confirmation of 
results was not the main goal as we were interested 
in learning about effect sizes of several outcomes 
as to plan for future confirmatory trials; thus, we 
planned this study considering the pilot explora-
tory nature of it. We were interested in having at 
least a power to detect a moderate to large effect 
size of 0.9 (one tail because of the exploratory 
nature) given a power of 80% and α of 5%. 
Therefore, for these parameters, we would need a 
sample of at least 32 subjects (16 in each group); 
however, an increase in the sample in 10% to 35 
subjects is recommended as to account for 
drop-outs.

Results
In all, 418 subjects with chronic low back pain 
were screened for this study and 35 were enrolled 
(mean age = 55.1 ± 12.5 years, nine males and 26 
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females, 8.7 ± 7.7 years of pain duration) at Ferrara 
University Hospital. One subject discontinued 
rehabilitation for personal issue unrelated to the 
treatment received. The study flow diagram is 
reported in Figure 1.

The two groups were similar in demographic and 
clinical characteristics, as summarized in Table 1.

Pain intensity (VAS)
RM-ANOVA analysis revealed a significant inter-
action of effect time–treatment: F(3, 99) = 2.8; 
P = 0.042. Between-group analysis highlighted 

how the difference among groups was significant 
at one-month follow-up (P < 0.05): −27.7 ±  
30.04 mm in real-tDCS group and −2.2 ± 30.1 mm 
in sham-tDCS group. Results are summarized in 
Table 2.

Looking at the percentage of responders, a sig-
nificant difference was found between groups 
(P < 0.01): 72.22% in the real-tDCS group versus 
17.65% in the sham-tDCS group. A further analy-
sis to investigate the effects of tDCS on pain inten-
sity after each stimulation session was conducted. 
We highlighted a positive effect since the first ses-
sion (P < 0.05). See Table 3.

Figure 1. CONSORT flow diagram.
n: number; VAS: Visual Analog Scale; tDCS: transcranial direct current stimulation; ITT: intention-to-treat.
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Self-reported questionnaires
An interaction of effect time–treatment was 
highlighted for psychological well-being: F(3, 
99) = 5.3 and P < 0.01, and the difference among 
groups was significant at one-month follow-up 
(P < 0.05). Results are summarized in Table 2. 
Out of 35 patients, 29 reported mild side-effects 
after stimulation (16 in the real-tDCS group and 
13 in the sham-tDCS group). The results of tDCS 
Adverse Effects Questionnaires are reported in 
Table 4.

Discussion
Our main findings revealed that tDCS was effec-
tive in ameliorating pain and psychological well-
being in a convenience sample of non-specific 
chronic low back pain patients, but the effects 
were evident only at one-month follow-up and 
during the behavioral intervention (group exer-
cise program).

Previous studies tested the effects of tDCS and 
rehabilitation on pain with inconclusive results. 
Riberto et al.7 administered tDCS before a weekly 

Table 1. Baseline clinical and demographic characteristics.

Real-tDCS +  
GE (n = 18)

Sham-tDCS +  
GE (n = 17)

Total (n = 35) P-value

Age (years)
 Mean (SD) 54.3 (12.4) 56 (12.9) 55.1 (12.5) 0.69
 Median 56 54 54  
Sex (M/F) 6/12 3/14 9/26 0.29
CLBP onset (years)
 Mean (SD) 9.4 (9.2) 7.8 (5.3) 8.7 (7.7) 0.57
 Median 7 7 7  
Irradiation (yes/no) 11/7 12/5 23/12 0.56
Pain frequency (continuous/intermittent/NE) 10/5/3 9/4/4 19/9/7 0.89
VAS pain baseline (mm)
 Mean (SD) 55.7 (18.3) 50.3 (24.4) 53.1 (21.3) 0.44
 Median 53.5 46 50  
RMDQ baseline
 Mean (SD) 9.2 (4.1) 10.2 (4.7) 9.7 (4.3) 0.48
 Median 8.5 12 9  
EQ-5D baseline
 Mean (SD) 0.56 (0.2) 0.57 (0.2) 0.57 (0.2) 0.83
 Median 0.56 0.59 0.59  
PHQ-9 baseline
 Mean (SD) 9.3 (5.6) 7.5 (3.6) 8.4 (4.8) 0.49
 Median 7.5 7 7  
VAS anxiety baseline (mm)
 Mean (SD) 37.3 (22.8) 40.2 (19.3) 38.7 (20.9) 0.68
 Median 43.5 47 45  
CGI item 1 baseline
 Mean (SD) 3.6 (1.4) 3.5 (1.4) 3.6 (1.4) 0.77
 Median 4 4 4  

tDCS, transcranial direct current stimulation; GE, group exercise; n, number; SD, standard deviation; M/F, male/female; CLBP, 
chronic low back pain; NE, not evaluated; VAS, Visual Analog Scale; RMDQ, Roland Morris Disability Questionnaire; EQ-5D, 
EuroQol-5D; PHQ-9, Patient Health Questionnaire-9; CGI, clinical global impression; P-value, difference between real-tDCS + back 
school group and sham-tDCS + back school group.
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multidisciplinary rehabilitation session for the 
treatment of patients with fibromyalgia reporting 
positive results not on pain but on quality of life. 
Luedtke et al.8 tested the effects of tDCS and cog-
nitive behavioral management in a large sample of 
chronic low back pain patients. They concluded 
that tDCS did not induce further benefits on pain or 

disability. These differences can be explained by 
the mechanisms of tDCS and indeed bring impor-
tant insights for the design of future studies. The 
first important aspect that explains the difference 
as compared with Riberto et al. is the regimen of 
stimulation: weekly (rather than daily) stimulation 
sessions have less effects.18 The second important 

Table 2. Changes in outcome measurements (mean ± SD).

Changes at T1 Changes at T2 Changes at T3

 Real-tDCS Sham-tDCS Real-tDCS Sham-tDCS Real-tDCS Sham-tDCS

VAS pain (mm) –16.9 ± 20.4 –8.8 ± 29.2 –21.2 ± 30.7 –7.2 ± 32.5 –27.7 ± 30.4* –2.2 ± 30.1
RMDQ 3.1 ± 2.9 –2.7 ± 3.8 –3.8 ± 3.7 –3.5 ± 4.2 –4.7 ± 3.9 –3.5 ± 4.4
EQ-5D 0.14 ± 0.2 0.08 ± 0.1 0.16 ± 0.2 0.06 ± 0.2 0.21 ± 0.2 0.11 ± 0.2
PHQ-9 –2.8 ± 3.1 –1.1 ± 2.6 –4.4 ± 4.1 –1.7 ± 2.2 –4.9 ± 4.2* –1.1 ± 2.7

T1, after tDCS treatment; T2, after combined treatment; T3, at one-month follow-up; tDCS, transcranial direct current stimula-
tion; SD, standard deviation; VAS, visual analog scale; RMDQ, Roland Morris Disability Questionnaire; EQ-5D, EuroQol-5D; 
PHQ-9, Patient Health Questionnaire-9.
*P < 0.05 for the comparison between treatments.

Table 3. Visual Analog Scale for pain intensity (mean ± SD) after each session of stimulation.

Real-tDCS Sham-tDCS

 Mean ± SD P Mean ± SD P

T0 55.7 ± 18.3 – 50.3 ± 24.4 –
Following I stimulation 43.3 ± 20.4 0.028 42.7 ± 26.7 0.823
Following II stimulation 36.9 ± 19.9 <0.001 47.8 ± 25.8 0.999
Following III stimulation 42.1 ± 25.7 0.012 44.7 ± 22.1 0.945
Following IV stimulation 40.7 ± 27.0 0.004 41.8 ± 26.4 0.745
T1 38.8 ± 23.4 <0.001 41.5 ± 24.2 0.717

tDCS, transcranial direct current stimulation; SD, standard deviation.

Table 4. Frequencies of patients reported side-effects after stimulation (n (%)).

