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Abstract

Computing in High Enery Physics, as well as in other scientific contexts,

has reached the limit in computational power provided by “serial” software,

that is software which runs tasks sequentially. The concomitant improvement

in luminosity and efficiency of the LHC, on one hand, and of the LHCb detector

on the other, will require during Run3 a consistent speedup in every software

layer, including the reconstruction one. Modern CPUs come with many distinct

cores, autonomous processing entities which are able to run tasks concurrently,

giving software applications the possibility to run faster.

In this thesis we will discuss the application of hardware devices, such as GPU

cards, in the current LHCb trigger system. During Run2, a node equipped

with a GPU has been inserted in the LHCb online monitoring system. During

normal data taking, real events have been sent to the node and processed

by GPU-based and CPU-based tracking algorithms. This gave us the unique

opportunity to test the new hardware and the new algorithms in the real-time

environment of the experiment. In the following sections, we will describe the

algorithm developed for parallel architectures, the setup of the testbed and the

results compared to the LHCb offcial reconstruction.

This work is organized as follows:

• Chapter 1 contains a brief description of the LHCb detector and of its

subsystems, including the trigger which is the focus of these studies

• Chapter 2 contains the description of the motivations that lie beneath

this work, along with some previous efforts from other HEP experiments.

Some initial considerations on the underlying software and hardware

needs are then described

• Chapter 3 gives a full description of the “LHCb GPU Acceleration

Project”, its goals, implementation and peculiarities

• Chapter 4 shows the results of the tests performed both on simulated

and real data during the normal LHC operations

iii



iv

• Chapter 5 finally is a wrap up of the project with some considerations

that we could state following these experiences



Chapter 1

Introduction

1.1 LHC and the LHCb experiment

The Large Hadron Collider (LHC) [1] is the largest collider in the world, both

because of its size and the energy of the accelerated particles. It was constructed

by the European Organization for Nuclear Research (CERN) from 1998 to 2008,

with the aim of testing the Standard Model and physics beyond it. Its physics

program is heterogeneous and span many different studies like, among others,

to search for the existence of the Higgs boson, to provide precise measurements

of CP violation, to study the state of matter called quark-gluon plasma and to

search for monopoles. In addition, with the pp collisions whose centre-of-mass

energy can go up to 14 TeV, one has the opportunity to look for new physics,

like Supersymmetry, dark matter and dark energy.

The LHC is built on the French and Swiss border, in a circular tunnel of

27 km in circumference and around 50 m to 175 m underground to avoid a

high flux of cosmic rays and radiation hazard. It is designed to collide two

counter-rotating beams of protons or heavy ions. Each beam consists of 2808

bunches (nb), each bunch has ≈ 1011 protons (Nb) and the spacing between

two consecutive bunches is 25 ns, giving an overall frequency of collisions of

40 MHz. Particles in the LHC are accelerated using radio-frequency (RF)

cavities. 1232 dipole magnets are used to keep the beams on circular paths

while 392 quadrupole magnets prevent the beams from spreading on the plane

perpendicular to the beam line, with the aim of maximizing the number of

collisions at the interaction points. The magnets are kept at an operating

temperature of 1.9 K using roughly 96 tonnes of superfluid helium-4.

The nominal luminosity of LHC is given by:
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Figure 1.1: A sketch of the LHC tunnel with the four experiments

L =
N2
b nbν

F
(1.1)

where ν is the frequency of revolution and F is a factor that groups the

terms describing the beam geometry. The maximum instantaneous luminosity

that the LHC can deliver is L = 2 · 1034cm−2s−1.

The beams are brought together at four interaction points each one sur-

rounded by one of the four main detectors. Two of these, ATLAS [2] and

CMS [3], are multipurpose detectors designed to search for, among other aims,

New Physics such as supersymmetric particles and to measure the Higgs boson.

The other two detectors are more specialized. ALICE [4] primarily studies lead

ion collisions while LHCb [5] was designed to carry out precise measurements

in the heavy flavour sector, as briefly described in the following paragraph.

Figure 1.1 shows a sketch of the LHC tunnel along with the four experiments.

1.2 The LHCb Detector

The LHCb detector [6,7], whose side view is visible in figure 1.2, is a single-arm

forward spectrometer covering the pseudorapidity range 2 < η < 5, designed

for the study of particles containing b or c quarks. It is composed of a mag-

net, a tracking system and a particle identification system. The tracking

system includes the VErtex LOcator (VELO), two silicon trackers, the Tracker

Tauricensis (TT) and the Inner Tracker (IT) and the Outer Trackers (OT).
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Figure 1.2: A side view of the LHCb detector

The particle identification system includes two Ring-imaging Cherenkov

detectors (RICH), the calorimeters and the muon chambers. The different

types of charged hadrons, like pions, kaons and protons, are distinguished

using information from the two RICH detectors [8], while photons, electrons

and again hadrons are identified by a calorimeter system [9] consisting of

scintillating-pad and preshower detectors, an electromagnetic calorimeter and

a hadronic calorimeter.

Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers [10].

1.2.1 Tracking System

The high-precision tracking system consists of a silicon-strip vertex detector

surrounding the pp interaction region [11], a large-area silicon-strip detector [12]

located upstream of a dipole magnet with a bending power of about 4 Tm,

and three stations of silicon-strip detectors and straw drift tubes [13] placed

downstream of the magnet.

The task of the tracking system is to reconstruct the particle trajectory

whose curvature allows to deduce the momentum and the sign of the curvature

with respect to the LHCb detector magnetic field, thus providing the charge

of particle. The LHCb tracking system consists of three sub-detectors: the

Vertex Locator (VELO) covering the collision point, the Tracker Turicensis
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(TT) before the magnet and the three tracking stations T1-T3 behind the

magnet. The VELO and TT are silicon pad and micro-strip detectors. In the

T1-T3 stations, two different techniques are employed: silicon micro-strips for

the region close to the beam pipe (Inner Tracker [14]) and straw-tubes for the

outer region of the stations (Outer Tracker [15]) where the occupancy is less

severe.

The tracking system provides a measurement of momentum, p, of charged

particles with a relative uncertainty that varies from 0.5% at low momentum

to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex

(PV), the impact parameter (IP), is measured with a resolution of (15/pT)µm

for particles with pT ≈ 80 GeV/c, where pT is the component of the momentum

transverse to the beam, in GeV/c.

1.2.2 The VELO sub-detector

The VErtex LOcator (VELO) is placed close to the beam pipe (∼ 8 mm)

and surrounds the collision point. It provides a precise measurement of the

track coordinates in the region close to the interaction point in order to form

the primary and decay vertexes. The resolution of the vertexes depends on

the number of tracks. As an example, for a primary vertex of 25 tracks the

resolutions are of 13, 12 and 69 µm in x, y, z dimensions respectively (this result

is from 2011 data and for events that have only one reconstructed primary

vertex). The VELO also allows to measure the deposited energies by the tracks

in the silicon sensors that may be used to identify the particles [16]. The VELO

is composed of 42 half-disc shaped modules that are spaced and perpendicular

to the beam pipe over a length of ∼ 1 m. Upstream of the VELO sensors, there

are two pile-up veto stations. Each VELO module has two silicon sensors: one

measures the radial distance r and another one measures the azimuthal angle

φ in the cylindrical geometry. Each silicon sensor is 300 µm thick and has

2048 strips which are read out by 16 Beetle FE chip, providing analogue data.

The modules are divided into two halves (21 modules for each half) that are

retractable during the beam injection to avoid high radiation damage to the

sensors and to increase the aperture around the beam as required by LHC

machine. These two halves will be moved to the closed position during data

taking with the stable beams. Figure 1.3 shows the arrangement of the silicon

sensors in the xz plane, and the relative positions of the sensors when the

VELO is fully closed or opened.

To enable the sensors to be close to the beams ( ∼ 8 mm), the VELO vessel
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Figure 1.3: The VELO geometry

has to be integrated directly into the beam pipe. However, in order to prevent

any accident from outgassing of the VELO modules which can jeopardize the

LHC vacuum, the VELO vessel is maintained with a secondary vacuum which

is separated from the machine vacuum by a thin wall of corrugated aluminium

(RF foils). These RF foils form two boxes that enclose the VELO modules.

The RF foils face to the beams are 0.3 mm thick, while the side walls of these

boxes are 0.5 mm thick. A half of modules and a RF box are shown in figure

1.4 (left). The two halves of detector can overlap each other when they are in

the closed position, as in figure 1.4 (right). These RF boxes are also intended

to provide a shield against radio-frequency noises from the LHCb beams that

affect to the VELO electronics.

1.2.3 Particle identification system - RICH

The RICH system has the task of identifying charged particles over the mo-

mentum range 1− 150 GeV/c, within an angular acceptance of 10− 300 mrad.

Particle identification is crucial to reduce background in selected final states
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Figure 1.4: The VELO module

and to provide an efficient tag of the b-quark flavour using the kaon from the

other b-quark produced in an event.

The LHCb RICH system consists of two distinct detectors: RICH 1 located

upstream of the LHCb magnet and close to the interaction point and RICH 2

located downstream of the tracking system and before the calorimeter. Both

detectors have gas radiators (C4F10 and CF4 respectively) while RICH 1 also

used aerogel in Run I. The RICH detectors were re-optimised following Run

I taking into account the new requirements for the event reconstruction and

the need to run the same algorithms online and offline. The aerogel radiator

was removed as its ability to provide particle ID for particles below the C4F10

Cherenkov threshold for kaons is compromised by the total number of photons

in RICH 1 in such a high track multiplicity environment. At the same time

its removal allowed the full use of the gas radiator that is located between

the RICH 1 entrance window and the aerogel (see figure 1.5. Removing it
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Figure 1.5: A section of the RICH 1 schematic showing the gas volume from the
side. While the aerogel radiator was in place the Cherenkov photons generated in
the shaded blue area filled with C4F10 would be blocked. With the removal of the
box these photons are free to reach the photon detectors.

also contributed significantly to the speed of the RICH reconstruction as it

reduced by more than half the number of photon candidates (combinations of

photon-detector hits with tracks) for which a Cherenkov angle is calculated [17].

