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Abstract

The lack of power of large–angle CMB anisotropies is known to increase its

statistical significance at higher Galactic latitudes, where a string–inspired pre–

inflationary scale ∆ can also be detected. Considering the Planck 2015 data,

and relying largely on a Bayesian approach, we show that the effect is mostly

driven by the even–` harmonic multipoles with ` . 20, which appear sizably

suppressed in a way that is robust with respect to Galactic masking, along with

the corresponding detections of ∆. On the other hand, the first odd–` multipoles

are only suppressed at high Galactic latitudes. We investigate this behavior in

different sky masks, constraining ∆ through even and odd multipoles, and we

elaborate on possible implications. We include low–` polarization data which,

despite being noise–limited, help in attaining confidence levels of about 3 σ in

the detection of ∆. We also show by direct forecasts that a future all–sky E–

mode cosmic–variance–limited polarization survey may push the constraining

power for ∆ beyond 5 σ.
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1. Introduction

Cosmic Microwave Background (CMB) observations have been instrumental

in defining the ΛCDM concordance model, and have constrained its parame-

ters to the percent level or better [1]. Anomalies in CMB temperature maps,

however, have long surfaced, especially at large angular scales, with a typical

2 to 3 σ significance. Still, these anomalies are not a priori irrelevant in view

of their potential physical implications. The lack of angular correlation in the

CMB two–point function was originally noted in COBE data [2], and was later

confirmed in all WMAP [3, 4, 5, 6] and Planck releases [7, 8, 9]. The low–

variance anomaly [10, 11, 12] is a related observation, suggesting that the low–`

CMB anisotropy contains less power, with respect to smaller angular scales,

than ΛCDM would prefer. As pointed out by Copi et al. [13], if this behavior is

not a statistical fluke only a physical mechanism impacting the CMB up to last

scattering could explain it, while the integrated Sachs-Wolfe effect [14] would

not be able to screen it.

In [15, 16] we have searched, in Planck temperature (and polarization)

data, for signatures of modified primordial power spectra of the type

P (k) ∼ k3

[k2 + ∆2]
2− ns

2

. (1)

Here ∆ controls the transition from a large–scale depression to the usual Chibisov–

Mukhanov tilt [17] P (k) ∼ k ns− 1. Starting from the slow–roll Coulomb–barrier

Mukhanov–Sasaki potential [18] α/η2, where η denotes conformal time and

α = (ns − 3)(ns − 5)/4, the power spectrum of eq. (1) can be readily ob-

tained via a vertical shift into α/η2 − ∆2, which also models the sign change

accompanying transitions from fast–roll to slow–roll. A power cut is indeed the

main signature of an inflaton decelerating to slow-roll. It is also accompanied,

in general, by a peak and some nearby oscillations, whose positions and sizes

are however model dependent.
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String Theory [19] and Supergravity [20] may provide some clues on how

slow–roll started. In orientifold models [21] with “brane supersymmetry break-

ing” [22], vacuum effects force a scalar to climb up a steep exponential potential

as it emerges from the initial singularity, before attaining slow–roll in the en-

suing descent [23]. Up to the local features that we have just mentioned, this

dynamics gives rise to primordial power spectra exhibiting the cut of eq. (1),

which could account for the observed low–` depression of the CMB tempera-

ture angular power spectrum. This CMB anomaly might thus reflect an early

epoch of deceleration, in principle accessible in scenarios with relatively few

e–folds [24].

The string–inspired cosmology of [23] 1 (see [26] for reviews) motivated our

work in [15, 16], where we showed that at higher Galactic latitudes the detection

level of ∆ in Planck data improves, reaching up a 99.4% C.L. in a blind

30◦ extension of the standard mask (corresponding to an available sky fraction

fsky = 39%), where one finds

∆ = (0.35 ± 0.11) × 10−3 Mpc−1 (68% C.L.) . (2)

The lack–of–power anomaly was known to grow when the Galactic mask is

widened [12, 6], and ΛCDM extended with eq. (1) nicely captures this feature.

Sampling for ∆ while altering the Galactic mask does not affect significantly

the standard cosmological parameters, while ∆ increases from (0.17 ± 0.09) ×

10−3 Mpc−1 (68% C.L.) to the result in eq. (2) in going from fsky = 94% to

fsky = 39%. Still, the dependence on the sky fraction of ∆ – a parameter that

is potentially of cosmological origin – appears intriguing. This very fact has led

us to reconsider the issue from a different perspective, which is the purpose of

the present work.

We thus continue our investigation of latitude effects, relying on the 2015

low - ` Planck likelihood [27], which was already used in [16] and is publicly

1A number of scenarios leading to infrared cuts were explored over the years, see [25] for

a list of references.
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available from the Planck Legacy Archive 2. Our aim was initially a critical

assessment of the current overall setup, in order to try and highlight local fea-

tures that might or might not support further excisions near the Galactic plane,

or perhaps local improvements of the component separation algorithms, for the

sake of present and future observations. However, the scope of this inquiry has

broadened somewhat along the way.

In detail, we focus on ∆, both in view of its potential theoretical significance

and, more phenomenologically, as a proxy for two well–known CMB anomalies,

the lack of power and the even–odd asymmetry, and of their dependence on the

sky fraction. To this end, we consider the same set of masks used in [16], which

correspond to a sequence of blind extensions of the standard Commander [28, 29,

30] mask by six–degree steps 3, together with some additional “complementary”

masks that we created, in combination with (anti)symmetrized temperature

maps that disentangle the contributions of low–` even and odd multipoles.

We believe that our main result, the different behaviour of even and odd

multipoles, which was detected via different estimators, provides new insights

into the low–` tension between ΛCDM and the CMB. Moreover, we also confirm

that this tension, which is largely driven by the even multipoles, increases at

higher Galactic latitudes as described in [12, 6]. Initially we dwelled at length

on a possible origin of the phenomenon from spurious contaminations around

the Galactic plane, but the very behavior of even multipoles, which appear to

conform to an isotropic pattern, strengthens somewhat the case for a primordial

interpretation of ∆.