Real-tDCS (n = 18) Sham-tDCS (n = 17) Total (n = 35)

Skin redness 13 (72) 8 (48) 21 (60)
Tingling 6 (34) 8 (48) 14 (40)
Headache 3 (17) 4 (24) 7 (20)
Sleepiness 5 (28) 2 (12) 7 (20)
Trouble to concentrate 2 (11) 2 (12) 4 (11)
Dizziness 1 (6) – 1 (3)
Mood fluctuations – 1 (6) 1 (3)

tDCS, transcranial direct current stimulation.
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aspect to explain the differences with Luedtke is 
the type of combined behavioral intervention. In 
the Luedtke study, authors chose a cognitive behav-
ioral therapy that engages a different neural area 
than the one stimulated in the study (M1); there-
fore, it is possible that effects of tDCS were irrele-
vant to the type of therapy chosen in that study. 
There was no spatial correlation between area of 
stimulation and behavioral task in this case. Also, a 
ceiling effect in this study is possible given the 
number of hours of therapy (80 hours versus 11 
hours in our study). Therefore, the choice of the 
combined behavioral therapy plus the number of 
sessions is critical when designing a therapeutic 
tDCS trial. Another important point is that in our 
design, we allowed for the measurement of delayed 
effects, and in fact, most of the effects in our study 
were delayed which is similar to two previous 
tDCS studies in pain.19,20

In this context, it is important to understand the 
neural mechanisms of combined behavioral inter-
ventions as (1) to choose the appropriate neural 
area for stimulation (spatial correlation) and (2) 
choose a design that allows for an appropriate tem-
poral relationship between both. Given the mecha-
nisms of tDCS to change neuronal membrane 
threshold, it is critical that the neural area that is 
affected by the effects of tDCS is the same neural 
area that is engaged in the behavioral task. This 
spatial correlation is not as simple as in some cases 
even the behavioral baseline level affects the main 
neural area engaged in the behavioral tasks as 
shown in several tDCS studies.21,22 In terms of tem-
poral relationship, most of the studies to date have 
shown that tDCS given before or during the behav-
ioral intervention provides the best outcomes and 
timing for positive results may be delayed.19,20,23,24 
Thus, it is not only combination of tDCS with a 
behavioral task, but how this combination is done. 
Finally, the combination of therapies such as in this 
study provides improved and also more focal 
results.25–28 The main reason for such synergistic 
effects comes from the mechanism of tDCS that 
modulates neuronal threshold, instead of inducing 
action potentials; thus, therapy that does generate 
action potentials (such as in this study) is important 
to enhance the effects of tDCS, but only if temporal 

and spatial relationship discussed is taken into 
consideration.

Immediately after tDCS, we did not find a sig-
nificant reduction in pain intensity. We can speculate 
a placebo effect after the end of stimulation in both 
groups that is a learned response whereby various 
types of cues—verbal, conditioned and observa-
tional—trigger expectancies that generate behavio-
ral and clinical outcome changes via central nervous 
system mechanisms.29 Although other studies found 
positive results on pain immediately after stimula-
tion, in a mixed population with chronic pain,3 pel-
vic pain,30 neuropathic pain by spinal cord injury31 
or pain in fibromyalgic patients,4 differences may be 
related to the type of pain and baseline pain levels 
and also level of refractoriness.3,4,30,31 A recent sys-
tematic review on the effects of chronic pain induced 
by tDCS did not find a difference between active 
and sham stimulation with a very low-quality evi-
dence. Hence, larger better quality studies, rigor-
ously designed, particularly of longer courses of 
stimulation are mandatory.32

In our study, the beneficial effects on pain were 
retained at one-month follow-up. Specifically, 72% 
of patients in the real-tDCS group maintained a 
reduction in pain intensity greater than 30% that 
can be considered a clinically meaningful improve-
ment.17 We confirmed our results beyond the time 
of stimulation, probably indicating a long-lasting 
retention typical of stimulation in chronic pain 
patients of visceral or neuropathic origin.33,34 In 
addition to pain intensity, we found a superiority of 
real-tDCS in ameliorating mood symptoms. Pain 
itself can have a negative effect on emotions and on 
cognitive function, and it is associated with nega-
tive emotions and psychological distress.35

In our sample, disability, measured by Roland 
Morris Disability Questionnaire, improved imme-
diately after group exercise in both groups; this can 
be related to the patients’ care from the rehabilita-
tion team.

Our pilot study has some limitations: (1) our 
behavioral approach may also be influenced by 
social aspects (socioeconomic status, family, work 
and culture) according to a more correct biopsycho-
social involvement for chronic pain population, 
though these factors seemed to be equally distributed 
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in both groups of stimulation;36,37 (2) the number of 
sessions of tDCS may still be insufficient to achieve 
a larger therapeutic effect and (3) finally, we did not 
use any clinical or instrumental tool to investigate 
central sensitization mechanisms involved in chronic 
low back pain patients.38

For a future confirmatory study, we estimated 
that given a 90% power and an alpha of 1%, we will 
need 62 patients (31 per arm) to complete the study.

Conclusion
In summary, tDCS can boost the effects of group 
exercise in patients with chronic low back pain. 
Looking at the physiological mechanisms underly-
ing tDCS analgesic effects, further research is 
needed to find out the dose (e.g. number and fre-
quency of treatment sessions) that results in the 
largest benefits and the long-term effects of treat-
ment on pain intensity, disability, quality of life and 
psychological well-being.

Clinical Messages

•• A neuromodulation approach, such as 
tDCS, increases the effects of a group 
exercise program on pain intensity and 
psychological well-being.

•• The beneficial effects are registered after 
one-month follow-up.

•• In a future study, 61 patients will be 
required to confirm our findings.
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ABSTRACT	

Background:	Chronic	orofacial	pain	frequently	starts	from	a	temporomandibular	disorder	but	

continues	 to	be	present	over	 tissue	healing	 time	 for	 central	 sensitization	process	of	higher-

order	neurons.	Aim	of	the	study	is	to	describe	psychological	aspects	of	patients	with	chronic	

orofacial	pain,	their	peripheral	pain	threshold	and	EEG	recording	looking	for	possible	signs	of	

central	sensitization.	

Methods:	 Twenty-four	 subjects	 with	 chronic	 orofacial	 pain	 due	 to	 temporomandibular	

disorder	 were	 evaluated	 using	 the	 Research	 Diagnostic	 Criteria	 for	 Temporomandibular	

Disorders	 (RDC/TMD)	 Axis	 I	 and	 Axis	 II.	 Pain	 intensity,	 catastrophizing	 and	 presence	 of	

central	 sensitization	 were	 assessed	 through	 self-reported	 questionnaires.	 Pressure	 pain	

threshold	was	recorded	in	facial	and	peripheral	sites;	EEG	activity	was	recorded	during	open	

and	 closed	 eyes	 resting	 state	 and	 while	 pain	 threshold	 assessment	 was	 performed.	 Pain	

threshold	and	EEG	recording	were	compared	with	a	cohort	of	pain-free	age-	and	sex-matched	

healthy	subjects.	

Results:	Patients	with	chronic	orofacial	pain	shown	a	significative	reduction	in	pain	threshold	

compared	 to	 healthy	 subjects	 in	 all	 the	 sites	 of	 assessment.	 Greater	 reduction	 in	 pain	

threshold	 was	 recorded	 in	 patients	 with	 more	 severe	 psychological	 symptoms.	 Increased	

gamma	activity	was	recorded	in	cortical	and	frontal	regions	of	patients	during	pain	threshold	

assessment	compared	to	the	controls.	

Conclusions:	Generalized	reduction	 in	pressure	pain	 threshold	was	recorded	 in	people	who	

suffer	of	chronic	orofacial	pain.	Abnormal	EEG	activity	in	central	areas	was	recorded	during	

painful	 stimulation	 compared	 to	 healthy	 subjects.	 All	 these	 results	 may	 be	 explained	 by	

sensitization	of	the	central	nervous	system	due	to	chronic	pain	conditions.	