Particles produced in the collisions in LHCb will travel through the mirrors

of RICH 1 prior to reaching measurement components further downstream.

To reduce the amount of scattering, RICH 1 uses special lightweight spherical

mirrors constructed from a carbon-fibre reinforced polymer (CFRP), rather

than glass. There are four of these mirrors, each made from two CFRP sheets

moulded into a spherical surface with a radius of 2700 mm and separated by a

reinforcing matrix of CFRP cylinders.

As RICH 2 is located downstream of the tracking system and magnet, glass

could be used for its spherical mirrors, which in this case are composed of

hexagonal elements.

Both RICH detectors use Hybrid Photon Detectors (HPDs) to measure the

positions of the emitted Cherenkov photons. The HPD is a vacuum photon

detector in which a photoelectron, released when an incident photon converts

within a photocathode, is accelerated by a high voltage of typically 1020 kV

7



Figure 1.6: The LHCb detector with a highlight of the calorimeter system.

onto a reverse-biased silicon detector. The tube focuses the photoelectron

electrostatically, with a demagnification factor of around five, onto a small

silicon detector array.

1.2.4 Particle identification system - Calorimeters

The main purpose of the LHCb calorimeter system is to trigger on electrons,

photons and hadrons [9]. It will also provide energy and position measurements

of the particles produced in their angular acceptance, which are used in offline

event analysis. Furthermore, the electromagnetic calorimeter will measure

photons and neutral pions in association with the hadronic calorimeter. The

calorimeter system (figure 1.6) consists of several layers: the Scintillating

Pad Detector (SPD), the Pre-Shower Detector (PS), the Electromagnetic

Calorimeter (ECAL), and the scintillating tile iron plate Hadron Calorimeter

(HCAL).

The SPD determines whether particles hitting the calorimeter system are

charged or neutral, while the PS indicates the electromagnetic character of

the particle (i.e. whether it is an electron, if charged, or a photon, if neutral).
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They are used at the trigger level in association with the ECAL to indicate the

presence of electrons, photons, and neutral pions. The SPD and PS consist of

scintillating pads with a thickness of 15 mm, interspaced with a lead converter

with a characteristic radiation length X0 of 2.5 g ·cm−2. Light is collected using

wavelength-shifting (WLS) fibers. Almost four turns of fiber are inserted and

glued in the round groove made in the square pad, and both ends of the WLS

fiber are used to transmit the light to multi-anode photomultipliers (MAPMTs)

located at the periphery of the detector.

The ECAL employs “shashlik” technology of alternating scintillating tiles

and lead plates. The cell size varies from 4 × 4 cm in the inner part of the

detector, to 6 × 6 cm and 12 × 12 cm in the middle and outer parts. The

cell granularity corresponds to that of the SPD/PS, aiming at a combined

use in γ/e separation. The overall detector dimensions are 7.76 × 6.30 m,

covering an acceptance of 25 mrad < θx < 300 mrad in the horizontal plane

and 25 mrad < θy < 250 mrad in the vertical. Light is detected by 10-stage

photomultipliers.

The HCAL is positioned behind the ECAL. Its internal structure consists of

thin iron plates interspaced with scintillating tiles arranged parallel to the beam

pipe. Like ECAL, the inner and outer parts of the calorimeter have different

cell dimensions (13× 13 cm and 26× 26 cm, respectively). The structure of the

HCAL has the following features: in the lateral direction tiles are interspaced

with 1 cm of iron (matching with the radiation length X0); while in the

longitudinal direction the length of tiles and iron spacers corresponds to the

hadron interaction length λ in iron. Light is collected by wavelength-shifting

fibers running along the detector towards the back side where the PMTs are

housed. Three tiles arranged in depth are in optical contact with each 1.2 mm

diameter Kuraray Y-11(250)MSJ fibre.

1.2.5 Particle identification system - Muon system

Muon triggering and offline muon identification are fundamental requirements

of the LHCb experiment. Muons are present in the final states of many CP -

sensitive B decays and play a major role in CP asymmetry and oscillation

measurements, as muons from semi-leptonic b decays provide a tag of the initial

state flavour of the accompanying neutral B mesons.

The muon system (figure 1.7) provides fast information for the high pT

muon trigger at the earliest level (L0) and muon identification for the High

Hevel Trigger (HLT) and offline analysis.
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Figure 1.7: Sketch of the muon system sub-detector

The system is composed of five stations (M1-M5) of rectangular shape,

covering an acceptance of ±300 mrad (horizontally) and ±250 mrad (vertically).

M1 is placed in front of the scintillating pad detector/pre-shower. M2-M5

follow the hadron calorimeter (HCAL) and are separated by iron filters. The

stations cover an area of 435 m2.

Each station is divided into four regions, R1 to R4, with increasing distance

from the beam axis. All the regions have approximately the same acceptance,

and their granularity is shaped according to the particle density in that region

in order to keep occupancy roughly constant over the detector. The granularity

of the readout is higher in the horizontal plane, in order to give an accurate

measurement of the track momentum and pT.

Information must be gathered within 20 ns, so the detectors are optimized

for speed. The system is therefore equipped with Multi Wire Proportional
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Chambers (MWPC) with 2 mm wire spacing and a small gas gap (5 mm).

Triple-GEM detectors are used in the innermost region (R1) of Station M1,

where the rate is highest. This choice was dictated by the better ageing

properties of this type of detector. There are 1380 chambers in the muon

system, of 20 different sizes.

The detectors provide space point measurements of the tracks, giving a

binary (yes/no) information. In order to provide this information, different

readout methods are employed in the various parts of the detector: anode wire

readout, cathode pad readout, or both. A total of 126’000 front-end readout

channels are used. The electronics is based on custom radiation-hard chips

developed for the muon system.
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Chapter 2

The LHCb Trigger System

2.1 Introduction

The online event selection is performed by a trigger [18, 19] which consists of a

hardware stage level zero (L0), based on information from the calorimeter and

muon systems, followed by a software stage, in which, for data from 2012 on,

all charged particles with pT > 300 MeV are reconstructed.

The purpose of L0 is to reduce the LHC beam crossing rate of 40 MHz to

the rate at which all sub-systems could be used for deriving a trigger decision.

Due to their large mass b-hadrons decay to give a large ET lepton, hadron or

photon, hence L0 reconstructs:

• the highest ET hadron, electron and photon clusters in the Calorimeter

• the two highest pT muons in the Muon Chambers

whose information is collected by the L0 Decision Unit to select events.

Events can be rejected based on global event variables such as charged track

multiplicities and the number of interactions, as reconstructed by the Pile-Up

system, to assure that the selection is based on b signatures rather than large

combinatorics, and that these events will not occupy a disproportional fraction

of the data-flow bandwidth or available processing power in subsequent trigger

levels. All L0 triggers are fully synchronous, i.e. their latency does not depend

upon occupancy nor on history, and its electronics is implemented in full custom

boards. The implementation of the calorimeter trigger is based on forming

clusters by adding the ET of 2×2 cells on the frontend boards, and selecting the

clusters with the largest ET. Clusters are identified as e, γ or hadron depending

on the information from the Scintillating Pad Detector (SPD), Preshower (PS),

Electromagnetic (ECAL) and Hadronic (HCAL) Calorimeter. The ET of all
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Figure 2.1: Trigger efficiencies for L0 muon (left) and hadron (right)

HCAL cells is summed to reject crossings without visible interactions. The total

number of SPD cells with a hit are counted to provide a measure of the charged

track multiplicity in the crossing. The muon chambers allow stand-alone muon

reconstruction with a pT resolution of 20%. Track finding is performed by

processing units, which combine the strip and pad data from the five muon

stations to form towers pointing towards the interaction region.

The Pile-Up system aims at distinguishing between crossings with single

and multiple visible interactions. It uses four silicon sensors of the same type

as those used in the VELO to measure the radial position of tracks, covering

4.2 < η < 2.9. The Pile-Up system provides the position of the primary

vertex candidates along the beam-line and a measure of the total backward

charged track multiplicity. The Pile-Up information allows a relative luminosity

measurement which is not affected by system deadtime, and monitors the

beam conditions. The L0 Decision Unit (L0DU) collects all information from

L0 components to form the L0 Trigger. The L0DU is able to perform simple

arithmetic to combine all signatures into one decision per crossing. This decision

is passed to the Readout Supervisor which transmits its Level-0 decision to the

FrontEnd.
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2.1.1 L0 Trigger and trigger efficiency

The bunch crossing frequency of the LHC is 40 MHz. This rate is reduced by

the L0 trigger to a rate of 1 MHz, at which the full detector is read out. The

L0 trigger is implemented in custom hardware and has a latency of 4 µs. It

triggers on high pT muons and on large ET deposition in the calorimeters [20].

A relative momentum resolution of about 20% can be reached in the L0 muon

reconstruction.

The trigger efficiencies are measured on offline selected events using some

specific physics channels. For each channel the signal component, that is the

set of tracks that forms the offline reconstructed and selected b- or c-hadron

candidate, is determined by fitting the invariant mass distributions to avoid

background contamination.

To determine the trigger efficiency, trigger objects are associated to signal

tracks. The trigger records all the information needed for such an association.

All measurements of the sub-detectors have a unique identifier, and these

identifiers are written in a trigger report in the data stream for every trigger

line that accepts an event. The criteria used to associate a trigger object with

a signal track are as follows:

• An event is classified as TOS (Trigger on Signal) if the trigger objects

that are associated with the signal are sufficient to trigger the event

• An event is classified as TIS (Trigger Independent of Signal) if it could

have been triggered by those trigger objects that are not associated to

the signal

• A number of events can be classified as TIS and TOS simultaneously

(NTIS&TOS), which allows the extraction of the trigger efficiency relative

to the offline reconstructed events from data alone

The efficiency to trigger an event independently of the signal, εTIS, is

given by εTIS = NTIS&TOS

NTOS , where NTOS is the number of events classified as

TOS. The efficiency to trigger an event on the signal alone, TOS, is given by

εTOS = NTIS&TOS

NTIS , where NTIS is the number of events classified as TIS.

