
Università degli Studi di Ferrara

Dipartimento di Ingegneria

DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

Ciclo XXX

COORDINATORE Prof. Stefano Trillo

SETTORE SCIENTIFICO DISCIPLINARE ING-INF/05

Inference and Learning Systems

for Uncertain Relational Data

Dottorando

Dott. Giuseppe Cota

Tutori

Prof.ssa Evelina Lamma

Prof. Fabrizio Riguzzi

Anni: 2014/2017

Abstract

Representing uncertain information and being able to reason on it is of foremost im-
portance for real world applications. The research field Statistical Relational Learning
(SRL) tackles these challenges. SRL combines principles and ideas from three impor-
tant subfields of Artificial Intelligence: machine learning, knowledge representation and
reasoning on uncertainty. The distribution semantics provides a powerful mechanism
for combining logic and probability theory.

The distribution semantics has been applied so far to extend Logic Programming
(LP) languages such as Prolog and represents one of the most successful approaches
of Probabilistic Logic Programming (PLP), with several PLP languages adopting it
such as PRISM, ProbLog and LPADs. However, with the birth of the Semantic Web,
that uses Description Logics (DLs) to represent knowledge, it has become increasingly
important to have Probabilistic Description Logic (PDLs). The DISPONTE semantics
was developed for this purpose and applies the distribution semantics to description
logics.

The main objective of this dissertation is to propose approaches for reasoning and
learning on uncertain relational data. The first part concerns reasoning over uncertain
data. In particular, with regard to reasoning in PLP, we present the latest advances
in the cplint system, which allows hybrid programs, i.e. programs where some of the
random variables are continuous, and causal inference. Moreover cplint has a web
interface, named cplint on SWISH, which allows the user to easily experiment with
the system. To perform inference on PDLs that follow DISPONTE, a suite of algo-
rithms was developed: BUNDLE (“Binary decision diagrams for Uncertain reasoNing
on Description Logic thEories”), TRILL (“Tableau Reasoner for descrIption Logics in
Prolog” and TRILLP (“TRILL powered by Pinpointing formulas”).

The second part, which focuses on learning, considers two problems: parameter
learning and structure learning. We describe the systems EDGE (“Em over bDds for
description loGics paramEter learning”) for parameter learning and LEAP (“LEArning
Probabilistic description logics”) for structure learning of PDLs. The execution of
these algorithms and those for PLP, such as EMBLEM for parameter learning and
SLIPCOVER for structure learning, is rather expensive from a computational point of
view, taking a few hours on datasets of the order of MBs. In order to efficiently manage
larger datasets in the era of Big Data and Linked Open Data, it is extremely important
to develop fast learning algorithms. One solution is to distribute the algorithms using
modern computing infrastructures such as clusters and clouds. We thus extended
EMBLEM, SLIPCOVER, EDGE and LEAP to exploit these facilities by developing
their MapReduce versions: EMBLEMMR, SEMPRE, EDGEMR and LEAPMR.

We tested the proposed approaches on real-world datasets and their performance
was comparable or superior to those of state-of-the-art systems.

III

Acknowledgements

First and foremost, I have to thank my two supervisors, Evelina Lamma and Fabrizio
Riguzzi. I am immensely grateful for all the time they dedicated to me. Their guidance
and support were essential during my PhD years.

I would like to thank my colleagues. Thanks to the interesting discussions and the
fun we had together, the cafeteria food and the sandwiches seemed to be tastier.

I thank all the components of my family that helped me to grow up and become
an adult. In particular, I thank my father Matteo, my mother Maria and my brother
Antonio for forcing me to believe in myself even when I did not want to. I also thank
my grandparents Antonio and Anna for their encouragement throughout my doctoral
years.

A special thank goes to Paola, the talking chicken who interrupts my grouchiness
(often without permission) and fills my days with colourful stories and crayons.

Last but not least, I need to thank all my friends for all the marvelous moments of
joy spent together. Without them I would have published more papers.

Giuseppe Cota

V

And now for something completely different...

VII

Contents

List of Figures XV

List of Tables XVII

List of Algorithms XIX

List of Acronyms XXI

I Introduction 1

1 Motivation 3

2 Aims of the Thesis 7

3 Structure of the Thesis 9

3.1 Structure . 9
3.2 Thesis Contributions . 10

3.2.1 Inference in Probabilistic Logic Programming 10
3.2.2 Inference in Probabilistic Description Logics 11
3.2.3 Learning Systems in Probabilistic Logic Programming 11
3.2.4 Learning Systems in Probabilistic Description Logics 12

3.3 How to read this thesis . 12

II Probabilistic Logics 15

4 Fundamentals of First-Order Logic and Logic Programming 17

4.1 Introduction . 17
4.2 First-Order Logic . 17

4.2.1 Syntax . 17
4.2.2 Tarski’s semantics . 20

4.3 Logic Programming . 21
4.3.1 Prolog . 22
4.3.2 Normal Logic Programs . 24

4.4 First-Order Logic vs Logic Programs 28
4.5 Conclusions . 29

IX

X CONTENTS

5 Distribution Semantics 31
5.1 Introduction . 31
5.2 Formal Definition . 32
5.3 Conclusions . 34

6 Probabilistic Logic Programming Languages 35
6.1 Introduction . 35
6.2 Logic Programs with Annotated Disjunctions 35

6.2.1 LPADs Syntax . 35
6.2.2 LPADs Semantics . 36

6.3 ProbLog . 39
6.3.1 ProbLog Syntax . 39

6.4 Conclusions . 40

7 Description Logics and OWL 41
7.1 Introduction . 41
7.2 Description Logics . 42
7.3 Syntax . 42

7.3.1 Concept and Role Constructors 43
7.3.2 Concept Constructors . 43
7.3.3 Role constructors . 44
7.3.4 Knowledge Base . 45
7.3.5 Nomenclature . 47

7.4 Semantics . 50
7.4.1 Decidability of Description Logics 54

7.5 Description Logics and First-Order Logic 55
7.6 The OWL Ontology Language . 57

7.6.1 OWL Syntax . 59
7.6.2 OWL sublanguages . 60
7.6.3 Tools for OWL . 63

7.7 Conclusions . 63

8 Reasoning in Description Logics 65
8.1 Reasoning Problems . 65

8.1.1 Closed vs Open World Assumption 67
8.2 Reasoning Techniques . 67

8.2.1 Pellet . 68
8.2.2 Tableau Algorithm . 68
8.2.3 Explanation finding . 72
8.2.4 Pinpointing formula . 80

8.3 Conclusions . 84

9 Probabilistic Description Logics 85
9.1 Introduction . 85
9.2 The Distribution Semantics for Description Logics: DISPONTE 85

9.2.1 Syntax . 85
9.2.2 Semantics . 86

CONTENTS XI

9.2.3 Assumption of Independence . 90
9.3 Related Work . 92
9.4 Conclusions . 94

III Inference in Probabilistic Logics 95

10 Decision Diagrams 97
10.1 Introduction . 97
10.2 Multivalued Decision Diagrams . 97
10.3 Binary Decision Diagrams . 98
10.4 Conclusions . 100

11 Fundamentals of Exact Probabilistic Logical Inference 101
11.1 Inference Approaches . 101
11.2 Exact Probabilistic Logical Inference 102
11.3 Splitting Algorithm . 104
11.4 Inference with Multi-valued Decision Diagrams 107
11.5 Inference with Binary Decision Diagrams 108
11.6 Conclusions . 114

12 Inference in Probabilistic Logic Programming 115
12.1 Introduction . 115
12.2 cplint . 116

12.2.1 Exact Inference: the PITA module 116
12.2.2 Approximate Inference: the MCINTYRE module 118

12.3 Causal Inference with cplint . 121
12.3.1 Causal Inference in Probabilistic Logic Programming 124
12.3.2 Causal Exact Inference with cplint 125
12.3.3 Causal Approximate Inference with cplint 126
12.3.4 Notable Examples . 127
12.3.5 Simpson’s Paradox . 127
12.3.6 Viral Marketing . 129
12.3.7 Experiments . 129

12.4 Hybrid Probabilistic Logic Programs with cplint 136
12.4.1 Sampling the Arguments of Unconditional Queries over Hybrid

Programs . 137
12.4.2 Conditional Queries over Hybrid Logic Programs 138

12.5 cplint on SWISH: a Web interface for cplint 141
12.5.1 SWISH . 141
12.5.2 cplint on SWISH . 143
12.5.3 Examples . 146

12.6 Related Work . 152
12.6.1 Work on causality inference . 152
12.6.2 Work on Hybrid Probabilistic Logic Programs 153
12.6.3 Web application for Probabilistic Logic Programming 153

12.7 Conclusions . 154

XII CONTENTS

13 Inference in Probabilistic Description Logics 155
13.1 Introduction . 155
13.2 BUNDLE . 156

13.2.1 How to use BUNDLE . 158
13.3 TRILL . 158
13.4 TRILLP . 165
13.5 How to use TRILL and TRILLP . 166
13.6 TRILL on SWISH . 166
13.7 Inference Complexity . 167
13.8 Experiments . 168

13.8.1 Comparing the Systems . 168
13.9 Related Work . 172
13.10Conclusion . 174

IV Learning 175

14 Introduction to Statistical Relational Learning 177
14.1 Introduction . 177
14.2 Inductive Logic Programming . 178
14.3 Statistical Relational Learning . 180

14.3.1 Parameter Learning . 182
14.3.2 Structure Learning . 183

14.4 Conclusion . 183

15 Distributed Learning in Probabilistic Logic Programming 185
15.1 Introduction . 185
15.2 Parameter Learning: EMBLEM . 186
15.3 Structure Learning: SLIPCOVER . 187
15.4 Distributed Parameter Learning: EMBLEMMR 188
15.5 Distributed Structure Learning: SEMPRE 189
15.6 Experiments . 192
15.7 Conclusions . 196

16 Parameter Learning in Probabilistic Description Logics 197
16.1 Introduction . 197
16.2 EDGE . 197

16.2.1 Expectation Computation . 198
16.2.2 EDGE’s Algorithm . 200
16.2.3 How to Use EDGE . 202

16.3 Conclusion . 203

17 Distributed Parameter Learning for Probabilistic Description Logics205
17.1 Introduction . 205
17.2 Distributed Parameter Learning: EDGEMR 205

17.2.1 MapReduce View . 206
17.2.2 Scheduling Techniques . 207

CONTENTS XIII

17.2.3 EDGEMR’s Algorithm . 207
17.3 Experiments . 211
17.4 Conclusions . 213

18 Structure Learning in Probabilistic Description Logics 215
18.1 Introduction . 215
18.2 The Learning Problem . 216
18.3 Refinement Operators in Description Logics 216
18.4 CELOE . 219
18.5 DL-Learner . 221
18.6 Structure Learning: LEAP . 222

18.6.1 Architecture . 222
18.6.2 Interfacing CELOE and EDGE 223
18.6.3 LEAP . 223

18.7 Related Work . 226
18.8 Experiments . 227
18.9 Conclusions . 228

19 Distributed Stucture Learning in Probabilistic Description Logics 229
19.1 Distributed Structure Learning: LEAPMR 229
19.2 Experiments . 230
19.3 Conclusion . 231

V Conclusions and Future Work 233

20 Conclusions 235

21 Future Work 239
21.1 Future Work on Inference . 239
21.2 Future Work on Learning . 240

Bibliography 243

Appendix 263

A List of Publications 263

List of Figures

1.1 Linked Open Data Cloud . 4

3.1 Chapter dependency graph . 14

4.1 Prolog SLD resolution tree . 24

7.1 The Semantic Web Stack. 58
7.2 OWL 1 sublanguages. 62
7.3 OWL 2 sublanguages. 63

8.1 Some Pellet tableau expansion rules . 70
8.2 HST Example . 76
8.3 HST for All-MinAs(Q,K) . 78
8.4 Tableau expansion rules for building a pinpointing formula 84

9.1 Bayesian Network representing the dependency between A(i) and B(i). 91
9.2 Bayesian Network modeling the distribution over A(i), B(i), X1, X2, X3. 92

11.1 MDD corresponding to Equation (11.2). 108
11.2 BDD for Example 11.5.1 equivalent to the MDD in Figure 11.1. 110
11.3 BDD for Example 11.5.2. 111
11.4 BDD for Example 11.5.3. 112
11.5 BDD for Example 11.5.4 with order X1 ≺ X2 ≺ X3 ≺ X4. 113
11.6 BDD for Example 11.5.4 with order X1 ≺ X4 ≺ X2 ≺ X3. 114

12.1 Bayesian network for a drug study domain. 122
12.2 Mutilated version of the Bayesian network of Figure 12.1 for computing

the effect of a drug. 122
12.3 Architecture of cplint for causal inference. 128
12.4 LPAD for viral marketing. 130
12.5 Social network for the viral marketing example. 130
12.6 Average time for conditional and causal queries with 2 evidence literals. 131
12.7 Average time for conditional and causal queries with 4 evidence literals. 133
12.8 Average time for conditional and causal queries with 6 evidence literals. 133
12.9 Average time for conditional and causal queries with 8 evidence literals. 134
12.10cplint on SWISH interface. 145
12.11Graphical representations for query pandemic in Example 12.5.1. . . . 147
12.12Density of X of mix(X) obtained by the query in Example 12.5.2. . . . 148

XV

XVI LIST OF FIGURES

12.13Prior and posterior densities of the argument Y of value(0,Y) obtained
by likelihood weighting and particle filtering in Example 12.5.3 150

12.14Representation of the distributions in Example 12.5.4 151
12.15ProbLog program for viral marketing. 152

13.1 Example of ABox in TRILL . 159
13.2 Code of the predicate safe/3 . 160
13.3 Code of the → unfold rule . 161
13.4 Code of the → t rule . 161
13.5 Application of expansions rules in TRILL 163
13.6 Code of the predicates compute_prob/2 and build_bdd/3. 164
13.7 Predicates test/2 and build_f/3 . 166
13.8 TRILL on SWISH interface. 167
13.9 Axioms from BRCA . 169
13.10Axioms from DBPedia . 169
13.11Axioms from Biopax . 171
13.12Axioms from Vicodi . 172

15.1 SEMPRE speedup graph . 193

16.1 CBDD equivalent to the BDD in Example 11.5.3 199

17.1 Scheduling techniques of EDGEMR. 208
17.2 Speedup of EDGEMR . 212
17.3 Memory consumption of EDGEMR . 213

18.1 Illustration of a search tree in a top down refinement approach. 220
18.2 Positive and negative examples in a class learning problem 220
18.3 The architecture of DL-Learner (redrawing from [244]). 222
18.4 LEAP Architecture . 223

19.1 LEAPMR architecture. 229
19.2 Speedup of LEAPMR . 231

List of Tables

5.1 MDB1 for the finite program DB1. 33
5.2 PF1 and PDB1 for the finite program DB1. 33

7.1 Some DL constructors with their associated DL language symbols. . . . 49
7.2 Syntax and semantics of common concept and individual constructors. 51
7.3 Syntax and semantics of common role constructors. 51
7.4 Syntax and semantics of common datatype and data value constructors 52
7.5 Correspondence between DL axioms and their translation into FOL . . 57
7.6 Terminology comparison of FOL, DL, and OWL. 59
7.7 DL Axiom Woman v Person in different OWL 2 syntaxes. 60
7.8 Most common OWL expressions in DL and Manchester OWL syntax. . 61
7.9 Most common OWL axioms in DL and Manchester OWL syntax. . . . 61

12.1 Execution time for conditional and causal queries with 2 evidence literals 132
12.2 Execution time for conditional and causal queries with 4 evidence literals 132
12.3 Execution time for conditional and causal queries with 6 evidence literals 134
12.4 Execution time for conditional and causal queries with 8 evidence literals.135
12.5 Mean Squared Error for approximate causal inference 135

13.1 Average time of BUNDLE, TRILL and TRILLP for different datasets. . 170
13.2 Average time of BUNDLE, TRILL and TRILLP for synthetic datasets . 170

15.1 SEMPRE execution time . 192
15.2 AUC-PR and execution time (in seconds) on the Mutagenesis dataset . 194
15.3 AUC-PR and execution time (in seconds) on the Carcinogenesis dataset 194
15.4 AUC-PR and execution time (in seconds) on the IMDB dataset 195
15.5 AUC-PR and execution time (in seconds) on the HIV dataset 195

17.1 Characteristics of the datasets used for evaluation. 211
17.2 Comparison between EDGE and EDGEMR 212

18.1 Results of the experiments in terms of AUCPR and AUCROC averaged
over the folds with EDGE and LEAP 228

XVII

List of Algorithms

8.1 Tableau algorithm executed by Pellet. 69
8.2 SingleMinA algorithm. 73
8.3 Black-Box pruning algorithm. 74
8.4 Hitting Set Tree Algorithm. 79
11.1 Splitting Algorithm. 104
11.2 Function Prob . 110
12.1 Algorithm for computing the conditional probabilities. 119
12.2 Algorithm for preparing the knowledge base for exact causal inference. 126
12.3 Algorithm for preparing the knowledge base for approximate causal in-

ference. 127
13.1 Function Bundle: computation of the probability of a query Q given

the (probabilistic) KB K. 157
15.1 EMBLEM algorithm. 186
15.2 Function SLIPCOVER . 188
15.3 Function EMBLEMMR . 189
15.4 Function SEMPRE . 191
16.1 EDGE . 201
16.2 Expectation . 201
16.3 Maximization . 202
16.4 GetForward . 202
16.5 GetBackward . 203
17.1 Function EDGEMR . 210
18.1 LEAP Algorithm . 225
19.1 LEAPMR . 230

XIX

List of Acronyms

BDD Binary Decision Diagram

CNF Conjunctive Normal Form

CRV continuous random variable

DL Description Logic

DNF Disjunctive Normal Form

EM Expectation-Maximization

FOL First-Order Logic

HST hitting set tree

ICL Independent Choice Logic

ILP Inductive Logic Programming

KB knowledge base

LP Logic Programming. Logic Program

LPAD Logic Program with Annotated Disjunctions

MCMC Markov Chain Monte Carlo

MDD Multivalued Decision Diagram

mgu most general unifier

MPI Message Passing Interface

OWL Web Ontology Language

PDL Probabilistic Description Logic

PILP Probabilistic Inductive Logic Programming

PLP Probabilistic Logic Programming. Probabilistic Logic Program

SRL Statistical Relational Learning

XXI

Part I

Introduction

1

Chapter 1

Motivation

In the last few years we have witnessed the spread of the Semantic Web and its tech-
nologies for knowledge representation and reasoning. The Semantic Web is promoted
by the World Wide Web Consortium and encourages the publication on the Internet of
particular information, called semantic content, that can be processed and understood
by machines.

In 2013, it was estimated that web content reached 4 Zettabytes. This information
indicates how important it is to develop tools capable of representing and analyzing
a huge amounts of information, which are no longer manageable by traditional (rela-
tional) databases.

Since the dawn of artificial intelligence, the problem of knowledge representation
has been one of the most addressed problems. Logic programming is an area of research
in which knowledge is represented by formalisms based on First-Order Logic (FOL).

Another approach to represent knowledge is by means of ontologies. An ontology is
a formal and explicit representation of a domain of interest, which solves the problems
of ambiguity between entities. An ontology can be expressed with a description logic.

Description Logics (DLs) are a family of logical formalisms used to model knowledge
in terms of concepts, roles and properties. They are usually a decidable fragment of
FOL.

Different ontologies may have a common concept. For example, the concept Eye
within an ontology concerning human pathologies is the same in an ontology of human
anatomy. The fact that an entity is the same in two different knowledge bases (KBs)
establishes a sort of semantic link. Linked Open Data is a methodology for publishing
Open Data (structured data without copyright and automatically processable) on the
Web, so as to link data and make it easier for both man and machine to access additional
information. With this methodology we can link KBs that come from different areas of
expertise, generating a huge semantic network called Linked Open Data Cloud, shown
in Figure 1.1, in which each node is a KB and each link between nodes means there
are some relationships between entities from different KBs (i.e. owl:sameAs).

Logic programming languages and description logics are logical formalisms that
can be used to represent datasets containing huge amount of information. However, in
the real world domain, information may be uncertain, and neither logic programs nor
description logics can represent it. Therefore, it becomes essential to provide methods
for representing this type of information.

3

5

In 1995 Taisuke Sato defined the distribution semantics [1], which provides a pow-
erful mechanism to combine logic with probability theory, in fact this semantics yielded
a new subfield of SRL called Probabilistic Logic Programming (PLP) and several PLP
languages, such as PRISM, ProbLog and LPADs.

In order to apply the acquired knowledge in the field of Probabilistic Logic Program-
ming in the case of Description Logics, in [2, 3] the authors formalized DISPONTE,
a semantics that applies the distribution semantics to description logics, thus defining
Probabilistic Description Logics (PDLs).

Information can become knowledge only if it has some useful and even applicable
use. Thus, once we defined these logical formalisms and their semantics, a first im-
portant step is to define and develop systems for automatic reasoning, both for PLP
languages and PDLs. In fact, while in traditional databases all the knowledge is ex-
plicit, a knowledge base expressed by a logical formalism contains implicit knowledge
that can be made explicit only by using an inference system, also called reasoner.

Reasoners, however, do not introduce new knowledge, but, as just said, they just
make explicit an already acquired knowledge. Therefore, the next step is to develop
automatic methods to enrich an initial knowledge base with new knowledge. The field
of artificial intelligence that concerns the development of this type of methods is known
under the name of Machine Learning.

Statistical Relational Learning (SRL) is a relatively new research field that com-
bines principles and ideas from three important areas of Artificial Intelligence: machine
learning, knowledge representation and reasoning on uncertainty. In SRL the knowl-
edge is represented with a probabilistic logical formalism. The development of systems
in the field of SRL is of considerable importance, to solve the problems arising from
this discipline.

An important problem faced by machine learning researchers is managing Big Data.
Learning from big data raises a lot of problems. One of the most common approaches
to solving them is to use distributed algorithms.

Chapter 2

Aims of the Thesis

The main objective of this thesis is to propose approaches for reasoning, parameter
learning and structure learning on knowledge bases represented with a probabilistic
logic-based formalism.

We tested the proposed approaches on real-world datasets and their performances
was comparable or superior to other state-of-the-art systems.

The first part of this thesis concerns reasoning over uncertain data. In particular,
with regard to reasoning in PLP, we present the latest advances in the cplint system,
which allows hybrid programs, i.e. programs where some of the random variables are
continuous, and causal inference. Moreover we developed a web interface for cplint,
named cplint on SWISH, which allows the user to experiment with the system with-
out having to install anything on the local machine. To perform inference on PDLs
that follow DISPONTE, a suite of algorithms is presented: BUNDLE (“Binary decision
diagrams for Uncertain reasoNing on Description Logic thEories”), TRILL (“Tableau
Reasoner for descrIption Logics in Prolog” and TRILLP (“Tableau Reasoner for de-
scrIption Logics in Prolog powered by Pinpointing formula”).

The second part of our thesis focuses on machine learning. Machine learning is a
huge area of research, with several subfields and algorithms. We can group machine
learning algorithms into supervised, unsupervised, and reinforcement learning methods.