INTRODUCTION	

Chronic	pain	 is	defined	as	pain	 that	 lasts	 for	more	 than	3	months,	 over	 the	normal	healing	

time	 (Treede	et	 al.,	 2015).	Chronic	pain	 impacts	working	 life,	 somatic,	 emotional	 and	 social	

wellbeing	and	quality	of	life	of	the	affected	individuals	and	it	is	recognized	as	a	major	health	

care	problem	in	Europe	(Breivik,	Collett,	Ventafridda,	Cohen,	&	Gallacher,	2006).	Recently	the	

International	Association	for	the	Study	of	Pain	(IASP)	distinguished	between	“chronic	primary	

pain”	 and	 “chronic	 secondary	 pain”.	 In	 the	 first	 category,	 chronic	 pain	 is	 conceived	 as	 a	

disease	in	its	own	right;	in	the	second,	pain	is	a	consequence	of	an	underlying	disease	and	may	

initially	 conceived	 as	 a	 symptom	 (Treede	 et	 al.,	 2019).	 Orofacial	 pain	 (OFP)	 is	 usually	

classified	 as	 chronic	 secondary	 pain	 because,	 in	 most	 cases,	 it	 can	 be	 attributed	 to	 an	

underlying	cause	(Benoliel	et	al.,	2019).	Frequently	the	pain	starts	 from	a	TMD,	outlasts	the	

initiating	event	and	become	the	leading	cause	for	continuing	treatment	need	(Benoliel	et	al.,	

2019).	 Patients,	 following	 TMD	 resolution,	 no	 longer	 exhibit	 peripheral	 tissue	 damage	 but	

continue	 to	 feel	 pain	 suggesting	 an	 abnormal	 functioning	 of	 the	 somatosensory	 system	

(Sarlani	&	Greenspan,	2005).	This	process	may	be	due	to	an	induced	sensitization	of	higher-

order	 neurons,	 a	 phenomenon	 well	 described	 by	 the	 central	 sensitization	 (CS)	 process	

(Campi,	Jordani,	Tenan,	Camparis,	&	Gonçalves,	2017).	According	to	the	IASP	definition,	CS	is	

characterized	by	an	 increased	responsiveness	of	nociceptive	neurons	 in	 the	central	nervous	

system	(CNS)	 to	 their	normal	or	subthreshold	afferent	 input	 (Loeser	&	Treede,	2008).	With	

the	introduction	of	the	CS	concept,	pain	starts	to	reflect	a	functional	state	of	circuits	in	the	CNS	

instead	 of	 being	 exclusively	 peripherally	 driven	 (Woolf,	 2011).	 Injury	 or	 inflammation	 in	

peripheral	 tissue	 can	 alter	 the	 properties	 of	 somatic	 sensory	 pathways.	 This	 induced	

peripheral	sensitization	could	trigger	CS,	leading	to	pathological	pain	states	(Harte,	Harris,	&	

Clauw,	 2018).	 CS	 has	 been	 described	 in	 patients	 with	 TMD	 by	 Dworkin	 who	 found	 no	

correlation	between	physical	signs	of	jaw	dysfunction	and	levels	of	pain	in	a	3-year	follow-up	

study	(Dworkin,	1995).	Quantitative	sensory	testing	(QST)	like	pressure	pain	threshold	(PPT)	

can	 be	 used	 along	 to	 document	 the	 somatosensory	 profile	 (Svensson	 et	 al.,	 2011).	 A	

generalized	 state	 of	 pain	 sensitivity	 can	 justify	 low	 PPT,	 imputable	 to	 altered	 sensory	

processing,	 dysregulated	 endocrine	 function,	 hyperinflammatory	 states,	 or	 psychological	

processes	(Lautenbacher,	Rollman,	&	McCain,	1994).	In	a	large	prospective	study,	the	OPPERA	

(Orofacial	Pain:	Prospective	Evaluation	and	Risk	Assessment)	study,	Slade	et	al.	observed	that	

PPT	 fluctuated	 in	 synchrony	with	 the	 course	of	 painful	TMD	 (Slade	 et	 al.,	 2014).	 Further,	 a	

reduction	of	PPT	in	sites	related	to	the	temporomandibular	joint	has	been	identified	as	sign	of	

peripheral	 sensitization	 (Campi	 et	 al.,	 2017).	 In	 case	 of	 sensitization	 due	 to	 supraspinal	



pathways,	the	local	threshold	is	further	reduced	at	the	local	site,	but	it	is	also	reduced	in	more	

distant	body	sites	not	 related	 to	TMD.	The	comparison	of	a	TMD	cohort	with	a	healthy	and	

pain	 free	 sample	 could	 be	 the	 only	 way	 to	 evaluate	 the	 degree	 of	 localized	 and	 spreading	

sensitization	 (Arendt-Nielsen	 et	 al.,	 2018).	 Involvement	 of	 cerebral	 circuits	 in	 chronic	 pain	

development	has	been	broadly	documented	(Apkarian	et	al.,	2004;	Ferdek	et	al.,	2019;	Kim	et	

al.,	 2013).	 Chronic	 pain	 seems	 to	 be	 associated	 to	 pain	 related	 central	 networks	 and	

neuroplastic	 changes	 in	 these	 circuits	 may	 change	 perception	 of	 pain	 independent	 of	

peripheral	neural	activation	(Camfferman,	Moseley,	Gertz,	Pettet,	&	Jensen,	2017).	Thalamus	

appears	to	be	a	key	feature	in	several	chronic	pain	conditions	and	its	connection	with	cerebral	

cortex	imputable	to	maintenance	of	pain	(Llinás,	Ribary,	Jeanmonod,	Kronberg,	&	Mitra,	1999;	

Stern,	Jeanmonod,	&	Sarnthein,	2006).	Many	studies	tried	to	identify	electroencephalography	

(EEG)	pattern	related	to	pain	development	and	maintenance	after	physiological	tissue	healing	

time	 (Jensen	 et	 al.,	 2013;	 Pinheiro	 et	 al.,	 2016;	 Prichep,	 John,	 Howard,	Merkin,	 &	 Hiesiger,	

2011).	Despite	the	lack	of	certainty	about	cortical	marker	of	chronic	pain,	a	reduction	in	alpha	

activity	 in	 frontal	 lobes	 and	 increased	 theta	 activity	 in	 posterior	 parietal	 cortex	 has	 been	

recorded	 in	 subjects	who	 suffer	 of	 chronic	pain	 for	different	 conditions	 (Camfferman	et	 al.,	

2017;	 Jensen	 et	 al.,	 2013;	 Sarnthein	 &	 Jeanmonod,	 2008;	 Sarnthein,	 Stern,	 Aufenberg,	

Rousson,	&	 Jeanmonod,	2006).	 	The	objective	of	 the	study	 is	 to	describe	 features	of	chronic	

OFP	 due	 to	 TMD	 through	 the	 analysis	 of	 psychological	 aspects	 of	 patients,	 peripheral	 pain	

threshold	and	EEG	recording,	looking	for	possible	signs	of	CS.		

	

METHODS	

This	 cross-sectional	 observational	 study	 describes	 factors	 related	 to	 chronic	 OFP	 and	

characteristics	of	patients	in	a	cohort	of	twenty-four	subjects	with	OFP	due	to	TMD.	This	study	

has	been	reviewed	by	 the	Ferrara	University	Hospital	Ethics	Committees.	Written	 informed	

consent	 was	 obtained	 before	 all	 procedures.	 The	 study	 meets	 the	 STROBE	 Guidelines	 for	

observational	studies	(von	Elm	et	al.,	2014).	

Patients	who	underwent	 rehabilitation	 for	TMD	at	 Ferrara	Rehabilitation	Hospital	 between	

January	2018	and	 January	2019	were	assessed	 for	 eligibility.	Age,	 sex,	 occupation,	 side	and	

duration	of	TMD,	past	treatment	for	temporomandibular	joint,	comorbidities	and	medications	

were	recorded.	All	subjects	with	a	Numeric	Pain	Rating	Scale	(NPRS)	 less	than	three	during	

the	 past	 two	weeks	 or	who	 take	medications	 for	 pain	 relief	 in	 the	 two	weeks	 before	were	

excluded	from	the	study	(Jensen	et	al.,	2013).	Exclusion	criteria	were	also:	impaired	cognitive	



functioning	 (score	 less	 than	 24	 on	 the	 Mini	 Mental	 Status	 Examination),	 neurological	 or	

psychiatric	disorders,	pregnancy.		