An example of L0 efficiencies are shown in figure 2.1. For low pT tracks, the

hadron efficiency is low as well and this represents an important limitation for

analysis that rely on these class of events, as explained with more details later

on.
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2.1.2 High Level Trigger

The software trigger, named High Level Trigger or HLT [21], consists of software

algorithms implemented in the same framework, named Gaudi, as the software

used for the offline reconstruction. The HLT runs on an Event Filter Farm

(EFF) of ∼ 52′000 logical CPU cores (∼ 29′000 in Run 1) situated in the cavern

close to the detector. Events selected by HLT are sent to the storage system

for later offline analysis.

The HLT is divided in two levels (see figure 2.2 left). Each level works

with a set of reconstruction algorithms which are grouped in so called trigger

lines. A trigger line is composed of a sequence of reconstruction algorithms and

selections. The trigger line returns an accept or reject decision.

In the first level, HLT 1, a partial event reconstruction is performed. HLT 1

reconstructs charged particle trajectories using information from the VELO

and tracking stations. If at least one track is found that satisfies strict quality

and transverse momentum criteria, then the event is passed to the second level

of the software trigger (dimuon combinations may also trigger the first software

level). HLT 1 thresholds can be tuned for an optimal output rate (In 2012 it

was ∼ 150 kHz).

In the second level, HLT 2, the complete event is reconstructed. To sat-

isfy the time constraints, the HLT event reconstruction in Run 1 was simpler

than that used offline. Also it couldn’t use the latest alignment and calibra-

tion constants that were calculated later and used in the subsequent offline

reconstruction of the data.

An event will be accepted by L0, HLT 1 or HLT 2 if it is accepted by at

least one of its trigger lines at the relevant stage. Combinations of trigger lines,

together with a L0 configuration, form a unique trigger with its associated

Trigger Configuration Key (TCK). The TCK is a 32 bit label pointing to a

database that contains the parameters that configure the trigger lines. The

TCK is stored for every event in the raw data, together with information on

which trigger lines accepted the event.

During Run 1 running period, LHC delivered stable colliding beams for

about 30% of the time. HLT operation was synchronous with the delivery of

the particle collisions when the front-end boards send to the local disk of each

HLT node massive amounts of data. These have to be quickly processed by the

HLT 1 to reduce the amount of data sent to the slower HLT 2 level. To profit

of the inter-fill inactivity of the farm, in 2012 ∼ 25% of the L0-passed events

were buffered to local disks and the HLT selection applied later to these events
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Figure 2.2: Three different trigger configuration in 2011 (left), 2012 (center) and
2015 (right)

(see figure 2.2, center). The result was a sizable improvement of ∼ 25% of the

HLT process rate. Nevertheless for large periods without beam, the HLT farm

was still idle.

In Run 2, HLT 1 and HLT 2 become two independent asynchronous processes

running on the same node. The implementation of this separation required a

substantial change of the flow of event data in the experiment. All the events

passing the HLT 1 selection are buffered in the local disk and later processed

by HLT 2 (see figure 2.2, right). The allocated resources allow for a maximal

execution time of ∼ 35 ms/event in HLT 1 and of ∼ 650 ms/event in HLT 2.

Since events not accepted by HLT 1 are lost for later offline physics analysis,

while in collision the HLT 1 processes run with high priority. At the same time

HLT 2 runs on each node sending the finally accepted events to the long term

storage, however during data taking it has a lower priority to not negatively

interfere with the HLT 1 processing.

The separation of the two HLT levels allows to execute the high quality

alignment and calibration before running the HLT 2 on the events selected

by HLT 1. Using the best calibration constants, allow to have offline quality

reconstruction already in the trigger. Thanks also to the additional computing

resources and the optimized code, in HLT 1 tracks are reconstructed down

to pT = 500 MeV. Main features of HLT 1 are single and two tracks MVA

algorithms which provide inclusive charm and beauty selection with improved

performance with respect to Run 1 (e.g. the 2-body charm trigger is factor

∼ 2 more efficient), inclusive single and dimuon triggers, and exclusive lines for
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the “lifetime unbiased” beauty and charm selection (selections don’t cut on

quantities correlated with the signal particles decay-time).

HLT 2 does the full event reconstruction starting from the information

(vertices and tracks) calculated in HLT 1. It reconstructs all tracks, while in

Run 1 a pT > 300 MeV cut was applied upfront, and builds the full particle

identification information for long tracks. Reconstruction is followed by physics

selections, including MVA lines based on 2-, 3-, and 4-body detached vertices

to inclusively select beauty and charm decays, exclusive beauty decays, like

B → φφ, B → γγ, charmed barions and electroweak bosons.

A further improvement on the global HLT quality comes from the man-

agement of the storage disks. During the first year of Run 2, the storage of

the HLT farm was 5 PB. As a figure of merit, this allows for 160 hours of

data taking with an HLT 1 output rate of ∼ 150 kHz(60 kbytes/event). For

redundancy, in 2015 the whole storage was mirrored. From the 2012 experience

of disk failure, the risk of data loss due to the unrecoverable errors has been

evaluated to be ∼ 0.1%. The loss expected without mirroring the HLT disks,

has to be compared with a potential ∼ 15% increase of triggered charm physics

or with an improved quality of the online reconstruction. For this starting

from 2016 data taking, the HLT disks are unmirrored and the whole 10 PB is

used in the HLT running. The data loss rate is monitored and agrees with the

expectations

2.2 Trigger limits

The trigger system is central for the matters covered in this thesis, as its

hardware level will be a considerable bottleneck when the LHC luminosity will

increase after the long shutdown in 2018.

The LHCb experiment is in fact starting the phase of upgrade of its detector

to allow the collection of data at luminosity of 2 · 1033cm−2s−1 at a centre-of-

mass energy of 14 TeV . For this upgrade, the main tracking detectors [22] and

the RICH [23] will be replaced. The DAQ system will be redesigned around a

trigger-less readout, which allows the full inelastic collision rate of 30 MHz to be

processed in the Event Filter Farm. One of the main limitations of the current

system is indeed the hardware trigger which limits the input rate to the HLT

to 1 MHz. This initial reduction causes the largest inefficiencies, especially for

purely hadronic decays. This effect is shown in figure 2.3. The L0 is a good

trigger for muonic signatures because there is very little punch-through and

hadronic misidentification. For hadrons, on the other hand, the background
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Figure 2.3: The bottleneck of the hardware trigger. For hadronic channels the yield
is limited by the available bandwidth

from lightquark QCD production in the pp collision is inherently much higher,

so the efficiency is lower (see figure 2.1).

Without the L0 hardware level, reading the whole detector at full pp collision

rate will allow to increase the number of TOS hadron by loosing the thresholds,

thus improving the efficiency.

The enhanced luminosity implies signal rates of about 300 kHz of beauty

hadrons and 800 kHz for charm hadrons that are reconstructible inside the

detector [24] which, if compared with the current rate of nearly 500 kHz of

the L0 hadron, is nearly twice its capacity. This represents a fundamental

change in trigger requirements of LHCb. It is no longer the case that the trigger

must reject background from signal, it must now categorize signal according to

physics requirements. Such a strategy requires significantly more information

in the trigger than can be provided by low-latency, hardware based solutions.

With the removal of the L0 hardware trigger, LHCb will be the first hadron

collider experiment to deploy a trigger exclusively in software, using off-the-shelf

hardware. The upgraded LHCb trigger will select and categorise events at the

full collision rate. The advantages of such a system are clear. Software is easily

modified, allowing an unprecedented flexibility as and when the LHCb physics

programme changes. It also has the advantage that computing power is readily

upgradeable and benefits from the ability to purchase more CPU power for

the same price at a later stage. The deferral technique used in Run 1 and

Run 2 will be leveraged also in Run 3. Subdetector alignment and calibration

will be performed while events are buffered to disks, permitting the use of

offline-quality reconstruction, and reducing the need for reprocessing of data at
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a later stage.

Therefore, one of the main goal of the LHCb upgrade is to remove this

bottleneck by implementing a full software trigger able to process the full

collision rate. Given the available resources for the upgrade, this translates into

a time budget for the HLT of ∼ 13 ms/event to take a decision on wheather to

accept or reject a given event [25]. It should be noted that this time budget is

considerably lower than the current time budget of the HLT 2 which amounts

to ∼ 650 ms. Furthermore the 13 ms limit has been calculated taking into

account a foreseen growth in computing power of a factor 1.364 per year up

to 2020, while the actual growth is only 1.093, as measured according to the

observed growth in the throughput, in Hz, of a typical box for the HLT farm.

This discrepancy leads to a missing factor of ∼ 6 (see e.g. [26]) in computing

power for the upgrade phase, according to this formula:

30 MHz

1.09344 · 3364 Hz · 1000nodes
= 6.2 (2.1)

where 3364 Hz is the current event throughput of a machine equipped with an

Intel R© Xeon E5-2630 v4 and the current budget for the online farm allows to

buy only 1000 nodes.

This gap must be tackled to guarantee the physics performances of the detector

and the project described in this thesis goes in this precise direction.
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Chapter 3

The quest for speed-up

3.1 Introduction

As discussed in Chapter 2, the increase in luminosity will limit the efficiency

of the trigger especially in hadronic channels, thus forcing LHCb to get rid

of the bottleneck represented by the hardware level. This means that the

whole detector will be read at an unprecedented rate of 30 MHz putting under

big strain the HLT and the online facility. The LHCb collaboration started

to investigate innovative software solutions to improve the efficiency of the

algorithms which make up the HLT, bearing in mind that this is a problem

of High Throughput Computing. In fact the goal of the collaboration is to

improve the number of events that are fully reconstructed by the HLT in the

unit time. To achieve it, the problem must be tackled on two sides: on the first

one, a new hardware solution which is able to digest more events per second

must be found, on the other one a software solution which is able to process

more events concurrently.