• In supervised learning, training data is composed by examples where each of
them is labeled with the correct output class. Given this training data, the aim of
the learning algorithm is to find a function mapping between input and output.

• In unsupervised learning, training data is not labeled and the aim of the
learner is to extract relationships or correlations from the available data.

• In reinforcement learning, the learning algorithm performs actions in an envi-
ronment and receives rewards or punishments as feedback. Given a certain state
of the environment, the learner tries to maximize the rewards and minimize the
punishments by choosing the appropriate actions to perform.

Our research area is inside the Statistical Relational Learning (SRL) field that can
be seen as a subfield of machine learning. All the learning systems proposed in this
work are supervised. Moreover we use probabilistic logic-based formalisms to repre-
sent knowledge. Logical formalisms fall into the category of symbolic formalisms (as

7

8 Aims of the Thesis

opposed to non-symbolic and sub-symbolic). This means that our learning approaches
produce logical, human understandable solutions. Non-symbolic methods such as neu-
ral networks do not produce human understandable results. Sub-symbolic methods are
between these two extremes.

SRL is a relatively young field. There are many opportunities to develop new
methods for real-world problems. In SRL the two main learning problems are:

• parameter learning, given the probabilistic knowledge base (composed of logic
formulas) we want to learn the parameters, and

• structure learning, we want to learn both new probabilistic logic formulas (the
structure) and the parameters.

In this dissertation we propose systems to solve both these problems, whether we use
PLP languages or PDLs that follow DISPONTE.

The learning systems proposed in these thesis can be grouped into two categories:
systems for PLP and systems for PDLs. In the past, various learning algorithms for
PLP have been proposed, among these we mention EMBLEM [4] for parameter learning
and SLIPCOVER [5] for structure learning. However, the execution of these algorithms
is rather expensive from a computational point of view, taking a few hours on datasets
of the order of MBs. In order to efficiently manage larger datasets in the era of Big
Data and Linked Open Data, it is of foremost importance to develop algorithms and
techniques for improving the performances and reaching scalability. One solution is to
distribute the algorithms using modern computing infrastructures such as clusters and
clouds. We thus developed the distributed versions of EMBLEM and SLIPCOVER:
EMBLEMMR and SEMPRE (“Structure lEarning by MaPREduce”).

As learning systems for PDLs, we present EDGE (“Em over bDds for description
loGics paramEter learning”) for parameter learning and LEAP (“LEArning Proba-
bilistic description logics”) for structure learning. For the same reasons that led us
to develop SEMPRE, we extended EDGE and LEAP by developing their distributed
versions: EDGEMR and LEAPMR.

Chapter 3

Structure of the Thesis

3.1 Structure

The content of this thesis is divided into individual parts and chapters as follows.

Part I - Introduction
This part contains introductory chapters explaining the motivations (Chapter 1), aims
of this thesis (Chapter 2) and the structure of the thesis (this chapter).

Part II - Probabilistic Logics
Most logical formalisms are based on First-Order Logic (FOL), Part II provides the
background knowledge to understand them and the main differences between Logic
Programming (LP) and FOL. Chapter 5 presents the distribution semantics as defined
by Taisuke Sato. In Chapter 6 we illustrate LPADs and ProbLog, two of the most
famous PLP languages, and how they apply the distribution semantics. Besides logic
programming languages we can represent knowledge by means of Semantic Web tech-
nology. Web Ontology Language (OWL) is one of them and it based on Description
Logics. Description Logics and OWL are both discussed in Chapter 7. Like in the LP
framework, DLs are not capable of representing uncertain information. DISPONTE,
explained in Chapter 9, applies the distribution semantics to description logics and we
named the resulting formalism Probabilistic Description Logics (PDLs).

Part III - Inference in Probabilistic Logics
In this part of the thesis we introduce systems for probabilistic logical inference. Binary
Decision Diagrams (BDDs), illustrated in Chapter 10 are a graphic method to represent
Boolean formulas. They are used when performing exact probabilistic logical inference,
see Chapter 11. In Chapter 12 and Chapter 13 we present inference systems for LPADs
and PDLs respectively.

Part IV - Learning
This part of the thesis concerns machine learning, in particular one of its subfields
known as Statistical Relational Learning (SRL). An introduction to SRL and a dis-
cussion of its main learning problems are provided in Chapter 14. The main learning
problem are parameter learning and structure learning. In Chapter 15 we propose a

9

10 Structure of the Thesis

distributed structure learning algorithm for LPADs called SEMPRE. For parameter
learning in the PDL paradigm we illustrate EDGE in Chapter 16, and we present its
distributed version EDGEMR in Chapter 17. For structure learning, instead, we pro-
pose LEAP in Chapter 18 and LEAPMR, which integrates EDGEMR into LEAP, in
Chapter 19.

Part V - Conclusions and Future Work
This part closes this thesis with some final remarks on our study (Chapter 20), in-
cluding a discussion of the limitations of our systems and possible future directions
(Chapter 21).

3.2 Thesis Contributions

We can classify the contributions of this thesis into four categories. The first two are
related to probabilistic logical inference, whereas the last two to Statistical Relational
Learning (SRL).

3.2.1 Inference in Probabilistic Logic Programming

In Chapter 12 we present the latest advances in the cplint system. cplint contains
programs for exact and approximate probabilistic logical inference. We extended this
system in order to perform causal inference and reason over hybrid probabilistic logic
programs, i.e. programs where some of the random variables are continuous. Moreover
in this chapter we propose cplint on SWISH, a web application that let the user to
experiment with cplint without having to install anything on the local machine.

Chapter 12 is based on the following publications:

• F. Riguzzi, G. Cota, E. Bellodi, and R. Zese. “Causal inference in cplint”.
In: International Journal of Approximate Reasoning 91 (2017), pp. 216–232.
issn: 0888-613X. doi: https : / / doi . org / 10 . 1016 / j . ijar . 2017 . 09 .

007. url: https : / / www . sciencedirect . com / science / article / pii /

S0888613X17301640.

• M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, and R. Zese. “cplint on SWISH:
Probabilistic Logical Inference with a Web Browser”. In: Intelligenza Artificiale
11.1 (2017), pp. 47–64. doi: 10.3233/IA-170105

• F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Probabilistic Logic
Programming on the Web”. In: Software: Practice and Experience 46.10 (Oct.
2016), pp. 1381–1396. doi: 10.1002/spe.2386

In all these works I have been involved in the development of the extensions of the
cplint system and its web application cplint on SWISH. In addition, with regard to
the causal inference of cplint, I have taken care of all the experiments, which are
easily reproducible, by downloading the scripts at https://goo.gl/wq3X9i. In order
to spread the use of cplint, I also have developed an online tutorial [9] available at
http://ds.ing.unife.it/~gcota/plptutorial/.

Thesis Contributions 11

3.2.2 Inference in Probabilistic Description Logics

DISPONTE is a semantics for Probabilistic Description Logics (PDLs) defined in [3].
This semantics assumes that all the axioms in the knowledge base are independent,
i.e. it makes the so-called independence assumption. In Subsection 9.2.3 we prove that
this assumption is valid. This subsection is based on the publication:

• R. Zese, E. Bellodi, F. Riguzzi, G. Cota, and E. Lamma. “Tableau Reasoning for
Description Logics and its Extension to Probabilities”. In: Annals of Mathematics
and Artificial Intelligence (2016), pp. 1–30. doi: 10.1007/s10472-016-9529-3.
url: http://dx.doi.org/10.1007/s10472-016-9529-3f

In Chapter 13 we illustrate three PDL inference systems: BUNDLE [11, 3], TRILL and
TRILLP . Moreover we present a web interface for TRILL and TRILLP , called TRILL
on SWISH. This chapter is based on the following publications:

• R. Zese, E. Bellodi, F. Riguzzi, G. Cota, and E. Lamma. “Tableau Reasoning for
Description Logics and its Extension to Probabilities”. In: Annals of Mathematics
and Artificial Intelligence (2016), pp. 1–30. doi: 10.1007/s10472-016-9529-3.
url: http://dx.doi.org/10.1007/s10472-016-9529-3f

• E. Bellodi, E. Lamma, F. Riguzzi, R. Zese, and G. Cota. “A web system for
reasoning with probabilistic OWL”. in: Software: Practice and Experience 47.1
(2017), pp. 125–142

In all these works, in addition to writing the papers, I have dealt with part of the
implementation of the systems mentioned above. In addition, much of the work done
in the field of inference in PDLs consists of "hidden" engineering contributions on
previously developed systems, which have not led to publications. For example, I
worked on the development of the later versions of BUNDLE, which has undergone
several modifications and optimizations, in order to be efficiently used by learning
algorithms. I also focused on the integration of BUNDLE into DL-Learner, increasing
the chances for it to be used by others.

3.2.3 Learning Systems in Probabilistic Logic Programming

In SRL the two main learning problems are parameter learning and structure learning.
For the former problem, in [4] the authors developed EMBLEM, a parameter learning
algorithm for LPADs, which are a PLP language. Then, to solve the latter, the same
authors, in [5] developed a structure learning algorithm called SLIPCOVER.

In Chapter 15 we present the distributed versions of these algorithms called EM-
BLEMMR and SEMPRE, respectively. This chapter is based on the following publica-
tion:

• F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. “Scaling Structure
Learning of Probabilistic Logic Programs by MapReduce”. In: Proceedings of
the 22nd European Conference on Artificial Intelligence. Ed. by M. Fox and G.
Kaminka. Vol. 285. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2016, pp. 1602–1603. doi: 10.3233/978-1-61499-672-9-1602

In this work I have contributed to the implementation of the mentioned distributed
systems.

12 Structure of the Thesis

3.2.4 Learning Systems in Probabilistic Description Logics

EDGE [14] is a parameter learning algorithm for PDLs. In Chapter 17 we propose
EDGEMR which is a distributed version of EDGE. This chapter is based on the publi-
cation:

• G. Cota, R. Zese, E. Bellodi, F. Riguzzi, and E. Lamma. “Distributed Parameter
Learning for Probabilistic Ontologies”. In: 25th International Conference on
Inductive Logic Programming. Ed. by K. Inoue, H. Ohwada, and A. Yamamoto.
2015

In Chapter 18 we propose a structure learning algorithm for PDLs, called LEAP. In
Chapter 19 we present its distributed version called LEAPMR. These chapters are
based on the following publications:

• F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Learning Probabilis-
tic Description Logics”. English. In: Uncertainty Reasoning for the Semantic
Web III. ed. by F. Bobillo et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer International Publishing, 2014, pp. 63–78. isbn: 978-3-
319-13412-3. doi: 10.1007/978-3-319-13413-0_4

• G. Cota, R. Zese, E. Bellodi, E. Lamma, and F. Riguzzi. “Structure Learning
with Distributed Parameter Learning for Probabilistic Ontologies”. In: Doctoral
Consortium of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD 2015). Ed. by J.
Hollmen and P. Papapetrou. 2015, pp. 75–84. isbn: 978-952-60-6443-7. url:
http://urn.fi/URN:ISBN:978-952-60-6443-7

Work on learning systems for PDLs was maybe the topic on which I have concentrated
most of my efforts. I was the main developer of these systems and my contributions
ranged from theoretical contributions to the actual implementation of these systems.
In addition, for all these systems I contributed to the experimental phase.

Here too, there were many "hidden" engineering contributions. I am not an author
of the paper on EDGE [14], but I have optimized it several times in order to be used
with LEAP. In addition, I worked on the integration of EDGE into DL-Learner.

3.3 How to read this thesis

The aim of this work is to propose systems for inference and learning on probabilistic
logics. In this thesis we use two logical formalisms for representing uncertain informa-
tion: Logic Programs with Annotated Disjuntions (LPADs) and Probabilistic Descrip-
tion Logics (PDLs). LPADs are a Probabilistic Logic Programming (PLP) language,
whereas PDLs are based on Description Logics (DLs) and follow the DISPONTE se-
mantics (see Chapter 9). Therefore the proposed systems can be split into two main
categories: PLP systems and PDL systems.

This thesis is designed such that can be read by both experts of logic programming
and experts of description logics. If the reader is only interested in PLP systems there
is no need to read the whole thesis but only a part of it. The same if the reader is

How to read this thesis 13

only interested in PDL systems. Figure 3.1 depicts the dependencies among different
chapters. The common chapters useful to understand both PLP and PDL systems are
in gray; the chapters concerning PLP systems are in blue; whereas the chapters dealing
with PDLs that follow DISPONTE and the systems proposed for this formalism are in
green.

We define the following reading sequences of the main chapters essential to under-
stand this thesis according to reader’s interest:

• Chapter sequence for PLP systems:

– Part II - Probabilistic Logics: 4, 5 and 6.

– Part III - Inference in Probabilistic Logics: 10, 11 and 12.

– Part IV - Learning: 14 and 15.

• Chapter sequence for PDL systems:

– Part II - Probabilistic Logics: 4, 5, 7, 8 and 9.

– Part III - Inference in Probabilistic Logics: 10, 11 and 13.

– Part IV - Learning: 14, 16, 17, 18 and 19.

14 Structure of the Thesis

5

6

7 8

9

10

Probabilistic Logics

11<or>

12

13 14

Inference in Probabilistic Logics

15

16 17

18 19

20

Learning

Common

PLP

PDLs

Figure 3.1: Dependency graph of the main chapters. For instance, to understand
Chapter 17 you have to read chapters 14 and 15 first.

Part II

Probabilistic Logics

15

Chapter 4

Fundamentals of First-Order Logic

and Logic Programming

This chapter introduces the main concepts of First-Order Logic (FOL) and Logic Pro-
gramming (LP) and it underlines the main differences between FOL and LP.

The chapter is organized as follows. After a brief introduction in Section 4.1,
Sections 4.2 and 4.3 provide the basis for understanding First-Order Logic and Logic
Programming respectively. Section 4.4 compares these two frameworks. The final
section (Section 4.5) draws some final considerations.

4.1 Introduction

Logic proved to be a very powerful tool for representing the complexity of real world
domains, where the entities of interest are composed of subparts connected by a network
of relations. Probabilistic logic tries to combine logic with probability theory. In this
thesis we mainly use two family of probabilistic logical formalisms for representing
knowledge: Probabilistic Logic Programming (PLP) languages, see Chapter 6 and
Probabilistic Description Logics (PDLs), see Chapter 9. Before illustrating them, we
overview the fundamentals of First-Order Logic (FOL) and Logic Programming (LP).
Indeed PLP languages are extensions of logic programming languages (usually Prolog),
whereas many DLs can be seen as decidable fragments of FOL.

4.2 First-Order Logic

First-Order Logic (FOL), also known as predicate logic, extends propositional
logic by allowing the use of formulas that contain variables.

4.2.1 Syntax

FOL is a formal system with an alphabet Σ consisting of seven classes of symbols:

• Logical Variables, a sequence of alphanumeric characters that refer to objects
in the domain.

17

18 Fundamentals of First-Order Logic and Logic Programming

– e.g. X, Y, Z

• Constants, objects in the domain.

– e.g. a, b, c, jeff , ann

• Function symbols, a relation that maps n objects to another object, with arity
(number of arguments) n > 0. We use the notation f/n to denote a function f
with arity n.

– e.g. if we have these formulas f(a, b), s(X), mother_of(mary), the functions
are f/2, s/1, mother_of /1.

• Predicate symbols, a relations that maps n objects onto truth values, with
arity n > 0. As for functions, we use the notation p/n to denote a predicate p
with arity n

– e.g. if we have these formulas p(X),mother(ann,mary), parent(jeff , paul),
the predicates are p/1,mother/2, parent/2.

• Logical connectives, used to connect formulas.

– e.g. ¬,∧,∨,←,↔

• Quantifiers, expressing generality.

– e.g. ∀ universal quantifier (“for all”), ∃ existential quantifier (“for some”,
“there exists”)

• Punctuation symbols, used to make formulas more readable.

– e.g. ‘)’, ‘(’

A signature1 consists of a triple Λ = 〈C, F, P 〉, where C, F and P are sets of constant,
function and predicate symbols respectively. A term is a variable, a constant, or a
function applied to terms. An atom is a predicate symbol followed by its terms, e.g.
parent(jeff , paul). A literal is an atom (positive literal) or the negation of an atom
(negative literal), e.g. mother(ann,mary),¬mother(mary , ann). FOL formulas are
recursively constructed from atoms using logical connectives and quantifiers. If ψ and
φ are formulas then the following are formulas too:

• ¬ψ (logical negation), which is true ⇔ ψ is not true.

• ψ ∧ φ (logical conjunction), which is true ⇔ both ψ and φ are true.

• ψ ∨ φ (logical disjunction), which is true ⇔ ψ or φ is true.

• ψ ← φ (logical implication), which is true ⇔ φ is false or ψ is true.

• ψ ↔ φ (logical equivalence), is a shorthand for (ψ ← φ) ∧ (φ← ψ)

1Sometimes called vocabulary.

First-Order Logic 19

• ∃Xψ (existential quantification), which is true⇔ ψ is true for at least one object
in the domain replaced for X.

• ∀Xψ (universal quantification), which is true⇔ ψ is true for every object replaced
for X.

An occurrence of a variable is free iff it is outside the scope of a quantifier of that
variable, otherwise it is bound. For instance:

• in the formula ∀Xp(X, Y), X is bound, whereas Y is free;

• in the formula q(X)∨∃p(X), the first occurrence of X is free, whereas the second
one is bound.

A formula which contains at least one free occurrence of a variable is called open
formula, otherwise is called closed formula or sentence.

A clause is a formula where all the variables are universally quantified and is of
the form

A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bm (4.1)

where Ai and Bj are atoms. Formula 4.1 is logically equivalent to:

A1 ∨ · · · ∨ An ← B1 ∧ · · · ∧Bm (4.2)

A1 ∨ · · · ∨An is the head of the clause, whereas B1 ∧ · · · ∧Bm is the body. If the body
is empty the clause is called fact2. A clause can be read as “if the conjunction of all
the Bjs are true, the disjunction of all Ais are true”.

An expression is a term, atom, conjunction or clause. An expression is called
ground if it does not contain variables. A FOL theory is a set of formulas that
implicitly form a conjunction. Clausal logic is an important subset of FOL. A clausal
theory consists of a set of clauses.

The Herbrand universe hu(T) of a theory T is the set of all the ground terms
that can be built from functions and constants appearing in T . The Herbrand base
of a FOL theory T , denoted as hb(T), is the set of all the ground atoms constructed
with the predicates in the alphabet of T and the terms of the Herbrand universe.

Example 4.2.1
Given the following FOL theory T

parent(jeff , paul)

parent(paul , ann)

grandparent(X ,Y)← parent(X ,Z), parent(Z ,Y)

its Herbrand universe hu(T) is

hb(T) ={jeff , paul , ann}

whereas, its Herbrand base hb(T) is

hb(T) ={parent(jeff , jeff), parent(paul , paul), parent(ann, ann),

parent(jeff , paul), parent(jeff , ann), parent(paul , jeff), . . . ,

grandparent(jeff , jeff), grandparent(paul , paul), . . . }
2A fact can also be seen as a rule that has true as its body.

20 Fundamentals of First-Order Logic and Logic Programming

4.2.2 Tarski’s semantics

Usually when we talk about the semantics of FOL we refer to Tarski’s semantics,
defined by the Polish logician Alfred Tarski.

Tarski’s semantics can be defined as a structure consisting of a triple S = 〈U,Λ, I〉,
where U is a non-empty set, called domain or universe, which defines the domain of
discourse, Λ is a signature, and I, called interpretation, is a function which assigns a
“meaning” to every symbol in the signature Λ.

Definition 4.1 FOL Interpretation
An interpretation I indicates how a signature Λ is interpreted on a domain U . An
interpretation I of a signature Λ assigns meanings as follows.

• For each constant symbol c in Λ, I(c) assigns an individual cI ∈ U .

• For each function symbol f of arity n, I(f) assigns a function fI : Un → U .

• For each predicate symbol p of arity n, I(p) assigns a relation pI over Un, i.e.
pI ⊆ Un.

Definition 4.2 FOL Assignment Function
An assignment ν associates each variable of a formal language L to an individual
in the domain of discourse U . The assignment function is required in order to give a
meaning to formulas with free variables.

Combining interpretations and assignments provides a way to assign meanings to
terms.

Definition 4.3 Interpretation given an Assignment
Let t be a term, S a structure S = 〈U,Λ, I〉, with domain U and an interpretation I
of a signature Λ, and ν an assignment, we define the function Iν(t) (interpretation I
given an assignment ν), that assigns a meaning to t, as follows

• if t is a constant, then Iν(t) = I(t);

• if t is a variable, then Iν(t) = ν(t);

• Given the terms t1, . . . , tn, if t is a function f(t1, . . . , tn), then

Iν(t) = Iν(f(t1, . . . , tn)) = I(f)(I
ν(t1), . . . , I

ν(tn))

With the notation ν[x/v] we indicate a new assignment function which is equal to
ν except for the variable x that is assigned to the individual v ∈ U . We provide now
the definition of satisfiability of a logic formula according to Tarski’s semantics.

Definition 4.4 Satisfiability of a formula with Tarski semantics
Given a structure S = 〈U,Λ, I〉, with domain U and an interpretation I of a signature
Λ, and the assignment function ν, the satisfiability of a formula ψ, denoted as Iν |= ψ,
is defined as follows

Logic Programming 21

• if ψ is an atom ψ = p(t1, . . . , tn), Iν |= ψ iff pI(ν(t1), . . . , ν(tn)) ∈ I(p);

• if ψ = ¬φ, Iν |= ψ iff it is not the case Iν |= φ, also written Iν 6|= φ;

• if ψ = φ ∧ γ, Iν |= ψ iff Iν |= φ and Iν |= γ;

• if ψ = φ ∨ γ, Iν |= ψ iff Iν |= φ or Iν |= γ;

• if ψ = φ→ γ, Iν |= ψ iff Iν 6|= φ or Iν |= γ;

• if ψ = φ↔ γ, Iν |= ψ iff Iν |= φ and Iν |= γ, or Iν 6|= φ and Iν 6|= γ;

• if ψ = ∃Xφ, Iν |= ψ iff, for some v ∈ U , Iν[x/v] |= φ;

• if ψ = ∀Xφ, Iν |= ψ iff, for all v ∈ U , Iν[x/v] |= φ.

In ψ is satisfied in an interpretation I given an assignment ν, we also say that a formula
ψ is true in an interpretation I given an assignment ν.

If ψ is a sentence, i.e. a formula without free variables, the satisfiability of a
sentence ψ does not depend on ν, hence we can simply write I |= ψ.

Definition 4.5 FOL Model
Let S be a set of sentences, we say that I satisfies S or is a model of S iff I |= ψ for
all ψ ∈ S.

Definition 4.6 Logical entailment
We say that the sentence ψ is a logical entailment or logical consequence of the
set of sentences S, denoted as S |= ψ if every model of S is also a model of ψ. In this
case, we also say that S entails ψ, or ψ is a consequence of S, or again ψ follows
from S.