A	medical	doctor	expert	in	temporomandibular	rehabilitation	evaluated	all	subjects	included	

in	 the	 study	 following	 the	 Research	 Diagnostic	 Criteria	 for	 Temporomandibular	 Disorders	

(RDC/TMD)	Axis	I	(Schiffman	et	al.,	2014).	

The	 RDC/TMD	Axis	 II	was	 used	 to	 assess	 psychological	 distress	 and	 pain-related	 disability	

(Schiffman	et	al.,	2014).	For	analyses	purpose,	depression,	anxiety	and	non-specific	physical	

symptoms	 (NSPS)	 were	 treated	 as	 dichotomous	 variables	 and	 patients	 were	 classified	 as	

minimal/mild	 if	 their	 total	 score	 was	 lower	 than	 10;	 patients	 with	 a	 higher	 score	 were	

classified	as	moderate/severe	(Campi	et	al.,	2017).	All	subjects	included	were	evaluated	using	

self-reported	 questionnaire	 for	 pain	 description	 and	 PPT	 for	 objective	 assessment	 of	 pain	

perception	 (Dworkin	 et	 al.,	 2005).	Neuronal	 activity	 linked	 to	 pain	 sensation	was	 recorded	

using	Electroencephalography	 (EEG).	QST	and	EEG	were	also	 evaluated	 in	 a	 sample	of	 age-	

and	sex-matched	healthy	controls.		

	

Self-reported	questionnaire	

Catastrophizing	has	been	defined	as	“an	exaggerated	negative	orientation	 towards	actual	or	

anticipated	 pain	 experiences”	 and	 reflects	 a	 tendency	 to	 misinterpret	 or	 exaggerate	

apparently	threatening	situations	(Sullivan,	Bishop,	&	Pivik,	1995a).	The	Pain	Catastrophizing	

Scale	(PCS)	was	used	to	assess	the	tendency	to	magnify	the	threat	value	of	pain	stimulus	and	

to	feel	helpless	in	the	context	of	pain	(Quartana,	Campbell,	&	Edwards,	2009).	A	PCS	score	≥	

30	was	used	to	detect	presence	of	catastrophizing	(Sullivan,	Bishop,	&	Pivik,	1995b).	

CS	 was	 assessed	 using	 the	 Italian	 version	 of	 the	 Central	 Sensitization	 Inventory	 (CSI-I)	

(Chiarotto	et	al.,	2018).	A	CSI	score	≥	40	has	been	suggested	as	the	cut-off	score	to	determine	

if	patients	display	CS	(Neblett	et	al.,	2013,	2015;	Nijs	et	al.,	2014).	

	

Pressure	Pain	Threshold	(PPT)	

PPT	is	defined	as	the	minimum	pressure	applied	to	anatomical	regions	that	can	induce	pain	

(Fischer,	 1987).	 PPT	 measurement	 was	 performed	 with	 a	 handled	 digital	 dynamometer	

(Commander	Algometer,	 JTECH	Medical	USA),	consisting	of	a	device	with	1	cm2	 flat	circular	

tip	 used	 to	 apply	 pressure	 on	 subjects’	 skin.	 A	 researcher	was	 trained	 to	 apply	 a	 constant	

pressure	 of	 approximately	 1	 lb/cm2/s	 perpendicular	 to	 the	 skin	 using	 the	 dynamometer,	

following	a	protocol	well	described	 in	 literature	(Campi	et	al.,	2017).	The	stimulus	 intensity	

increases	 from	 zero	 and	 the	 subject	 was	 instructed	 to	 stop	 the	 stimulation	 at	 the	 first	



perception	of	pain	by	pushing	a	button.	At	that	moment,	the	pressure	was	removed,	and	the	

value	of	pressure	applied	was	recorded.	The	sites	of	the	stimulation	were	the	muscle	belly	of	

the	temporal	and	masseter	muscles,	the	surface	of	the	mandibular	condyle,	the	middle	part	of	

the	 upper	 trapezius	 and	 the	 centre	 of	 the	 thenar	 eminence	 (Fig.	 1).	 During	 examinations	

subjects	 were	 in	 a	 comfortable	 sitting	 position	 with	 muscles	 relaxed.	 The	 researcher	

stabilized	 subject’s	 head	 gently	 applying	 manual	 resistance	 contralateral	 to	 the	 point	 of	

pressure	 application.	 This	 procedure	was	 repeated	 three	 times	 for	 every	 site	 for	 both	 side	

with	an	 interstimulus	 interval	of	30s	(Nie,	Graven-Nielsen,	&	Arendt-Nielsen,	2009).	For	the	

patients,	the	PPT	value	of	painful	side	was	used	for	the	analysis.	Value	of	the	more	involved	

side	was	 considered	when	 symptoms	were	 bilaterally.	 Side	 of	 PPT	was	matched	 in	 healthy	

subjects.		

	

	
Figure	1.	Sites	for	pressure	pain	threshold	assessment	

EEG	Recording		

EEG	 assessment	 was	 performed	 using	 an	 electrode	 montage	 of	 32	 Ag/AgCl	 pellet	 pin	

electrodes	 (Easy	 Cap	 GmbH,	 Herrsching,	 Germany)	 placed	 according	 to	 the	 10-20	

International	 System	 on	 a	 Fast’n	 Easy	 cap.	 A	 BrainAmp	 amplifier	 (Brain	 Products,	Munich,	

Germany)	was	used	to	record	EEG	activity.	All	scalp	electrodes	were	referenced	to	nasion	and	

grounded	 at	 AFz	 during	 recordings.	 Horizontal	 and	 vertical	 eye	movements	were	 detected	

respectively	with	electrodes	placed	at	the	left	and	right	outer	canthi	at	Fp1	and	below	the	eye	

at	the	non-painful	side.	The	impedance	of	all	the	electrodes	was	kept	below	10	kΩ.	The	EEG	

signals	were	recorded	with	a	1000	Hz	sampling	rate	with	a	low	cut-off	frequency	of	0.1	Hz	and	

a	high	cut-off	of	1000	Hz.		



EEG	data	was	recorded	during	a	5	minutes	resting	state	task	with	open	eyes	and	a	5	minutes	

resting	state	task	with	closed	eyes.	Participants	were	instructed	to	stay	relaxed	and	keep	their	

eyes	 fixed	 on	 a	 cross	 in	 front	 of	 them	 during	 open-eyes	 recording.	 EEG	was	 also	 recorded	

during	the	PPT	assessment	at	the	thenar	eminence	following	the	above-mentioned	protocol.	

	

EEG	Preprocessing		

The	 EEG	 data	 was	 pre-processed	 in	Matlab,	 using	 the	 EEGlab	 toolbox	 (Delorme	 &	Makeig,	

2004).	A	notch	 filter	was	 applied	 in	post	 processing	 for	 eliminating	 the	power-noise.	 Then,	

data	was	 re-referenced	 to	 the	 average	 reference.	Eye	movement	 artifacts	were	 removed	by	

means	 of	 an	 Independent	 Component	 Analysis	 (ICA)	 procedure.	 ICA	 analysis	 was	 used	 to	

determine	 the	 independent	 components.	A	 visual	 analysis	was	used	 to	discard	 components	

that	were	characterized	by	high-amplitude	 fluctuations	and	were	mostly	 located	at	or	 close	

the	eye	electrodes.		