The combination of these two lines of research led the LHCb collaboration

to start an internal project called “LHCb GPU acceleration project” [27] aiming

at studying the potentiality of GPUs applied to HEP software.

3.2 Motivations and background

Other physics experiments have investigated the idea of moving some of their

computation to hardware accelerators.

The SuperB experiment [28] was one of the first HEP experiments who

started to investigate the possibilities provided by new CPU architectures. At

the early stages of its development, people in SuperB started a re-engineering
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effort on the software framework of the BaBar experiment, introducing the

concept of data consumer and producer algorithms, in order to detect potentially

independent data processing functions which could be performed in parallel [29].

The idea behind these studies was to factorize sets of algorithms which were

not sharing the same chunks of data and execute them concurrently with a

concurrent tool by Intel R© named Threading Building Blocks. The prototype

developed by the collaboration aimed at being then exploited with hardware

accelerators like the Intel R© Xeon Phi and GPU.

Researchers at the NA62 experiment have investigated the problem of

adapting specific algorithms to massively parallel architectures [30]. Using

Nvidia R© CUDA GPU programming platform [31], they make the important

observation that the overhead cost of setting up the computation is high

compared to the cost of processing a single particle collision event, thus making

very desirable to process events in batches, amortizing the setup cost.

Researchers at ALICE (A Large Ion Collider Experiment) at LHC took

the next step and investigated the issues that arise from GPU algorithm

integration with existing software infrastructure [32]. They have successfully

added GPU track reconstruction to ALICE s HLT and the offline reconstruction

framework. This turned out to require adjustments in the HLT framework,

as well as AliRoot, ALICE offline software framework for data analysis, event

reconstruction, and simulation. Because CUDA is only available on a fraction

of cluster nodes, all of the GPU code had to be packaged in a separate library

and loaded dynamically as needed. The authors also encountered a mismatch

in the threading models used by the HLT framework and CUDA. The mismatch

was that HLT processes events over multiple asynchronous concurrent threads,

while at the time CUDA was not thread-safe and restricted to single-threaded

use. It should be noted that later versions of CUDA allow access from multiple

threads.

ATLAS (A Toroidal LHC Apparatus) has mounted a serious effort to

integrate GPU computation with its software infrastructure [33]. ATLAS has a

special relationship with LHCb as the two experiments share the same software

framework called Gaudi. ATLAS’s implementation of Gaudi is called Athena

and spawns multiple concurrent processes for multiple events, using a technique

known as COW, that is Copy on Write, where each new process shares the same

memory page frames. ATLAS initial design was to make remote procedure

calls to the GPU. In this design, a separate GPU Server process hosts a number

of GPU kernels. Athena processes connect to this process, choose a kernel,

send parameters to the kernel, and wait to receive the results. The server
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accepts requests and calls whichever kernel is requested in the order it receives

the requests. This approach is in practice very similar to ALICE method

of packaging CUDA code into dynamically loaded libraries; in both cases

GPU kernel calls are made available to regular Athena algorithms as external

procedures. Having a separate server offers cleaner separation between regular

Athena pipeline code and CUDA dependent algorithms; it also has the added

benefit of allowing remote calls to CUDA kernels to be made across a network.

Finally, hosting all the kernels in a separate long-lived process could potentially

save on the costs of GPU device setup. There are significant costs to hosting

GPU code in a separate service this way. Every kernel has custom parameters

and returns custom data types. Adding new kernels also requires somewhat

complicated encoding and decoding changes to the server request processing

loop and to the Athena client. This design also necessitates expensively copying

potentially large amounts of data between different processes for sequences

of kernel calls when it would be preferable to simply keep this data in GPU

memory. A related issue is that the design makes it difficult to reuse resources

when calling the same kernel for different events.

ALICE and NA62 experience with GPU shows the difficulty in maintaining

high utilization of the processing units. Detectors like LHCb, where individual

events require relatively little computation, need massively parallel event pro-

cessing systems to combine and simultaneously process multiple events. This

difficulty will increase as long as the growth of GPU performance outpaces

growth in information volume produced by particle detectors. Another issue

that has to be addressed is the system ease of use by the algorithm developer.

If it happens to be difficult to transfer an algorithms implementation from a

standalone version to the detector production system, our choice of massively

parallel algorithms may be restricted.

3.3 The Gaudi Software framework

The studies shown in this thesis move from the assumption that, to solve the

LHCb trigger revolution, the collaboration must tackle the problem in a twofold

manner: the first one is improving the software performances and the second is

exploiting hardware which can run this software faster.

To contextualize the problem, we start describing the software environment

which lies beneath every modern HEP experiment and which relies, generally,

on commodity hardware to run.

The simulation and analisys software rest in fact on a framework, which is re-
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Figure 3.1: Architecture of the Gaudi framework along with its main components

sponsible for many different tasks, e.g. reading the data from the main memory,

read the geometry of the detector and the calibration and aligmnent constants,

sort and orchestrate the various algorithms to perform the computations in

the right order, write back the results to files that can be afterwards read by

the user for further analysis etc. Such framework for the LHCb experiment

is named Gaudi [34], an object-oriented software, implemented in C++ and

Python, that provides a common infrastructure and environment for building

HEP event data processing applications. Gaudi is designed on the principles of

composability, providing a way to construct applications of any complexity by

combining general-purpose and specialized components. The main components

of the Gaudi software architecture can be seen in the object diagram shown

in figure 3.1. All applications, based on Gaudi, are written in the form of

specializations of standard framework components, complying to a well defined

set of abstract interfaces. Strict interfacing rules of the Gaudi components

were a key to a highly flexible framework.

An important underlying principle of Gaudi is the separation of the con-

cepts of data and procedures used for its processing. Broadly speaking, event

reconstruction and physics analysis consist of manipulation of mathematical or

physical quantities (such as points, vectors, matrices, hits, momenta, etc.) by

algorithms which are generally implemented in terms of equations and natural

language. In the context of the framework, such procedures are realized as

Gaudi Algorithms. The Gaudi architecture foresees either explicit uncondi-

tional invocation of algorithms by the framework, or by other algorithms. This

latter possibility is very important as it allows to address a common use case of
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Figure 3.2: A CPU compared to a GPU. The former has only few ALUs, whilst the
latter has many

a physics application to execute different algorithms depending on the physics

signature of each event, which might be determined at run time as a result of

some reconstruction. This capability is supported in Gaudi through sequences,

branches and filters. A sequence is a list of Algorithms. Each Algorithm may

make a filter decision, based on some characteristics of the event, which can

either allow or bypass processing of the downstream Algorithms in the sequence.

The filter decision may also cause a branch whereby a different downstream

sequence of Algorithms will be executed for events that pass the filter decision

relative to those that fail it.

Gaudi, whose architecture and concept date back to the late ’90, was

originally designed as a sequential framework. It means that it is only able to

processes events sequentially, one after the other. Furthermore, it means that

the sequence hierarchies, as well as all Algorithms within a sequence, are also

executed sequentially for each event. Lastly, all Gaudi components including

Algorithms were designed and implemented for single-threaded execution only.

We will see that this kind of paradigm used to fit the architecture of com-

mercial CPUs up to the early XXI century, when Intel and AMD released their

first dual-core processors [35,36]. In fact commodity CPUs up to this period

were designed to execute instructions sequentially, and so were the software

running on these architectures. With the multi- and many-core era, software

unable to exploit all the processing units concurrently is no longer effective and

looses performances and scalability.

In the following we will review how hardware changed and how LHCb software
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Figure 3.3: A modern GPU from Nvidia. It contains 5120 Cuda core FP32 and 2560
Cuda core FP64

started to change accordingly to adapt to these new architectural transforma-

tions.

3.4 Concurrency in hardware and software for

HEP

In the past, the increasing demands for HEP processing resources could be

fulfilled by the ever increasing clock-frequencies and by distributing the work to

more and more physical machines. Two different aspects then showed up and

curbed this paradigm and led to exploit concurrency. The first one is a physical

limitation which sets an edge on the dimension of transistors and consequently

their number on a single die. The second is again a physical limitation on the

frequency driven by power consumption of both CPUs and entire data centers.

These brought to an end this era of easy scalability.

To overcome these restrictions, hardware producers started to build devices

which are characterized by thinner, more specialized and more numerous cores

per die, and rather heterogeneous resources.

Early attempts to exploit a sort of concurrency in computing date back

to the mid ’80s when designers begun to use a technique named “instruction

pipelining”, a kind of instruction level parallelism. In this architecture, the
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processor works on multiple instructions in different stages of completion. For

example, the processor can retrieve the operands for the next instruction while

calculating the result of the current one, saving clock cycles and thus computing

time. A similar idea, introduced only a few years later, was to execute multiple

instructions in parallel on separate arithmetic and logic units (ALUs). Instead

of operating on only one instruction at a time, the CPU looks for several similar

instructions that do not depend on each other, and execute them in parallel.

This approach is called superscalar processor design.

A conceptually different approach is the base of modern Graphic Processing

Units. In these devices the system takes a single instruction and executes it on

many different chunks of data, performing what is called a SIMD operation,

that is Single Instruction on Multiple Data. These devices are also know as

vector processors, because they operate on vectors of data. An example of this

kind of modern device is shown in figure 3.3. At the same time, it became clear

that software supposed to run on those devices, had to evolve to fully exploit

the potential of the many cores and undertake a major conceptual redesign

in its architecture: move to a native parallelization of the code. HEP data

processing frameworks needed to evolve too to allow for parallelization which

can be achieved at three different levels:

• parallel processing of multiple events at the same time

• parallel execution of algorithms within a single event

• parallelization within the algorithms themselves

The first level is the easiest to fulfill and is in fact known as embarrassing

parallelism [37]. In its conjugation, the procedure is to spawn as many processes

as there are events to process, for example exploiting Grid or Cloud Computing

facilities spread all over the world. This mechanism proved to be efficient

during the first years of data taking of the LHC experiments.