Definition 4.7 Herbrand Interpretation
A Herbrand interpretation I for a FOL theory T is an interpretation of a structure
S = 〈U,Λ, I〉 whose domain U is the Herbrand universe of T , i.e. U = hu(T).

Definition 4.8 Herbrand Model
A Herbrand interpretation is a Herbrand model of a theory if it satisfies all formulas
in the theory, i.e. all the formulas in the theory are true given that interpretation.

4.3 Logic Programming

Logic Programming (LP) is based on First-Order Logic and in particular on clausal
logic, but has a slightly different semantics. Work on LP started in the 70’s, in partic-
ular Kowalski in 1974 formalized the concept of logic programming language [18].

A disjunctive logic program is a set of clauses, also called rules of this form:

a1; . . . ; an :- b1, . . . , bm. (4.3)

where n > 0, m ≥ 0, ais are atoms, bjs are literals, the character “;” is equivalent to
disjunction ∨, “,” is equivalent to conjunction ∧, and “.” indicates the end of a clause.

22 Fundamentals of First-Order Logic and Logic Programming

If n > 1 the clause is also called disjunctive clause, whereas if n = 1 the clause
is called non-disjunctive or normal clause. A normal logic program is a logic
program composed only of normal clauses.

A definite logic program [19] is a logic program that has exactly one atom in
the conclusion, i.e. n = 1, and all the bjs are positive literals, i.e. atoms. Formally, a
definite logic program rule/clause is of the form:

a :- b1, . . . , bm. (4.4)

A two-valued Herbrand interpretation I of a logic program P is a subset of
hb(P). A Herbrand interpretation I represents a possible world where all the elements
in I are true and the elements of hb(P) \ I are false. As in First-Order Logic, an
Herbrand interpretation is a model if all the formulas in P evaluate to true in that
interpretation.

In 1976, van Emden and Kowalski in [19] presented different semantics for definite
logic programs. These are known as model-theoretic, procedural and fixpoint seman-
tics. The model-theoretic semantics exploits the Herbrand model intersection property
and defines the model of a logic program as the intersection of all Herbrand models of
the logic program, i.e. the Least Herbrand Model (LHM). The LHM is equal to the
least of all the Herbrand models w.r.t. set inclusion ordering, i.e. the model that makes
the fewest atoms true. Intuitively, the LHM is the set of all ground atoms that are
entailed by the definite logic program. The second one was named procedural seman-
tics where it is possible to use a proof procedure called linear resolution with selection
function for definite logic programs (SLD-resolution) that succeeds for the atoms true
in the logic program. Finally, the fixpoint semantics is defined using the immediate
consequence operator TP , a mapping from Herbrand interpretations to Herbrand inter-
pretations. All these semantics compute the same set of ground atoms that are logical
consequences of the logic program.

LP semantics considers only the least model of an LP because it makes the closed
world assumption [20] (CWA). Under the CWA, everything that is not inferred to
be true is assumed to be false.

4.3.1 Prolog

Prolog stands for “PROgrammation en LOGique” (PROgramming in LOGic). It is
the first logic programming language, developed in 1972 by Alain Colmerauer and
Philippe Roussel at the University of Marseille by exploiting the ideas of Kowalski and
van Emdem.

In this section we provide an informal description of SLD-resolution implemented
in Prolog. For a formal treatment please refer to [18, 19].

First of all, we define some concepts. As mentioned before, a clause is ground if
it does not contain variables. A substitution θ is an assignment of terms to variables
θ = {V1/t1, ..., Vn/tn}, where Vi is a variable and ti is the value associated with the
variables. The application of a substitution to clause C (atom a), is denoted with Cθ
(aθ). It means we are replacing the variables appearing in C (a) with the corresponding
values defined in θ. Given two atoms a and b and a substitution θ, we say that a and
b can be unified if there exists a θ such that aθ and bθ are identical. The substitution

Logic Programming 23

θ is the most general unifier (mgu) if there is no substitution ω that unifies a and (b)
and such that θ = ωσ, where σ is a substitution.

SLD-resolution starts form a clause called goal or query that we want to resolve.

a1, a2, ..., an

with n > 0.
Then, it iteratively selects a subgoal, i.e. an atom of the clause, and replaces this

subgoal with the body of the clause contained in the program whose head can be
unified with the selected subgoal. For example, if the selected subgoal is the first and
the clause is

b0 :- b1, ..., bm

where m ≥ 0 and b0 can be unified with a1 through the mgu substitution θ, then the
goal becomes

(b1, ..., bm, a2, ..., an)θ

Prolog’s SLD-resolution differs from SLD-resolution because the subgoal selection strat-
egy is fixed, the first subgoal on the left is always chosen. The execution ends when
no more resolutions can be done, and in this case the query fails, or when the goal is
empty, and in this case the query succeeds.

SLD-resolution was proven sound, i.e. the conclusions returned by the algorithm are
logical consequences of the program. SLD-resolution itself is also complete for definite
logic programs. If a query Q is a logical consequence of a program P , then there is
a refutation of P ∪ {Q} by SLD-resolution. Conversely, Prolog’s SLD-resolution is
incomplete because the leftmost order in the choice of the next subgoal to prove can
lead to infinite derivations.

In the following example, we graphically show the resolution of a query following
Prolog’s SLD-resolution.

Example 4.3.1
Consider the following Prolog program

uncle(X,Y) :- brother(X,Z),parent(Z,Y). (4.5)

parent(X,Y) :- father(X,Y). (4.6)

parent(X,Y) :- mother(X,Y). (4.7)

mother(della,huey). (4.8)

brother(donald,della). (4.9)

Suppose the query is uncle(donald,huey)., first the goal is rewritten using (4.5).
Then, brother(donald,Z) unifies with clause (4.9) by using the substitution θ1 =
{Z/della} and is removed from the goal (the body of a fact is empty). At this point,
the truth of parent(della,huey) must be proved. Here two possible ways can be tested,
but only one results in the empty clause. All these steps are shown in Figure 4.1.

In the next example we show the incompleteness of Prolog’s SLD-resolution.

24 Fundamentals of First-Order Logic and Logic Programming

uncle(donald, huey)

brother(donald, Z), parent(Z, huey)

{Z/della}

parent(della, huey)

mother(della, huey) father(della, huey)

�

Figure 4.1: Prolog SLD resolution tree for the query uncle(donald,huey) w.r.t. the
theory of Example 4.3.1.

Example 4.3.2
Consider the following program:

married(X,Y) :- married(Y,X). (4.10)

married(a,b). (4.11)

with query married(a,X). The goal is unified with the head of rule (4.10) creating
a new goal identical to the query. Then, an infinite number of resolution steps are
performed. In this example, this issue can be avoided by moving rule (4.10) textually
after fact (4.11), so that all refutations are found before going into an infinite cycle.

4.3.2 Normal Logic Programs

In normal LPs we can have negative literals in the rule bodies that are usually in-
terpreted using negation as failure3, a non-monotonic inference rule that considers
negation as failure to prove. The notation not p, may be read as “p is not provable”, or
“there is no proof for p”. Note that not p is different from the classical, truth-functional
logical negation ¬p.

Several alternative semantics for negation as failure exist. The most common are:
Clark’s completion [21], stable models [22] and the well-founded semantics [23,
24]. The first two semantics are two-valued, i.e. a literal can only be true or false,
whereas the third one also allows for a third value ⊥ representing “don’t know”.

4.3.2.1 Clark’s completion

Clark’s completion [21] was the first attempt to deal with negation as failure. In
this semantics, the original logic program in converted into a new program, called
completion or completed program, and treated as a FOL theory. Then, only the literals,
whether positive or negative, that are logical consequences of the completed program
are considered true. In this semantics, negation as failure not in the original logic

3Also known as default negation.

Logic Programming 25

program has the same meaning of the classical logic negation ¬ in the completed
program.

To generate the completion of a logic program, in Clark’s completion, we replace
not with ¬, thereafter we collect all the rules having the same head predicate into a
single rule whose body is a disjunction of conjunctions, then replace the symbol “:-”
with “↔”. Finally we add the Clark’s equality theory, which are clauses for equality.
Clark’s completion can be used for acyclic logic programs.

Definition 4.9 Acyclic Program ([25])
A program P is acyclic if there is a function mapping | | : hb(P) → N, which maps
each ground literal to a natural number, named level, so that for every rule r and every
literal l ∈ body(r) we have that |l| < |head(r)|, where body(r) is the set of literals in
the body of r and head(r) is the atom head of r.

For acyclic logic programs the completion has a single model (Theorem 2.5 [25]). For
cyclic logic program, instead, the uniqueness of the model of the completion does
not hold and the completed program can be inconsistent. SLDNF-resolution (SLD
with Negation as Failure), which is the most common proof procedure for normal logic
programs, is sound, but not complete in general, with respect to Clark’s completion.

4.3.2.2 Stable Models

The stable model semantics, introduced by Gelfond and Lifschitz in [22], provides
another semantics for normal logic programs and thus for negation as failure.

In this semantics, we first generate the Herbrand instantiation PH of a logic program
P , then a transformation on a given interpretation I, called stability transformation
and denoted as S(I), is performed. The stability transformation is divided into three
phases:

1. For each rule instantiation in PH , if it contains a negative subgoal not a such that
a ∈ I, i.e. the negative subgoal is inconsistent with I, then the rule instantiation
is discarded.

2. Remove all negative subgoals from the rules of P ′, leaving a Horn program P ′′.

3. Obtain the least Herbrand model of P ′′.

A modelM of a normal logic program P is stable if it is a fixed point of S, that is, if
M = S(M). A stable model is also called answer set.

The stable model semantics is at the basis of the Answer Set Programming (ASP)
research field. In ASP, this semantics has been extended for programs with arbitrary
aggregates and complex reasoning systems have been proposed for this field [26].

4.3.2.3 Well-Founded Semantics

Before explaining the well-founded semantics [23, 24], we must provide some prelimi-
nary definitions.

26 Fundamentals of First-Order Logic and Logic Programming

Preliminary Definitions

Definition 4.10 Partial Order, Upper Bound, Lower Bound
A relation on a set S is a partial order if it is reflexive, antisymmetric and transitive.
In the following, let S be a set with a partial order �. a ∈ S is an upper bound of a
subset X ⊆ S if x � a for all x ∈ X. Similarly, b ∈ S is a lower bound of X if b � x
for all x ∈ X.

Definition 4.11 Least Upper Bound, Greatest Upper Bound
An element a ∈ S is the least upper bound of a subset X ⊆ S if a is an upper bound
of X and, for all upper bounds a′ of X, we have a � a′. Similarly, b ∈ S is the greatest
lower bound of a subset X ⊆ S if b is a lower bound of X and, for all lower bounds
b′ of X, we have b′ � b. The least upper bound of X is unique, if it exists, and is
denoted by lub(X). Similarly, the greatest lower bound of X is unique, if it exists, and
is denoted by glb(X).

Definition 4.12 Complete Lattice
A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for every
subset X ⊆ L. We let > denote the top element lub(L) and ⊥ denote the bottom
element glb(L) of the complete lattice L.

Definition 4.13 Monotonicity of a Mapping Operator, Least Fixed Point
Let L be a complete lattice and T : L → L be a mapping. We say T is monotonic if
T(x) � T(y), whenever x � y. We say a ∈ L is the least fixed point of T if a is a fixed
point (that is, T(a) = a) and for all fixed points b of T we have a � b. Similarly, we
define the greatest fixed point.

Definition 4.14 Mapping Operator Iteration
Let L be a complete lattice and T : L→ L be monotonic. Then we define T ↑ 0 = ⊥;
T ↑ α = T(T ↑ (α − 1)), if α is a successor ordinal; T ↑ α = lub({T ↑ β | β < α}), if
α is a limit ordinal; T ↓ 0 = >; T ↓ α = T(T ↓ (α − 1)), if α is a successor ordinal;
T ↓ α = glb({T ↓ β | β < α}), if α is a limit ordinal.

Proposition 4.1
Let L be a complete lattice and T : L → L be monotonic. Then T has a least fixed
point, lfp(T) and a greatest fixed point gfp(T).

Well-Founded Semantics
The well-founded semantics (WFS) [23, 24] assigns a three-valued model to a program,
i.e. it identifies a consistent three-valued interpretation as the meaning of the program.
A three-valued interpretation I of a logic program P is a pair 〈IT , IF 〉, where IT and
IF are subset of the Herbrand base hb(P) and represent the set of true and false atoms
respectively. A positive literal p is true in I if p ∈ IT , and is false if p ∈ IF . A negative
literal not p is true in I if p ∈ IF and is false if p ∈ IT . If I = 〈IT , IF 〉 is such that
IT ∩ IF = ∅ the we say that I is consistent, otherwise it is inconsistent. The union of
two three-valued interpretations 〈IT , IF 〉 ∪ 〈JT ,JF 〉 is defined as 〈IT ∪ JT , IF ∪ JF 〉.
Intersection is defined analogously.

Logic Programming 27

The space of three-valued interpretations for a program P form a complete lattice,
where the partial order relation � is defined as 〈IT , IF 〉 � 〈JT ,JF 〉 if IT ⊆ JT
and IF ⊆ JF . Since the space of three-valued interpretations is a complete lattice
there exist a least upper bound, lub(X) =

⋃

I∈X I, and the greatest lower bound
glb(X) =

⋂

I∈X I.
We now define the two operators TI and UI as follows.

Definition 4.15
Let P be a normal logic program, I = 〈IT , IF 〉 be a three valued interpretation, where
IT and IF are the sets of true and false atoms respectively, and let T and F be two
sets of ground atoms. We define the operators TI(T) : P(hb(P)) → P(hb(P)) and
UI(F) : P(hb(P))→ P(hb(P)) as

TI(T) = {p | p /∈ IT ; and there is a rule q :- l1, . . . , ln in P , and a grounding
substitution θ such that p = qθ and every 1 ≤ i ≤ n, either liθ is true in I or
liθ ∈ T }

UI(F) = {p | p /∈ IF ; and for every rule q :- l1, . . . , ln in P , and a grounding substi-
tution θ such that p = qθ there is some i, with 1 ≤ i ≤ n, such that liθ is false
in I or liθ ∈ F }

We now define the operator W(I), which construct successive three-valued inter-
pretations as follows.

Definition 4.16
Let P be a normal logic program, I be a three valued interpretation. We define the
operator W(I) : P(hb(P))×P(hb(P))→ P(hb(P))×P(hb(P)), where P denotes the
power set operator, as

W(I) = I ∪ 〈lfp(TI(∅)), gfp(UI(hb(P)))〉

W(I) is monotonic [23] and thus it has a least fixed point, which is indeed the
well-founded model WFM of the logic program P

WFM (P) = lfp(W(I))

The well-founded model is the main semantics for normal logic programs. In the
case of definite logic programs, the well-founded model is identical to the Least Herbrand
Model (LHM). For these programs, the LHM is guaranteed to exist and be unique.

If a normal logic program is acyclic then the well-founded semantics, stable models
and Clark’s completion, coincide. (Theorem 1 in [27]) Moreover, if the program is
range restricted4 (see below), SLDNF resolution is a correct and complete procedure
for answering queries in them [25].

4Range restriction avoids the foundering of the subgoals.

28 Fundamentals of First-Order Logic and Logic Programming

Definition 4.17 Range Restricted Program
A program is range restricted if for each rule all the variables appearing in the head
of each rule also appear in positive literals in the body.

The requirement of acyclicity is a quite strong restriction that rules out many
interesting programs. However, Fages in [28] proved that if an logic program is tight,
i.e. without positive cycles, then the Herbrand models of its Clark’s completion [21]
are minimal and coincide with the stable models of the original logic program. Any
logic program can be transformed into a tight program that preserves the program’s
completion semantics. In [27] Riguzzi showed that, if a logic program P is modular
acyclic, its well-founded model WFM (P) is two-valued and coincides with the unique
stable model and with the unique Herbrand model of Clark’s completion of the program.

4.4 First-Order Logic vs Logic Programs

There is a crucial difference between LP and FOL since FOL does not make the CWA.
For example the FOL theory {a ← b}, has 3 models {¬a,¬b}, {a,¬b} and {a, b}.
The LP theory {a :- b} is a definite program, therefore it has only one well-founded
model, that is its Least Herbrand Model ∅.

FOL and LP have different semantics and expressiveness. In fact, in FOL we can
express that a given relation is transitive but we can’t express a non-ground transi-
tive closures (a.k.a. inductive definitions). For example, consider the following logic
program written in Prolog (taken from [29]).

Example 4.4.1

edge(1,2).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

The least Herbrand model of this program is {edge(1,2), path(1,2)}, which
corresponds to the transitive closure of the relation edge/2. The transitive closure of
a relation5 R is the minimal relation R+ which contains R and is transitive. If we
interpret the mentioned program in First-Order Logic we have a total of six possible
Herbrand models:

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2),¬path(1, 1),¬path(2, 1),¬path(2, 2)}

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2), path(1, 1),¬path(2, 1),¬path(2, 2)}

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2), path(1, 1), path(2, 1),¬path(2, 2)}

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2),¬path(1, 1),¬path(2, 1), path(2, 2)}

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2), path(1, 1),¬path(2, 1), path(2, 2)}

{¬edge(1, 1), edge(1, 2),¬edge(2, 1),¬edge(2, 2), path(1, 2), path(1, 1), path(2, 1), path(2, 2)}

5A predicate is a relation between objects in the domain.

Conclusions 29

It can be seen that while path is transitive in each of these models, the transitive
closure holds only in the first model.

4.5 Conclusions

In this chapter we illustrated the fundamentals of First-Order Logic (FOL) and Logic
Programming (LP). In addition, we briefly described Prolog, the first and the most
famous logic programming language, in the case of definite programs. For normal logic
programs, i.e. logic programs with negations in the body, we have three different se-
mantics: Clark’s completion [21], stable models [22] and the well-founded semantics [23,
24]. Moreover we discussed the semantical differences between FOL and LP.

The limits of FOL expressiveness carry over to the probabilistic case: we can express
transitive closure with Probabilistic Logic Programming languages like ProbLog [30]
and LPADs [31] (see Chapter 6) but not with FOL-based languages like Markov Logic
Networks [32]. This does not mean that formalisms based on First-Order Logic are
not practical. Working with FOL-based formalisms is useful when much information
is unknown and we want monotonic reasoning6 or we want to obtain all the possible
models of a FOL theory, for example in the Semantic Web, where the information could
be distributed and not complete7. However, if we want transitive closures and CWA,
logic programming could be the best choice.

In the next chapters we present the distribution semantics and two family of prob-
abilistic logics: Probabilistic Logic Programming (PLP) languages (Chapter 6) and
Probabilistic Description Logics (PDLs) (Chapter 9).

6Monotonic reasoning means that if we add a new axiom in the knowledge, the previously obtained
logical consequences are still valid.

7Indeed we will see that OWL, used to represent knowledge in the Semantic Web, is a family of
logical formalisms based on FOL.

Chapter 5

Distribution Semantics

In this chapter we present the distribution semantics [1].The aim of this part ot the
thesis is to introduce probabilistic logical formalisms and this semantics underlies many
Probabilistic Logic Programming languages (see Chapter 6) and it is the semantics
on which DISPONTE is based. DISPONTE stands for “DIstribution Semantics for
Probabilistic ONTologiEs” and assigns a meaning to Probabilistic Description Logics
(see Chapter 9). After the introduction in Section 5.1 of the problems tackled in this
chapter, we present the distribution semantics’ foundations in Section 5.2. Section 5.3
concludes the chapter.

5.1 Introduction

In real world domains the information is often uncertain, hence it is of foremost impor-
tance to be able to model uncertainty and to reason over it. Moreover the diffusion of
Logic Programming (LP) techniques made clear that an integration with probability
theory was necessary. As a consequence, in the the last decades, several semantics
were proposed that presented different probabilistic semantics for LP languages [33,
34, 35, 1]. Among them, two different approaches emerged, one that makes use of
variants of the distribution semantics [1] and one that exploits Knowledge Base Model
Construction (KBMC) [36, 37].

In the latter approach, the program is converted into a graphical model, usually a
Bayesian network or a Markov network, in order to model probabilistic information and
compute the probability of queries, whereas the former approach defines a probability
distribution over normal logic programs, also called worlds. This distribution is then
extended to a joint distribution over worlds and queries, from which the probability of
a query, i.e. a ground fact, is computed by marginalization, i.e., by summing out the
worlds.

Languages that apply a KBMC approach include Probabilistic Knowledge Bases [38],
Bayesian Logic Programs [39], CLP(BN) [40] and the Prolog Factor Language [41].
These approaches specify a model through features that are associated with a real
value, i.e. a probability value or weight.

The distribution semantics was first presented in 1995 by Taisuke Sato [1]. He
presented a semantics applicable to definite logic programs and defined the basis for
probabilistic inference and parameter learning. Later in [42, 43] the authors showed

31

32 Distribution Semantics

that the distribution semantics works also with normal logic programs with function
symbols. Nowadays the distribution semantics underlies many Probabilistic Logic Pro-
gramming languages such as the Independent Choice Logic [44], PRISM [1], Logic
Programs with Annotated Disjunctions [31] and ProbLog [45].

In the next section we briefly describe the distribution semantics, for further reading
and deep understanding we refer to [1].

5.2 Formal Definition

Let F be a set of facts and R be a set of definite rules. DB = F ∪ R is a definite
program, with countably many variables, function and predicate symbols, which respect
the following conditions:

• DB is ground or it can be reduced to the set of all possible ground instantiations
of the clauses.

• DB is countably infinite.

• DB satisfies the disjoint condition which imposes that no atom in F unifies with
the head of a rule in R.

Let A1, A2, . . . be an arbitrary enumeration of ground atoms appearing in F . Each
ground atom Ai is associated with a Boolean random variable which takes value 1 (if
Ai is true) or 0 (if Ai is false). An interpretation ω for F is an assignment of truth to
atoms Ai in F , it is identified as a possibly infinite vector ω = 〈x1, x2, . . . 〉, where xi
is the truth value of Ai. ΩF is the set of all interpretations for F and it is defined as a
Cartesian product of {0, 1}s

ΩF =
∞
∏

i=1

{0, 1}i (5.1)

A basic distribution PF for F is a probability measure on the algebra of the sample
space ΩF . The corresponding distribution function is P (n)

F (x1, . . . , xn) for n = 1, 2,
Each interpretation ω = 〈x1, x2, ...〉 ∈ ΩF defines a set Fω ⊂ F of true ground

atoms, thus we can define a logic program Fω ∪ R and its least model MDB(ω) which
decides all truth values of atoms in DB.

Example 5.2.1
Given the finite program DB1:

DB1 = F1 ∪R1

F1 = {A1, A2}

R1 = {B1 ← A1, B1 ← A2, B2 ← A2}

we have ΩF = {0, 1} × {0, 1} and ω = 〈x1, x2〉 ∈ ΩF means that Ai takes the truth
value xi (i = 1, 2). MDB is shown in Table 5.1.

Formal Definition 33

Table 5.1: MDB1 for the finite program DB1.