In [16] we also attempted to place joint constraints on ∆ and on a sec-

ond parameter, γ, which was originally introduced in [24]. A positive value of

2http://www.cosmos.esa.int/web/planck/pla
3Commander is one of four component separation algorithms used to analyze Planck data.

Although we focus on Commander, which is employed in the standard Planck likelihood, for

the sake of comparison, and in order to verify that our results are not unique to Commander,

we have also analyzed a subset of cases with the Smica CMB temperature map [30], with

consistent findings.
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γ would model a peak located at the transition to an almost scale–invariant

primordial power spectrum, albeit without nearby oscillations. We did find a

scant evidence for a positive γ, but adding a second free parameter, as expected,

weakened somewhat the detection level of ∆. Here we are thus restricting our

attention to ∆, which suffices to model the large–scale depression that a decel-

erating inflaton would introduce in primordial power spectra.

The future of CMB experimental observations lies in providing high–quality

cosmic–variance–limited polarization data. The main drive for this effort is at

present the quest for B–modes. One of the purposes of this work is to stress

that even high–quality E–mode polarization data, if fully exploited, can have far

reaching implications. As we shall see, they can shed light on CMB anomalies,

and thus potentially on the onset of inflation, via better determinations of the

parameter ∆ that is the main focus of this work.

The paper is organized as follows. In Section 2 we describe the adopted

estimators, the tools used in the analysis, the datasets considered and the cor-

responding simulations. In Section 3 we describe our results for the cosmological

parameters, paying special attention to ∆ and to its connection with the even–

odd asymmetry. We also report on our analysis for the three estimators of

Section 2 and explore the constraining power of future all–sky polarization sur-

veys. Finally, Section 4 collects some general considerations on this work and

on its relation to future measurements, whose highlights are briefly summarized

in Section 5.

2. Dataset and simulations

Our analysis rests largely on the latest public Planck satellite CMB temper-

ature data (2015 release) for ` < 30 and on a sequence of blind extensions of

the standard Planck mask, together with some complements, whose features

are summarized in table 1. It is worth stressing here that the Planck temper-

ature measurements have already reached the cosmic variance limit, surely in

the low–multipole range ` < 30 that is central to this work.

5



Table 1: The masks that we have used, with the notation that identifies them.

Here fsky denotes the sky fraction available for the analysis of the even+odd TT

contributions, while f±sky denote the corresponding fractions available after parity

(anti)symmetrization of the maps. The sky fractions of the last two columns refer

to the same low–` polarization mask, which relies on both Planck and WMAP9

data, as described in Section 2.

Case Label fsky f±sky fPolsky fPol,±sky

a Standard 93.6 90.7 73.9 65.3

b Ext06 83.8 83.0 73.9 65.3

c Ext12 70.8 70.6 73.9 65.3

d Ext18 59.1 59.1 73.9 65.3

e Ext24 48.7 48.7 73.9 65.3

f Ext30 39.4 39.4 73.9 65.3

g Ext36 30.9 30.9 73.9 65.3

h Compl18 34.5 31.6 73.9 65.3

i Compl24 44.9 42.0 73.9 65.3

j Compl30 54.2 51.3 73.9 65.3

k Compl36 62.7 59.8 73.9 65.3
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The first row refers to the standard fsky = 93.6% mask provided by Planck,

rows b− g refer to masks obtained via blind extensions of the standard one by

6◦ steps, as in [16], and finally rows h − k refer to masks obtained adjoining

to the standard one in a the complements of those in d − g. Notice that the

(anti)symmetrization of maps reduces the sky fraction at the expense of regions

close to the Galactic plane. Notice also that the polarization maps used were

obtained combining WMAP9 and Planck data, as in [31], thus improving the

signal–to–noise ratio while also extending the corresponding sky fractions. In

the following, we shall refer to this combination as PlanckLFI+WMAP, and

to the corresponding mask as the “union” mask 4.

In order to highlight the nature of these choices, fig. 1 displays the visible

sky for the standard Commander mask in a, the visible sky for its blind extension

in f that resulted in the most significant determination of ∆ in [16], and the

complementary sky in j.

We have used the Planck temperature CMB map provided by the Commander

algorithm, which enters the temperature sector of the low-` Planck likeli-

hood [27]. This was smoothed at 440′ and was downsampled at HEALPix5

[32] resolution Nside = 16. A Gaussian white noise realization with σ = 2µK

was added to that map, spawning a noise covariance matrix N with elements

Nij ≡ σ2δij .

We proceeded along two different lines. We first performed Bayesian param-

eter estimation, both in the standard ΛCDM model and in its one–parameter

extension, which we denote ΛCDM∆. This also allowed to obtain Bayesian

estimates of a few quantities that characterize large–scale anomalies:

• S 1
2
, defined as [33]

S 1
2

=

∫ π

π/3

dθ C(θ)2 sin θ , (3)

4We do not widen polarization masks, since current polarization data are already largely

noise limited.
5http://healpix.sourceforge.net/
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which is a standard tool to quantify the lack of correlation in the two–point

function C(θ) for temperature CMB anisotropies, where

C(θ) ≡
`max∑
`=2

(
2`+ 1

4π

)
P`(cos θ) CTT

` . (4)

Here `max (=29 in our analysis) is the highest multipole considered, the

P` are Legendre polynomials and the CTT
` are temperature angular power

spectrum coefficients. In practice, S 1
2

quantifies the distance between

C(θ) and the null function, within the range 60◦ < θ < 180◦, and can be

rewritten as [34]

S 1
2

=
∑
`,`′

CTT
` I``′ CTT

`′ , (5)

with

I``′ =
(2`+ 1)(2`′ + 1)

(4π)2

∫ 1/2

−1
dx P`(x)P`′(x) ; (6)

• the variance, used in [10, 11, 12],

V (`max) ≡ C(0) =

`max∑
`=2

(
2`+ 1

4π

)
CTT
` , (7)

which defines the auto-correlation function up to `max;

• the even-odd asymmetry [35, 36, 37, 38, 7], defined as

R(`max) =
C+ (`max)

C− (`max)
, (8)

where

C± (`max) =
1

N±

`max∑
`=2

1 ± (−1)`

2

`(`+ 1)

2π
CTT
` , (9)

and

N+ =

[
`max

2

]
, N− =

[
`max − 1

2

]
, (10)

with square brackets denoting integer parts. The quantity R in eq. (8)

compares the total amounts of power carried by even and odd multipoles,

up to `max.
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In addition to the standard Commander temperature anisotropy map m, we

also considered its point–parity even and odd projections m±, which discretize(
δT

T
(n̂)

)
±
≡ 1

2

[
δT

T
(n̂) ± δT

T
(−n̂)

]
, (11)

where n̂ identifies the direction corresponding to a given pixel. The resulting

full–sky maps are displayed fig. 2.