	

EEG	Spectral	Analysis		

The	 spectral	 power	 in	 the	 different	 EEG	 bands	 (theta,	 delta,	 alpha,	 beta,	 gamma)	 was	

calculated,	 during	 both	 resting	 state	 tasks,	 in	 the	 middle	 minute	 of	 the	 5	 minutes	 of	 each	

recording.	The	power	spectral	density	(PSD)	was	calculated	using	Welch’s	method,	using	1	s	

windows	and	80%	of	overlap	over	successive	windows.	The	PSDs	of	all	subjects	during	each	

trial	when	then	transformed	into	z-scores.	For	the	pain	stimulus	trials,	the	PSD	was	calculated	

from	the	3-seconds	window	before	reaching	the	sensory	threshold.	The	PSD	calculated	during	

the	pain	stimulus	trials	was	transformed	in	z-scores	and	expressed	as	a	percentage	of	the	PSD	

calculated	from	the	resting	state	trials	with	the	eyes	open.	This	choice	for	normalization	was	

dictated	by	the	fact	that	subjects	had	their	eyes	open	during	the	pain	stimulus	trials.			

	

Statistical	Analysis	

Descriptive	 statistics	 were	 used	 for	 characterizing	 the	 sample.	 Continuous	 variables	 are	

reported	 as	 means	 and	 standard	 deviations,	 non-continuous	 variables	 as	 counts	 and	

percentages.	 Differences	 in	 PPT	 between	 patients	 with	 OFP	 and	 healthy	 subjects	 were	

assessed	using	the	Wilcoxon	rank-sum	test	due	to	non-normal	data	distribution.	Patients	with	

OFP	 were	 also	 divided	 according	 to	 intensity	 of	 pain,	 presence	 of	 psychological	 disorders,	

catastrophizing	 and	 CS	 and	 differences	 between	 groups	 were	 analyzed.	  Spearman's	 rank	

correlation	 coefficient was	 used	 to	measure	 strength	 and	 direction	 of	 association	 between	

psychological	scores	and	self-reported	questionnaires.		



Statistical	analysis	was	performed	using	STATA	13.1	software.	Statistical	significance	was	set	

to	!	<	0.05.		
	

	

RESULTS	

Nineteen	subjects	of	the	sample	were	women.	The	mean	age	was	49.8	years,	with	a	minimum	

of	23	and	a	maximum	of	77	years.	Detailed	demographic	and	clinical	 features	of	 the	sample	

are	 summarized	 in	 Table	 1.	 Most	 of	 the	 sample	 was	 classified	 as	 myofascial	 pain	 with	

spreading	 following	 the	 Axis	 1	 of	 DC/TMD.	 The	 mean	 pain	 intensity	 during	 the	 24	 hours	

before	at	the	NRS	was	6.42	(1.72	SD),	with	a	minimum	of	3	and	a	maximum	of	9.	Twenty-four	

age-	 and	 sex-matched	 healthy	 subjects	 were	 recruited.	 The	 assessment	 in	 PPT	 revealed	 a	

reduction	 in	pain	 threshold	 in	subjects	with	OFP	 in	all	 the	sites	of	assessment	compared	 to	

healthy	subjects.	Differences	between	groups	were	statistically	significant	(Fig.	2).	Stratifying	

patients	 according	 to	 psychological	 assessment	 performed	 with	 RDC/TMD	 Axis	 II	 we	

recorded	 reduction	 in	 PPT	 in	 all	 subjects	with	moderate	 or	 severe	 symptoms	 compared	 to	

those	with	low	or	mild,	with	significative	differences	for	pain	related	disability	and	depression	

(p=0.045	and	p=0.023	 respectively)	 (Table	2).	No	 significative	differences	 in	pain	 threshold	

were	 identified	 in	patients	with	 CS	 signs.	 Positive	 correlations	were	 found	between	CS	 and	

psychological	 disorders	 (depression,	 non-specific	 physical	 symptoms,	 catastrophizing),	

without	distinction	of	severity.		



Table	1.	Descriptive	data	for	the	sample 

	 Sample	(n=24)	

	 Mean	(SD)	or	n	(%)	

Age	(years)	 49.8	(13.1)	

Sex	(n)	

male/female	 5	(21)	/	19	(79)	

Occupation	(n)	

employed/unemployed	 14	(58)	/	10	(42)	

Principal	comorbidities	(n)	

rheumatic	disease	

hypertension	

enteric	disease	

diabetes	mellitus	

none	

6	(25)	

4	(17)	

3	(12)	

1	(4)	

10	(42)	

Drug	use	(n)	

non	steroidal	anti-inflammatory	drugs	

antidepressants	

muscle	relaxants	

analgesics	

none	

5	(21)	

2	(8)	

2	(8)	

3	(11)	

12	(50)	

Symptoms	duration	(months)	 49.21	(68.59)	

Symptoms	frequencies	(n)	

continuous/episodic	recurrent	 7	(35)	/	17	(65)	

Pain	side	(n)	

right/left/bilateral	 3	(10)	/	3	(15)	/	18	(75)	

Previous	treatment	

physiotherapy	

arthrocentesis	

byte	use	

11	(45)	

10	(35)	

16	(65)	

DC/TMD	AXIS	I	

myofascial	pain	with	spreading	

myalgia	

arthralgia	

21	(90)	

1	(5)	

2	(5)	



DC/TMD	AXIS	II	 	

Pain	related	disability	(n)	

low	

high	

9	(37.5)	

15	(62.5)	

Depression	(n)	

minimal-mild	

moderate-severe	

	

16	(66.7)	

8	(33.3)	

Anxiety	(n)	

minimal-mild	

moderate-severe	

19	(79)	

5	(21)	

Non-specific	physical	symptoms	(n)	

minimal-mild	

moderate-high	

13	(54)	

11	(46)	

NPRS	 6.42	(1.72)	

Catastrophizing	(n)	 	

not	present	 12	(50)	

present	 12	(50)	

Central	sensitization	(n)	

subclinical-mild	

moderate-severe	

	

12	(50)	

12	(50)	

n:	number;	SD:	standard	deviation;	DC/TMD	AXIS	I	and	AXIS	II:	Diagnostic	Criteria	for	

Temporomandibular	Disorders	AXIS	I	and	AXIS	II;	NPRS:	Numeric	Pain	Rating	Scale	



Table	2.	Pressure	pain	threshold	for	classes	of	impairment	

	 	 Mean	(SD)		 p	

DC/TMD	AXIS	II	 	 	 	

Pain	related	disability	

	

low	(n	=	9)	

high	(n	=	15)	

3.8	(1.3)	

2.6	(1.1)	

0.045	

Depression	 minimal	-	mild	(n	=	16)	

moderate	-	severe	(n	=	8)	

3.5	(1.3)	

2.3	(1.0)	

0.023	

Anxiety	

	

minimal-mild	(n	=	19)	

moderate-severe	(n	=	5)	

3.1	(1.3)	

2.9	(1.3)	

0.749	

Non-specific	physical	symptoms	 minimal	-	mild	(n	=	13)	

moderate	-	severe	(n=11)	

3.4	(1.4)	

2.7	(1.1)	

0.213	

NPRS	 mild	-	moderate	3	-	6	(n	=	12)		

severe	7	-	10	(n	=	12)	

3.0	(1.3)	

3.1	(1.3)	

0.954	

Catastrophizing	

	

not	present	(n	=	12)	

present	(n	=	12)	

3.2	(1.4)	

2.8	(0.9)	

0.427	

Central	sensitization	 subclinical	-	mild	(n	=	12)	

moderate	-	severe	(n	=	12)	

3.3	(1.5)	

2.9	(0.9)	

0.564	

n:	number;	SD:	standard	deviation;	DC/TMD	AXIS	II:	Diagnostic	Criteria	for	

Temporomandibular	Disorders	AXIS	II;	NPRS:	Numeric	Pain	Rating	Scale	

	

	
Figure	2.	Mean	pressure	pain	threshold	of	the	two	samples	

PPT:	pressure	pain	threshold;	lb:	libre;	OFP:	orofacial	pain;	*p<0.01	**p<0.001	



EEG	Results	

We	did	not	observe	qualitative	differences	 in	 the	PSD	between	 the	patients	and	 the	control	

subjects	 for	both	the	eyes	closed	and	eyes	open	resting	trials	across	the	different	 frequency	

bands.	For	the	pain	stimulus	trials,	we	noticed	increased	PSD	values	(with	respect	to	the	eyes	

open	trial)	in	the	gamma	band	in	the	controls	that	was	localized	mostly	in	the	occipital	region.	