ω = 〈x1, x2〉 F1ω MDB1(ω)

〈0, 0〉 {} {}

〈1, 0〉 {A1} {A1, B1}

〈0, 1〉 {A2} {A2, B1, B2}

〈1, 1〉 {A1, A2} {A1, A2, B1, B2}

Table 5.2: PF1 and PDB1 for the finite program DB1.

ω = 〈x1, x2〉 PF1(ω)

〈0, 0〉 0.2

〈1, 0〉 0.3

〈0, 1〉 0.4

〈1, 1〉 0.1

others 0.0

ω = 〈x1, x2, y1, y2〉 PDB1(ω)

〈0, 0, 0, 0〉 0.2

〈1, 0, 1, 0〉 0.3

〈0, 1, 1, 1〉 0.4

〈1, 1, 1, 1〉 0.1

others 0.0

Let A1, A2, . . . be an enumeration of all atoms appearing in DB this time1. ΩDB,
similarly to ΩF , represents the set of all possible interpretations for ground atoms
appearing in DB and it is a Cartesian product of {0, 1}s. ω ∈ ΩDB determines the
truth value of each ground atom.

Let us introduce the notation Axi for an atom Ai which means that Axi = Ai if x = 1
and Axi = ¬Ai if xi = 0. We can now extend PF to define the probability measure PDB
over ΩDB as follows

[Ax11 ∧ · · · ∧ A
xn
n]F = {ω ∈ ΩF |MDB(ω) |= Ax11 ∧ · · · ∧ A

xn
n } (5.2)

P
(n)
DB(x1, . . . , xn) = PF ([A

x1
1 ∧ · · · ∧ A

xn
n]F) (5.3)

where P (n)
DB is the corresponding finite distribution function of PDB. Intuitively, PDB

is identified with an possibly infinite joint distribution PDB(x1, x2, . . .) on the proba-
bilistic ground atoms A1, A2, . . . in the Herbrand base of DB. This way a program
denotes a distribution in this semantics.

Example 5.2.2
Consider the program DB1 in Example 5.2.1 and the distribution PF1 shown in Ta-
ble 5.2, ω = 〈x1, x2, y1, y2〉 ∈ ΩDB1 indicates that xi is the value of Ai and yj is the
value of Bj, where i, j = 1, 2. PDB1 can be computed from PF1. See Table 5.2.

Let G an arbitrary formula without free variables whose predicates are among DB,
[G] is defined as

[G] = {ω ∈ ΩDB | ω � G}

1Note that this is is different from the previous definition. Previously we defined A1, A2, . . . as an
enumeration of all atoms in F .

34 Distribution Semantics

[G] contains all the possible worlds where G is satisfied. Then the probability of G
is defined as PDB([G]), which represents the probability mass assigned to the set of
interpretations satisfying G.

5.3 Conclusions

The distribution semantics [1] was the main topic of this chapter. This semantics tries
to syncretize logic with probability theory, in order to represent uncertain information.

This semantics underlies many Probabilistic Logic Programming languages, which
are the topic of the next chapter.

Chapter 6

Probabilistic Logic Programming

Languages

In this chapter, after a brief introduction (Section 6.1) we present two of the most
famous Probabilistic Logic Programming languages based on distribution semantics:
Logic Programs with Annotated Disjunctions (LPADs), illustrated in Section 6.2, and
ProbLog presented in Section 6.3.

6.1 Introduction

The distribution semantics presented in Chapter 5 underlies many Probabilistic Logic
Programming (PLP) languages such as Probabilistic Logic Programs [33], Probabilis-
tic Horn Abduction [35], Independent Choice Logic [44], PRISM [1], pD [46], Logic
Programs with Annotated Disjunctions (LPADs) [31], ProbLog [45, 30], P-log [47] and
CP-logic [48].

The main difference between these logical languages is the definition of the distri-
bution over logic programs. However, each language can be translated into the others
using transformation algorithms which have linear complexity. Moreover, these lan-
guages are Turing complete, hence they are very expressive.

In this chapter we present Logic Programs with Annotated Disjunctions [31], be-
cause they have the most general syntax and are the knowledge representation language
used in our PLP systems proposed in Chapter 12 and Chapter 15, and ProbLog [45,
30] for its simplicity.

6.2 Logic Programs with Annotated Disjunctions

This section presents the formalism of LPADs, introduced by J. Vennekens et al. in [31].

6.2.1 LPADs Syntax

An LPAD is a finite set of annotated disjunctive clauses of the form

hi1 : Πi1; . . . ; hini
: Πini

:- bi1, . . . , bimi
. (6.1)

35

36 Probabilistic Logic Programming Languages

where i is the index of the rule, bi1, . . . , bimi
are literals, hi1, . . . hini

are atoms and
Πi1, . . . ,Πini

are annotations which are real numbers in the interval [0, 1]. This clause
can be interpreted as “if bi1, . . . , bimi

is true, then hi1 is true with probability Πi1 or
. . . or hini

is true with probability Πini
.” If ni = 1 and Πi1 = 1 the clause is non-

disjunctive, while if ni > 1 then
∑ni

k=1 Πik ≤ 1. If
∑ni

k=1 Πik < 1, there is an implicit
atom null : (1 −

∑ni

k=1 Πik) that does not appear in the body of any clauses of the
program.

Example 6.2.1
The following LPAD T from [49] encodes a very simple model of the development of
an epidemic or a pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 :- flu(X),cold.

C2 = cold : 0.7.

flu(david).

flu(robert).

An epidemic or a pandemic may arise if somebody has the flu and the climate is cold.
We are uncertain whether the climate is cold and we know for sure that David and
Robert have the flu.

6.2.2 LPADs Semantics

For the sake of simplicity we consider only the case of LPADs without function symbols.

Definition 6.1 Atomic choice
An atomic choice is a selection of the k-th atom for a grounding Ciθj of a probabilistic
clause Ci and is represented by the triple (Ci, θj, k), where θj is a substitution (a set of
couples Vi/vi, where Vi is variable and vi is a constant) and k ∈ {1, . . . , ni}. An atomic
choice represents an equation of the form Xij = k where Xij is a random variable
associated with Ciθj.

Definition 6.2 Consistency of an atomic choice
A set of atomic choices κ is consistent if (Ci, θj, k) ∈ κ, (Ci, θj,m) ∈ κ implies k = m,
i.e., only one head is selected for a ground clause.

Definition 6.3 Composite choice
A composite choice κ is a consistent set of atomic choices.

The probability of a composite choice κ is

P (κ) =
∏

(Ci,θj ,k)∈κ

Πik (6.2)

where Πik is the probability annotation of head k of clause Ci.

Definition 6.4 Selection
A selection σ is a total set of atomic choices (one atomic choice for every grounding
of each probabilistic clause).

Logic Programs with Annotated Disjunctions 37

A selection σ identifies a logic program wσ called a world . The probability of wσ is

P (wσ) =
∏

(Ci,θj ,k)∈σ

Πik (6.3)

Since the program does not contain function symbols, the set of worlds is finite
W = {w1, . . . , wm} and P (w) is a distribution over worlds:

∑

w∈W P (w) = 1.
We consider only sound LPADs where, for each selection σ, the well-founded model

of the program wσ is two-valued. We write wσ |= Q to mean that the query Q is true
in the well-founded model of the program wσ. Since the well-founded model of each
world is two-valued, Q can only be true or false in wσ.

We define the conditional probability of a query Q given a world as P (Q|w) = 1 if
w |= Q and 0 otherwise. It is now possible to define the probability of Q by using two
rules of the theory of probability:

• marginalization or sum rule:

P (Q) =
∑

w∈W

P (Q,w)

• and product rule:
P (Q,w) = P (Q|w)P (w)

So the the probability of Q becomes:

P (Q) =
∑

w∈W

P (Q,w) =
∑

w∈W

P (Q|w)P (w) =
∑

w∈W:w|=Q

P (w) (6.4)

Example 6.2.2
For the LPAD T of Example 6.2.1, clause C1 has two groundings, C1θ1 with θ1 =
{X/david} and C1θ2 with θ2 = {X/robert}, while clause C2 has a single grounding C2∅.
T has 3×3×2 worlds, the query Q = epidemic is true in 5 of them and its probability
is P (Q) = 0.6 ·0.6 ·0.7+0.6 ·0.3 ·0.7+0.6 ·0.1 ·0.7+0.3 ·0.6 ·0.7+0.1 ·0.6 ·0.7 = 0.588.

It is often infeasible to find all the worlds where the query is true, so inference
algorithms find, instead, explanations for the query, i.e. particular types of composite
choices (read below).

A composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ S, σ ⊇ κ}, the set
of worlds whose selection is a superset of κ, where S is the set of all the possible
selections. The set of worlds identified by a set of composite choices K is defined as
ωK =

⋃

κ∈K ωκ.

Definition 6.5 Explanation (for PLP)
A composite choice κ is an explanation for a query Q if Q is entailed by every world
of ωκ.

A set of composite choices K is covering Q if every world wσ ∈ W in which Q
is entailed is such that wσ ∈ ωK , i.e. ωK = {wσ|σ ∈ S ∧ wσ |= Q}. In other words
a covering set K identifies all the worlds in which Q succeeds. The set of all the
explanations for Q is a covering set of Q.

38 Probabilistic Logic Programming Languages

Example 6.2.3
Consider the LPADs in Example 6.2.1. A set of composite choices K that covers the
query epidemic is

K = {κ1, κ2}

κ1 = {(C1, {X/david}, 1), (C2, ∅, 1)}

κ2 = {(C1, {X/robert}, 1), (C2, ∅, 1)}

Two composite choices κ1 and κ2 are incompatible if their union is inconsistent.
For Example κ1 = {(Ci, θj, 1)} and κ2 = {(Ci, θj, 0)} are incompatible. A set K of
composite choices is pairwise incompatible if for all κ1 ∈ K, κ2 ∈ K, κ1 6= κ2 implies
κ1 and κ2 are incompatible.

The probability of a pairwise incompatible set of composite choices K is defined as
follows:

P (K) =
∑

κ∈K

P (κ) (6.5)

Two set of composite choices K1 and K2 are equivalent if they identify the same set of
worlds, i.e., if ωK1 = ωK2 . Given a query Q and its covering set of composite choices
K, then K identifies a set of worlds ωK = {wσ|σ ∈ S ∧ wσ |= Q}. Then we have that

P (Q) =
∑

wσ∈ωK

P (wσ) = P (ωK) = P (K) (6.6)

If K is pairwise incompatible

P (Q) =
∑

wσ∈ωK

P (wσ) = P (ωK) = P (K) =
∑

κ∈K

P (κ) (6.7)

Example 6.2.4
Consider the LPAD of Example 6.2.1. In Example 6.2.3 we found a covering set of
explanations for the query Q = epidemic., but those explanation are not pairwise
incompatible therefore we cannot compute the probability of the query with those expla-
nations by using Equation (6.7). In fact

P (κ1) + P (κ2) = 0.6 · 0.7 + 0.6 · 0.7 = 0.84 6= 0.588 = P (Q)

where P (Q) was computed in Example 6.2.2.
Suppose now that we have the following covering set of explanations K ′ for the query

Q = epidemic.

K ′ = {κ′1, κ
′
2}

κ′1 = {(C1, {X/david}, 1), (C1, {X/robert}, 0), (C2, ∅, 1)}

κ′2 = {(C1, {X/robert}, 1), (C2, ∅, 1)}

The explanations are pairwise incompatible, then we can use Equation (6.7) to compute
the probability of K ′, which is equal to P (Q). In fact

P (K ′) = 0.6 · 0.4 · 0.7 + 0.6 · 0.7 = 0.588 = P (Q)

ProbLog 39

To compute the conditional probability P (Q|E) of a query Q given evidence E,
we can use the definition of conditional probability, P (Q|E) = P (Q,E)/P (E), and
compute first the probability of Q,E (the sum of probabilities of worlds where both Q
and E are true) and the probability of E and then divide the two.

If an LPAD contains function symbols, a more complex definition of the semantics
is necessary: since the number of groundings is infinite, a world would be obtained
by making an infinite number of choices and so its probability, the product of infinite
numbers all smaller than one and bounded away from one, would be 0. In this case we
have to work with sets of worlds and use Kolmogorov’s definition of probability space,
see [50].

6.3 ProbLog

ProbLog [45, 30] assigns probabilities to facts, so it is possible to define a joint distri-
bution over facts, which, according to [1], we are able to extend to a joint distribution
over the set of possible logic programs.

6.3.1 ProbLog Syntax

A ProbLog program T is composed of a normal logic program C and a set of proba-
bilistic facts F . Each probabilistic fact is of the form

pi :: Fi

where Fi ∈ F is an atom and pi is a probability, i.e. pi ∈ [0, 1]. This means that
every grounding Fiθj of Fi is a Boolean random variable that assumes true value with
probability pi and false with probability 1 − pi. The set of all the groundings of the
probabilistic facts in F is denoted as FG.

A world w obtained from a ProbLog program is the union of the normal logic
program C and a subset FGw that contains a selection of ground probabilistic facts
chosen within the set of all the groundings of the probabilistic facts FG (FGw ⊂ F

G).
The probability of a world is computed by multiplying pi for each probabilistic fact

Fi included in the world and 1 − pj for each probabilistic fact Fj not included in the
world. The probability of a query Q is computed by marginalization as for LPADs.

Example 6.3.1
Let us consider the ProbLog program corresponding to the LPAD of Example 6.2.1.

epidemic :- flu(X), epid(X), cold.

pandemic :- flu(X),\+ epid(X), pand(X), cold.

flu(david).

flu(robert).

F1 = 0.7 :: cold.

F2 = 0.6 :: epid(X).

F3 = 0.3 :: pand(X).

40 Probabilistic Logic Programming Languages

where \+ is the negation as failure not. This program models the fact that if somebody
has the flu and the weather is cold there is the possibility that an epidemic or a pandemic
arises. We are uncertain about whether the climate is cold, but we know for sure that
David and Robert have the flu. The facts epid(X) and pand(X) can be considered as
"probabilistic activators" of the effects in the head given that the causes (flu(X) and
cold) are present.

Fact F1 has only one grounding, while facts F2 and F3 have two groundings obtained
by assigning to X the value david or robert. From F2 we obtain epid(david) and
epid(robert), while from F3 we obtain pand(david) and pand(robert). T has 5
different ground probabilistic facts and thus 32 worlds. The query epidemic is true
in 12 of them and its probability is P (epidemic) = 0.588. For the sake of brevity, we
do not report here the formula with the probability of all the worlds where the query is
true, but we show two examples of possible worlds. One world where the query is true
is (note that we show only the probabilistic facts):

{cold,epid(david), epid(robert), pand(david), pand(robert)}

whose probability is 0.7 · 0.6 · 0.6 · 0.3 · 0.3 = 0.02268.
Another different world in which the query is true is:

{cold,epid(david),pand(robert)}

whose probability is 0.7 · 0.6 · 0.3 = 0.126.

6.4 Conclusions

In this chapter we illustrated two of the most famous Probabilistic Logic Program-
ming languages based on distribution semantics: LPADs (Section 6.2) and ProbLog
(Section 6.3). In particular, LPADs are th probabilistic logical formalism used by the
inference system cplint, discussed in Chapter 12, and by the distributed structure
learning algorithm SEMPRE, presented in Chapter 17.

The languages following the distribution semantics differ in the way they define the
distribution over logic programs. However, each language can be translated into the
others using transformation algorithms which have linear complexity [51].

The next chapter introduces description logics, a different family of logical formal-
ism for knowledge representation, and OWL, a logical language for the Semantic Web
based on description logics.

Chapter 7

Description Logics and OWL

In this chapter we discuss Description Logics (DLs) and the Web Ontology Language
(OWL). DLs are a family of knowledge representation formalisms and OWL is a lan-
guage for the Semantic Web that provide several concrete syntaxes for Description
Logics.

The chapter is organized as follows. Sections 7.1 provides an introduction. Sec-
tion 7.2 illustrate the abstract syntax, the naming scheme and the semantics of de-
scription logics. Section 7.5 shows the relationship between description logics and
First-Order Logic. Section 7.6 provide a brief overview of OWL and the Semantic
Web. Finally Section 7.7 concludes the chapter.

7.1 Introduction

Description Logics (DLs) are a family of knowledge representation (KR) formalisms
based on Kl-One [52]. They are drawing an increasing interest thanks to their use in
the Semantic Web. Therefore extending DLs with probability could be very useful
to represent uncertain information in the Semantic Web.

During the 1970s several approaches to knowledge representation were proposed and
they are sometimes divided in two main categories: logic-based and non-logic-based
formalisms. The former evolved out of the intuition that predicate calculus could be
used unambiguously to capture facts about the world [52], they were more formal
and hence more general-purpose. The latter, like frames and semantic network , were
often developed by building on cognitive notions [52] and therefore they were more
human-understandable, but they usually lacked a formal logic-based semantics1. To
overcome this deficiency, some knowledge representation systems were proposed, these
systems were initially called terminological systems, then concept languages and finally
description logics. The main reason for using DLs rather than predicate logic is
that DLs are carefully tailored such that they combine interesting language constructs
with decidability of the reasoning problems [53]. In effect, FOL is undecidable, whereas
description logics are usually decidable fragments of FOL. However, they use a different

1Indeed in the non-logical approaches, knowledge is represented by means of some ad hoc data
structures, and reasoning is accomplished by similarly ad hoc procedures that manipulate the struc-
tures

41

42 Description Logics and OWL

terminology from FOL. They use the terms concepts, roles and individuals for unary
predicates, binary predicates and constants.

In this chapter we provide a brief overview of description logics, the theory be-
hind them. Moreover we illustrate the Web Ontology Language (OWL), a family of
languages that implements various description logics, i.e. OWL provides concrete syn-
taxes for DLs. For more details about description logics we refer to [52, 53, 54]. Instead
for further information about Semantic Web and OWL syntax we refer to the W3C
World Wide Web Consortium online site [55, 56].

7.2 Description Logics

An ontology is a formal and explicit description of a domain of interest. The use of
ontologies solves term ambiguity and clarifies domain peculiarities, e.g. the word leg
could mean a part of human body (if we are in a medical context) or it could mean a
part of a table (if we are in the context of carpentry).

An ontology describes the concepts of the domain of interest and their relations
with a formalism such that it is possible for a computing machine to use that ontology
through specific programs, called reasoners.

Descriptions logics provide a logical formalism for knowledge representation. In DLs
information is stored in knowledge bases (KB). They are usually divided into two parts:
the intensional knowledge, or ontology, and the extensional knowledge. The former in-
troduces the terminology by relating concepts and roles and it provides a vocabulary for
the domain of interest. The latter contains assertions or specific information regarding
concept and role membership of individuals.

DLs are useful in all the domains where it is necessary to represent information
and to perform inference on it, such as software engineering, medical diagnosis, digital
libraries, databases and Web based informative systems. They possess nice computa-
tional properties such as decidability and (for some DLs) low complexity.

7.3 Syntax

The basic syntactic building blocks are the following fiur disjoint sets:

• individuals, that correspond to all names used to denote individual entities (be
they persons, objects or anything else) in the domain, like mary, boston, italy;
they are equivalent to FOL constants;

• atomic concepts, which denote types, categories, or classes of entities, usu-
ally characterized by common properties, e.g., Cat, Country, Doctor; they are
equivalent to FOL unary predicates;

• atomic roles a.k.a. abstract roles, which denote binary relationships between
individuals of a domain, e.g., hasParent, loves, locatedIn; they are equivalent to
FOL binary predicates;

Syntax 43

• datatype roles, which denote binary relationship between individuals and data
values such as strings and numbers, i.e. assign data values to individuals, e.g.
hasAge, hasName; they are equivalent to FOL binary predicates.

In the following sections, we will use C and D to denote arbitrary concepts, R and S to
denote arbitrary roles, A to denote an atomic concept, and n to denote a non-negative
integer.

7.3.1 Concept and Role Constructors

Each DL language has its own expressiveness determined by which constructors and
axioms are allowed.

7.3.2 Concept Constructors

For concepts, the most used constructors are union (t), intersection (u) and nega-
tion (¬). For negation, we must distinguish between atomic concept negation and
complex concept negation. A complex concept is an atomic concept or a concept de-
fined by a set of concepts (atomic or not) combined by constructors. In addition, many
DLs define two specific concepts, the universal concept top (>), which is equivalent
to A t ¬A, and the inconsistent concept bottom (⊥), which represent the empty
concept and it is equivalent to A u ¬A. > represent the set of all the individuals,
whereas ⊥ is the empty set to which no individuals belong.

Other common constructors are the quantification constructors. These constructors
can be classified into unqualified and qualified. We can have existential role restric-
tions (∃R and ∃R.C unqualified and qualified respectively, where C is a (complex)
concept) and universal role restrictions (∀R and ∀R.C). The qualified existential
restriction ∃R.C indicates all those individuals that have at least a relation R with
an individual belonging to C. In the above expression, the individuals belonging to C
are called role fillers. The qualified universal role restriction ∀R.C, instead, indicates
all those individuals that, if they have a relation R, it is only with individuals belong-
ing to C. The unqualified constructors can be seen as a particular case of qualified
constructors with the fillers belong to >, i.e. ∃R and ∀R are equivalent to ∃R.> and
∀R.> respectively. Some DLs also support cardinality restriction, that can be qualified
or unqualified, that place cardinality restrictions on the roles relating instances of a
concept to instances of some other concept. Cardinality restrictions bound the number
of individuals

In some DL languages there is also the possibility to define concepts by enumeration
of individuals

Let I, A, RA, RD be the sets of individuals, atomic concepts, abstract roles and
datatype roles respectively. All these sets are pairwise disjoint. Moreover, let C and D
be concepts and R ∈ RA then the following are concepts as well:

• >, top concept, contains everything;

• ⊥, bottom concept, contains nothing;

• A ∈ A;

44 Description Logics and OWL

• for every finite set {a1, ..., an} ∈ I of individuals names, {a1, ..., an} is a concept
called nominal ;

• C uD, the intersection of two concepts;

• C t B, the union of two concepts;

• ¬C, the negation of a concept;

• ∃R and ∃R.C, the unqualified and qualified existential restriction on a role;

• ∀R and ∀R.C, the unqualified and qualified universal restriction on a role;

• ≥ nR, ≤ nR and = nR for an integer n ≥ 0, unqualified number restriction on a
role;

• ≥ nR.C, ≤ nR.C and = nR.C for an integer n ≥ 0, qualified number restriction
on a role.

If P is an n-ary datatype predicate and T ∈ RD, then:

• ∃T.P , the datatype existential restriction on a role;

• ∀T.P , the datatype universal restriction on a role.

7.3.3 Role constructors

Role constructors take role and/or concept descriptions and transform them into more
complex role description. Let R be the set of all roles and R and S be two roles, then
the following are roles

• U , universal role;

• R ∈ R;

• R u S, the intersection of two roles;

• R t S, the union of two roles;

• ¬R, the negation of a role;

• R ◦ S, the composition of two roles, used to define chain of roles;

• R−, the inverse of role R;

• R+, the transitive closure of role R;

• R∗, the reflexive-transitive closure of role R;

• R|C , the role restriction of R, which defines a subrole of R whose range is re-
stricted to the individuals belonging to the concept C.