For given theoretical CTT
` , the likelihood function of the temperature map

is, up to a normalization

L
(
m|CTT

`

)
∝ 1

|CTT|1/2
exp

(
−

mt
(
CTT

)−1
m

2

)
. (12)

Here CTT = STT +NTT is the total temperature covariance matrix, including

a signal matrix STT, with elements

STT
ij =

4Nside∑
`=2

2`+ 1

4π
CTT
` P`(n̂i · n̂j) , (13)

where n̂i and n̂j identify the directions pointing to pixels i and j and the C` for

` > 29 are fixed to fiducial values. Given that signal and noise in the original

map are both Gaussian distributed, the even- and odd-parity maps are still

Gaussian, and the corresponding likelihood functions are

L(m±|CTT
` ) ∝ 1

|C TT
± |1/2

exp

(
−

mt
±
(
CTT
±
)−1

m±

2

)
, (14)

where C TT
± ≡ S TT

± +N TT
± . Here

S TT
±, ij =

4Nside∑
`=2

2`+ 1

4π
CTT
` P`(n̂i · n̂j)

1± (−1)`

2
, (15)

N TT
±, ij =

1

2
σ2
[
δij ± δipj

]
+ σ̃2δij , (16)

where the first result follows from the behavior under parity of the Legendre

polynomials, and where pj identifies the index labeling the direction opposite to

pixel j. The reader should notice the addition of a (small) diagonal second noise

term: 6 it regularizes the covariance matrix, which would be singular otherwise,

6We chose σ̃2 = 0.01µK2.
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since for technical reasons we found it convenient to work with the full datasets

even in the presence of (anti)symmetrizations. Note also how eq. (15) implies

that the temperature likelihood of the parity even (odd) map only depends on

the even (odd) theoretical CTT
` ’s.

As explained in [39], taking into account the polarization brings along the

other non–vanishing correlators 〈T Q〉, 〈U U〉 and 〈QQ〉. This entails some

complications, but it is important to explain how the even–odd separation works

in this case, also in view of the forecasts of Section 3.4. The corresponding

(anti)symmetrizations lead to

〈T± (n̂) Q± (n̂′)〉 = −
∑
`

(2`+ 1)

4π

1± (−1)`

2
F 10
` (z) CTE

` ,

〈Q± (n̂) Q± (n̂′)〉 =
∑
`

(2`+ 1)

4π

[
1± (−1)`

2
F 12
` (z) CEE

`

− 1∓ (−1)`

2
F 22
` (z) CBB

`

]
,

〈U± (n̂) U± (n̂′)〉 =
∑
`

(2`+ 1)

4π

[
1∓ (−1)`

2
F 12
` (z) CBB

`

− 1± (−1)`

2
F 22
` (z) CEE

`

]
, (17)

which enter the complete signal covariance matrix, and where

U± (n̂) =
1

2
[U (n̂) ∓ U (− n̂)] ,

Q± (n̂) =
1

2
[Q (n̂) ±Q (− n̂)] , (18)

together with corresponding combinations for the noise. These results follow

from the parity relations

Q (n̂) + i U (n̂) −→ Q (− n̂) − i U (− n̂) (19)

and from the symmetry properties

F 10
` (−z) = (−1)

`
F 10
` (z) ,

F 12
` (−z) = (−1)

`
F 12
` (z) ,

F 22
` (−z) = (−1)

`+1
F 22
` (z) , (20)
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with z = n̂ · n̂′, which are listed in the Appendix of [39]. Notice that the

correlation functions in eq. (17) are adapted to frames aligned to the maximal

circles joining the points identified by n̂ and n̂′. The actual results in standard

frames with one axis aligned with the Galactic plane can then be obtained

making use of the rotation matrices in [39].

We derived parameter estimates using the Monte Carlo engine CosmoMC [40],

interfaced with a modified version of the Boltzmann code camb [41], and with a

pixel-based low-` (` < 30) likelihood code implementing eqs. (12) and (14) or,

more precisely, their versions extended to include polarization. We also included

information from the high-` (` ≥ 30) temperature power spectrum and from

the lensing potential from Planck, processed through the publicly available

likelihood released by the Planck collaboration [27]. Notice that, since the

preceding analysis of [15, 16] resulted in the determination of ∆ in eq. (2),

which only impacts very large scales, we refrain from (anti)symmetrizing the

high–` likelihood in this analysis.

We also performed a complementary frequentist analysis, in order to high-

light the tension between data and the predictions of ΛCDM. To this end, we

simulated 10000 CMB-plus-noise maps, extracting their signal contributions

from the Planck fiducial ΛCDM angular power spectrum. We analyzed these

maps and the observed Commander map with an optimal angular power spec-

trum estimator, BolPol [42], for the whole sequence of masks. With the resulting

spectra, we built the estimators of eqs. (3) and (7), and the joint probability

P [C+(`max), C−(`max)], where the C± are defined in eq. (9), automatically

accounting for cosmic variance and for the increase of sampling variance that

accompanies reduced sky fractions.