The second level is more subtle and expects a pure multithreading approach,

where every algorithm is mapped to a task, which we could identify with a

thread of execution, that is executed according to specific scheduling rules.

These rules are driven by priorities in the algorithm sequences [38]. As an

example we can consider priorities driven by data readiness, where the system

gives higher priority to algorithms whose data are ready to be processed.

The third level is even more difficult to fulfill, as it requires a deep re-

engineering effort to modify the data structures inside the code to exploit

the modern AVX (Advanced Vector eXtensions) or SSE (Streaming SIMD
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Extensions) registers and implement a pure SIMD paradigm. The technique

behind this model is the vectorization of data, that is the ability to organize

data structures in vectors whose elements can be processed in parallel. The

LHCb collaboration is moving also in this direction, for example in the Kalman

fit for particle tracking [39].

3.4.1 The LHCb way for a concurrent framework

To leverage the full extent of hardware parallelism suggested by the industry,

the LHCb collaboration developed an initial prototype of a concurrent Gaudi,

called “Gaudi Hive” [40]. The prototype aimed at demonstrating, in the

context of Gaudi, the basic principles of the multithreading paradigm, one of

the fundamental paradigm for high-throughput and many-task computing.

An important evolution in the Gaudi architecture to support and facilitate

parallelism is the task-based model programming. The main advantage of

formulating computations in terms of tasks, and not threads, is that they

favour a well organized work partitioning. The task-based approach also allows

concentrating on dependencies between tasks, leaving load-balancing issues to

a back-end scheduler. Within the Gaudi Hive project, the Intel R© Threading

Building Blocks (TBB) library was chosen as such back-end [41].

Implementing this evolution in the Gaudi framework required its substantial

revision. However, thanks to the principle of composability described earlier,

it’s been possible to avoid any fundamental architectural change that would

require a substantial delay in its development. The components necessary for

the first minimalistic prototype of the multithreaded Gaudi were developed

and used to augment the framework via its standard interfaces in a pluggable

fashion [42]. The architectural peculiarities of the Gaudi Hive prototype are

outlined in figure 3.4 and best described in [38].

At the time when the studies shown in this thesis were performed, this

prototype was not fully exploitable. As a consequence, the usage of the

standard software framework proved to be determinant for the limitations in

performances that the studies revealed. Nevertheless this constraint showed

also, in a unequivocal way, that the evolution of the framework towards a

parallel implementation is critical for the goals of the physics program of the

experiment.
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Figure 3.4: The evolution of the Gaudi framework towards a multithreading archi-
tecture

3.5 LHCb choice for exploiting concurrency in

hardware

It has been shown that parallelism in both hardware and software can be

achieved exploiting different approaches. In hardware the LHCb collaboration

spotted a promising device to boost the throughput of events through its HLT

in the GPGPUs.

These objects push to the edge the concept of the SIMD paradigm in computing,

in that they contain a huge, compared to a standard CPU, number of ALU

processors (see figure 3.2) which perform the same computation, or Instruction,

on many different chunks of data. LHCb deemed that this kind of approach fits

the intrinsic structure of a HEP experiment, where many different, mutually

independent, events can be processed in parallel applying the same algorithms,

or instructions, thus accomplishing the first level of parallelism. This is true

even inside the event, where charged particles fly towards the different sub-

detectors leaving “hits” that can be viewed as points forming a straight line.

These lines are then reconstructed to determine the parameters of the particles’

tracks. These tracks are independent one from the others, permitting the

exploitation of the second level of parallelism.

There are nevertheless some considerations to take into account when
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Figure 3.5: AoS vs SoA. Structures of Arrays accomplish what is called Memory
coalescence, that is data belonging to the same class (e.g. the x component of vectors
or the radius r of circles) are stored in contiguous memory locations

approaching these accelerators. The first one is that they “talk” their own pro-

gramming language and whoever is responsible for a specific physics algorithm,

must learn it to leverage to a full extent their computing power. For Nvidia R©

devices, the language is almost a standard ANSI C, with some directives for

managing, basically, memory allocation, data offloading and processing.

The second one is that the common “serial” programming patterns are not

very useful and a big effort should be put to reorganize data structures into

what is called SOA, that is Structure Of Arrays, instead of more widespread

AOS, that is Array of Structure. The technical reason that lies beneath this

change in paradigm, is that SIMD computation works more efficiently on regu-

lar well-formed vectors to optimally exploit the internal registers (see figure

3.5). This mechanism goes under the name of Memory Coalescence because

it favours gluing together data of the same class, e.g. the x component of a

set of vectors, or the radius r of a set of circles, by storing them in contiguous

memory locations. These are then loaded and processed in a single clock cycle.

There are further considerations to take into account and that belong to a

more complex scenario where software design hits the hardware architecture

of these devices. To make a concrete example, Nvidia R© GPUs process data

towards a bunch of concurrent threads called warp. Each warp accounts for 32
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threads which execute the same operation, or instruction. Consider this simple

code:

i f (x<0.0)

z = x−2.0;

else

z = s q r t ( x ) ;

This kind of “decision making” code is called a branch. If data are partitioned

so that even only one element takes a negative value, the system must behave

differently, that is perform different operations, on the set of 32 threads. This

behaviour is called warp divergence and can lead to very poor performances

due to the extra cost of fetching and performing different operations.

During the time spent to accomplish these studies and measurements, all

these issues have been faced, although at different levels and depth accord-

ing to the priorities and goals of the project, and contributed to build the

final considerations on the feasibility of a full software trigger using graphic

accelerators.
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Chapter 4

The LHCb GPU project

4.1 Goal and work plan of the project

To prove the feasibility of the project, it was decided to spot an algorithm which

were both representative of the difficulties in gaining the required scalability

with the foreseen LHC luminosity and simple enough to be translated into a

CUDA code without too much effort in development: the latter has an intrinsic

value to show that the effort to port an existing code to the new language can

be kept to a minimum, so that the learning curve of physicists acquiring the

new skills can be kept steep.

The FastVelo algorithm [43] was deemed suitable for the purposes of the

project, as it’s been conceived to reconstruct tracks inside the VELO sub-

detector. The algorithm itself is simpler than other tracking ones as the VELO

is not affected by the magnetic field, which bends particles in other tracking

stations, thus making the math more complex. A preparatory activity started

to analyze the code, to understand it and find the right way to factorize it for

the subsequent translation into CUDA code.

Then it was necessary to spot the right environment where to put a GPU-

equipped node so to collect real data from the LHCb detector. At teh beginning

the idea was to arrange it in the online farm, where the whole HLT lies. This

looked the most natural place where to put the node, as it was precisely the

place where to test the goodness, affordability and effectiveness of the GPU

project. At the end, and after some discussions with the people responsible for

the online facility, the choice fell on the Monitoring Farm (see 4.2.1 later on).
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Figure 4.1: The architecture of the HLT farm along with the machine equipped with
a GPU that made up the testbed

4.2 Testbed architecture

To perform some measurements directly on data coming from the detector,

it has been decided to install a “parasitic” machine in the Monitoring Farm

(MF) of LHCb. The MF has a different and less critical role than the Online

Farm, which performs the complete reconstruction of the events passing the L0

trigger. In fact its main task is to process a small bunch of events to extract

physics quantities, plotted with histograms, which are then used for a real time

validation of the incoming data.

This choice permitted on one hand to get real data from pp collisions, and

on the other to avoid perturbing the regular operations of the online facility.

The average rate of events feeding the monitoring nodes is O (10 Hz). The

overall scheme of the HLT and MF is shown in figure 4.1

4.2.1 Hardware and its integration with the online en-

vironment of LHCb

The testbed hardware installed in the MF consisted initially of a standard

desktop PC equipped with an Intel R© Core
TM

i7-4790 CPU @3.60 GHz with

hyper-threading, while in a second phase a typical HLT server, whose charac-

teristics are shown in table 5.2, has been used. The monitoring farm works

at a sustained rate of few tens of Hz, which on one hand is good enough for

our testing purposes and on the other hand keeps the system safe. To make

the testbed able to run in the MF, a dedicated configuration was needed, in

particular some specific packages had to be installed to communicate with the
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Figure 4.2: The architecture of Coprocessor Manager. Each client sends data to the
cpserver who then sends them back when processed by the accelerator.

monitoring infrastructure of the online environment.

4.2.2 Software integration with the Gaudi framework

As mentioned already in 3.2 one of the critical efforts to accomplish to achieve

the goals of the project is to integrate the GPU algorithm with the software

framework of the experiment.

The solution adopted by LHCb is similar to the one adopted by ATLAS [44]

In fact the collaboration developed the Coprocessor Manager [27], a tool

that enables Gaudi algorithms to be run on generic accelerators. It uses

a client/server architecture, where a process called cpserver runs on each

accelerator-equipped machine and listens to connection either on local sockets

or on network ones, while multiple Gaudi instances on the same machine or

on the same network connect to it as clients.

The server receives data from multiple concurrent clients, schedules algo-

rithm execution, combines data into batches, runs algorithms, and distributes

the results back to clients (see figure 4.2). To handle multiple concurrent

clients, the server opens a socket and accepts each connection on a new thread.

When a client connects, the server receives a data payload and the name of

the algorithm to be used to process it. The payload goes into a queue for

scheduling and the thread is suspended. Once the payload is processed, the

client thread is woken up, and the result of the computation is sent back to the

client. The client gets notified when the requested algorithm is not available
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or an exception is thrown during the computation. Algorithm scheduling and

execution are done on a dedicated thread. This has the benefit that the cpserver

is not stalled while data is passed back and forth between the server and its

clients.

Algorithms are executed one after another whenever data is available. The

scheduling algorithm is a variant of the first-come-first-serve (FCFS) approach:

the difference is that whenever a payload is removed from the queue, all payloads

targeting the same algorithm are removed from the queue with it. In fact these

payloads are submitted to the GPU as a batch, that is all the payloads which

needs to be processed by the same algorithm are grouped and sent together to

the accelerator.