Syntax 45

7.3.4 Knowledge Base

A KB based on a Description Logic contains two kinds of information, intensional
knowledge and extensional knowledge.

The former contains the Terminological Box (TBox) and the Role Box (RBox) and
models general information about the domain, normally contains immutable informa-
tion and statements which describe the main properties of concepts and relationships.

The latter, composed by the Assertional Box (ABox), contains information that is
specific to the problem, that may change over time and that is related to the individuals
of the domain.

7.3.4.1 TBox

The TBox contains axioms related to concepts. Let C and D be concepts. A TBox T
is a finite set of concept inclusion and concept equivalence axioms.

Concept inclusion axioms a.k.a. concept subsumption axioms, introduce a hier-
archy among concepts. These axioms specify a is-a relationship between two
different concepts. For example, we can state that a man is a person as

Man v Person

the axiom above must be read as: “Person subsumes Man” or equivalently “Man
is subsumed by Person“

Concept equivalence axioms assert equality between two concepts. Definitions are
often used to associate a symbolic name to complex concepts. In these cases a
single definition for a symbolic name is admitted in the TBox. For example, we
can define the concepts Parent as the union between the concepts Mother and
Father as

Parent ≡ Mother t Father

Concept equivalence axioms can be expressed with subsumptions as C ≡ D is
equivalent to C v D and D v C.

7.3.4.2 RBox

The RBox is a set of axioms concerning the roles contained in the KB. We use RA
−

to denote the set of all inverses of roles in RA.

Role inclusion axioms are of the form R v S, where R, S ∈ RA ∪RA
− or R, S ∈

RD.

Role equivalence axioms are of the form R ≡ S, which is an abbreviation for R v S
and S v R.

Role chain axioms are of the form R1 ◦ R2 v R3, where R1, R2, R3 ∈ RA ∪ RA
−.

For example, to model the fact the father of the father of an individual is a
grandparent the following axiom can be used:

fatherOf ◦ fatherOf v grandParentOf

46 Description Logics and OWL

Transitivity axioms are of the form Trans(R), where R ∈ RA or R ∈ RD. They
mean that if x is related to y and y is related to z with role R, then x is R-
related to z. For example, if the role brotherOf is transitive and the axioms
brotherOf(luca, andrea) and brotherOf(andrea,giovanni) are given, then we can con-
clude that brotherOf(luca,giovanni) is also true. They are equivalent to R◦R v R

Functional axioms are of the form Funct(R). They mean that, for each object x,
there can be only one object y in relation with x through R. There cannot
be two distinct y1 and y2 such that we have R(x, y1) and R(x, y2). For exam-
ple, consider the relation childOfFather, and consider the kid luca. If we have
childOfFather(luca, f1) and childOfFather(luca, f2), then we can conclude:

1. f1 and f2 are the same person, i.e. the father of luca

2. if f1 6= f2 is also stated, then the KB is inconsistent2

An RBox R consists of a finite set of role inclusion axioms, roles chain axioms, plus
axioms that define the characteristics of roles such as transitivity axioms and functional
axioms. Which axioms may be present in an RBox depends on the expressive power of
the Description Logic, in some cases the KB does not contain the RBox, in ALC KBs.

7.3.4.3 ABox

An ABox (Assertional Box) contains information about the individuals of the problem
domain. It defines which classes each individual belongs to and how the individuals
are related to each other.

Let a, b be individuals and v be a data value, an ABox A is a finite set of con-
cept membership axioms, role membership axioms, datatype role membership axioms,
equality axioms and inequality axioms.

Concept membership axioms are of the form a : C, where C is a concept. They
state that a belongs to the concept C.

Role membership axioms are of the form (a, b) : R, where R ∈ RA. They state
that b is R-related to or is a filler of the role R for a.

Datatype role membership axioms are of the form (a, v) : T , where T ∈ RD.
They state that v is T-related to a.

Equality axioms are of the form a = b. They state that a and b define the same
individual.

Inequality axioms are of the form a 6= b. They state that a and b are different
individuals. This axiom is extremely important in order to make the Unique
Name Assumption (see Definition 7.6).

2We are considering a biological father.

Syntax 47

7.3.5 Nomenclature

As mentioned before, DLs are a family of FOL-based KR languages. Many varieties
have evolved during the years, which differ in terms of expressive power and syntactic
structures. There is a well-established naming scheme that associates particular syn-
tactic constructors to letter for composing the name of the DL. The naming schema
can be summarized as follows:

((AL [C] | FL | EL | S) [H] | SR) [O] [I] [F | E | U | N | Q] [+ | ∗] [(D)]

In this scheme, the round brackets form a group (except for (D)), the square brackets
indicate optional symbols that cannot appear on their own and the ’|’ represents alter-
natives. It is worth noting that the naming schema below it is not an official standard,
but a standard de facto.

The symbols used in the nomenclature of DLs are defined as follows

• AL is the abbreviation of attributive language. It is often considered as the base
language and allows atomic negation (¬A), union (t) and intersection (u) as well
as universal (∀R.C) and unqualified existential (∃R.>) quantification.

• ALC is the abbreviation of attributive language with complements. C extends AL
by allowing negation of complex concept (¬C).

• FL is the contraction of frame based description language. It allows concept
intersections, universal restrictions, unqualified existential quantifications and
role restrictions. FL has two sublanguages: FL−, obtained by disallowing the
use of role restrictions, and FL0, that is a sublanguage of FL− obtained by
forbidding unqualified existential quantifications, the bottom (⊥) and top (>)
concepts. FL− is equivalent to AL without atomic negation.

• EL allows the use of existential quantifiers, concept intersections and the > (top)
concept. It disallows unions, complements, universal quantifiers and axioms re-
garding roles such as role subsumptions. EL+ is an extension which allows the
use of role inclusion axioms. EL++ is an alias for ELRO.

• S extends the logic ALC by allowing the definition of transitive roles.

• H extends ALC and S by role hierarchies, thus it allows role inclusion axioms.

• SR extends S by allowing the definition of complex role inclusions, i.e. hierarchies
between complex roles, e.g. R1 ◦R2 v S means that R1 ◦R2 is subrole of S.

• O allows the use of enumerations in the definition of concepts, i.e. the use of
nominals in the definition of concepts, for example the definition of MontyPython
can be {graham, john, terry, eric, terry, michael}.

• I enables the definition of inverse roles, e.g. R− is the inverse role of R: (a, b) : R
iff (b, a) : R− .

• F allows to define that a role R is functional, i.e. has at most one filler, which is
equivalent to the axiom > v 1R.

48 Description Logics and OWL

• E means that the DL features qualified existential role restrictions.

• U allows union between concepts.

• N means that the definition of unqualified number role restrictions is allowed,
i.e., ≤ nR, ≥ nR and = nR.

• Q means that qualified number role restrictions can be defined, i.e., ≤ nR.C,
≥ nR.C and = nR.C.

• + allows to define transitive closures of roles, e.g. R+ is the transitive closure of
R.

• ∗ allows to define reflexive-transitive closures of roles, e.g. R∗ is the transitive
closure of R

• (D) allows datatype properties, such as numbers of strings.

Table 7.1 shows some of the cited DL constructors, for each constructor is reported its
DL language that allows to express it. Transitive and reflexive–transitive closure are
the only constructors that cannot be expressed in FOL.

Syntax 49

Table 7.1: Some DL constructors with their associated DL language symbols.

Constructor Syntax Languages

Intersection C uD EL | AL | FL0

Qualified universal role restriction ∀R.C AL | FL0

Top > EL | AL | FL−

Bottom ⊥ AL | FL−

Unqualified existential role restriction ∃R (i.e. ∃R.>) AL | FL−

Role restriction R |C FL

Qualified existential role restriction ∃R.C EL | AL | E

Union C tD AL | U

Atomic negation ¬A AL

Negation ¬C C

≥ nR

Unqualified number restriction ≤ nR N

= nR

≥ nR.C

Qualified number restriction ≤ nR.C Q

= nR.C

Inverse role R− I

Nominal {x, y, z} O

Transitive closure R+
+

Reflexive-transitive closure R∗ ∗

50 Description Logics and OWL

7.4 Semantics

Usually the semantics of a DL knowledge base K is assigned in a set-theoretic way,
where every concept is interpreted as a set of individuals and every role as a set of
pairs of individuals. We give now some definitions regarding the semantics.

Definition 7.1 Interpretation I for DLs without datatypes (D)
An interpretations I = (∆I , ·I) consists of

• a non-empty set ∆I , called the domain of I, which contains all the individuals
of the domain;

• an interpretation function ·I , that assigns an element aI ∈ ∆I to each a ∈ I,
a subset CI of ∆I to each C ∈ A and a subset RI of ∆I ×∆I to each R ∈ R,
where I, A and R are respectively the set of individuals, atomic concepts and
atomic roles.

If the DL allows the use of datatypes, then the definition of interpretation given
above must be extended to take into account also a datatype theory which is asso-
ciated to I. First of all we provide a definition of datatype theory.

Definition 7.2 Datatype theory of a DL
A datatype theory D = (∆D, ·D) is defined by

• a non-empty datatype domain ∆D,

• a mapping function ·D which assigns to each data value an element of ∆D, to each
elementary datatype a subset of ∆D, and to each datatype predicate3 of arity n
a relation over ∆D of arity n.

Definition 7.3 Interpretation I for DLs with datatypes (D)
Let I, A, RA and RD be respectively the set of individuals, atomic concepts, abstract
roles and datatype roles, which are pairwise disjoint. An interpretation I = (∆I , ·I)
relative to a datatype theory D = (∆D, ·D) is composed of a non-empty domain ∆I

that is disjoint from ∆D, and an interpretation function ·I which maps each a ∈ I to an
element of ∆I , each C ∈ A to a subset of ∆I , each R ∈ RA to a subset of ∆I×∆I , each
T ∈ RD to a subset of ∆I ×∆D, and every data value, datatype, datatype predicate
to the same value assigned by ·D.

The mapping ·I for DL constructors is reported in Tables 7.2-7.4, where RI(x) =
{y | (x, y) ∈ RI}, RI(x, C) = {y | (x, y) ∈ RI , y ∈ CI}), #X denotes the cardinality
of the set X, T I(x) = {y | y ∈ ∆D, (x, y) ∈ T I}, (RI)0 = {(x, x) | x ∈ ∆I} and
(RI)n+1 = (RI)n ◦ RI . Table 7.2 reports the semantics of the most common concept
and individual constructors. Table 7.3 shows the semantics of the most common role
constructors. Table 7.4, instead, illustrates the semantics of the most common datatype
and data value constructors.

The satisfaction of an axiom E in an interpretation I, denoted by I |= E, is defined
as follows

3In [52] they are called concrete predicates.

Semantics 51

Table 7.2: Syntax and semantics of common concept and individual constructors.

Constructor Syntax Semantics

Top > ∆I

Bottom ⊥ ∅

Atomic concept A AI ⊆ ∆I

Intersection C uD (C uD)I = CI ∩DI

Union C tD (C tD)I = CI ∪DI

Negation ¬C (¬C)I = ∆I \ CI

Qualified universal role
restriction

∀R.C (∀R.C)I = {x ∈ ∆I | RI(x) ⊆ CI}

Qualified existential role
restriction

∃R.C (∃R.C)I = {x ∈ ∆I | RI(x) ∩ CI 6= ∅}

≥ nR (≥ nR)I = {x ∈ ∆I | #RI(x) ≥ n}

Unqualified number
restriction

≤ nR (≤ nR)I = {x ∈ ∆I | #RI(x) ≤ n}

= nR (= nR)I = {x ∈ ∆I | #RI(x) = n}

≥ nR.C (≥ nR.C)I = {x ∈ ∆I | #RI(x, C) ≥ n}

Qualified number restriction ≤ nR.C (≤ nR.C)I = {x ∈ ∆I | #RI(x, C) ≤ n}

= nR.C (= nR.C)I = {x ∈ ∆I | #RI(x, C) = n}

Nominal {a, b, c} {a, b, c}I = {aI , bI , cI}

Table 7.3: Syntax and semantics of common role constructors.

Constructor Syntax Semantics

Universal role U UI = ∆I ×∆I

Atomic role/abstract role R RI ⊆ ∆I ×∆I

Intersection R u S (R u S)I = RI ∩ SI

Union R t S (R t S)I = RI ∪ SI

Negation ¬R (¬R)I = ∆I ×∆I \RI

Inverse role R− (R−)I = {(y, x) | (x, y) ∈ RI}

Composition R ◦ S
(R ◦ S)I = {(x, y) ∈ ∆I ×∆I | ∃z.(x, z) ∈
RI ∧ (z, y) ∈ SI}

Role restriction R|C (R|C)
I = {(x, y) ∈ ∆I×∆I | RI(x) ⊆ CI}

Transitive closure R+ (R+)I =
⋃

n≥1(R
I)n

Reflexive-transitive closure R∗ (R∗)I =
⋃

n≥0(R
I)n

52 Description Logics and OWL

Table 7.4: Syntax and semantics of common datatype and data value constructors

Constructor Syntax Semantics

Datatype D DD = DI ⊆ ∆D

Datatype role T T I ⊆ ∆I ×∆D

Negation ¬D (¬D)D = (¬D)I = ∆D \DD

Data value v vI = vD

Data enumeration {u, w, v} {u, w, v}I = {uI , wI , vI}

Qualified universal
datatype role restriction

∀T.D (∀T.D)I = {x ∈ ∆I | T I(x) ⊆ DD}

Qualified existential
datatype role restriction

∃T.D (∃T.D)I = {x ∈ ∆I | T I(x) ∩DD 6= ∅}

Definition 7.4 Axiom satisfaction

• A concept inclusion axiom I |= C v D is satisfied by I iff CI ⊆ DI .

• A concept assertion axiom I |= a : C is satisfied by I iff aI ∈ CI .

• A role assertion axiom I |= (a, b) : R is satisfied by I iff (aI , bI) ∈ RI .

• An equality axiom I |= a = b is satisfied by I iff aI = bI .

• A inequality axiom I |= a 6= b is satisfied by I iff aI 6= bI .

• A transitivity axiom I |= Trans(R) is satisfied by I iff RI is transitive.

• A role inclusion axiom I |= R v S is satisfied by I iff RI ⊆ SI .

• A datatype role assertion axiom I |= (a, v) : T for a data value v is satisfied by
I iff (aI , vD) ∈ T I .

An interpretation I is a model of an axiom E if I satisfies E, i.e. if E is true with
respect to I. I satisfies a set of axioms E , denoted by I |= E , iff I |= E for all E ∈ E .

Definition 7.5 Model of a DL KB K
An interpretation I satisfies a knowledge base K, denoted I |= K, iff I satisfies all the
boxes contained in K, i.e. if K = (T ,A), then I |= K iff I satisfies T and A, while if
K = (T ,R,A), then I have also to satisfy R. In this case we say that I is a model of
K.

A knowledge base K is satisfiable iff there exists an interpretation I that satisfies K.
An axiom E is entailed by K, denoted K |= E, iff every interpretation that satisfies K
also satisfies E.

We provide now the definition of the Unique Name Assumption.

Semantics 53

Definition 7.6 Unique Name Assumption (UNA)
The Unique Name Assumption states that individuals with different names have to be
interpreted as different individuals, i.e., that a 6= b with a, b ∈ NI implies aI 6= bI .

In more recent DLs, the UNA is not made but can be explicitly stated by adding
a 6= b to the ABox for every couple of distinct individuals in the KB. OWL provides
the construct AllDifferent to ease the definition of different individuals.

An example of DL KB is shown in Example 7.4.1.

Example 7.4.1
The following is inspired by [57]. For simplicity we make the UNA.

Swallow v Bird (7.1)

MigrantBird v Bird (7.2)

NonMigrantBird v Bird (7.3)

EuropeanSwallow v Swallow uMigrantBird (7.4)

AfricanSwallow v Swallow u NonMigrantBird (7.5)

∃trasported.Thing v Coconut (7.6)

> v ∀trasported.Bird (7.7)

TransportableCoconut ≡ ∃transported.AfricanSwallow t

≥ 2transported.EuropeanSwallow (7.8)

TransportableCoconut v Coconut (7.9)

CoconutInEurope v Coconut (7.10)

CoconutInEurope ≡≥ 2transported.EuropeanSwallow (7.11)

fedor : Coconut (7.12)

transported(fedor, ivan) (7.13)

transported(fedor, aleksej) (7.14)

dmitrij : AfricanSwallow (7.15)

ivan : EuropeanSwallow (7.16)

aleksej : EuropeanSwallow (7.17)

The TBox is composed by terminological axioms 7.1-7.11. The subclass axioms 7.1-
7.5 state that swallows are birds, that we can have migrant and non-migrant birds and
that European swallows are migrant birds, whereas the African ones are non-migrant.
The two terminological axioms 7.6-7.7 define that the role transported has Coconut as
domain (7.6) and Bird as range (7.7). The axioms affirm that a coconut is transportable
if is carried by at least an African swallow or at least two European swallows and that
if a coconut is transported by at least two European swallows, then the coconut belongs
to the class of coconuts in Europe.

The ABox is composed by assertional axioms 7.12-7.17, which state that Fedor is
a coconut, Dmitrij is an African swallow, Ivan and Aleksej, instead, are European
swallows and that Fedor The Coconut was transported by Ivan and Aleksej.

The fact that Fedor is a coconut in Europe is not explicit, but can be inferred by
means of a reasoner (see Chapter 8).

54 Description Logics and OWL

7.4.1 Decidability of Description Logics

Each DL is decidable if the problem of checking the satisfiability of a KB is decidable.
Allowing arbitrary roles in cardinality restriction concepts is known to lead to un-

decidability [58].
In particular, a DL is decidable iff there are no cardinality restrictions on transitive

roles and on roles that have transitive subroles [59, 60].
Role chains introduce some issues too:

• Arbitrary role chain axioms lead to undecidability. For ensuring decidability the
following restrictions must be imposed:

– there must be a strict linear order ≺ on roles

– the set of role chain axioms must be regular, i.e., the set has to contain only
role chain axioms of the following forms:

R ◦R v R

S− v R

S1 ◦ S2 ◦ ... ◦ Sn v R

R ◦ S1 ◦ S2 ◦ ... ◦ Sn v R

S1 ◦ S2 ◦ ... ◦ Sn ◦R v R

where Si ≺ R for all i = 1, 2, . . . , n.

• In SHIQ (and SHOIQ), the combination of role chain axioms with cardinal-
ity constraints may lead to undecidability. For ensuring decidability, qualified
number restrictions has to be restricted to certain roles that were called simple
roles [59]. In this context, a role is called simple if it is neither transitive nor has
transitive sub-roles.

SROIQ(D) was introduced by Horrocks et al. in [61] and it is of particular
importance because it is semantically equivalent to OWL 2 DL (see Section 7.6).
This DL allows to define qualified cardinality role restrictions, transitive roles and
complex role inclusion axioms. In the context of SROIQ(D), the definition of
simple role has to be slightly modified, and simple roles must appear not only in
qualified number restrictions, but in several other constructs as well. Intuitively,
non-simple roles are those that are implied, directly or indirectly, by a role chain.

Definition 7.7 Simple role in SROIQ(D) [61]
Given a role R, its simplicity is inductively defined as follows:

– R is simple if it does not occur on the right hand side of a role inclusion
axiom inR, i.e. there is no role chain axiom of the form: S1◦S2◦· · ·◦Sn v R;

– an inverse role R− is simple if R is, and

– if R occurs on the right hand side of a role inclusion axiom in R, then R is
simple if, for each S v R, S is a simple role.

Description Logics and First-Order Logic 55

Example 7.4.2
Consider the following KB K:

Q ◦ P v R R ◦ P v R

R v S P v R

Q v S

P and Q are simple, whereas R and S are non-simple.

It is well known that the complexity of SROIQ is N2ExpTime [62].

7.5 Description Logics and First-Order Logic

In this section we discuss the relationship between DLs and First-Order Logic (FOL).
In particular we discuss the relationship of SROIQ with FOL. For a more detailed
analysis see [63] and Chapter 4 of [52].

Many DLs can be seen as fragments of First-Order Logic (possibly with equal-
ity or counting quantifiers) and therefore DLs like SROIQ are less expressive than
FOL [63]. However, the expressiveness of DLs that include the transitive closure goes
beyond first-order logic, indeed transitive closure cannot be expressed in FOL due to
the Compactness Theorem. When representing knowledge bases, the main reason for
using DLs rather than FOL is that most DLs are actually decidable.

Following the definitions provided by Borgida in [63]

Definition 7.8 Semantic equivalence of a transformation
A concept C and its translation π(C)(x) are said to be equivalent if and only if, for all
interpretations4 I = (∆I , ·I) and all a ∈ ∆I , we have

a ∈ CI ⇔ I |= π(C)(a) (7.18)

Definition 7.9 Expressiveness of a language L
A language L2 is as expressive as language L1, if there is a translation π from L1 to
L2 such that for every sentence L in L1, π(L) is equivalent to L. Two languages are
equally expressive if each is as expressive as the other.

Let Lk be the set of FOL formulas that have only unary and binary predicates and
that can be expressed using at most k variables5. We can extend the languages Lk with
counting quantifiers ∃≤n, ∃≥n, for every positive integer n, obtaining the languages Ck,
i.e. FOL over unary and binary predicates with counting quantifiers. We define LkCNT
as a restricted subset of Ck where in any subformula ∃≤n.ψ or ∃≥n.ψ, ψ has no more
than two free variables.

4We view interpretations both as DL and FOL interpretations.
5Lk is a fragment of FOL.

56 Description Logics and OWL

Theorem 7.1 [63]
L3
CNT is equally expressive as any DL without the transitive closure.

SROIQ does not allow to express transitive closures and therefore SROIQ KBs
can be translated into FOL theories.

Following we provide a translation of SROIQ DL into FOL (to be precise, into
L3
CNT) extending the translations provided in [64, 52]. The translation of concepts is

given by two mapping functions πx and πy. The translation is recursively defined as
follows

πx(A) = A(x)

πx(¬C) = ¬πx(C)

πx(C uD) = πx(C) ∧ πx(D)

πx(C tD) = πx(C) ∨ πx(D)

πx(∃R.C) = ∃y.R(x, y) ∧ πy(C)

πx(∃R
−.C) = ∃y.R(y, x) ∧ πy(C)

πx(∀R.C) = ∀y.R(x, y)→ πy(C)

πx(∀R
−.C) = ∀y.R(y, x)→ πy(C)

πx({a}) = (x = a)

πx(≥ nR.C) = ∃≥ny.R(x, y) ∧ πy(C)

πx(≥ nR−.C) = ∃≥ny.R(y, x) ∧ πy(C)

πx(≤ nR.C) = ∃≤ny.R(x, y) ∧ πy(C)

πx(≤ nR−.C) = ∃≤ny.R(y, x) ∧ πy(C)

πx(= nR.C) = ∃=ny.R(x, y) ∧ πy(C)

πx(= nR−.C) = ∃=ny.R(y, x) ∧ πy(C)

where

∃≥ny.R(y, x) = ∃y1, . . . , yn.
∧

i 6=j

yi 6= yj ∧
∧

i

R(x, yi)

∃≤ny.R(x, y) = ∀y1, . . . , yn+1.
∧

i 6=j

yi 6= yj →
∨

i

¬R(x, yi)

and ∃=ny.R(x, y) is defined as a conjunction the previous two πy is obtained from πx
by replacing x with y and vice-versa.