3. Results

We can now turn to a description of our results. We first present the con-

straints on the cutoff scale ∆ and the standard ΛCDM parameters and then turn

to the three estimators of Section 2. We conclude our discussion with a frequen-
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tist assessment of the tension between low–` data and ΛCDM, paying special

attention to disentangling the contributions of even and odd multipoles, and

with some forecasts for future experiments aimed at high–quality polarization

data.

3.1. Constraints on ∆

In this section we provide the posterior distributions for the scale ∆ of eq. (1)

and the six ΛCDM parameters, namely the angle θs subtended by the sound

horizon at recombination, the baryon density Ωbh
2, the cold dark matter density

Ωch
2, the logarithmic amplitude log(1010As), the spectral index ns and the re-

ionization optical depth τ .

As explained in Section 2, for all masks listed in table 1, we derived our

constraints also considering the low-` likelihood (` ≤ 29) based on the full

(even plus odd) spectrum. In detail, we resorted to the extensions of eqs. (12)

and (13) that include polarization and to their counterparts corresponding to

eqs. (14), (15) and (16), which only involve even or odd multipoles. Our results

are collected in table 2, where we denote with ∆ the estimates derived from the

“even + odd” dataset and with ∆+ (∆−) those derived from its “even” (“odd”)

subsets. We shall stick to this notation also in the following.

Fig. 3 collects the estimates for the parameter ∆ obtained considering the

standard and extended masks of cases a–g in table 1. We use blue circles when

we employ m (“even + odd” multipoles), orange squares when we employ m+

(“even” multipoles), and finally green triangles when we employ m− (“odd”

multipoles).

Notice that:

• ∆ shifts toward higher values at higher Galactic latitudes, attaining a

maximum statistical significance in the Ext30 mask, as already found in

our previous work [16];

• the mean value of ∆+ is always larger than the mean value of ∆−, with

only one exception, in the Ext36 mask. Moreover, ∆+ is statistically larger

12



Table 2: Constraints on the scale ∆ for the various masks in table 1 that were used

in our analysis. ∆, ∆+ and ∆− refer to estimates from the “even+odd”, “even”, and

“odd” datasets. When the estimate of ∆ differs from zero at more than 95% confidence

level, we report it in the form of mean ± 68% uncertainty; otherwise, we only report

the 95% upper limit.

Case Label 103∆ [Mpc−1] 103∆+ [Mpc−1] 103∆− [Mpc−1]

a Standard < 0.31 0.31+0.13
−0.11 < 0.26

b Ext06 < 0.32 0.32+0.13
−0.12 < 0.26

c Ext12 0.22+0.10
−0.09 0.36+0.13

−0.12 < 0.30

d Ext18 0.28+0.11
−0.09 0.38± 0.13 < 0.33

e Ext24 0.33± 0.10 0.39+0.15
−0.14 < 0.41

f Ext30 0.36+0.11
−0.10 0.36+0.16

−0.14 < 0.52

g Ext36 0.33± 0.13 0.32± 0.15 0.34+0.17
−0.15

h Compl18 < 0.29 < 0.48 < 0.22

i Compl24 < 0.29 < 0.46 < 0.22

j Compl30 < 0.30 0.27+0.13
−0.12 < 0.24

k Compl36 < 0.28 0.28+0.13
−0.12 < 0.23
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than zero at more than 2σ in all masks, while ∆− is always statistically

compatible with zero within 2σ, with one exception in the Ext36 mask.

All in all, the even multipoles drive the detection of ∆ in [16] in a way

that is largely independent of the mask;

• more in detail, ∆− is statistically compatible with zero within 1σ in all

masks from a to d, and then increases monotonically. On the other hand,

∆+ increases slightly up to the e mask, to then decrease slightly in the f

and g masks.

Fig. 4 compares the estimates for ∆ obtained in the complementary masks

h–k of table 1. The reader should appreciate the striking stability of these

results, which conforms to the pattern that already emerged: even multipoles

contain typically less power than odd ones.

∆+ and ∆− can be used to trace the even-odd asymmetry, which we char-

acterize via
∆+ −∆−√
σ2
+ + σ2

−

, (21)

with σ+ (σ−) the standard deviation of ∆+ (∆−). This quantity, shown in

fig. 5, is close to the 2σ level up to the Ext24 mask, and then decreases below

the 1σ level in the Ext30 and Ext36 masks.

Figs. 6 and 7 illustrate the behaviour of the six ΛCDM parameters for three

significant mask choices (a and f of table 1). Each figure contains 6 posteri-

ors for each parameter with the usual color code: blue, orange and green refer

to even+odd, even and odd contributions for the low-` likelihood. Moreover,

dashed lines refer to ΛCDM, while solid ones refer to ΛCDM∆. In general, the

introduction of ∆, which captures the lack of power, tends to improve the sta-

bility of the other parameters. The continuous lines, which reflect “even+odd”,

“even” and “odd” contributions, are indeed largely superposed in all cases. On

the other hand, the green dashed lines, which reflect odd multipoles in ΛCDM,

are very close to the solid ones in figs. 6 and move only slightly in fig. 7. Finally,

∆ brings along slight shifts of ns and As, consistently with its role in accounting
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for the low-` lack of power.

As shown in [15, 16], the introduction of the parameter ∆ impacts only

the lowest multipoles. In order to highlight this feature, in fig. 8 we have dis-

played 2D contour plots of ∆ vs the band powers D` = `(`+1)
2π C`, for ` =

2, 5, 8, 11, 14, 17 and 20. There is clearly a high degree of anti-correlation be-

tween ∆ and D` for the lowest multipoles, which fades out for higher values of

`. The separation between the two regimes occurs for ` ∼ 14 in the standard

mask, and for ` ∼ 18 in the Ext30 mask. Beyond these thresholds, the values

of D` become very weakly sensitive to ∆. These results are nicely compatible

with what found in fig. 5 of [16].

Similarly, figs. 9 and 10 show the 2D contour plots of ∆ vs D` obtained

taking into account only the “even” or “odd” parts of the likelihood function.

Notice that the level of anti-correlation of these cases is similar to what already

found in fig. 8. Moreover, consistently with our previous findings, one can see

again that the “even” part pushes ∆ towards larger values, making it more

significantly different from zero. On the other hand, the “odd” part tends to

make ∆ more compatible with zero, although the significance of its detection

increases somewhat in wider masks.