This has the advantage, in the particular configuration that was used to perform

the studies and was spotted during our tests, that the server doesn’t need an

explicit buffering mechanism which would increase the overall processing time

adding a latency overhead to fill up the buffer. In principle one could expect

that this overhead should be balanced and overcome by a higher throughput

because of a higher occupancy of the cores of the GPU, given that more events

are feeding it. This overhead, though, is not compensated by this higher

throughput and this is (partially) in contrast with the idea of keeping the GPU

cores as much busy as possible, queuing as many events as there are cores

available. The reason is that the measurements made were performed using a

machine which could afford a maximum of 24 (then 32 in the standard HLT

machine configuration) client instances, while a real benefit would come with

O (100) clients which can fill up all the GPU cores.

When the hardware cannot cope with the amount of incoming data, new

clients are refused connection. FCFS, despite its simplicity, has an important

benefit: because there is no prioritization, every payload is guaranteed to be

processed in time. Prioritization schemes risk “starving” low-priority clients.

However, more complicated approaches may be preferable, if latency guarantees

are desired.

A specific Gaudi service, called CpService, has been developed to allow Gaudi

algorithms to submit data to cpserver.

As a further limitation, explained before in 3.4, when these studies were

performed, the concurrent Gaudi was still under development and not all the

functionality, from which the project could benefit, were operational. Yet the

results show that the need for a genuine parallel framework is crucial to exploit

thoroughly the architectures of modern CPU and accelerators.
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Figure 4.3: The RZ projection of particles’ tracks inside the VELO detector. The
algorithm looks for “quadruplets” or “triplets” to seed new tracks

4.2.3 Description of the algorithm

As a brief reminder, the VELO [11] is a silicon strip detector that provides

precise tracking very close to the interaction point. It is used to locate the

position of any primary vertex within LHCb, as well as secondary vertices due

to decay of any long lived particles produced in the collisions. It is formed by

21 stations, each consisting of two halves of silicon-strip sensors, which measure

R and φ coordinates. A sketch of the Velo detector is shown in Figure 1.3.

FastVelo [43] is the algorithm developed for tracking of the current Velo and

was written to run online in the HLT tracking sequence. For this reason, the

code was optimized to be extremely fast and efficient in order to cope with the

high rate and hit occupancy present during Run1-Run2 data taking. FastVelo

is highly sequential, with several conditions and checks introduced throughout

the code to speed up execution and reduce clone and ghost rates.

The algorithm can be divided into two well-defined parts. In the first

part (RZ tracking), all tracks in the RZ plane are found by looking at four

neighbouring R-hits along the z-axis (“quadruplet”)1. The quadruplets are

searched for starting from the last four sensors, where tracks are most separated.

Then the quadruplets are extended towards the lower z region as much as

possible, allowing for some inefficiency. In the second part of the algorithm,

1R and φ hits are sorted at an early stage of data processing.
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the full tracks are built by adding the information of the φ hits to the RZ

track. A first processing step is to define the first and last φ sensor to use,

then the algorithm starts from the first station with hits and searches for a

triplet of nearby φ hits. The triplet is then added to the RZ track to form a 3D

tracklet, so that the track parameters can be estimated. These 3D segments

are then extrapolated towards the interaction region by adding hits in the next

stations compatible with the tracklet. The tracks are then re-fitted using the

information of the R and φ hits, while the hits with the worst χ2 are removed

from the track. As last step, the hits of the track are marked as used and not

further considered for the following iterations (“hit tagging”): this is done to

reduce the number of clones produced by the algorithm avoiding encountering

the same track several times.

4.2.4 GPU implementation

The strategy used for porting FastVelo to GPU architectures (“FastVeloGpu”2)

takes advantage of the small size of the LHCb events (≈ 60kB per event, ≈
100 kB after the upgrade) implementing two level of parallelization: “of the

algorithm” and “on the events”. With many events running concurrently, it can

be possible, in principle, to gain more in terms of time performance with respect

to the only parallelization of the algorithm. The CPU algorithm was adapted to

run on GPU using the NVIDIA Compute Unified Device Architecture (CUDA)

language [31].

One of the main problems found in the parallelization of FastVelo concerns

the hit tagging which brakes data independence among different concurrent

threads of execution. The removal of the hit tagging is then necessary to

make all threads independent and to minimize the number of atomic operations.

However, the main drawback of this choice is that the number of clone and ghost

tracks becomes too large and additional “clone killing” algorithms (intrinsically

sequential and not easy to parallelize) have to be introduced to mitigate the

increase of ghost and clone rates. It must be noted that the original algorithm

running on HLT 2 includes additional parts for searching R-hit triplets and

unused φ hits. However, the GPU implementation of FastVelo reported in this

note refers only to the VELO tracking running on HLT 1 during the RUN 1.

Here’s a brief description of how the algorithm works.

The algorithm searches for long tracks first, using only the last five sensors

downstream the VELO (upstream for backward tracks). Four threads (one for

2The code is available on Git: https://gitlab.cern.ch/gianelle/FastVelo
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each sensor zone) find all possible quadruplets in these sensors. Each quadruplet

is then extended independently as much as possible by adding R-hits of other

sensors. The R-hits of each RZ track are marked as used; potential race

conditions are not an issue in this case, because the aim is to flag an hit as

used for the next algorithms. Next, the remaining sensors are processed: each

thread works on a set of five contiguous R sensors and find all quadruplets

on a zone of these sensors. A check is done on the hits in order to avoid hits

already used for the long tracks. In a sense, the algorithm gives more priority

to the long tracks with respect to the short ones. At this stage the number

of quadruplets belonging to the same tracks is huge and a first “clone killer”

algorithm is needed to protect against finding the same track several times.

All pairs of quadruplets are checked in parallel: each thread of the clone killer

algorithm takes a quadruplet and computes the number of hits in common with

the others; if two quadruplets have more than two hits in common, the one

with worst χ2 is discarded (here, the χ2 is defined as the sum of residual of the

position of the R-hits of the RZ track with respect to the predicted position

given by fitted track). Each quadruplet is again extended independently as

much as possible by adding R-hits of other sensors on both directions. After

this step, all possible RZ tracks are built. The number of clones generated by

the algorithm is still huge, and another clone killer algorithm similar to the

one implemented in the previous step is used to reduce the fraction of clone

tracks to a tolerable value. In order to detect clones, a check is made for all

possible track pairs: if two tracks shares more than 70% of their R-hits, the

shortest track, or the one with worst χ2, is discarded.

It should be noted that this procedure of cleaning clones follows the same

lines of the one implemented in the original FastVelo algorithm (“mergeClones”),

the only difference being that in FastVelo the clone killer algorithm is applied

only to the full 3D tracks (almost at the end of the tracking procedure), while

in the parallel implementation, without hit tagging, we are forced to introduce

it well before in the tracking sequence in order to reduce the number of tracks

in input to the next steps.

Next step is to perform full 3D tracking by adding φ hits information. Each

RZ track is processed concurrently by assigning a space-tracking algorithm

to each thread. This part is almost a translation in the CUDA programming

language of the original space-tracking algorithm, with the notable exception

of the removal of tag on the used φ hits. A minor modification with respect

the original code is that in the parallel version the handling of RZ tracks in

the sensors overlap regions was simplified to avoid recursive calls present in the
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sequential algorithm.

When all 3D tracks have been found, a final cleanup is done on the tracks

to kill the remaining clones and ghosts; the clone killer algorithm is the same of

the one used in the previous steps, with the exception that now the χ2 is based

on the information of both R and φ hits of the track. Finally the survived

tracks are converted in the LhcbTracks format and are ready to continue the

standard workflow for the complete event reconstruction.

The following chapters describe results and performances on both simulated

and real data, collected during two distinct period, one with pp and one with

heavy ions collisions.
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Chapter 5

Tests, performances and results

5.1 Introduction

This chapter includes the results obtained in two distinct stages of the project:

during the first stage, tests were performed only on simulated data and with

a standalone version of the algorithm. Standalone is meant to be a version

of the FastVelo which run originally as an isolated Cuda executable and only

after a preliminary period of testing, as an algorithm integrated in the Gaudi

framework.

The idea behind this project is first of all to prove the feasibility of porting an

existing algorithm to the Cuda language and to assess its physics performances,

in order to certify that the results are exactly the same as those gained with

the standard CPU. So the focus of the tests is twofold: on one hand the

improvement of the processing time and on the other to match the current

physics performances.

The second stage of the tests has been performed using the parasitic testbed

and collecting data from real proton-proton and proton-lead collisions. We

started taking data with our system in October 30th 2015. The first attempts

were useful to set-up and tune the hardware and software components. Several

adjustments had to be put in place to heal unexpected behaviour of the whole

chain.

Since the software environment of the online and monitoring farm is different

from that of the offline, a specific setup had to be put in place in order to get

data from the detector and inject them in the trigger sequence. In fact the

system needed a particular software switch to route the events either to the

CPU, for the standard track reconstruction, or to the GPU.

To get this result, we developed two different trigger lines. These are a sort
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of wrapper for each algorithm in the trigger sequence: their basic aim is to

setup the algorithm, perform some sanity checks on incoming data and then

fire the algorithm for the data processing. Every trigger line in the sequence

has only one computing target, that is the standard CPU. In our case, we had

to develop a separate line with the GPU as a computing target. These two

different lines could be switched in order to route data either to the CPU or

the GPU algorithm, permitting the comparison of the two software solutions.

One of the main issues during this stage was a hidden clash in the name of

the two algorithms which made the software crash when one of the two trigger

lines where fired. The second main issue was the tuning of the data structures

inside the GPU algorithm, in order to find the right compromise between the

memory needed by the process and the dimension of the bunch of events which

were processed. The testbed has been operational again with the new server

machine in the autumn of 2016 and it allowed to collect both pp and p-Lead

collision events.

5.2 Physics performances on simulated events

Some preliminary measurements have been made on simulated events. In order

to obtain a measure of the correctness of a reconstruction, several metrics exist.

These performance indicators are used when the reconstructed particles are

known, like Montecarlo simulated events.