The translation of the most common DL axioms is shown in Table 7.5.

The OWL Ontology Language 57

Table 7.5: Correspondence between DL axioms and their translation into FOL. Func-
tions πx and πy are exploited to translate the concepts contained in the axioms.

Axiom Translation

C v D ∀x.πx(C)→ πx(D)

a : C C(a)

(a, b) : R R(a, b)

a = b a = b

a 6= b a 6= b

R v S ∀x, y.R(x, y)→ S(x, y)

R1 ◦ ... ◦Rn v S ∀xi, 0 ≤ i ≤ m.R1(x0, x1) ∧ ... ∧Rn(xm−1, xm)→ S(x0, xm)

Trans(R) ∀x, y, z.R(x, z) ∧R(z, y)→ R(x, y)

7.6 The OWL Ontology Language

The Semantic Web is an evolution of World Wide Web (some people talk about Web
3.0). It encourages the inclusion of information and data, called semantic content,
inside web pages and other published documents, using a suitable format so that it
can be extracted and used in automatic reasoning. The W3C provides this definition
of Semantic Web [65]:

The Semantic Web provides a common framework that allows data to
be shared and reused across application, enterprise, and community bound-
aries.

Its final purpose is to permit a more coherent and organized usage of the available
information. It allows to build more advanced search engines that base their search
also on semantics rather than only on syntax.

The Web Ontology Language (OWL) is a family of knowledge representation lan-
guages for authoring ontologies or knowledge bases. The OWL family contains many
species, serializations, syntaxes and specifications with similar names. The most im-
portant specifications are OWL and OWL 26

The OWL Web Ontology Language was published in 2004 and now is known as
OWL 1 [66]. OWL 2 [55] is an extension and revision of OWL 1. The OWL 2 speci-
fication is managed by the World Wide Web Consortium (W3C) and since December
2012 it became a W3C recommendation. It keeps a full backward compatibility with
OWL 1.

The development of this language is motivated by the Semantic Web activity, indeed
OWL is part of the Semantic Web Stack (Figure 7.1) that illustrates the architecture
of the Semantic Web [66]:

• XML provides a surface syntax for structured documents, but imposes no seman-
tic constraints on the meaning of these documents.

6There also exists an intermediate specification called OWL 1.1

58 Description Logics and OWL

User interface and applications

Trust

Proof

Unifying logic

Taxonomies: RDFS

Rules: RIF/SWRL
Querying:

SPARQL

Data interchange:

RDF
Syntax: XML+XML Schema

Identi ers: URI/IRI Character set: UNICODE

C
e
rti

c
a
tio

n

C
ry

p
to

g
ra

p
h
y

Figure 7.1: The Semantic Web Stack.

• XML Schema is a language for providing and restricting the structure and content
of elements within XML documents and also extends XML with datatypes.

• RDF is a data model for objects ("resources") and relations between them and
provides a simple semantics for this data model. It can be represented with an
XML syntax.

• RDF Schema extends RDF and is a vocabulary for describing properties and
classes of RDF-based resources, with semantics for hierarchies of such properties
and classes.

• OWL adds more vocabulary for describing properties and classes: among oth-
ers, relations between classes, cardinality, equality, richer typing of properties,
characteristics of properties (e.g. symmetry), and enumerated classes.

• SPARQL is a protocol and query language for querying semantic web data
sources.

• RIF is the W3C Rule Interchange Format. It’s an XML language for representing
Web rules which computers can execute.

OWL allows the user to write ontologies that describe the knowledge of a domain of
interest by means of classes, roles and individuals. Such formalized knowledge can be
automatically handled by a computer by means of an automatic reasoner.

OWL 2 DL is semantically equivalent to SROIQ(D) [54]. OWL 2 significantly
extends the set of built-in datatypes of OWL 1 [67]: OWL 2 now supports owl:boolean,
owl:string, xsd:integer, xsd:dateTime, xsd:hexBinary, and a number of datatypes
derived from these by placing various restrictions on them. OWL 2 also provides a
datatype restriction construct, which allows new datatypes to be defined by restricting
the built-in datatypes in various ways. For example, the following expression defines a

The OWL Ontology Language 59

Table 7.6: Terminology comparison of FOL, DL, and OWL.

FOL DL OWL

Unary predicate Atomic concept Class name

Formula with one free
variable

Concept Class

Binary predicate Atomic role Property name

Formula with two free
variables

Role Property

Constant Individual Individual

Sentence Axiom Axiom

Signature Vocabulary or signature Vocabulary or signature

Theory Knowledge base Ontology

new datatype by specifying a lower bound of 18 on the datatype xsd:integer

DatatypeRestriction(xsd:integer xsd:minInclusive 18)

The datatype restriction construct can be seen as a unary datatype predicate and
it seems that OWL 2 does not support n-ary datatype predicates with n > 1 [68].

FOL, DLs, and OWL are strictly related, but each of them uses a different termi-
nology. DL concepts correspond to FOL unary predicates and OWL classes, DL roles
to FOL binary predicates and OWL properties, DL individuals to FOL constants and
OWL individuals. Table 7.6 shows the terminology comparison of FOL, DL, and OWL.
It is worth noting that in DL terminology the term ontology indicates the intensional
knowledge, i.e. the union of TBox and RBox, whereas in OWL terminology it indicates
the whole knowledge base.

7.6.1 OWL Syntax

There are many different types of syntaxes of OWL [55]

• RDF/XML syntax [69], as the name suggests, is based on XML. It allows writing
down an RDF graph, and thus an OWL ontology. This syntax is the only one
that a tool is obligated to support in order to be OWL 2 compliant.

• Turtle syntax [70] allows writing down an RDF graph, and thus an OWL ontology,
in a compact textual form.

• Manchester syntax [71, 72] is an OWL syntax that is designed to be human
readable and easily understandable even for non-logicians.

• Functional-Style syntax [73] is designed for specification purposes and to provide
a foundation for the implementation of OWL 2 tools such as APIs and reasoners.

60 Description Logics and OWL

• OWL XML syntax [74] is another syntax based on XML. An OWL ontology
written with this syntax can be easily processed by a machine due to XML, but
it is not very human readable.

Table 7.7 shows an example of an axiom expressed in these syntaxes.

Table 7.7: DL Axiom Woman v Person in different OWL 2 syntaxes.

Syntax Axiom

DL syntax Woman v Person

RDF/XML syntax

<owl:Class rdf:about="Woman">

<rdfs:subClassOf rdf:resource="Person"/>

</owl:Class>

Manchester syntax Woman SubClassOf: Person

Turtle syntax :Woman rdfs:subClassOf :Person .

Functional-Style syntax SubClassOf(:Woman :Person)

OWL XML syntax

<SubClassOf>

<Class IRI="Woman"/>

<Class IRI="Person"/>

</SubClassOf>

The set of the most common expressions supported by OWL, in DL and Manchester
OWL syntax, is summarized in Table 7.8.

Table 7.9 shows some OWL axioms and how they can be mapped to DL and Manch-
ester OWL syntax.

7.6.2 OWL sublanguages

The first version of OWL defined three different sublanguages of increasing complexity
and expressiveness:

OWL Lite is based on SHIF(D) DL and supports classification hierarchies and sim-
ple constraints. Superclasses in concept inclusion axioms cannot be arbitrary
class expressions but only named classes, i.e. simple concepts. Moreover, it ad-
mits cardinality restrictions with cardinality values of 0 or 1 only. Its main goal
is to represent thesauri and taxonomies.

OWL DL extends OWL Lite. It allows all the constructors and the axioms permitted
by the SHOIN (D) DL language. OWL DL is a language meant for users that
want the maximum expressiveness of OWL 1 while maintaining computational
completeness and decidability.

OWL Full has a highly expressive semantics that extends OWL DL. OWL Full con-
tains all the OWL language constructs and provides free, unconstrained use of
RDF constructs. For example, classes can be seen as both collections of individ-
uals and single individuals. OWL Full is not decidable and the presence of tools
able to support complete reasoning is implausible.

The OWL Ontology Language 61

Table 7.8: Most common OWL expressions in DL and Manchester OWL syntax.

OWL expression DL syntax Manchester syntax

Thing > Thing

Nothing ⊥ Nothing

intersectionOf C1 u · · · u Cn C1 and . . . and Cn

unionOf C1 t · · · t Cn C1 or . . . or Cn

complementOf ¬C not C

oneOf {x1, . . . , xn} {x1, . . . , xn}

allValuesFrom ∀R.C R only C

someValuesFrom ∃R.C R some C

hasValue ∃R.{x} R value {x}

minCardinality (≥ nR) R min n

maxCardinality (≤ nR) R max n

inverse R− inverse R

Table 7.9: Most common OWL axioms in DL and Manchester OWL syntax.

Axiom DL syntax Manchester syntax

subClassOf C v D C SubClassOf: D

equivalentClass C ≡ D C EquivalentTo: D

disjointWith C v ¬D C DisjointWith: D

sameAs {x} ≡ {y} x SameAs: y

differentFrom {x} v ¬{y} x DifferentFrom: y

subPropertyOf R v S R SubPropertyOf: S

equivalentProperty R ≡ S R EquivalentTo: S

domain ∀R.> v C R domain C

range > v ∀R.C R range C

inverseOf S ≡ R− S inverseOf: R

TransitiveProperty R ◦R v R R Characteristics: Transitive

FunctionalProperty > v (≤ 1R) R Characteristics: Functional

SimmetricProperty R ≡ R− R Characteristics: Symmetric

62 Description Logics and OWL

Figure 7.2 show the organization of the three OWL 1 sublanguages.

OWL Lite

OWL DL

OWL Full

Figure 7.2: OWL 1 sublanguages.

In 2008 the W3C OWL Working Group published the specifications of the successor
of OWL, called OWL 2. OWL 2 is also equipped with five different sublanguages:

OWL 2 EL corresponds to EL++. In this language, reasoning can be performed in
a time that is polynomial in the size of the ontology. OWL 2 EL was expressly
defined for applications with a very large number of classes and/or properties.
This sublanguage was defined in order to represent large medical and biochemical
ontologies, such as Gene Ontology7 or SNOMED-CT8 where there are thousands
of classes.

OWL 2 QL is a sublanguage the offers a simplified support to queries on large amounts
of instance data. It allows to keep data in relational databases and reasoning can
be performed by means of query languages. It allows to express role inclusion
axioms and inverse properties but disallows, for instance, the use of universal
quantifiers.

OWL 2 RL allows to handle rules, such as if-then-else constructs. It makes use of
standard rule languages. In this way queries can be answered by means of rule-
based reasoning engines.

OWL 2 DL based on SROIQ(D) [54], includes all the three previous sublanguages.
It is more expressive OWL DL by allowing qualified cardinal restrictions and
complex role inclusion axioms, on the other hand reasoning is more complex.

7http://geneontology.org/
8http://www.ihtsdo.org/snomed-ct

Conclusions 63

OWL 2 Full like OWL Full, contains all the OWL 2 language constructs and provides
free, unconstrained use of RDF constructs. It includes OWL 2 DL. Like its
previous version, it is not decidable and the support to complete reasoning is
unlikely.

The first 3 sublanguages are independent of each other and are named profiles [75].
Figure 7.3 illustrate the relationships between the OWL 2 sublanguages.

OWL 2 DL

OWL 2 Full

OWL 2 QL OWL 2 RL

OWL 2 EL

Figure 7.3: OWL 2 sublanguages.

7.6.3 Tools for OWL

The continuous increase in range and sophistication of tools and infrastructure for
OWL enabled the use of the OWL technology not only in the field of Semantic Web,
but also as a language for ontology development in several other fields: biology, geology,
military defence, government and medical science. Examples of these tools are:

• Editors and development environments: Protégé [76], Swoop [77].

• Automatic Reasoners: Hermit [78, 79], Fact++ [80, 81], Pellet[82].9

• APIs: OWL API [83, 84], Jena [85] (Both for Java).

7.7 Conclusions

In this chapter we provided a review of Description Logics (DLs) and OWL. FOL is
not decidable, hence the interest in identifying decidable fragments (DLs) to be used

9A complete list of available reasoners for OWL can be found at http://owl.cs.manchester.ac.
uk/tools/list-of-reasoners/.

64 Description Logics and OWL

to representing ontologies. Since Many DLs are fragments of FOL, it is possible to
map a DL expression into a FOL formula without losing the original “meaning”. OWL
is a logic language for the Semantic Web based on description logics. In particular
OWL 2 DL is based on SROIQ(D), which is decidable. For a deeper introduction
to description logics we refer to [52, 53, 54]. Instead for further information about
Semantic Web and OWL syntax we refer to the W3C World Wide Web Consortium
online site [55].

The next chapter will discuss how to reason over description logics.

Chapter 8

Reasoning in Description Logics

This chapter illustrates the reasoning problems in Description Logics and techniques
for solving them. The reasoning methods here discussed will come in handy when we
present the approaches to exact probabilistic inference (Chapter 11).

After an introduction to reasoning problems in Section 8.1. Section 8.2 illustrates
some techniques for standard and non-standard reasoning in DLs, in particular it de-
scribes Pellet’s tableau algorithm and approaches to obtain, given a query, all the
explanations and the pinpointing formula. Section 8.3 draws conclusions.

8.1 Reasoning Problems

As mentioned before, a knowledge base is used to store information about the appli-
cation domain, but the purpose of a knowledge representation system goes beyond
storing concept definitions and assertions. Besides the explicit knowledge contained in
the KB, we want to extract implicit knowledge, for example, if we have the two axioms:
jerry : Person and Person ≡ ¬Dinosaur, one can conclude that jerry doesn’t belongs to
the class Dinosaur, even though this knowledge is not explicitly stated as an assertion.
Inference algorithms have the objective of extracting such implicit knowledge. Let
K = (T ,R,A) be a DL knowledge base, where T is the TBox, R is the RBox and A
the ABox. The standard reasoning tasks are:

Concept satisfiability A concept C is satisfiable with respect to K iff there exists a
model I of K such that CI 6= ∅. In this case we say that K |= C.

Concept subsumption A concept C is subsumed by a concept D with respect to K
iff CI ⊆ DI for every model I of K. In this case we say that K |= C v D.

Concept equivalence Two concepts C and D are equivalent if CI = DI for every
model I. In this case we write C ≡ D or I |= C ≡ D.

Concept disjointness Two concepts C and D are disjoint if CI ∩DI = ∅ for every
model I.

Instance checking Finding out whether a given individual a belongs to a given con-
cept C, i.e. aI ∈ CI for every model I of K.

65

66 Reasoning in Description Logics

Instance retrieval Find all instances of a given concept.

Knowledge base consistency A knowledge base K is consistent iff it has a model
I such that I |= K (see Definition 7.5), i.e. it is satisfiable.

Classification To compute the subsumption relation between each pair of concepts
in K in order to create the complete concept hierarchy.

Realization To find the most specific concept to which an individuals belongs. The
most specific concepts of an individuals are the lowest concepts in the hierarchy
to which an individual belongs (i.e. the direct types of an individual). Thus
realization is performed after classification.

All of the above reasoning problems can be reduced to KB (in)consistency.

Proposition 8.1 Reduction to KB Inconsistency
Let K be a DL KB and x a new individual not appearing in K.

Concept satisfiability K |= C iff it is not the case that K ∪ {x : C} is inconsistent,
i.e. it is unsatisfiable.

Concept subsumption K |= C v D iff K ∪ {x : (C u ¬D}) is inconsistent.

Concept equivalence K |= C ≡ D iff K |= C v D and K |= D v C.

Concept disjointness K |= C ∩D v ⊥ iff K ∪ {x : (C uD)} is inconsistent.

Instance check K |= a : C iff K ∪ {a : ¬C} is inconsistent.

Instance retrieval We have to check for every individual a in K if K |= a : C.

Classification for every pair of concepts C and D in K check whether K |= C v D.

Other reasoning tasks, called non-standard, have a somewhat different goal:

Induction Inductive approaches usually take a part of intensional knowledge and try
to generalize them by generating hypotheses expressed as axioms or complex
concepts.

Abduction Abductive reasoning services is useful in ontology engineering when a
desired consequence (say E) is not a consequence of the knowledge base K and
the ontology engineer wants to determine what information K′ is missing, such
that K ∪ K′ |= E.

Explanation finding The goal is to give an explanation of why some axiom is entailed
by the knowledge base. Formally, a justification for the entailment is a knowledge
base K′ ⊂ K such that K′ |= E. There might be more than one justification for
an entailment. This reasoning task is also called axiom pinpointing.

Reasoning Techniques 67

Pinpointing formula extraction Given a query Q and a KB K, the pinpointing
formula is a monotone Boolean formula ψ built using boolean variables associated
to each axiom in K and only the conjunction and disjunction connectives1. Every
valuation of ψ must correspond to a knowledge base Kψ ⊂ K such that Kψ |= Q.

8.1.1 Closed vs Open World Assumption

Description Logics do not adopt the Closed World Assumption (CWA), but like FOL,
make the Open World Assumption (OWA). Missing information is treated as unknown.

Example 8.1.1
Let us consider the following example:

Father ≡ Male u ∃hasChild.>

{markus, anna} : hasChild

markus : Father

anna : Female

stephan : Male

The query is: is stephan son of markus (markus,stephan) : hasChild?

• In DLs due to the OWA the answer is: don’t know.

• In databases and in logic programming we usually have the closed world assump-
tion (see Section 4.4). Missing information is assumed to be false. Hence, in
these contexts with the CWA, the answer is: no.

8.2 Reasoning Techniques

To solve the reasoning problems introduced in Section 8.1, several reasoning techniques
have been proposed. These includes automata based approaches [86], resolution based
approaches [87, 88] and structural approaches [89]. The most widely used technique,
however, is the tableau approach. Indeed the vast majority of state-of-the-art OWL
reasoners, such as Pellet [82], FaCT++ [81, 80] and Hermit [78, 79], use a tableau
algorithm.

In the next subsections we describe the tableau algorithm and, in particular, the
rules used by the Pellet reasoner. The aim of this chapter is to illustrate how to perform
two non-standard reasoning tasks:

• explanation finding, also known as axiom pinpointing; and

• pinpointing formula extraction.

The approaches described below are based on [90, 91, 92].

1In monotone Boolean formulas the not connective is not used.

68 Reasoning in Description Logics

8.2.1 Pellet

Pellet is a complete OWL 2 reasoner, that covers all the OWL 2 DL constructs in-
cluding inverse and transitive properties, cardinality restrictions, datatype reasoning
for an extensive set of built-ins as well as user defined simple XML schema datatypes,
enumerated classes (nominals) and instance assertions.

This practical OWL reasoner provides the “standard” set of DL inference services,
namely consistency checking of a KB, concept satisfiability, classification, realization.
Pellet reduces them all to KB consistency checking. These services can be accessed by
querying the reasoner. Pellet also supports some less standard services such as axiom
pinpointing/explanation finding .

The core of the system is the tableau reasoner, which has only one functionality:
checking the consistency/satisfiability of a KB. According to the DL model-theoretic
semantics, a KB is consistent if there is an interpretation that satisfies all the facts
and axioms in the KB i.e., a model of the KB. The tableau reasoner searches for such
a model.

Pellet is written in Java. It is used in a number of projects, from pure research to
industrial ones. Until version 2.3.0 Pellet was an open source project, but the later
versions are closed source. However there are several open source forks of the original
project, one of them is Openllet2.

8.2.2 Tableau Algorithm

In the following we describe the tableau algorithm used by Pellet, shown in Algo-
rithm 8.1.

The idea behind the algorithm is essentially to try to construct a model of a knowl-
edge base K = (T ,R,A) . If we find a model, then K is obviously satisfiable, otherwise
it is inconsistent. It does this in an organized way by starting from the concrete sit-
uation described in A, and explicating additional constraints on the model that are
implied by the axioms in K.

The algorithm works on data structures called tableaux, which are completion
graphs. Formally, a completion graph is a tuple G = (V,E,L, 6=) in which (V,E) is
a directed graph. Each node a ∈ V is labelled with a set of concepts L(a) , and each
edge 〈a, b〉 is labelled with a set of role names L(〈a, b〉). The binary predicate 6= is used
to specify the inequalities between nodes. A tableau can also be seen as an ABox A,
where the nodes are individuals annotated with the concepts they belong to and the
edges are annotated with the roles that relate the connected individuals.

Function Tableau in Algorithm 5 takes as input a query axiom Q and a KB K. In
line 5 Q is negated for unsatisfiability, i.e. it is converted into an assertional axiom to
be used for KB inconsistency checking, as explained in Proposition 8.1. For instance,
if our query is Q = a : C then it is transformed into αQ = a : ¬C. αQ is called the
assertional negation of Q. The algorithm keeps a set T of completion graphs. T is
initialized with a single completion graph G0 that contains a node for each individual
a in the knowledge base, labeled with the nominal {a} plus all concept C such that
a : C ∈ A (i.e. L(a) = {C | a : C ∈ A} ∪ {{a}}), and an edge 〈a, b〉 labeled with R for

2GitHub repository: https://github.com/Galigator/openllet.

Reasoning Techniques 69

Algorithm 8.1 Tableau algorithm executed by Pellet.
1: function Tableau(Q,K)
2: Input: Q (the query axiom)
3: Input: K (the knowledge base)
4: Output: S (a set of axioms) or null
5: αQ = Unsat(Q) . Unsat(Q) converts Q into an assertional axiom to be tested for

inconsistency
6: K = K ∪ {αQ}
7: Let G0 be an initial completion graph from K
8: T ← {G0}
9: repeat

10: Select a rule r applicable to a clash-free graph G from T
11: T ← T \ {G}
12: Let G = {G′

1, ..., G
′

n} be the result of applying r to G
13: T ← T ∪ G
14: until All graphs in T have a clash or no rule is applicable
15: if All graphs in T have a clash then

16: S ← ∅
17: for all G ∈ T do

18: let sG the result of τ for the clash of G
19: S ← S ∪ sG
20: end for

21: S ← S \ {αQ}
22: return S
23: else

24: return null
25: end if

26: end function

each assertion (a, b) : R ∈ A (i.e. L(〈a, b〉) = {R|(a, b) : R ∈ A}).
The algorithm then applies, at each step, a so-called expansion rule to a com-

pletition graph G ∈ T : G is removed from T , the rule is applied and the results are
inserted back in T . The some of the rules used by Pellet for SROIQ(D) DL are shown
in Figure 8.1. For example, if C1 u C2 ∈ L(a), and either C1 /∈ L(a) or C2 /∈ L(a),
then the rule → u adds both C1 and C2 to L(a), because the individual a must be an
instance of both C1 and C2.
Rules can be deterministic or non-deterministic. The first replace G with a single graph
while the latter replace G with a set of graphs. For example, if the disjunction C1tC2

is present in the label of a node and neither C1 ∈ L(a) nor C2 ∈ L(a), the rule → t
generates two graphs, one in which C1 is added to L(a) and another in which C2 is
added to L(a).