In	the	patients,	differently	than	the	controls,	increased	values	of	PSD	in	the	gamma	band	were	

instead	observed	in	the	cortical	and	frontal	regions	(C3/C4	F3/F4	electrodes)	(Fig.	3).		

	

	

	
Figure	3.	Electrode-level	maps	of	the	percentage	changes	in	the	z-values	of	the	power	

spectral	density	in	the	different	bands	between	the	open	eyes	resting	task	and	the	pain	

stimulus	task.	The	top	row	represents	the	healthy	controls,	the	bottom	row	the	orofacial	pain	

(OFP)	patients.		

	

DISCUSSION	

In	 this	 observational	 study	 we	 tried	 to	 describe	 features	 and	 clinical	 signs	 of	 people	 with	

chronic	OFP	due	to	TMD	by	comparing	them	with	healthy	controls.	Our	main	finding	revealed	

that	people	who	suffer	from	this	debilitating	condition	present	a	generalized	reduction	in	PPT.	

This	 reduction	 in	pain	 threshold	was	observed	not	 only	 in	 facial	 sites	but	 also	 in	 areas	not	

involved	by	pathology,	like	the	upper	trapezius	or	along	the	upper	limb.	The	phenomenon	we	

observed	 may	 be	 due	 to	 CS,	 an	 increased	 responsiveness	 of	 nociceptive	 neurons	 to	

subthreshold	input	(Loeser	&	Treede,	2008).	Fillingim	et	al.	in	their	longitudinal	study	found	

that	 individuals	 who	 transitioned	 from	 being	 TMD-free	 to	 a	 TMD-state	 tended	 to	 show	



reduction	 in	PPT	 limited	to	 the	orofacial	region	and	not	 to	other	body	sites	(Fillingim	et	al.,	

2018).	The	discrepancy	between	these	and	our	results	may	be	explained	by	the	difference	in	

time	elapsed	between	OFP	onset	and	PPT	assessment	in	the	two	studies.	In	fact,	subjects	who	

developed	TMD	in	the	OPPERA	study	were	evaluated	for	pressure	pain	sensitivity	at	a	median	

time	of	14	days	from	symptoms	onset	(Fillingim	et	al.,	2018;	Greenspan	et	al.,	2013).	 In	our	

study	PPT	was	assessed	in	patients	with	OFP	from	a	median	time	of	33	months.	Chronic	pain,	

critical	 in	 development	 of	 CS,	 have	 to	 last	 for	 more	 than	 3	 months	 to	 be	 defined	 as	 such	

(Treede	et	al.,	2015).	Pain	lasting	for	a	shorter	time	may	not	contribute	to	hyperexcitability	of	

the	CNS,	one	of	the	main	features	of	sensitization	process	(den	Boer	et	al.,	2019).	In	our	study	

we	included	patients	with	fibromyalgia,	and	this	may	represent	a	confounding	factor	in	PPT	

assessment	(Maquet,	Croisier,	Demoulin,	&	Crielaard,	2004).	However,	the	analysis	performed	

on	the	sample	after	exclusion	of	fibromyalgia	patients	showed	no	differences	compared	with	

the	whole	sample.	Stratification	of	people	with	OFP	based	on	psychological	disorder	severity	

revealed	 that	 subjects	 with	 moderate	 or	 severe	 depression	 and	 high	 level	 of	 pain-related	

disability	showed	generalized	reduction	in	PPT.	A	large	systematic	review	on	pain	sensitivity	

and	 depression	 found	 uncertain	 results	 about	 mechanisms	 underlying	 their	 relationship	

(Thompson,	 Correll,	 Gallop,	 Vancampfort,	 &	 Stubbs,	 2016).	 However	 depression	 and	 pain	

sensitivity	frequently	occur	together	(Agüera-Ortiz,	Failde,	Mico,	Cervilla,	&	López-Ibor,	2011;	

Bair,	 Robinson,	 Katon,	 &	 Kroenke,	 2003;	 Lépine	 &	 Briley,	 2004;	 Von	 Knorring,	 Perris,	

Eisemann,	Eriksson,	&	Perris,	1983;	Von	Korff,	Dworkin,	Le	Resche,	&	Kruger,	1988),	probably	

due	 to	 dysfunction	 at	 the	 level	 of	 the	 serotonergic	 and	 noradrenergic	 neurons	 that	 affects	

psychological	and	somatic	symptoms	of	depression	but	also	physical	painful	symptoms	(Stahl	

&	 Briley,	 2004).	 Another	 possible	 explanation	 of	 the	 above-mentioned	 results	 is	 that	

depressed	 people	 react	 negatively	 to	 painful	 stimulation	 with	 stronger	 emotional	

involvement.	A	reduction	 in	PPT	as	sign	of	CS	may	explain	the	 link	between	sensitization	of	

the	CNS	 and	 emotional	 comorbidities.	 Smart	 et	 al.	 in	 their	 study	on	patients	with	 low	back	

pain	reported	significantly	greater	levels	of	pain-related	disability,	depression	and	anxiety	in	

people	with	signs	of	CS	compared	to	those	with	nociceptive	or	neuropathic	pain	(Smart,	Blake,	

Staines,	 &	 Doody,	 2012).	 Strong	 relationship	 between	 CS	 and	 psychological	 symptoms	 is	

confirmed	 by	 our	 analysis.	 What	 need	 to	 be	 clarified	 is	 the	 causal	 link	 between	 them,	

establishing	if	psychological	disorders	are	 involved	in	sensitization	or	they	are	consequence	

of	a	sensitized	system.		

To	our	knowledge,	the	current	study	is	the	first	investigating	EEG	PSD	during	PPT	assessment	

in	 people	 with	 OFP	 versus	 healthy	 control	 subjects.	 In	 this	 study	 we	 found	 no	 differences	



between	patients	and	control	subjects	during	resting	trials.	We	noticed	instead	an	increase	in	

central	 and	 prefrontal	 activity	 in	 gamma	 bands	 during	 peripheral	 stimulation	 just	 before	

stimulus	was	perceived	as	painful.	Other	studies	investigating	resting	state	EEG	in	people	with	

chronic	pain	described	significant	overactivation	of	regions	involved	in	pain	network.	Prichep	

et	 al.	 recorded	 overactivity	 in	 insula	 areas,	 parietal	 lobule,	 thalamus	 and	 the	 dorsolateral	

prefrontal	cortex;	significant	differences	between	normal	and	pain	patients	were	found	in	mid	

and	posterior	cingulate.	Generalized	overactivity	was	described	in	all	areas	belonging	to	the	

“pain	matrix”	(Prichep,	Shah,	Merkin,	&	Hiesiger,	2018).	Our	findings	about	gamma	activity	in	

prefrontal	 areas	 may	 further	 support	 the	 model	 proposed	 by	 Baliki	 &	 Apkarian	 on	

dissociation	 in	 processing	 of	 longer	 lasting	 pain	 and	 nociceptive	 information	 (Baliki	 &	

Apkarian,	2015).	The	authors	described	a	dissociation	of	prefrontal	component	of	the	default	

mode	network	 (DMN)	 in	 different	 types	 of	 chronic	 pain	 (Baliki	&	Apkarian,	 2015).	 In	 fMRI	

studies	 the	 DMN	was	 described	 as	 one	 of	 the	 tree	 brain	 systems	 that,	 with	 their	 dynamic	

interactions,	are	involved	in	spontaneous	attentional	fluctuations	toward	and	away	from	pain	

(Kucyi	 &	 Davis,	 2015).	 The	 DMN	 is	 activated	 when	 subject	 attention	 is	 not	 engaged	 by	

sensations	from	external	world	(Andrews-Hanna,	Smallwood,	&	Spreng,	2014).	In	opposition	

to	the	DMN,	a	system	known	as	the	salience	network	(SN)	works	to	track	how	external	stimuli	

capture	attention	(Jonathan	Downar,	Mikulis,	&	Davis,	2003;	Mouraux,	Diukova,	Lee,	Wise,	&	

Iannetti,	2011;	Uddin,	2015).	Prefrontal	areas,	in	particular	dorsolateral	prefrontal	cortex,	are	

part	of	the	SN	(Kucyi,	Hodaie,	&	Davis,	2012;	Seeley	et	al.,	2007).	An	over	activity	of	prefrontal	

cortex	 recorded	 in	patients	with	OFP	due	 to	TMD	may	be	 representative	of	 an	exaggerated	

engagement	of	SN	in	people	with	long	lasting	pain	and	a	general	tendency	to	focus	attention	

on	 external	 stimuli	 that	 could	 generate	 pain.	 Similar	 results	 about	 increased	 prefrontal	

gamma	activity	were	reported	in	chronic	back	pain	patients	(May	et	al.,	2019),	patients	with	

post-herpetic	neuralgia	and	 fibromyalgia	(Lim,	Kim,	Kim,	&	Chung,	2016;	Zhou	et	al.,	2018).	