The upper panel in fig. 11 displays the fiducial models obtained with com-

plete ` < 30 datasets corresponding to the Standard mask, to the Ext24 mask

and to the Ext30 mask. The middle panel compares the fiducial models obtained

for the Ext24 mask using even, odd and even+odd datasets for ` < 30. Finally,

the lower panel compares the fiducial models obtained for the Ext30 mask using

even, odd and even+odd datasets for ` < 30.

Tables 3 and 4 contain the results of the Akaike tests, obtained computing

AIC = 2 k − 2 logLmax , (22)

where k is the number of parameters used in the fit to obtain the maximum

likelihood Lmax, and the corresponding probabilities P for the two models at

stake, ΛCDM and ΛCDM∆. Consistently with our other results here and in

[15, 16], notice the preference, within ΛCDM∆, for the Ext30 mask in the full
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Table 3: Akaike tests for the extended masks in table 1 and corresponding probabilities

P for the two models that we are considering (ΛCDM and ΛCDM∆). Here δAIC =

AICΛCDM − AICΛCDM∆.

Case Label dataset δAIC P (ΛCDM) P (ΛCDM∆)

a Standard full −0.680 0.584 0.416

a Standard even 1.908 0.278 0.722

a Standard odd −0.630 0.578 0.422

b Ext06 full −1.172 0.642 0.358

b Ext06 even 3.848 0.127 0.873

b Ext06 odd −2.522 0.779 0.221

c Ext12 full 0.540 0.433 0.567

c Ext12 even 3.752 0.133 0.867

c Ext12 odd −2.802 0.802 0.198

d Ext18 full 3.020 0.181 0.819

d Ext18 even 4.289 0.105 0.895

d Ext18 odd −2.373 0.766 0.234

e Ext24 full 2.418 0.230 0.770

e Ext24 even 3.359 0.157 0.843

e Ext24 odd −2.199 0.750 0.250

f Ext30 full 4.750 0.085 0.915

f Ext30 even 1.205 0.354 0.646

f Ext30 odd −0.657 0.581 0.419

g Ext36 full 2.156 0.254 0.746

g Ext36 even 1.103 0.366 0.634

g Ext36 odd −0.286 0.536 0.464
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Table 4: Akaike tests for the complementary masks in table 1 and corresponding prob-

abilities P for the two models that we are considering (ΛCDM and ΛCDM∆). Here

δAIC = AICΛCDM − AICΛCDM∆.

Case Label dataset δAIC P (ΛCDM) P (ΛCDM∆)

h Compl18 full −1.408 0.669 0.331

h Compl18 even 0.725 0.410 0.590

h Compl18 odd −1.376 0.666 0.334

i Compl24 full −0.294 0.537 0.463

i Compl24 even −0.433 0.554 0.446

i Compl24 odd −3.203 0.832 0.168

j Compl30 full −0.290 0.536 0.464

j Compl30 even 0.540 0.433 0.567

j Compl30 odd −2.930 0.812 0.188

k Compl36 full −2.436 0.772 0.228

k Compl36 even 2.462 0.226 0.774

k Compl36 odd −2.497 0.777 0.223
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case and for the Ext18 mask in the even case. When only odd multipoles are

considered, ΛCDM is preferred in almost all cases.

Tables 5 and 6 collect the detection levels of ∆ for all the extended and

complementary masks that we considered, whose properties are summarized in

table 1. Fig. 12 displays the results in the last column of table 5.

One may wonder about the relevance of accounting for low–` polarization,

especially in view of its low signal–to–noise level in both WMAP and Planck

data. In order to address this question, we repeated our analysis relying only

on temperature data and assuming a Gaussian prior for τ = 0.070 ± 0.015.

Notice, in fact, that τ , As and ∆ all impact on large–scale power. In particular,

the posteriors for As and τ tend to shift when ∆ is sampled, in ways that

are more sensitive to temperature for the former and to polarization for the

latter. It is thus preferable to use low–` polarization and let the data adjust

parameters accordingly. In the presence of a τ prior, instead, the data are

bound to accept it, and consequently both ∆ and As shift a bit. The (As, τ,∆)

correlation pattern is manifest in the three panels of fig. 13. With a τ prior the

detection level of ∆ in the Ext24 mask would become slightly higher than in

Ext30 mask, which was instead favoured by the complete analysis in [16], and is

favoured again here, where we resort to the joint PlanckLFI+WMAP dataset

in polarization, following [31]. A similar argument would apply if one left out

the lensing likelihood, which impacts on As, and hence on τ and ∆. For this

reason, we preferred to feed both low–` polarization and lensing information in

our analysis.

At any rate, had we only relied on priors, our results would have been af-

fected only slightly, and our conclusions would have been essentially the same 7.

7The Planck collaboration published [43] the estimate τ = 0.055± 0.009, which is signifi-

cantly smaller than what the Planck (and WMAP9) publicly available polarization likelihood,

which we use, would imply. In order to check that this lower value of τ does not affect our

conclusions, we also performed an analysis using only the temperature portion of the likeli-

hood of eqs. (12) and (13), along with a τ prior derived from the above estimate. This choice

has again no appreciable effects on our conclusions.
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Table 5: Detection levels of ∆ for the extended masks of Table 1. There are a few

differences with respect to [16] since here we rely, for the low-` polarization, on the

joint PlanckLFI+WMAP dataset described in [31]. Some determinations improved

slightly, along the lines of what we shall discuss in Section 3.4, due to the larger sky

fraction thus available in polarization.