An event during the execution of the algorithm can be:

• Add(C, a), the addition of a concept C to L(a).

• Add(R, 〈a, b〉), the addition of a role R to L(〈a, b〉).

• Merge(a, b), the merging of the nodes a, b. When one node b is merged into
another node a, L(b) is added into L(a), all the edges leading to b are “moved”
so that they lead to a, and all the edges leading from b to nominal nodes are
“moved” so that they lead from a to the same nominal nodes; then b and the

70 Reasoning in Description Logics

Deterministic rules:

→ unfold (∗): if A ∈ L(a), A atomic and (A v D) ∈ K, then

if D /∈ L(a), then

Add(D, a), τ(D, a) := (τ(A, a) ∪ {A v D})
→ CE (∗): if (C v D) ∈ K, with C not atomic, a not blocked, then

if (¬C tD) /∈ L(a), then

Add((¬C tD), a), τ((¬C tD), a) := {C v D}
→ u (∗): if (C1 u C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} 6⊆ L(a), then

Add({C1, C2}, a), τ(Ci, a) := τ((C1 u C2), a)
→ ∃ (∗): if ∃S.C ∈ L(a), a is not blocked, then

if a has no S-neighbor b with C ∈ L(b), then

create new node b, Add(S, 〈a, b〉), Add(C, b)
τ(C, b) := τ((∃S.C), a), τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀ (∗): if ∀(S.C) ∈ L(a), a is not indirectly blocked and
there is an S-neighbor b of a, then

if C /∈ L(b), then

Add(C, b), τ(C, b) := τ((∀S.C), a) ∪ τ(S, 〈a, b〉)
→ ∀+ (∗): if ∀(S.C) ∈ L(a), a is not indirectly blocked and

there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then

Add(∀R.C, b),
τ((∀R.C), b) := τ((∀S.C), a) ∪ τ(R, 〈a, b〉) ∪ {Trans(R)} ∪ {R v S}

→≥ (∗): if (≥ nS) ∈ L(a), a is not blocked, then

if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn, Add(S, 〈a, bi〉); 6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a), τ(6=(bi, bj)) := τ((≥ nS), a)

→ O (∗): if, {o} ∈ L(a) ∩ L(b) and not a 6=b, then Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a) then

τ(Ci, b) := τ(Ci, a) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

Non-deterministic rules:

→ t (∗): if (C1 t C2) ∈ L(a), a is not indirectly blocked, then

if {C1, C2} ∩ L(a) = ∅, then

Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a), τ(Ci, a) := τ((C1 t C2), a) in Gi for each i ∈ {1, 2}

→≤ (∗): if (≤ nS) ∈ L(a), a is not indirectly blocked,
and there are m S-neighbors b1, ..., bm of a with m > n, then

For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then

Generate a graph G′

τ(Merge(bi, bj)) := τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉)
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj
if merged into bi)

→ NN : if (≤ nS.C) ∈ L(a), a nominal node, b blockable S-predecessor of a and
there is no m s.t. 1 ≤ m ≤ n, (≤ mS.C) ∈ L(a) and
there exist m nominal S-neighbors z1, . . . , zm of a s.t.
C ∈ L(zi) and zi 6= zj for all 1 ≤ i ≤ j ≤ m, then

For each k, 1 ≤ k ≤ n, then

Generate a graph Gk

Add(≤ kS.C, a), τ((≤ kS.C), a) := τ((≤ nS.C), a) ∪ τ(S, 〈b, a〉)
create b1, . . . , bk, Add bi 6= bj for 1 ≤ i ≤ j ≤ k, τ(6=(bi, bj)) := τ((nS.C), a) ∪ τ(S, 〈b, a〉),
Add(S, 〈a, bi〉), Add({oi}, bi), where oi are new nominals,
τ(S, 〈a, bi〉) := τ((≤ nS.C), a) ∪ τ(S, 〈b, a〉), τ({oi}, bi) := τ((≤ nS.C), a) ∪ τ(S, 〈b, a〉)

Figure 8.1: Some Pellet tableau expansion rules for SROIQ(D); the subset of rules
marked by (∗) are relevant for SHIQ.

Reasoning Techniques 71

blockable sub-trees below b are pruned, i.e. removed, from the tableau. Merge
and prune operations are described in detail in [93, 61].

• 6= (a, b), the addition of the inequality a 6= b to the relation 6=.

• Report(g), the detection of a clash g.

We use E to denote the set of events recorded during the execution of the algorithm.
A clash is either:

• a couple (C, a) where both C and ¬C are present in the label of a node (there is
an inconsistency), i.e. {C,¬C} ⊆ L(a);

• a couple (Merge(a, b), 6= (a, b)), where the events Merge(a, b) and 6= (a, b) belong
to E .

The algorithm stops applying rules to G if it encounters a clash. In this case, the
completion graph G contains an inconsistency, and thus does not represent a model.
If no more expansion rules can be applied to the completion graph G and there are no
clashes, then G represent a model. Once every completion graph in T contains a clash
or no more expansion rules can be applied to it, then the algorithm terminates. If all
the completion graphs in the final set T contain a clash, then the algorithm returns “K
is unsatisfiable”, i.e. no model can be found. Otherwise, all the clash-free completion
graphs in T represents a model for K and the algorithm returns “K is consistent”. The
tableau algorithm is known to be sound and complete.

For ensuring the termination of the algorithm, a special condition known as blocking
[90] is used. In a tableau a node x can be a nominal node if its label L(x) contains
a nominal or a blockable node3. If there is an edge e = 〈x, y〉 then y is a successor of
x and x is a predecessor of y. Descendant is the transitive closure of successor while
ancestor is the transitive closure of predecessor. A node y is called an R-successor of a
node x if, for some R′ with R′ v∗ R, R′ ∈ L(〈x, y〉), where v∗ is the transitive-reflexive
closure of v on R ∪ {Inv(R) v Inv(S) | R v S ∈ R} and Inv(R) is a function that
returns the inverse of a role R. x is called an R-predecessor of y if y is an Inv(R)-
successor of x. A node y is called a neighbour (R-neighbour) of a node x if y is either
a successor (R-successor) or a predecessor (R-predecessor) of x.

For a role S and a node x, we define the set of x’s S-neighbours with C in their
label, S(x, C), as

S(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

An R-neighbor y of x is safe if

• x is blockable, or

• x is a nominal node and y is not blocked

Finally, a node x is blocked if it has ancestors x0, y and y0 such that all the following
conditions are true:

3Note that, when a new node is added by an expansion rules, this node is blockable.

72 Reasoning in Description Logics

1. x is a successor of x0 and y is a successor of y0,

2. y, x and all nodes on the path from y to x are blockable,

3. L(x) = L(y) and L(x0) = L(y0),

4. L(〈x0, x〉) = L(〈y0, y〉).

In this case, we say that y blocks x. A node is blocked also if it is blockable and all
its predecessors are blocked; if the predecessor of a safe node x is blocked, then we say
that x is indirectly blocked.

8.2.3 Explanation finding

Here we discuss the problem of finding covering set of explanations for a given query.
This non-standard reasoning service is useful for tracing derivations and debugging
ontologies and has been investigated by various authors [94, 90, 95, 96, 97]. Schlobach
and Cornet [97] named it axiom pinpointing. In particular, the authors of [97] define
minimal axiom sets or MinAs for short.

Definition 8.1 MinA
Let K be a knowledge base and Q an axiom that follows from it, i.e., K |= Q. We call
a set M ⊆ K a minimal axiom set or MinA for Q in K if M |= Q and it is minimal
w.r.t. set inclusion. A MinA corresponds to an explanation for the query Q.

The problem of enumerating all MinAs is called min-a-enum in [97]. All-MinAs(Q,K)
is the set of all MinAs for query Q in the knowledge base K. We can formally define
the min-a-enum problem as follows

Definition 8.2 min-a-enum problem
Input : A knowledge base K, and an axiom Q such that K |= Q.
Output : The set All-MinAs(Q,K) of all MinAs for Q in K.

The algorithm for computing a single MinA is shown in Algorithm 8.2. It takes ad-
vantage of function Tableau (line 5) and of function BlackBoxPruning (line 9).
Tableau exploits the tableau algorithm presented in Subsection 8.2.2: given a KB K
if our query is Q = a : C, the tableau algorithm works by refutation and it tries to
prove the inconsistency of K ∪ {αQ}, where αQ = a : ¬C. If no model can be build
then K |= Q, see Proposition 8.1.

Function Tableau

Every time a rule is applied, Pellet update a so-named tracing function τ [94, 90, 98],
which associates sets of axioms with events in the derivation.

The tracing function τ maps each event ε ∈ E to a fragment of K. For exam-
ple, τ(Add(C, a)) is the set of axioms needed to explain the event Add(C, a) while
τ(Add(R, 〈a, b〉)) explains the event Add(R, 〈a, b〉). For the sake of brevity we de-
fine τ for couples (concept, individual) and (role, couple of individuals) as τ(C, a) =
τ(Add(C, a)) and τ(R, 〈a, b〉) = τ(Add(R, 〈a, b〉)) respectively. The function τ is ini-
tialized as the empty set for all the elements of its domain except for τ(C, a) and

Reasoning Techniques 73

Algorithm 8.2 SingleMinA algorithm.
1: function SingleMinA(Q,K)
2: Input: Q (the query axiom)
3: Input: K (the knowledge base)
4: Output: S (a MinA for the Q) or null
5: S ←Tableau(Q,K)
6: if S = null then

7: return null
8: else

9: return BlackBoxPruning(Q,S)
10: end if

11: end function

τ(R, 〈a, b〉) to which the values {a : C} and {(a, b) : R} are assigned if a : C and
(a, b) : R are in the ABox respectively. The expansion rules (Figure 8.1) add axioms
to values of τ .

For a clash of the form (C, a), τ(Report(g)) = τ(Add(C, a)) ∪ τ(Add(¬C, a)). In-
stead, for a clash of the form (Merge(a, b), 6= (a, b)), τ(Report(g)) = τ(Merge(a, b))∪
τ(6= (a, b)).

If g1, ..., gn are the clashes, one for each of the elements of the final set of tableaux
and τ(Report(gi)) = sgi , the output of the algorithm Tableau is S =

⋃

i∈{1,...,n} sgi \

{αQ} where αQ is the assertional negation of our initial query Q. However, this set
may be redundant because additional axioms may also be included in τ , e.g., during
the →≤ rule, where axioms responsible for each of the successor edges are considered.

Function BlackBoxPruning

The set S, returned by Function Tableau is pruned using a black-box approach [90]
called BlackBoxPruning and shown in Algorithm 8.3. Given a query axiom Q, this
algorithm executes a loop on S: in each iteration it removes an axiom E from S and
checks whether S |= Q by means of Tableau. If the query Q is not entailed, the
axiom E is reinserted into S as E is responsible for the entailment of the query Q.
Vice-versa, if the query still remains entailed, the removed axiom E is irrelevant and
is not reinserted in S. Once all axioms in S have been tested the process terminates
and returns S. Thus the algorithm for computing a single MinA SingleMinA, shown
in Algorithm 8.2, first executes Tableau and then BlackBoxPruning.

The output S of SingleMinA is guaranteed to be a MinA, as established by
Theorem 8.1, where All-MinAs(Q,K) stands for the set of all MinAs for Q.

Theorem 8.1 [90]
Let Q be a query and let S be the output of the algorithm SingleMinA with input Q
and K, then S ∈ All-MinAs(Q,K).

Hitting Set Algorithm

SingleMinA returns a single MinA. To compute all MinAs, Pellet uses Reiter’s hitting
set algorithm [99]. In [99], Reiter developed a general theory of diagnosis where a system
to be diagnosed is a pair (SD,COMP) where SD is a set of first-order sentences which

74 Reasoning in Description Logics

Algorithm 8.3 Black-Box pruning algorithm.
1: function BlackBoxPruning(C, S)
2: Input: Q (the query axiom)
3: Input: S (the set of axioms to be pruned)
4: Output: S (the pruned set of axioms)
5: for all axiom E ∈ S do

6: S ← S − {E}
7: if Tableau(Q, S) = null then

8: S ← S ∪ {E}
9: end if

10: end for

11: return S
12: end function

describe the system and COMP is a finite set of components. A set of observation
OBS is then associated with the system. An observation is finite set of first-order
sentences which describe the behavior of the system. In a system there can be some
components that are abnormal, i.e. components whose behavior is not correct. Reiter
defined a diagnosis for a system as a minimal set ∆ ⊆ COMP such that

SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|(c) ∈ COMP −∆}

is consistent, where AB is a predicate that indicates whether a component is abnormal.
This means that a diagnosis is the minimal set of faulty components which combined
with the other components, which are normal, make the system consistent. A diagnosis
can be defined in terms of conflict sets, that are sets {c1, ...cn} ⊆ COMP s.t.

SD ∪OBS ∪ {¬AB(c1), ...,¬AB(cn)}

is inconsistent. A conflict set is minimal iff no proper subset of it is a conflict set
for the observed system. In this characterization, a diagnosis ∆ is a minimal set s.t.
COMP −∆ is not a conflict set for the system.

Let us consider a universal set U and a set of conflict sets CS ⊆ P(U), where P
denotes the powerset operator. The set HS ⊆ U is a hitting set for CS if each Si ∈ CS
contains at least one element of HS, i.e. if Si ∩ HS 6= ∅ for all 1 ≤ i ≤ n (in other
words, HS ‘hits’ or intersects each set in CS). HS is a minimal hitting set for CS if
HS is a hitting set for CS and no HS ′ ⊂ HS is a hitting set for CS.

The hitting set problem with input CS, U is to compute all the minimal hitting sets
for CS. The set of all minimal conflict sets, which correspond to the explanations for
inconsistency, can be found by exploiting an algorithm that generates minimal hitting
sets [90, 95].

Reiter’s algorithm [99] constructs a labeled tree called hitting set tree (HST) as
follows.

In an HST, a node v is labeled with OK, or with a set L(v) ∈ CS and an edge e is
labeled with an element of U . The label of a node v (edge e) is denoted as L(v) (L(e)).
Let T be an HST.

• If v is the root of T , if CS is empty, it is labeled with OK, i.e. L(v) ← OK.
Otherwise, it is labeled with a set S ∈ CS (L(v)← S).

Reasoning Techniques 75

• If v is a node of T , we define H(v) as the set of edge labels on the path from the
root of T to node v. If v is labeled with OK, it is a leaf. Otherwise, v is labeled
with a set S ∈ CS (L(v)← S) and, for each element E ∈ L(v), v has a successor
w connected to v by an edge with E in its label. The label for w is a set S ∈ CS
such that S ∩H(w) = ∅ if S exists, otherwise w is labeled with OK.

Reiter showed that

• if L(v) = OK, then H(v) is a hitting set for CS;

• each minimal hitting set for CS is H(v) for some node v with label OK.

Example 8.2.1
(From [99]) Let us consider the following set of conflict sets

CS = {{2, 4, 5}, {1, 2, 3}, {1, 3, 5}, {2, 4, 6}, {2, 4}, {2, 3, 5}, {1, 6}}

Figure 8.2 shows an HST for CS.

We can notice that in the HST in Figure 8.2 we could have pruned several paths. For
instance H(n6) = H(n8). This means that the subtrees rooted at n6 and n8 could be
identically generated, i.e. the subtree rooted at n8 is redundant. In addition, H(n3) =
{1, 2} is a minimal hitting set for CS. Therefore, it is not possible that any other node
v of the tree such that H(n3) ⊆ H(v) can define a smaller hitting set than H(n3).
Moreover if S ∈ CS and S ′ ∈ CS with S ⊂ S ′, then CS \ S ′ has the same minimal
hitting sets as CS, in Figure 8.2 we have that L(n10) = {2, 4} ⊂ {2, 4, 5} = L(n0).

From these observations Reiter defined three rules for HST pruning.

Proposition 8.2 HST pruning
An HST can be pruned by following these rules without losing any minimal hitting set.

1. If a node v is labeled with OK and the current node w is such that H(v) ⊆ H(w),
then close the node w by labeling it with an X and make it a leaf: L(w) ← X.
In fact once a hitting set path is found any superset of that path is guaranteed
to be a hitting set as well.

2. If there exists a node v such that H(v) = H(w), where w is the current node,
then label w with X.

3. If there exist two nodes v and w such that L(w) ⊂ L(v), then for each E ∈
L(v)\L(w) mark as redundant the edge from node v labeled by E. A redundant
edge, together with the subtree beneath it, may be removed from the HST while
preserving the property that the resulting pruned HST will yield all minimal
hitting sets for CS.

In our case, the universal set U corresponds to the set of all axioms in the KB, and
an explanation (for a particular KB inconsistency) corresponds to a single conflict set
S ∈ CS [90, 95]. While the main aim of Reiter’s approach was to find all minimal

76
R

e
a
so

n
in

g
in

D
e
sc

ri
p
ti

o
n

L
o
g
ic

s

n0

{2, 3, 4}

n1

{1, 3, 5}

n3

OK

n4

{1, 6}

n9

OK

OK

n5

{1, 6}

OK OK

n2

{2, 3, 5}

{1, 3, 5}

OK {1, 6}

OK OK

{1, 6}

OK OK

{1, 6}

OK OK

n6

{1, 2, 3}

OK {1, 6}

OK OK

{1, 6}

OK OK

{2, 4, 6}

n7

{1, 6}

OK OK

n8

{1, 6}

OK {1, 2, 3}

OK OK OK

{1, 2, 3}

n10

{2, 4}

OK OK

OK {2, 4}

OK OK

2

1 3

1

6

5

1

6

4

2

1 3

1

6

5

1

6

3

1

6

5

1 2

1

6

3

1

6

5

2

1

6

4

1

6

1
2

3

6

1

2

4

2
3

2

4

Figure 8.2: An HST for CS = {{2, 4, 5}, {1, 2, 3}, {1, 3, 5}, {2, 4, 6}, {2, 4}, {2, 3, 5}, {1, 6}}

Reasoning Techniques 77

hitting sets of a set of conflict sets CS, due to the duality of the algorithm, it can also
be used to find all conflict sets, which are the explanations in our case.

The algorithm for HST construction is shown in Algorithm 8.4, which is based on
the algorithms proposed in [90, 95]. Given a query axiom Q, the algorithm starts by
generating the MinA S by invoking SingleMinA with inputs the query axiom Q and
the KB K. If S 6= null, i.e. K |= Q (line 16), then S represent a new explanation for
Q. If v is null, which means that we are creating the root node, it initializes an HST
T = (V,E,L) (line 14). Then it labels v with S and, for each axiom E ∈ S, a new node
w and a new edge 〈v, w〉 labeled with the axiom E are added in the tree, removes E from
K, generating a new knowledge base K′ = K − {E}, and function HittingSetTree
is recursively invoked for the newly generated node w. When K 6|= Q4 (line 25), the
algorithm labels the node v with OK and makes it a leaf.

Lines 8-10 are used to satisfy the first and the second pruning rule of Proposition 8.2:
if the path of the current node is a superset of an previously found hitting set or the path
of the current node is a path of a previously generated node, then the algorithm labels
the current node with a X and makes it a leaf. We don’t need to take into account
the third rule of Proposition 8.2. In fact, thanks to function BlackBoxPruning
(Algorithm 8.3) that assures that the found explanation is minimal, it can never happen
that there exist two nodes v and w such that L(w) ⊂ L(v).

When the HST is fully built, all leaves of the tree are labeled with OK or X. The
set All-MinAs(Q,K) for the query Q is represented by all distinct non leaf nodes of
the tree.

Example 8.2.2
(From [90]) In order to describe the algorithm, let us consider a knowledge base K with
ten axioms and a query Q. For the purpose of the example, we denote the axioms in
K with natural numbers. Suppose All-MinAs(Q,K) is

All-MinAs(Q,K) = {{1, 2, 3}, {1, 5}, {2, 3, 4}, {4, 7}, {3, 5, 6}, {2, 7}}

Figure 8.3 (taken from [3]) shows the HST that is generated by the algorithm. It starts
by computing a single explanation that returns S = {2, 3, 4}. In the next step, it
initializes an HST in which the root node is labeled with S. Then, the algorithm selects
an arbitrary axiom in S, say 2, generates a new node w and a new edge 〈v, w〉 with
axiom 2 as its label. The algorithm tests whether K−{2} |= Q . If Q is entailed, as in
our case, we obtain a new explanation for Q w.r.t. K − {2}, say {1, 5}. We add this
set to CS and also assign it to the label of the new node w.

The algorithm repeats this process, i.e. adding a node, removing an axiom and
checking entailment, until the entailment test turns negative, in which case we mark
the new node with OK.

The correctness of this approach relies on the following key observations:

1. If a node is not a leaf of HST, then its label is an element of the set All-
MinAs(Q,K)

4I.e. K ∪ {αQ} is consistent, where αQ is the assertional negation of Q

78
R

e
a
so

n
in

g
in

D
e
sc

ri
p
ti

o
n

L
o
g
ic

s

{2, 3, 4}
2

3
4

{1, 5}
5

1

{4,7}
7 4

{3,5,6}
3

5
6

{4, 7}
4

7

{4, 7}

4
7

{1, 5}
1

5

{2, 7}
2

7

X {2, 7}
2

7

{1, 5}

1
5

OK OK OK OK {1, 5}
1

5

{1, 5}

1
5

X {2, 7}

2
7

{2, 7}

2
7

{3,5,6}
3

5
6

{3,5,6}

3
5

6

X X X X {1,2,3}
1

2
3

OK OK X {1,2,3}
1

2
3

OK X OK OK X OK OK OK X OK X X

Figure 8.3: Representation of the execution of the hitting set algorithm for finding All-MinAs(Q,K). In the graph, boxed nodes
are the set of distinct nodes representing a set in All-MinAs(Q,K).

Reasoning Techniques 79

Algorithm 8.4 Hitting Set Tree Algorithm.
1: procedure HittingSetTree(Q,K, CS,HS,w,E, p)
2: Input: Q (the query axiom)
3: Input: K (the knowledge base)
4: Input/Output: CS (a set of explanations, initially empty)
5: Input/Output: HS (a set of Hitting Sets, initially empty)
6: Input: v (the last node added to the Hitting Set Tree, initially null)
7: Input: p (the current edge path, initially empty)
8: if there exists a set h ∈ HS s.t. h ⊆ p or there exists a node n s.t. H(n) = p then

9: L(v)← X
10: return

11: else

12: S ←SingleMinA(Q,K) . it checks whether K |= Q
13: if v = null then

14: initialization
15: end if

16: if S 6= null then . i.e. K |= Q
17: CS ← CS ∪ {S}
18: set L(v)← S
19: loop for each axiom E ∈ L(v)
20: create a new node w and an edge e = 〈v, w〉 with L(e) = E
21: p← p ∪ L(e) . i.e. H(w)← H(v) ∪ L(e)
22: K′ ← K− {E}
23: HittingSetTree(Q,K′, CS,HS,w, p)
24: end loop

25: else . i.e. K 6|= Q
26: L(v)← OK
27: HS ← HS ∪ p
28: end if

29: end if

30: end procedure

2. If one takes the union of the labels of the edges in any path from the root of
HST to a leaf node marked with OK, then a hitting set for All-MinAs(Q,K)
w.r.t. K is obtained. In fact, all the minimal hitting sets for All-MinAs(Q,K)
are obtained when all the paths from the root to a leaf in HST are considered.