Association	between	gamma	oscillations	and	involuntary	attentional	effects	of	pain	was	well	

described	in	literature	(Hansen	et	al.,	2017;	Hauck,	Lorenz,	&	Engel,	2007;	Schulz	et	al.,	2015;	

Tiemann,	 Schulz,	 Gross,	 &	 Ploner,	 2010),	 in	 addition	 to	 have	 great	 relevance	 in	 cortical	

networks	for	behavioural	and	cognitive	phenomena	(Uhlhaas	et	al.,	2009).		

Increased	 activity	 of	 primary	 motor	 cortex	 (M1)	 area	 in	 people	 with	 chronic	 pain	 was	

previously	 described	 in	 literature	 in	 different	 musculoskeletal	 conditions	 (Di	 Pietro	 et	 al.,	

2013;	 Schabrun,	 Elgueta-Cancino,	 &	 Hodges,	 2017;	 Schabrun,	 Hodges,	 Vicenzino,	 Jones,	 &	

Chipchase,	 2015;	 Te,	 Baptista,	 Chipchase,	 &	 Schabrun,	 2017).	 A	 recent	 systematic	 review	

found	 inconclusive	 results	 about	 abnormal	 M1	 activation	 in	 pain	 conditions	 due	 to	



heterogeneity	 of	 studies	 and	 assessment	 tools	 (Chang	 et	 al.,	 2018).	 Our	 results	 seem	 to	

underlie	 abnormal	 brain	 activity	 recorded	 by	 C3/C4	 electrodes	 just	 before	 the	 peripheral	

stimulus	 became	 painful.	 Movement	 disfunction	 like	 unnecessary	 protective	 behavior	 may	

justify	 our	 findings,	 when	 patient	 was	 undergone	 to	 stimulus	 perceived	 as	 threatening.		

Primary	motor	cortex	was	already	been	target	of	treatment	like	brain	stimulation	with	good	

results	on	pain	relief	(Fregni	et	al.,	2006;	Straudi	et	al.,	2018).	Abnormal	function	of	motor	and	

prefrontal	cortex	during	stimulus	perception	may	due	 to	neuroplastic	changes	 that	occur	 in	

human	brain	subjects	to	long	lasting	pain.	Neurophysiological	adaptations	occur	and	seem	to	

persist	over	peripheral	tissue	healing	time	in	presence	of	emotional	and	behavioral	aspects	of	

pain	 that	 cause	 maladaptive	 changes	 in	 areas	 not	 normally	 involved	 in	 pain	 perception	

(Mansour,	Farmer,	Baliki,	&	Apkarian,	2014).	Structural	changes,	as	well	as	 functional,	were	

described	 in	 frontal	 and	 motor	 areas	 of	 patients	 with	 chronic	 pain	 due	 to	 coxarthrosis	

(Rodriguez-Raecke,	Niemeier,	Ihle,	Ruether,	&	May,	2013).		

Interpretation	of	our	 findings	 is	 subject	 to	 several	 limitations.	Firstly,	 the	small	 sample	size	

does	not	allow	us	to	confirm	our	results	on	PPT	and	EEG	recordings.	Even	though	CS	may	be	

hypothesized	 looking	at	our	results,	we	cannot	draw	any	definite	conclusion	on	mechanism	

underlying	 sensitization	 of	 CNS.	 	 Secondly,	 interpretation	 of	 our	 results	must	 consider	 the	

inclusion	in	our	sample	of	fibromyalgia	patients	whose	sensitivity	to	pain	may	influence	their	

PPT.	

	

CONCLUSIONS	

In	a	convenience	sample	of	patients	with	OFP	due	to	TMD	we	observed	generalized	reduction	

in	 PPT	 compared	 to	 age-	 and	 sex-matched	 healthy	 controls,	 not	 limited	 to	 facial	 sites.	

Generalized	 decrease	 of	 pain	 threshold	 seems	 to	 be	 linked	 to	 severity	 of	 psychological	

symptoms	 like	depression	and	perceived	health-related	disability.	Abnormal	EEG	activity	 in	

central	areas	was	recorded	during	painful	stimulation	led	to	non-painful	sites	of	patients	with	

OFP	 due	 to	 TMD.	 This	 observational	 study	 tried	 to	 identify	 potential	 signs	 of	 CS	 through	

analysis	of	sensory	and	psychological	profile	and	brain	activity.	Our	results	can	open	doors	to	

new	strategy	for	assessment	and	treatment	of	patients	with	CS	due	to	chronic	pain	conditions.	
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DISCUSSION	

Chronic	 pain	 represents	 a	 disabling	 condition	 for	 many	 patients	 that	 daily	 come	 to	 our	 rehabilitation	

departments.	The	aim	of	this	PhD	project	was	to	identify	new	ways	of	assessment	and	treatment	for	patients	

suffering	from	long	lasting	pain	unresponsive	to	conventional	treatment.	In	the	first	research	project,	a	small	

case	series	on	patients	with	chronic	orofacial	pain,	we	proposed	tDCS	for	pain	relief.	NIBS	can	be	used	to	

modify	 neuroplastic	 changes	 occurring	 in	 people	 with	 chronic	 pain,	 trying	 to	 reverse	 maladaptive	

modifications	that	occur	in	CNS	when	pain	lasts	for	a	long	time	(146).	We	treated	with	tDCS	three	subjects	

with	orofacial	pain	due	to	TMDs	diagnosed	according	to	the	DC/TMD	Axis	 I.	What	we	found	is	that	tDCS	

seems	 to	 be	 effective	 in	 reducing	 pain	 and	 pain-related	 psychological	 symptoms	 in	 subjects	 with	 less	

musculoskeletal	 impairment.	Two	of	 three	subjects	revealed	reduction	 in	pain	 intensity	and	psychological	

distress.	The	third	shown	any	changes	after	treatment	and	at	one-month	follow-up.	The	subject	who	shown	

no	modification	was	the	one	with	more	severe	degenerative	 impairment.	What	we	can	speculate	 is	 that	

complex	pain	with	peripheral	engagement	and	sensitization	may	need	a	multifactorial	approach,	based	on	

bio-psycho-social	model.	Many	 authors	 reported	 the	 need	 to	 solve	 nociceptive	 peripheral	 trigger	 before	

working	on	sensitization	of	CNS	(22,152).		

Schabrum	et	al.	found	positive	results	on	pain	and	sensitization	symptoms	combining	tDCS	and	a	nociceptive	

treatment	like	peripheral	electrical	stimulation	in	people	with	CLBP	(153).	The	reduction	in	pain	severity	they	

recorded	 following	 combined	 treatment	 was	 greater	 in	 patients	 with	 more	 pronounced	 primary	 and	

secondary	hyperalgesia	(153).	We	can	assume	that	a	combined	treatment	including	top-down	and	bottom-

up	approach	can	be	useful	 in	 treatment	of	patients	with	chronic	pain	due	to	musculoskeletal	 trigger	and	

sensitization	of	the	CNS.		