Case Label dataset Detection Level (%) Detection Level (σ)

a Standard full 93.26 1.83

a Standard even 98.59 2.46

a Standard odd 52.52 0.72

b Ext06 full 92.30 1.77

b Ext06 even 98.65 2.47

b Ext06 odd 41.03 0.54

c Ext12 full 96.41 2.10

c Ext12 even 99.39 2.74

c Ext12 odd 18.93 0.24

d Ext18 full 99.15 2.63

d Ext18 even 99.23 2.67

d Ext18 odd 69.80 1.03

e Ext24 full 99.32 2.71

e Ext24 even 99.05 2.59

e Ext24 odd 81.57 1.33

f Ext30 full 99.84 3.16

f Ext30 even 98.47 2.43

f Ext30 odd 94.37 1.91

g Ext36 full 98.60 2.46

g Ext36 even 96.27 2.08

g Ext36 odd 96.60 2.12
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Table 6: Detection levels of ∆ for the complementary masks of Table 1.

Case Label dataset Detection Level (%) Detection Level (σ)

h Compl18 full 80.29 1.29

h Compl18 even 94.70 1.94

h Compl18 odd 9.36 0.12

i Compl24 full 78.54 1.24

i Compl24 even 94.43 1.91

i Compl24 odd 24.70 0.32

j Compl30 full 86.96 1.51

j Compl30 even 96.28 2.08

j Compl30 odd 0.00 0

k Compl36 full 82.46 1.36

k Compl36 even 97.41 2.23

k Compl36 odd 0.00 0

It is however remarkable how low–` polarization has noticeable effects on the

detection of ∆, even with the present–day low signal–to–noise ratio. The con-

straining power of the higher–quality polarization data awaited from the next

generation of experiments [44, 45, 46], in general and on ∆ in particular, remains

to be ascertained, but it is potentially appealing, as we shall see shortly.

3.2. Bayesian constraints on S 1
2
, V and R

For each mask in table 1 we have built the posterior distribution functions

of the estimators S 1
2
, V and R defined in Section 2, considering “even+odd”,

“even” and “odd” contributions.

The posteriors of S 1
2

are collected in fig. 14, where the first column refers to

ΛCDM while the second refers to ΛCDM∆. In both cases, the upper panels are

for “even+odd”, the middle ones are for “even” and the lower ones are for “odd”.

While the posteriors in the first column are quite stably centered at about

38000µK4, the others display a richer behaviour, with a second peak around
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6000µK4 that becomes readily dominant for wider masks. Consistently with

our preceding findings, the “odd” part is more resilient to converging toward

the lower peak. The same pattern presents itself for the other two estimators V

and R, and the corresponding plots are collected in figs. 15 and 16.

3.3. Comments on the frequentist approach

In principle, one can also build the preceding estimators via a frequentist

approach, in order to test the ΛCDM model. In this case, however, wider masks

and the corresponding increased sampling variance bring along negative values

for some C TT
` ’s. This is particularly unpleasant for the ratio R of eq. (8), and

all in all this approach is less suitable for our purposes. Consequently, as an

example we show in fig. 17 the 2D contour plot of C+ vs C− for the mask Ext18.

The black dot identifies the expected values for C+ and C− in a fiducial ΛCDM

model, while the red one identifies the observed values. Moreover, the contours

identify the levels at 1, 2 and 3 σ for the empirical distribution expected in

ΛCDM. The resulting information is along the lines of what we already said:

the “even” contribution lies well below ΛCDM, while the “odd” one is largely

compatible with it.

3.4. Forecasts for future experiments

Several projects for all-sky future experiments are currently under develop-

ment, as the JAXA-led LiteBIRD [44], or are being proposed, as the European

CORE [47]. Their observations should provide cosmic–variance–limited mea-

surements of the CMB E-mode polarization field, at least in the low-` region.

In order to explore the prospects that they offer for better determinations of

∆, or for ruling it out altogether, we model their expected polarization maps

adding only a diagonal regularization noise contribution of 0.01 µK2 in both Q

and U to a pixel windowed, Nside = 16 CMB field. The latter is a realization of

a fiducial cosmological model8 with ∆ = 0.37×10−3 Mpc−1. This treatment as-

sumes ideal component separation and negligible systematic effects at the level

8In particular, we take as our fiducial the best-fit model obtained in the Ext30 mask.
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of E-modes, a goal that lies within reach for the next generation space–borne

experimental efforts [44, 47, 48, 49].

Our results are presented in fig. 18, where we collect some forecasts for the

detection levels of ∆ within the setup just discussed. All results are obtained

from simulated low–` datasets that share the same underlying CMB realization,

but are associated to different noise levels and different maskings. These simu-

lated low-` datasets are combined with the actual high-` and lensing Planck

data. To begin with, the gray curve refers to a dataset with the same noise

properties as real data, but using the standard and union masks in temperature

and polarization, which could result in a detection level of ∆ of about 3.5 σ.

On the other hand an ideal experiment with the same masking, but measur-

ing the large–scale polarization down to the cosmic variance limit could raise

the detection level for ∆ up to about 6σ (orange curve). Finally, the same

cosmic-variance limited data, analyzed through the standard Planck mask in

temperature and with no masking in polarization could result in detection levels

even slightly beyond 6σ (blue curve).

4. Final remarks

We have presented new evidence that some statistical properties of the CMB

anisotropy depend sizeably on the Galactic latitude. To begin with, we have

confirmed that at higher latitudes the observed lack of power is more pronounced

than in standard masking. We have characterised this feature via the primordial

power spectra

P (k) ∼ k3

[k2 + ∆2]
2− ns

2

, (23)

which approach P (k) ∼ kns−1 for large values of k, and where the scale ∆

accounts for the low-` lack of power. Its determination translates, as in [16], in

departures from ΛCDM that depend on Galactic masking, and become sizeable

below ` ∼ 7 for the standard mask and below ` ∼ 15 for the extended mask Ext30

of table 1. Moreover, we have discovered that the latitude dependence is largely

due to the odd multipoles, which contain more power around the Galactic plane
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than away from it. On the other hand, the even multipoles appear relatively

stable in this respect, and lead to a determination of ∆ that is essentially latitude

independent, consistently with its possible cosmological origin. This behavior

translates into an even–odd asymmetry that is largely concentrated around the

Galactic plane.