Reconstruction efficiency is defined as

ε =
|F ∩R|
|R|

(5.1)

where F is the set of reconstructed particle, and R the set of reconstructible

particles, that is, the set of particles expected to be reconstructed.

The purity of a track is defined as

purity =
Ncorrect

Ntotal

(5.2)

where Ncorrect is the number of hits left by the particle that produced the

track and Ntotal is the total number of hits associated to that specific track.

Out of all reconstructed particles, some may come from measurements

which are produced by noise effects, like multiple scattering on silicon detectors.

Others may simply come from a bad selection of hits. Particles reconstructed

in this way are referred to as ghosts, since they do not represent real particles.

The ghost fraction of tracks in a given event is defined as
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ghost =
Nghost

Ntotal

(5.3)

where Nghost is defined as the set of tracks whose purity is < 70%.

A reconstructed particle is made up by several hits. These data point may

be picked up separately to reconstruct several particle tracks, instead of a single

one. Particles reconstructed in this way are called clones.

The clone fraction is then defined as

clones =
Nclones

Ntracks

(5.4)

A track is considered a clone of another one if the number of hits in common

is > 70%.

For the first set of measurements two simulated samples have been used to

evaluate the tracking and timing performances: Bs→ φφ events generated with

2012 conditions witha pile-up of ν = 2.5 and a b-inclusive Bs→ K∗µµ sample

produced with an upgraded scenario for 2015 (ν = 4.8). Timing performances

have been compared also with real data using a NoBias sample collected during

2012 (µ = 1.6). While ν is the number of total elastic and inelastic proton-proton

interactions per bunch crossing, µ represents the number of visible interactions

per bunch-crossing. LHCb labels simulated event samples according to ν and

real data according to µ. In the Montecarlo sample, the average number of

hits per sensor is ∼ 17, while the average number of reconstructed VELO

tracks per event is ∼ 80. The machine adopted for these measurements was an

Intel R© Core
TM

i7-3770@3.4 GHz.

The comparison of tracking efficiencies between the GPU implementation

and the original FastVelo algorithm for different categories of tracks is shown in

table 5.1. The efficiencies obtained by FastVelo on GPU are quite in agreement

with the sequential FastVelo. In particular, clones and ghosts are at the same

level of the original code. Figure 5.1 shows the tracking efficiency as a function

of the true track momentum Ptrue and the resolution of the impact parameter as

a function of 1/PT,true obtained by the two algorithms; the overall agreement is

good, showing that the GPU implementation does not introduce any distortion

on the resolution of the track parameters.

The speed-up obtained by the GPU algorithm with respect to FastVelo

running on a single CPU core as a function of the number of processed events is

shown in Figures 5.2, 5.3 and 5.4 for the three datasets. The timing performance

of the GPU tracking algorithm has been measured first in a standalone way

(i.e. outside the LHCb software framework Gaudi) by feeding the GPU with a
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Track category FastVelo on GPU FastVelo
Efficiency Clones Efficiency Clones

VELO, all long 86.6% 0.2% 88.8% 0.5%
VELO, long, p > 5 GeV 89.5% 0.1% 91.5% 0.4%

VELO, all long B daughters 87.2% 0.1% 89.4% 0.7%
VELO, long B daughters, p > 5 GeV 89.3% 0.1% 91.8% 0.6%

VELO, ghosts 7.8% 7.3%

Table 5.1: Tracking efficiencies obtained with FastVelo on GPU, compared with the
results obtained by original FastVelo code. The efficiencies are computed using 1000
Bs→ φφ MC events, generated with 2012 conditions.

Figure 5.1: Tracking performance comparisons between the sequential FastVelo and
FastVelo on GPU. (Left) Tracking efficiency as a function of the true track momentum
Ptrue. (Right) Impact parameter resolution as a function of 1/PT,true

.

fixed amount of events, while the CPU tracking time has been taken from the

detailed FastVelo profile given by the LHCb reconstruction software Brunel.

The GPU time has been measured using the standard CUDA timer. In these

plots, only the GPU and CPU tracking time has been considered (excluding

data transfer from host to GPU memory and vice-versa).

The GPU algorithm behaves differently according to the occupancy of hits

in the VELO (the average occupancy in the 2015 Montecarlo sample is a

factor of two higher than 2012 samples). The maximum speed-up obtained

by the GPU algorithm with respect to the sequential FastVelo is ≈ 3x for the

2012 datasets, while it decreases to ≈ 2x for the 2015 sample. The speedup

as a function of the number of events can be explained by the fact that the

occupancy of the GPU cores increases with the number of events (level 1 and 2

parallelism).
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Figure 5.2: Tracking execution time and speedup versus number of events using a
2012 MC sample of Bs→ φφ decays (ν = 2.5).

A test has been performed also to try to compare the throughput of the

GPU and of a multi-core system, an Intel R© Xeon E5-2600@2.7 GHz with

12 physical and 24 logical cores. The multi-core system can sustain a rate of

nearly 5000 ev/sec with an instance of the HLT software per core, while the

GPU shows a sustained rate of 2600 ev/sec. It’s important to note, though,

that it’s difficult to compare the performances of heterogeneous architectures

which make up the two systems. As this measurement shows, even a 24 logical

cores CPU can “beat” a GPU, but the attention should be focused on a more

significant parameter as the throughput normalized to operational costs. The

price of the high end commodity gaming card used for these tests is currently

only a fraction of that of a server class box which equips the HLT farm. So

it’s more sensible to compare the number of events per second and per unit of

currency.

The efficiency and timing measurement for the 10’000 Bs → K∗µµ events

have been done also with the new hardware configuration of the testbed which

is listed in Table 5.2 and replaced the initial desktop class machine.

The tracking performances, provided by the LHCb reconstruction applica-

tion, are summarized in Table 5.3: the efficiencies of the GPU algorithm are

2-3% lower than the official FastVelo, while clones and ghost rate are at the same

level. Figures 5.5 and 5.6 shows the tracking efficiency as a function of the true

track momentum and η, respectively, as obtained by the two algorithms; figure
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Figure 5.3: Tracking execution time and speedup versus number of events using a
sample of NoBias data collected during 2012 run (µ = 1.6).

Figure 5.4: Tracking execution time and speedup versus number of events using a
2015 MC sample of b-inclusive decays generated with ν = 4.8.

5.7 shows the CPU-GPU comparison for the impact parameter (IP) resolution

as a function of momentum; the overall agreement is good, showing that the

GPU implementation does not introduce any distortion on the resolution of

the track parameters.
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Host machine (typical HLT server) GPU device
ESC4000 G3 based on Intel R©Xeon R© processor NVidia GTX Titan X

16 CPU cores E5-2630v3 @2.40GHz w/ hyper-threading 3072 single-precision CUDA cores
64 GB of RAM, 145W/socket 12 GB of RAM, 250/300W

≈ 4 kCHF ≈ 0.8 kCHF

Table 5.2: The hardware installed in the testbed and used for performance studies.

Track category FastVelo on GPU FastVelo
Efficiency Clones Efficiency Clones

VELO, all long 90.8% 0.7% 93.7% 0.7%
VELO, long, p > 5 GeV 92.8% 0.6% 95.2% 0.5%

VELO, all long B daughters 91.8% 0.6% 94.3% 0.6%
VELO, long B daughters, p > 5 GeV 92.9% 0.6% 95.1% 0.5%

VELO, long Ks/Λ, p > 5 GeV 84.7% 0.5% 89.3% 0.4%
VELO, ghosts 12.3% 9.7%

Table 5.3: Tracking efficiencies obtained with FastVelo on GPU, compared with the
results obtained by original FastVelo code. The efficiencies are computed using 10000
Bs → K∗µµ MC events, generated with Run2 conditions.

It’s important to note that some parts of the official FastVelo algorithm have

not their counterpart on GPU (e.g. the recovery of unused φ hits) which causes

an efficiency loss of ≈ 1% in the GPU algorithm compared to the sequential

one. However, since the aim of this work is focused on the integration of

GPUs in the LHCb Online environment rather than writing an alternative Velo

tracking algorithm, we considered these results good enough for our purposes.

For this reason, the VELO tracking algorithm was not re-written from scratch

but the existing FastVelo code was adapted to run on GPU. If GPUs (or

other accelerators) will prove to be useful for the LHCb upgrade, parallel

reconstruction algorithms could be written in OpenCL [45] and ran on different

architectures1.

From this simple study we cannot conclude that GPU runs faster than a

full loaded CPU; a fair and more realistic comparison of the GPU performance

has been carried out during the data taking in a real-time environment using

the testbed where we measured the GPU throughput and we compared the

results with respect to a full HLT server.

1The efficiency of the algorithm when running on CPU through OpenCL should be
carefully studied.
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Figure 5.5: Tracking efficiency as a function of the true track momentum using a
Run2 simulated sample.

5.3 Physics data

These results were gained during the data taking period with proton-proton

and proton-lead collisions.

5.3.1 Timing performance

For the present timing analysis, we used pp collisions at 13TeV collected during

2016 (run 184269, threshold setting: Physics pp MidJune2016 ). The data

acquired by the test-bed have been processed by FastVelo (CPU and GPU

versions) without any preselection (except for a global cut on hit multiplicity).

The hardware used in the tests is the same listed in Table 5.2. A problem

encountered during the testbed operation was the size of the incoming data (i.e.

hit multiplicity) which was bigger than the one used during the development of

the algorithm; this produced some overflows in the data structures that needed

to be tuned during all the tests (e.g. during heavy ions runs).

The throughput measured during data-taking vs the number of clients is

shown in Figure 5.8: as expected, the CPU rate is constant being limited by
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Figure 5.6: Tracking efficiency as a function of the true η using a Run2 simulated
sample.

the reduced input rate of the MF, while the GPU performance increases with

the number of events. However, the number of available clients is not enough to

fully exploit all the processing power of the GPU. More clients would be needed

to feed the GPU with the number of events required to fill up its cores (see

Figure 5.4), get better performances and stress the system in a more realistic

scenario. Table 5.4 shows the numbers plotted on Figure 5.9 together with

the average number of events processed by GPU during the tests. It’s worth

noticing that there is a non negligible overhead (O(10%) of the total time)

introduced by the data transfer from and to the GPU, as can be seen in Figure

5.9.