The	above-mentioned	results	about	the	need	of	a	combined	treatment	in	complex	pain	were	confirmed	by	

the	second	research	project	presented	in	this	PhD	project.	In	a	double-blinded	randomized	control	trial	on	

patients	with	CLBP	we	found	that	combination	of	tDCS	and	group	exercise	was	effective	in	ameliorating	pain	

and	 psychological	 wellbeing	 with	 effects	 evident	 at	 one-month	 follow-up	 and	 during	 the	 behavioural	

intervention.	 In	CLBP	sensitization	phenomenon	are	frequently	recorded.	A	recent	meta-analysis	revealed	

that	reduced	pressure	pain	threshold	(PPT)	at	remote	body	parts	 in	people	with	CLBP	might	be	sign	of	a	

sensitized	CNS	(154).		What	we	found	is	that	adding	NIBS	to	behavioural	treatment	seems	to	increase	positive	

effects	of	rehabilitation,	especially	during	the	treatment	and	in	the	long	term.	Several	studies	tested	efficacy	

of	 combined	 treatment	on	pain	with	uncertain	 results	 (155,156).	 Probably	our	 finding	may	be	explained	

looking	at	tDCS	mechanisms	and	stimulation	protocol.	Stimulation	delivered	on	daily	sessions	seems	to	be	the	

better	choice	to	produce	the	greater	effect	(157).	Furthermore,	our	combination	of	treatment	seems	to	be	
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the	more	effective	in	producing	positive	outcomes.	In	our	study	we	proposed	a	behavioural	treatment	that	

engage	the	same	neural	area	that	we	stimulate,	the	primary	motor	cortex	(M1).	Indeed,	spatial	correlation	

between	 area	 of	 stimulation	 and	 behavioural	 task	 seems	 to	 be	 important	 to	 improve	 effects	 of	 both	

treatments.	Behavioural	 treatment	effect	on	action	potential	 induction	may	be	enhanced	by	 tDCS	only	 if	

temporal	and	spatial	correlations	are	respected.		

Another	crucial	point	of	discussion	 is	about	 the	stimulation	area.	Changes	 in	M1	were	recorded	 in	many	

studies	(158–160)	but	it’s	still	unclear	if	they	represent	an	adaptive	mechanism	to	protect	against	further	pain	

or	injury	rather	than	nociplastic	modifications	due	to	chronic	pain	itself	(161).	Recently,	a	systematic	review	by	

Chang	et	al.	investigated	M1	structural	and	functional	changes	in	people	with	chronic	pain	of	neuropathic	and	

non-neuropathic	origin	(162).	No	conclusive	results	were	found	about	role	of	M1	reorganization	in	chronic	

pain	conditions	and	larger	better	quality	studies	are	mandatory	to	inform	treatments	targeting	the	motor	

area	(162).	Also	assessment	techniques	like	EEG,	fMRI,	PET	or	neurophysiological	changes	need	to	be	further	

investigated	to	elucidate	their	role	in	M1	investigation	during	chronic	pain	conditions	(162).		

M1	activation	during	pain	assessment	was	one	of	our	main	finding	in	the	observational	study	we	proposed	on	

people	 with	 chronic	 pain	 due	 to	 TMDs.	 In	 the	 third	 research	 project	 presented	 in	 this	 PhD	 project	 we	

investigated	 features	of	pain	 in	people	with	 chronic	orofacial	 pain	 looking	 for	 signs	of	 CS.	 EEG	 recording	

performed	during	pain	threshold	assessment	in	a	peripheral	area	not	linked	to	TMJ	revealed	an	abnormal	M1	

activation	 in	 people	 with	 chronic	 pain	 when	 compared	 with	 healthy	 subjects.	 Specifically,	 we	 observed	

increased	 gamma	 activity	 in	 motor	 area	 just	 before	 the	 peripheral	 stimulus	 was	 perceived	 as	 painful.	

Increased	gamma	activity	may	indicate	increased	muscle	activity	during	pain	that	contaminates	EEG	signal	

during	 pain	 stimulation	 (163,164),	 but	 we	 didn’t	 record	 any	 muscular	 activity	 during	 pain	 threshold	

assessment.	Furthermore,	a	muscular	activation	would	be	highlighted	also	by	altered	EEG	signal	during	the	

recording.	M1	activation	wasn’t	our	only	finding;	we	recorded	also	prefrontal	increased	activity	during	painful	

stimulation.	Prefrontal	 areas,	 specifically	dorsolateral	prefrontal	 cortex,	belong	 to	 SN.	 The	SN	 is	 activated	

when	 an	 external	 stimulus	 captures	 attention	 (165–167).	 We	 can	 speculate	 that	 people	 suffering	 from	

chronic	pain	present	an	exaggerated	tendency	to	focus	attention	on	stimuli	that	can	be	perceived	as	painful.	

Activation	of	SN	has	been	recorded	in	other	painful	conditions	while	attending	to	painful	stimuli	(168–171),	in	

contrast	with	the	DMN	that	is	activated	when	subject	attention	is	not	engaged	by	sensations	from	external	

world	(172).	The	concept	that	chronic	pain	can	be	due	to	attentional	process	may	open	the	doors	to	new	way	

of	treatment	aimed	at	draw	attention	away	from	nociceptive	stimuli	or	stimuli	perceived	as	such.	The	same	

generalized	 reduction	 in	 pain	 threshold	 recorded	 in	 people	 with	 chronic	 orofacial	 pain	 may	 be	 due	 to	

exaggerated	attention	to	the	evaluation	process,	 in	expectation	of	a	nociceptive	stimulus.	Over	activation	
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recorded	in	brain	areas	of	people	with	chronic	pain	may	be	target	of	treatment,	helping	to	define	precisely	

CNS	areas	involved	in	sensitization	process.	

All	the	considerations	made	about	new	way	of	assessment	and	treatment	of	chronic	pain	can	contribute	to	

the	management	of	this	disabling	condition.	The	assessment	of	CNS	became	crucial	when	clinicians	have	to	

deal	 people	 with	 chronic	 pain,	 also	 when	 its	 onset	 and	 maintenance	 appears	 to	 be	 only	 due	 to	

musculoskeletal	conditions.		

In	the	next	future	we	would	like	to	confirm	our	considerations	about	EEG	biomarkers	in	chronic	pain	due	to	

different	causes,	not	limited	to	people	with	TMDs.	The	identification	of	defined	EEG	recording	related	to	long-

lasting	pain	may	open	the	doors	to	EEG-tDCS	closed	loop	system,	able	to	detect	the	predefined	EEG	pattern	

of	chronic	pain	and	successfully	trigger	the	stimulation.	This	process	should	permit	customized	treatments	on	

the	basis	of	brain	activity	recorded	on	the	patient.	

Finally,	 the	 identification	 of	 defined	 brain	 areas	 involved	 in	 chronicity	 and	 sensitization	 may	 justify	 the	

research	of	EEG	modifications	following	successful	treatments.	
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CONCLUSION	

Chronic	pain	is	a	disabling	condition,	frequently	associated	to	CS	mechanisms	that	promote	its	development	

and	maintenance.	NIBS	techniques	can	be	used	to	reverse	maladaptive	changes	that	occur	in	human	brain	

when	pain	lasts	for	a	long	time.	In	people	with	chronic	pain	due	to	TMDs	or	low	back	pain	tDCS	seems	to	be	

efficacy	on	symptoms	intensity	reduction	and	pain-related	quality	of	life	improvement.	tDCS	efficacy	may	be	

improved	combining	its	top-down	effects	with	a	bottom-up	approach,	like	physical	therapy	or	group	exercise	

treatment.	

Brain	 modifications	 due	 to	 chronic	 pain	 and	 presence	 of	 CS	 mechanisms	 can	 be	 assessed	 using	 EEG.	

Abnormal	EEG	activity	in	central	and	frontal	areas	during	pain	threshold	assessment	may	be	recorded	as	CS	

signs	in	people	with	chronic	pain.	

Interpretation	of	our	findings	needs	to	be	confirmed	by	further	studies	on	people	with	chronic	pain.	However,	

these	results	can	open	the	doors	to	new	strategy	for	assessment	and	treatment	of	patients	with	chronic	pain	

and	CS.	
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