One cannot exclude that low–` anomalies be a statistical fluke at the 3–σ

level. The even–odd differences that we are highlighting could also be induced

by unidentified systematic contaminations at very large scales that fade out as

one moves away from the Galactic plane. However, it seems difficult to envis-

age systematic effects that could impart an even-odd asymmetry on the CMB

sky. For instance, standard diffuse Galactic emissions are typically symmetric

with respect to the Galactic plane, and ought to enhance even multipoles with

respect to odd ones (see eq. (4)), a behaviour that is opposite to what we are de-

tecting. In other words, if this signature were due to unaccounted foregrounds,

these ought to be distributed antisymmetrically, in particular with respect to

antipodal points around the Galactic plane. Residuals of unaccounted asym-

metric foregrounds, however, are not the only candidates for such an even-odd

pattern, which might also originate from systematic effects of instrumental ori-

gin, or from a tricky combination of both. The fact that WMAP and Planck

observe consistent large–angle CMB temperature patterns, however, restricts

the possibilities for anomalies of purely instrumental origin to features shared

by the two experiments. This still leaves room, say, for calibration issues that

insist on the CMB dipole.

These investigations were inspired by pre-inflationary scenarios that occur in

String Theory, where the inflaton decelerates to slow-roll after bouncing against

a steep exponential potential. The transition to slow-roll introduces a univer-

sal k3 – cut at low frequencies in primordial power spectra, which is captured

by eq. (23). The cut is generally accompanied by a narrow peak and a few

oscillations, whose detailed features are model dependent. In [16] we found at

most a scant evidence for a peak located at the transition: these local effects,

if they are there, appear currently beyond reach. Still, the oscillations would
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be a natural origin of the even–odd asymmetry. At any rate, relics of the ap-

proach to slow–roll would open up an enticing window on the earliest stages of

inflation, when sizable primordial inhomogeneities were possibly around. Or,

perhaps less enticingly, the power depression might be revealing local features

of the potential that were experienced by the inflaton at a later epoch.

Pre-inflationary scenarios involving a decelerating inflaton, and in particular

the string–inspired ones of [23]–[26], would have another signature that is po-

tentially interesting: larger values of the tensor-to-scalar ratio r should present

themselves in the low-` region (` . 20, according to the typical values of ∆ iden-

tified in [16] or here), where however the amplitudes of both scalar and tensor

perturbations would be somewhat reduced. For instance, in [24] we showed that

when an inflaton approaches slow–roll in an exponential potential, r is larger

than its limiting value, and we found numerically a similar behavior in other

models. These include a canonically normalized inflaton field in Starobinsky

potentials [18], with also an exponential wall contribution that is “critical” in

the sense of [23]. An example where the inflaton experiences a mild bounce on

a “critical” exponential [24] is displayed in fig. 19. Even ignoring the peak in

the scalar spectrum, which is not modelled by eq. (23), here r can grow by a

factor 5 within a decade that, with a short inflation, could correspond to the

first few multipoles, while accounting somehow for a peak structure the growth

would enhance to a factor of about 7. Moreover, larger values of r at low ` are

favoured if the deceleration occurs in steeper regions of the potential. All in

all, an enhancement of r by about one order of magnitude in the low–multipole

region ` . 20 appears conceivable for this type of dynamics: it would allow

tensor-to–scalar ratios r ∼ 3× 10−2 at large scales even in the Starobinsky–like

scenarios that are favoured by Planck data. Alternatively, an enhancement

mechanism of this type could help one place tighter constraints on inflationary

scenarios than what was achieved so far by Planck.

The enhancement of r is potentially interesting, together with the corre-

sponding high tilt at low `, as in fig. 19. Regardless of any specific scenario,

B–mode detection is a long–awaited result, because it would determine the in-
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flationary scale, but above and beyond all this, because it would also provide

some clear, if indirect, evidence for Quantum Gravity. Its effects on interac-

tions are extremely feeble at accessible energies, but its zero–point fluctuations,

classicalized by inflation according to [17], ought to be imprinted on the CMB

sky. All in all, a properly enhanced r for values of k ∼ ∆ ∼ 0.35× 10−3Mpc−1

might bring B–mode detection within the reach of planned sub–orbital probes

aiming at the CMB re–ionization bump, including the Italian LSPE [45] and the

CLASS [46] telescope array, and of the aforementioned satellites LiteBIRD [44]

and CORE [47]. In this respect, we have also shown how the high–quality low–`

polarization data expected from these future surveys may help to improve the

determination of ∆ up to the 6 σ level.

Independently of its dynamical origin, a primordial power spectrum modi-

fied along the lines of eq. (23) would also have important consequences for very

large galaxy clusters (see, for instance, [50]), whose distribution ought to drop

at distance scales corresponding to ∆. If further studies of systematics of astro-

physical or instrumental origin will lend support to our findings, the results of

[15] and [16], obtained largely from high–latitude Galactic regions, will deserve

more attention.

5. Conclusions

Let us conclude with a brief summary of the main points touched upon in

the preceding sections, which rest largely on a Bayesian approach:

• the even low–` CMB multipoles are largely suppressed with respect to

their predicted values in ΛCDM, in a way that does not depend sizably

on the choice of Galactic masking, and thus on the portion of sky under

scrutiny. This is confirmed by an analysis that rests on several estimators

defined in Section 3.2, and reflects itself in detection levels of ∆ via even

multipoles alone that are essentially independent of Galactic masking;

• the odd low–` CMB multipoles are not suppressed, up to a slight decrease

at high Galactic latitudes;
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• the combined behavior of even and odd low–` CMB multipoles reflects

itself in determinations of the cutoff scale ∆ of eq. (23) that improve

at higher latitudes, reaching the 3–σ level in a blind +30◦ extension of

the standard Planck mask (the slight improvement with respect to [15,

16] is due to a different treatment of low–` polarization data, obtained

following [31]);