An alternative measurement of the throughput has been done re-running

data offline: for this test, the events have been equally distributed among all

clients (≈ 300k events/client), and the total time was taken from the begin of

the test (when the first clients starts) to the end (when the last client finishes).

The result of this test is shown in Figure 5.10.

It must be noted that the events feeding the GPU in this context are from

a heavy ion beam. The increased multiplicity and complexity of the events
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Figure 5.7: Impact parameter resolution as a function of the inverse of the true track
momentum using a Run2 simulated sample.

No. clients Total time (ms/test) Avg. events / test

8 27.51 3.66
12 40.43 5.73
16 51.51 7.79
20 56.3 10
24 61.68 12.34

Table 5.4: The total FastVelo GPU time as seen by the HLT client for fill 4715
(time includes data transfer and framework latencies). The average number of events
processed by the GPU per test is also reported. The quoted numbers are averaged
over several tests.

affected the throughput as more tracks have to be reconstructed, slowing down

the whole processing. These events required also a more careful management

of memory, as the data structures allocated for standard pp collisions proved

to be unsuitable for heavy ion events.

5.3.2 Physics performances on Run2 data

Physics performances have been studied using Run2 data collected during

2016. Signal and background yields of the particles reconstructed by the HLT

monitoring (detached and prompt D0, J/ψ, φ) have been compared to official

reconstruction. For this analysis, the HLT monitor has been re-run offline on
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Figure 5.8: Event rate, measured during data-taking, in case of FastVelo running
on GPU (red line) and CPU (black line). GPU rate includes latencies due to data
transfer. The hardware used for the test is listed in Table 5.2.

the acquired data (threshold setting Physics pp MidJune2016 ).

Yields have been extracted by fitting the invariant masses provided by

HLT monitor with a single Gaussian for the signal plus an exponential for the

combinatorial background. Figures 5.11, 5.12, 5.13 and 5.14 show the mass

fit for D0 → Kπ, detached D0 → Kπ and J/ψ candidates, respectively (1M

events). Figures 5.16, 5.15 and 5.17 show the mass fit for a D0 with data taken

during the heavy ion operations and proton-lead collisions.

The number of signal candidates reconstructed by FastVeloGpu is≈ 10−15%

lower than the one obtained by the official algorithm, while the signal to

background ratio is slightly better for the GPU. A 3 − 4% loss in tracking

efficiency was also observed in simulated events (see Tab. 5.3) and it can be

partially due to tighter cuts applied in the GPU algorithm to remove clone

tracks. Nevertheless, the fitted mass resolutions are very close between CPU

and GPU.
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Figure 5.9: FastVelo GPU rate with (solid line) and without (dashed line) the
over-head due to data transfer to/from the GPU. The hardware used for the test is
listed in Table 5.2.
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Figure 5.10: Rate comparison (events /s) between CPU and GPU. Test done re-
running data offline with 300k events/client. The hardware used for the test is listed
in Table 5.2.
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Figure 5.11: D0 → KK invariant mass (MeV/c2). Blue curve is the total fit to data,
while orange and purple lines are signal and combinatorial components, respectively.
(Upper plot) CPU version. (Lower plot) GPU version.
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Figure 5.12: D0 → Kπ invariant mass for detached D0 (MeV/c2). Blue curve is
the total fit to data, while orange and purple lines are signal and combinatorial
components, respectively. (Upper plot) CPU version. (Lower plot) GPU version.
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Figure 5.13: D0 → Kπ invariant mass (MeV/c2). Blue curve is the total fit to data,
while orange and purple lines are signal and combinatorial components, respectively.
(Upper plot) CPU version. (Lower plot) GPU version.
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Figure 5.14: J/ψ invariant mass (MeV/c2). Blue curve is the total fit to data,
while orange and purple lines are signal and combinatorial components, respectively.
(Upper plot) CPU version. (Lower plot) GPU version.
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Figure 5.15: D0 → Kπ invariant mass (MeV/c2). Data are taken during the heavy
ion operations (proton-lead collisions). Blue curve is the total fit to data, while orange
and purple lines are signal and combinatorial components, respectively. (Upper plot)
CPU version. (Lower plot) GPU version.
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Figure 5.16: Invariant mass of a detached D0 (MeV/c2). Data are taken during
the heavy ion operations (proton-lead collisions). Blue curve is the total fit to data,
while orange and purple lines are signal and combinatorial components, respectively.
(Upper plot) CPU version. (Lower plot) GPU version.
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Figure 5.17: J/ψ invariant mass (MeV/c2). Data are taken during the heavy ion
operations (proton-lead collisions). Blue curve is the total fit to data, while orange
and purple lines are signal and combinatorial components, respectively. (Upper plot)
CPU version. (Lower plot) GPU version.
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Chapter 6

Conclusions

The LHCb GPU Project proved to be a very interesting and important oppor-

tunity to test the feasibility of a pure software trigger in view of the upgrade

of the detector.

The limitations imposed by the current L0 hardware trigger are too tight for

the physics program of the collaboration, which would be strongly penalized by

the very low trigger efficiency in all hadronic channels. To mitigate this effect,

LHCb decided to remove the L0 hardware level and rely on a pure software

level trigger. To this goal the collaboration started a thorough review of the

possibilities offered by hardware accelerators to speed up its HLT software, along

with a deep re-engineering effort to move to a real multi-threaded software.

The first choice fell on Nvidia R© Graphics Processing Units for their versa-

tility and relative ease of usage. In fact the programming language of these

objects is a plain C with only some specific directives to drive the device. The

difficulty in exploiting to a full extent these cards is not the language itself, but

a radical change in the programming paradigm. It has been showed that the

standard Object Oriented design doesn’t fit the architecture of these objects,

which are suited for a more functional approach and a different way to organize

data (Structure of Arrays vs Array of Structures paradigm). These two aspects

are relevant when considering the desired learning curve to allow physicists to

manage these devices. In our experience this proved to be determinant in the

overall time budget of the project while porting the original FastVelo code to a

CUDA-compliant one. The relative poor speedup gained with 2015 simulated

data should be reviewed, also, under this consideration: despite the efforts

made to adapt the code to a real SoA paradigm, it remained conceptually the

same as the one developed for a genuine serial workflow. This can be further

extended when considering the huge amount of branching that the original

code introduced to speed up the performances. While this approach proved
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to be determinant when applied to the current HLT 2, it showed its intrinsic

limitations when applied to devices which suffer from “warp divergence”.

This should make physicists aware that the algorithms developed so far

should be redesigned to comply to the most modern software paradigms, e.g.

multi-threading. LHCb is indeed actively involved in reviewing all the current

reconstruction and analysis algorithms to write them in a fashion that’s able to

exploit the new task based parallel framework Gaudi. To sustain this effort,

the collaboration started a program of courses on modern C++ and regular

“hackathons”, where users can ask for advice and submit their code to experts,

who then provide feedback or design solutions to the proposed issues.

Another consideration that is worth citing is the unavoidable and penalizing

overhead introduced by the offloading mechanism. GPUs are fed up by PCIe

buses which, despite being “fast”, are nevertheless adding a latency for moving

data back and forth the main memory of the device. Our measurements

show that this overhead amounts to nearly 10% of the overall computing time.

Although the technological trend shows already an improved version of the

PCIe bus, with a bandwidth that will be 4 times larger than the current PCIe

3.0 in a couple of years, it’s clear that this will always be a bottleneck for

machines whose main computing power will still reside in the CPU.

One of the most important things that these studies revealed, is that, in

a world where hardware concurrency is, by now, a standard de facto, it is no

more affordable to postpone a thorough review of the whole software stack

towards a task based parallelism (see [38,42]). Other LHC experiments, namely

CMS, already deployed a full multi-core computing infrastructure [46] to their

Tier0 and Tier1 sites, in order to have the flexibility to adapt specific job

requirements to the resources available on a given machine. In our experience

one more aspects arose: the performance of hardware accelerators is strongly

limited by the lack of a pure concurrent multi-event framework. Currently

the LHCb framework manages only one event at a time sequentially. This

mechanism penalizes devices such as GPUs because it cannot provide enough

events to keep the occupancy to the full capacity. A partial mitigation of this

effect has been achieved using more clients which concurrently feed the GPU,

providing a kind of “fake” multi-event environment, but it was clear that, even

with a reduced speed-up, we would need O (100) events in-flight to fully exploit

the computing power of even a commercial gaming card. This goes in the same

direction of what was said earlier, that a modern physics experiment cannot

overlook a genuine multithreaded and parallel software able to take advantage

of the multi- and many-core hardware revolution.

62



Last but not least, a word on the physics performances: the studies per-

formed during this project where more devoted to computational aspects.

Nevertheless these didn’t overlook the final goal, that is provide a faster soft-

ware which reconstructs particles inside the LHCb detector. Despite some

inevitable discrepancies, the results where quite in agreement with those of

the standard code. It is plain that the agreement must be instead complete,

and this implies also further studies with simulated events to guarantee an

exact match. The algorithm was also partially modified and some thresholds

tightened, in order to cope with some limitations on the GPU version of the

code, but in the end the “physics” behind the computation was preserved to a

satisfying degree.

It must be said, furthermore, that it’s not always easy to define some

metrics with which to compare the performances of different architectures such

as CPU and GPU. A sensible one could be the performances normalized to

the cost, in order to spot the best balance between “standard” machines and

GPU-equipped ones.

Nevertheless the critical aspect which must be considered is the lack of a

factor ∼ 6 in the time budget for the full reconstruction of a typical LHCb

event after the upgrade, a factor that must be cut.

Currently it’s not possible to say a definitive word on the decision that

the LHCb collaboration will take regarding the usage of these devices. In

fact according to the Computing TDR, the baseline for the new HLT are still

standard CPUs, but a door has been kept open to allow for a more aggressive

and performing solution using hardware accelerators [47].
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