• String Theory and Supergravity can associate to these results enticing

scenarios: ∆ might be a relic of a deceleration that resulted in the onset

of the inflationary phase, some glimpses of which could be accessible to

us with a small–enough number of e–folds. If this were the case, the low–

frequency cut of both scalar and tensor spectra would be accompanied, in

the same low–` region, by a sharp increase of the tensor–to–scalar ratio r,

with a high tilt, by almost an order of magnitude. Finally, if ∆ captures a

real deviation from an almost scale invariant primordial power spectrum,

it should be impinging on structure formation at the largest scales [50],

which ought to drop accordingly;

• the available low–` polarization data have played a role in our determina-

tion of the cutoff scale ∆. The next generation of space–borne experiments

aimed at high–quality polarization data has the potential to raise it up

to the 6–σ level (or perhaps to rule it out altogether). A positive result

could further our understanding of the inflationary paradigm.
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Figure 1: The Planck CMB temperature map provided by the Commander algorithm,

with three different maskings. From upper to lower panel: standard mask (case a),

extended mask (case f), complementary mask (case j). The corresponding observed

sky fractions are 93.6%, 39.4% and 54.2% respectively. Color code units: µK.
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Figure 2: The Planck CMB temperature map provided by the Commander algorithm,

smoothed at 440′ and reconstructed at Nside = 16. Upper panel: the full map m;

middle panel: its even-parity projection m+; lower panel: its odd-parity projection

m−. Color code units: µK. The reader will not fail to spot eye-catching differences

between the symmetrized low–` map in the middle panel and the others.
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Figure 3: Constraints on ∆ for the standard and extended masks. Estimates and error

bars are shown in blue (“even + odd”) when all the low-` temperature information

is taken into account and in orange (green) when only the even (odd) multipoles

are considered. In all cases, it should be understood that the low-` information is

complemented by the high-` Planck TT likelihood. Solid (dashed) error bars stand

for 68% (95%) Bayesian credible intervals. Notice the slight change of pattern for the

“odd” determinations around Ext06, which will reflect itself on the behavior of the

even–odd asymmetry in fig. 5.
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Figure 4: Same as fig. 3, for the standard and complementary masks.
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Figure 5: Even-odd asymmetry traced by the cut-off scale ∆, according to eq. (21).
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Figure 6: Posterior distribution functions for the ΛCDM parameters considering the

standard mask. As before, blue, orange and green curves refer to even+odd, even and

odd contribution for the low-` likelihood. Solid curves refer to the ΛCDM∆ model,

while dashed ones refer to the ΛCDM model.
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Figure 7: Posterior distribution functions for the ΛCDM parameters considering the

Ext30 mask. Same conventions as in fig. 6.
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Figure 8: Two-dimensional contour plots for ∆ vs D` = `(`+1)
2π

C`, for ` =

2, 5, 8, 11, 14, 17 and 20. The red contours are for the standard mask, while the

blue ones are for the Ext30 mask.
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Figure 9: Two-dimensional contour plots for ∆ vs D` = `(`+1)
2π

C`, for ` =

2, 5, 8, 11, 14, 17 and 20, obtained with the “even” part of the likelihood function.

The barely visible red contours, which are mostly covered by the larger blue ones, are

for the standard mask, while the blue contours are for the Ext30 mask.
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Figure 10: Two-dimensional contour plots for ∆ vs D` = `(`+1)
2π

C`, for ` =

2, 5, 8, 11, 14, 17 and 20, obtained with the “odd” part of the likelihood function.

The barely visible red contours, which are mostly covered by the larger blue ones, are

for the standard mask, while the blue contours are for the Ext30 mask.
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Figure 11: Fiducial models obtained with even+odd ` < 30 datasets corresponding

to the Standard mask, to the Ext24 mask and to the Ext30 mask (upper panel).

Comparison of the fiducial models obtained with even+odd, even and odd ` < 30

datasets for the Ext24 mask (middle panel), and for the Ext30 mask (lower panel).
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Figure 12: Detection levels of ∆ in units of σ for the full dataset (blue circles), even

dataset (orange squares) and odd dataset (green triangles), for the various masks of

Table. 5.
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Figure 13: Correlations between τ , ∆ and As in the standard mask (left panel), in the

Ext24 mask (middle panel) and in the Ext30 mask (right panel).
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Figure 14: Posterior distribution functions of S 1
2
. The left panels refer to ΛCDM and

the right ones refer to ΛCDM∆. The upper panels are for “even+odd”, the middle

ones are for “even” and the lower ones are for “odd”. The three types of curves

(continuous, dashed and dashed–dotted) are for the Standard mask, the Ext18 mask

and the Ext30 mask.
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Figure 15: Posterior distribution functions of V , with the same conventions as in fig. 14.
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Figure 16: Posterior distribution functions of R, with the same conventions as in fig. 14.

46



600 800 1000 1200 1400

600

800

1000

1200

1400

even

od
d

Figure 17: C+ vs C− in a frequentist approach. The black dot identifies the expected

values of C+ and C− in ΛCDM, while the red one identifies the observed values. The

contours elicit the 1, 2 and 3 σ levels expected in ΛCDM, in units of µK2.
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Figure 18: Expected estimates for ∆ from future polarization–oriented experiments.

The curves share the same underlying CMB realization, generated from a fiducial

cosmological model with ∆ = 0.37×10−3. With Planck-like noise, standard mask in

temperature and union mask in polarization, the detection level for ∆ could grow up to

about 3.5 σ (grey curve). With cosmic–variance–limited temperature and polarization

data at large scales and the Ext30 masking, the detection level for ∆ could rise up to

about 6 σ (orange curve). Finally, with the same cosmic–variance–limited data, the

standard mask in temperature and no mask in polarization, the detection level could

increase even slightly beyond 6 σ (blue curve).
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Figure 19: Primordial power spectrum of scalar perturbations (left), of tensor pertur-

bations (center), and corresponding behavior of the tensor–to–scalar ratio r (right) for

a Starobinsky model with a “critical” exponential wall, as in [23]. The vertical units

are arbitrary, but are the same for tensor and scalar signals. The horizontal unit is

log(k/k0), with k0 corresponding to the scale ∆ of eq (23). In this example r would

increase by a factor 5 – 7 for ` . 20.
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