Formally, the correctness and completeness of the hitting set algorithm is given by the
following theorem.

Theorem 8.2 [90]
Let Q be a query and K be a DL KB and let ExpHST(Q,K) be the set of explanations
returned by the hitting set tree algorithm, then ExpHST(Q,K) is equal to the set of all
explanations of the query Q, so

ExpHST(Q,K) ≡ All-MinAs(Q,K)

Reiter’s HST algorithm can be optimized by using the technique of explanation
reuse5 [95]: let v be a newly generated node, if H(v) does not intersect with a pre-
viously found explanation, then that explanation can be reused to label v. This is

5The authors of [95] called this optimization technique justification reuse.

80 Reasoning in Description Logics

because H(v) represents the set of axioms removed from the ontology, and if none of
these removed axioms are present in a particular explanation, then that explanation
could still be inferred from the ontology. However, we have already obtained that ex-
planation, therefore there is no need to perform inference again. Explanation reuse
helps to reduce the number of calls to SingleMinA6 (Algorithm 8.2).

From the point of view of the implementation, OWLAPI, a famous Java library used
to handle OWL ontologies, already provides the class HSTExplanationGenerator that
implements the hitting set algorithm as described in Algorithm 8.4 and proposed by
Kalyanpur in [90]. Moreover it also implements the explanation reuse optimization [95].
This class uses a class that implements function SingleMinA. BUNDLE, presented
in Chapter 13, exploits HSTExplanationGenerator to obtain the set of explanations.

8.2.4 Pinpointing formula

Instead of finding All-MinAs(Q,K) for queries, in [100, 101] Baader and Peñaloza
proposed the problem of finding a pinpointing formula which is a compact representa-
tion of the set of all MinAs. To build a pinpointing formula, first we have to associate
a unique propositional variable to every axiom E of the KB K, indicated with var(E).
Let var(K) be the set of all the propositional variables associated with axioms in K,
then the pinpointing formula is a monotone Boolean formula built using some or all of
the variables in var(K) and the conjunction and disjunction connectives. A valuation
ν of a set of variables var(K) is the set of propositional variables that are true, i.e.,
ν ⊆ var(K). For a valuation ν ⊆ var(K), let Kν := {E ∈ K|var(E) ∈ ν}.

Definition 8.3 Pinpointing formula
Given a query Q and a KB K, a monotone Boolean formula φ over var(K) is called
a pinpointing formula for Q if, for every valuation ν ⊆ var(K), Kν |= Q iff ν satisfies
φ.

In [101] the authors also discuss the correspondence between the pinpointing for-
mula and explanations for a query Q. Let us call the set of explanations for Q
All-MinAs(K, Q) = {Kν |ν is a minimal valuation satisfying ψ}. All-MinAs(K, Q)
can be obtained by transforming the pinpointing formula into Disjunctive Normal Form
(DNF) and removing disjuncts implying other disjuncts. However, it is well-known that
this can cause an exponential blowup. The correspondence holds also in the other di-
rection: the formula

∨

Ex∈All-MinAs(K,Q)

∧

E∈Ex var(E) is a pinpointing formula, where
Ex is an explanation.

The example below illustrates the difference between All-MinAs(Q,K) and the
pinpointing formula.

Example 8.2.3 Pinpointing formula

6Recall that SROIQ DLs are N2ExpTime complex and every call to SingleMinA means that we
have to perform inference.

Reasoning Techniques 81

The following KB is inspired by the ontology people+pets [102]:

E1 = ∃hasAnimal.Pet v NatureLover

E2 = fluffy : Cat

E3 = tom : Cat

E4 = Cat v Pet

E5 = (kevin, fluffy) : hasAnimal

E6 = (kevin, tom) : hasAnimal

The KB indicates that the individuals that own an animal which is a pet belong to the
class NatureLovers and that kevin owns the animals fluffy and tom. fluffy and tom are
cats and all the cats are pets. We associated each axiom in the KB with a Boolean
variable Ei. Let Q = kevin:NatureLover be our query, then

All-MinAs(Q,K) = {{E2, E4, E6, E1}, {E3, E5, E6, E1}}

while the pinpointing formula is ((E2∧E4)∨ (E3∧E5))∧E6∧E1. It is easy to see that
the pinpointing formula is equivalent to ((E2 ∧ E4 ∧ E6 ∧ E1) ∨ (E3 ∧ E5 ∧ E6 ∧ E1))
that corresponds to All-MinAs(Q,K).

One interesting feature of the pinpointing formula is that an exponential number
of explanations can be represented with a much smaller pinpointing formula.

Example 8.2.4
Given an integer n ≥ 1, consider the following KB containing the following axioms for
1 ≤ i ≤ n

(C1,i) Bi−1 v Pi uQi (C2,i) Pi v Bi (C3,i) Qi v Bi

The query Q = B0 v Bn has 2n explanations, even if the KB has a size that is linear
in n. For n = 2 for example, we have 4 different explanations, namely

{{C1,1, C2,1, C1,2, C2,2}, {C1,1, C3,1, C1,2, C2,2}, {C1,1, C2,1, C1,2, C3,2}, {C1,1, C3,1, C1,2, C3,2}}

The corresponding pinpointing formula is C1,1∧ (C2,1∨C3,1)∧C1,2∧ (C2,2∨C3,2) which
is linear in n.

8.2.4.1 The Tableau Algorithm for the Pinpointing Formula

As already said, one of the most common approaches for performing inference in DL
is the tableau algorithm. However we have to extend the standard tableau in order to
obtain the pinpointing formula.

In particular every assertion α = n : C (α = (n,m) : R) with C ∈ L(n) (R ∈
L((n,m))) is associated with a label lab(a) that is a monotone Boolean formula over
var(K). In the initial tableau, every assertion α ∈ K is labeled with variable var(α),
and the assertional negation αQ (i.e. ¬Q) is added with label >.

The tableau is then expanded with expansion rules. A rule is of the form (B0, S)→
{B1, ..., Bm} where the Bis are finite sets of assertions and S is a finite set of axioms.

82 Reasoning in Description Logics

Rules can be divided into two sets: deterministic and non-deterministic. In the first
type, m = 1 and all the assertions in B1 are inserted in the tableau to which the rule
is applied, while in the second type m > 1 meaning that it creates m new tableaux,
one for each Bi, and adds to the i-th tableau the assertions in Bi.

In order to explain the conditions that allow the application of a rule we need first
some definitions.

Definition 8.4 ψ−insertability

Let A be a set of labeled assertions and ψ a monotone Boolean formula, the assertion
α is ψ−insertable into A if either α /∈ A, or α ∈ A but ψ 2 lab(α). Given a set B of
assertions and a set A of labeled assertions, the set of ψ−insertable elements of B into
A is defined as insψ(B,A) := {β ∈ B | βis ψ−insertable into A}.

The operation of ψ−insertion of B into A is the set of labeled assertions A]ψ B
containing assertions in A and those specified in insψ(B,A) opportunely labeled, i.e.,
the label of assertions in A\ insψ(B,A) remain unchanged, assertions in insψ(B,A)\A
get label ψ and the remaining bis get the label ψ ∨ lab(bi).

We also need the concept of substitution. A substitution is a mapping ρ : V → D,
where V is a finite set of logical variables and D is a countably infinite set of all the
individuals in the KB and all the anonymous individuals created by the application
of the rules. Variables are seen as placeholders for individuals in the assertions. For
example, an assertion can be x : C or (x, y) : R where C is a concept, R is a role and
x and y are variables. Let x : C be an assertion with variable x and ρ = {x → a} a
substitution, then (x : C)ρ denotes the assertion obtained by replacing variable x with
its ρ−image, i.e. (x : C)ρ = a : C.

Definition 8.5 Rule Applicability
Given a tableau T , a rule (B0, S) → {B1, ..., Bm} is applicable with a substitution ρ
on the variable occurring in B0 if S ⊆ K, and B0ρ ⊆ A, where A is the set of assertions
of the tableau.

To explain the motivations behind the definition of rule applicability (Definition 8.5),
let us consider the following example.

Example 8.2.5
Let us assume A be the current set of labeled assertions A = {(a : ∃R.C), ((a, b) : R)}.
Consider the rule for existential role restrictions:

if ({(x : ∃R.C)}, {})→ {{((x, y) : R), (y : C)}}

The variables x, y are place holders for individuals. To apply the rule to a set of
assertions, we must first replace the variables by appropriate individuals. However y
occurs only on the right-hand side of the rule, such a variable is called fresh variable.
Fresh variables must be replaced by fresh individuals, i.e. new individuals not appearing
in A. If we apply the substitution ρ = {x → a, y → c} that replaces x by a and y by
the new anonymous individual c. Since (x : ∃R.C) ∈ A we can apply the above rule
with substitution ρ obtaining the set of assertions A′ = A ∪ {((a, c) : R), (c : C)}.
Of course, we do not want to apply the same rule to A′. If we do not impose any
rule applicability condition, nothing would prevent us from applying the rule to A′ with

Reasoning Techniques 83

another new constant, say c′, and so on ad infinitum. For this reason, the applicability
rule condition needs to check whether the assertions obtained from the right-hand side by
substituting the fresh variables with existing individuals are assertions already present
in the current set of labeled assertions.

Given a forest of tableaux F and a tableau T ∈ F representing the set of assertions
A to which a rule is applicable with substitution ρ, the application of the rule leads to
the new forest F ′ = F \T ∪ni=1 T

ψ
i , where each T ψi contains the assertions in A]ψBiσ.

The substitution σ extends substitution ρ to map variables to possibly fresh individuals.
After the full expansion of the forest of tableaux, i.e., when no more rules are

applicable to any tableau of the forest, the pinpointing formula is built from all the
clashes in the tableaux. As mentioned before, a clash is represented by two assertions
α and ¬α present in the tableau.

The pinpointing formula is built by first conjoining, for each clash, the labels of the
two clashing assertions, by disjoining the formulas for every clash in a tableau and by
conjoining the formulas for each tableau.

In order to ensure termination of the algorithm, blocking must be used.

Definition 8.6 Blocking
Given a node N of a tableau, N is blocked iff either N is a new node generated by a
rule, it has a predecessor N ′ which contains the same assertions of N and the labels of
these assertions are equal, or its parent is blocked.

Then, a new definition of applicability must be given.

Definition 8.7 Rule Applicability with Blocking
A rule is applicable if it is so in the sense of Definition 8.5. Moreover, if the rule adds
a new node to the tableau, the node N annotated with the assertion to which the rule
is applied must be not blocked.

Theorem 8.3 Correctness (Th. 6.10 [101])
Given a KB K and a query Q, for every chain of rule applications resulting in a fully
expanded forest Fn, the formula built as indicated above is a pinpointing formula for
the query Q.

This approach is correct and terminating for the SHI DL, which extends ALC with
transitive and inverse roles and allows the definition of hierarchies of roles. Number
restrictions and nominal concepts cannot be handled by this definition of the tableau
algorithm because the definition of rule and rule application must be extended. In fact
tableau expansion rules for DL with these constructs may merge some nodes, operation
that is not allowed by the approach presented above. The authors of [101] conjecture
that the approach can be extended to deal with such constructs but, to the best of our
knowledge, this conjecture has not been proved yet.

The expansion rules for the tableau algorithm extended with pinpointing formula
are shown in Figure 8.4.

84 Reasoning in Description Logics

Deterministic rules:

→ unfold: ({(x : C)}, {(C v D)})→ {{(x : D)}}
if C ∈ L(x), and (C v D) ∈ K, then ψ := lab(x : C) ∧ var((C v D))

if D /∈ L(x), then add(D,x), lab(x : D) := ψ
else if ψ 6|= lab(x : D), then lab(x : D) := lab(x : D) ∨ ψ

→ CE: ({}, {(C v D)})→ {{(x : (¬C tD))}}
if (C v D) ∈ K, with C not atomic, then

if (¬C tD) /∈ L(x), then add((¬C tD), x), lab(x : (¬C tD)) := var((C v D))
→ u: ({(x : (C1 u C2))}, {})→ {{(x : C1), (x : C2)}}
if (C1 u C2) ∈ L(x), then ψ := lab(x : (C1 u C2))

if Ci /∈ L(x), then add(Ci, x), lab(x : Ci) := ψ
else if ψ 6|= lab(x : Ci), then lab(x : Ci) := lab(x : Ci) ∨ ψ

→ ∃: ({(x : ∃R.C)}, {})→ {{((x, y) : R), (y : C)}}
if ∃S.C ∈ L(x), x not blocked, then

if x has no S-neighbour y with C ∈ L(y), then create new node y, add(S, (x, y)),
add(C, y), lab(y : C) := lab(x : (∃S.C)), lab((x, y) : S) := lab(x : (∃S.C))

→ ∀: ({(x : ∀S.C)}, {((x, y) : S)})→ {{(y : C)}}
if ∀S.C ∈ L(x) and there is an S-neighbour y of x, then

ψ := lab((∀S.C), x) ∧ lab((x, y) : S)
if C /∈ L(y), then add(C, y), lab(y : C) := ψ
else if ψ 6|= lab(y : C), then lab(y : C) := lab(y : C) ∨ ψ

→ ∀+: ({(x : ∀S.C)}, {((x, y) : R), (R v S)})→ {{(y : ∀R.C)}}
if ∀(S.C) ∈ L(x), there is an R-neighbour y of a, Trans(R) and R v S, then

ψ := lab(x : (∀S.C)) ∧ lab((x, y) : R) ∧ var(R v S)
if ∀R.C /∈ L(y), then add((∀R.C), y), lab(y : (∀R.C)) := ψ
else if ψ 6|= lab(y : (∀R.C)), then lab(y : (∀R.C)) := lab(y : (∀R.C)) ∨ ψ

Non-deterministic rules:

→ t: ({(x : (C1 t C2))}, {})→ {{(x : C1)}, {(x : C2)}}
if (C1 t C2) ∈ L(x), then

if {C1, C2} ∩ L(a) = ∅, then generate graphs Ti := T for each i ∈ {1, 2},
add(Ci, x) in Ti for each i ∈ {1, 2}, lab(x : Ci) := lab(x : (C1 t C2))

Figure 8.4: Tableau expansion rules for building a pinpointing formula. Function
add(X, Y) adds X to L(Y).

8.3 Conclusions

All standard reasoning problems can be reduced to a consistency check of the knowl-
edge base. In this chapter we presented the tableau algorithm which tries to construct
models of a given knowledge base by applying tableau expansion rules. If it succeeds,
the knowledge base is consistent and hence satisfiable, otherwise, if it fails, the knowl-
edge base is inconsistent and hence unsatisfiable. We also showed a method for finding
explanations based on the hitting set tree algorithm, and one to obtain the pinpointing
formula. Both leverage the tableau algorithm, the former can be used for SROIQ(D)
knowledge bases whereas the latter is limited to SHI knowledge bases.

In the next chapter we discuss a semantics for probabilistic description logics that
tries to combine DLs with probability theory.

Chapter 9

Probabilistic Description Logics

This chapter introduces DISPONTE, a semantics for Probabilistic Description Logics.
After a brief introduction to the topics in Section 9.1, Section 9.2 presents DISPONTE.
Section 9.3 discusses related works and Section 9.4 concludes the chapter.

9.1 Introduction

The goal of this part of the thesis is to introduce probabilistic logical formalisms for
representing uncertainty. Chapter 5 described the distribution semantics and in Chap-
ter 6 we saw that a probabilistic logic program following the distribution semantics [1]
defines a probability distribution over normal logic programs called worlds . The prob-
ability of a query is obtained by marginalizing the joint distribution of the query and
the worlds.

DISPONTE [2], for “DIstribution Semantics for Probabilistic ONTologiEs”, borrows
the work done in Probabilistic Logic Programming (PLP) and adapts the distribution
semantics to description logics.

9.2 The Distribution Semantics for Description Log-

ics: DISPONTE

The basic idea of DISPONTE is to annotate axioms with a probability and each axiom
is assumed to be independent of the others. Here we show its syntax and semantics of
DISPONTE.

9.2.1 Syntax

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms or prob-
abilistic axioms. Certain axioms take the form of regular DL axioms. Probabilistic
axioms take the form

p :: E

where p ∈ [0, 1] and E is a DL axiom.

85

86 Probabilistic Description Logics

The probabilistic knowledge that can be expressed with the DISPONTE seman-
tics is epistemic by nature, it represents degrees of belief in the axioms rather than
statistical information. For example, a probabilistic concept assertion axiom

p :: a : C

means that we have degree of belief p in a : C. The statement that Tweety flies with
probability 0.9 can be expressed as

0.9 :: tweety : Flies

A probabilistic concept subsumption axiom of the form

p :: C v D (9.1)

represent the fact that we believe that the axiom C v D is true with probability p.
For example

0.9 :: Bird v Flies

means that birds fly with a 90% probability. This is different from statistical proba-
bility [103] that express the degree of overlap of C and D. Axiom (9.1) does not mean
that a fraction p of individuals from C belongs to D.

9.2.2 Semantics

DISPONTE follows the approach of the distribution semantics for probabilistic logic
programs. The idea is to associate independent Boolean random variables to the DL
axioms. The set of axioms that have the random variable assigned to 1 constitutes a
world.

The definitions of atomic choice, composite choice, selection, etc. for Probabilistic
Description Logics (PDLs) that follow DISPONTE are slightly different from those
given for PLP (see Chapter 6). We give here some redefinitions used for PDLs that
follow DISPONTE.

Definition 9.1 Atomic choice
An atomic choice is a couple (Ei, k) where Ei is the ith probabilistic axiom and k ∈
{0, 1}. The variable k indicates whether Ei is chosen to be included in a world (k = 1)
or not (k = 0).

Note that the definition of atomic choice for PDLs given in Definition 9.1 is very
similar to the definition of atomic choice for LPADs in Definition 6.1. The only dif-
ference is that atomic choices for PDLs do not have a substitution, as we include or
exclude axioms as a whole instead of their instantiations.

Definition 9.2 Composite choice
A composite choice κ is a consistent set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈
κ implies k = m (only one decision is taken for each formula). The probability of
composite choice κ is

P (κ) =
∏

(Ei,1)∈κ

pi
∏

(Ei,0)∈κ

(1− pi)

where pi is the probability associated with axiom Ei, because the random variables
associated with axioms are independent.

The Distribution Semantics for Description Logics: DISPONTE 87

Definition 9.3 Selection
A selection σ is a total composite choice, i.e., it contains an atomic choice (Ei, k) for
every probabilistic axiom of the theory. A selection σ identifies a theory wσ called a
world : wσ = C ∪ {Ei|(Ei, 1) ∈ σ}, where C is the set of certain axioms.

The probability of a world wσ is analogous to Equation (6.3):

P (wσ) = P (σ) =
∏

(Ei,1)∈σ

pi
∏

(Ei,0)∈σ

(1− pi) (9.2)

As for PLP, P (wσ) is a probability distribution over worlds. Let us indicate with S
and W the set of all selection and the set of all worlds, respectively. The probability
of Q is (equal to Equation (6.4)):

P (Q) =
∑

w∈W:w|=Q

P (w)

Example 9.2.1
Consider another example inspired by the people+pets ontology proposed in [102]

E1 = 0.5 :: ∃hasAnimal.Pet v NatureLover

E2 = 0.6 :: Cat v Pet

(kevin, fluffy) : hasAnimal

(kevin, tom) : hasAnimal

fluffy : Cat

tom : Cat

The KB indicates that the individuals that own an animal which is a pet are nature
lovers with a 50% probability and that Kevin has the animals fluffy and tom. Fluffy
and tom are cats and cats are pets with probability 60%. The KB has four possible
worlds:

σ1 = {(E1, 1), (E2, 1)}

σ2 = {(E1, 1), (E2, 0)}

σ3 = {(E2, 0), (E2, 1)}

σ4 = {(E2, 0), (E2, 0)}

The query axiom Q = kevin : NatureLover is true only in one of them: σ1. The
probability of the query is

P (Q) = 0.5 · 0.6 = 0.3

.

88 Probabilistic Description Logics

Example 9.2.2
Let us consider the same knowledge base of Example 9.2.1 but with different probabilistic
values:

∃hasAnimal.Pet v NatureLover

E1 = 0.6 :: Cat v Pet

(kevin, fluffy) : hasAnimal

(kevin, tom) : hasAnimal

E2 = 0.4 :: fluffy : Cat

E3 = 0.3 :: tom : Cat

This KB indicates that the individuals that own an animal which is a pet are surely
nature lovers and we know for sure that kevin has the animals fluffy and tom, but we
are not sure that fluffy and tom are cats and that cats are pets, thus we believe in this
information is probabilistic.

This KB has eight worlds1 and the query axiom Q = kevin : NatureLover is true in
three of them, corresponding to the following selections:

σ1 = {(E1, 1), (E2, 1), (E3, 0)}

σ2 = {(E1, 1), (E2, 0), (E3, 1)}

σ3 = {(E1, 1), (E2, 1), (E3, 1)}

so the probability is

P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348.

In Section 6.2 we said that often is not possible to find all the worlds where the
query is true, so an approach for performing inference is to find the explanations for
the query and then compute the probability of the query from them.

Definition 9.4 Explanation (for PDLs)
A composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ SK, σ ⊇ κ}, if Q is
entailed by every world of ωκ, then κ is called explanation.

A set of composite choices K is covering Q if every world wσ ∈ W in which Q is
entailed is such that wσ ∈

⋃

κ∈K ωκ. In other words a covering set K identifies all the
worlds in which Q succeeds.

Two composite choices κ1 and κ2 are incompatible if their union is inconsistent. For
Example κ1 = {(Ei, 1)} and κ2 = {(Ei, 0)} are incompatible. A set K of composite
choices is pairwise incompatible if for all κ1 ∈ K, κ2 ∈ K, κ1 6= κ2 implies that κ1
and κ2 are incompatible. The probability of a pairwise incompatible set of composite
choices K is defined in Equation (6.5).

Given a query Q and a covering set of pairwise incompatible composite choices K,
the probability of Q is defined in Equation (6.7).

1The number of words is obtained with 2n where n is the number of probabilistic axioms.

The Distribution Semantics for Description Logics: DISPONTE 89

Example 9.2.3
Consider the DL KB in Example 9.2.2 and the same query Q = kevin : NatureLover.
The set of covering explanations is

K = {κ1, κ2}

κ1 = {(E1, 1), (E2, 1)}

κ2 = {(E1, 1), (E3, 1)}

These explanations are not pairwise incompatible, therefore we cannot compute the
probability with Equation (6.7). In fact

P (κ1) + P (κ2) = 0.6 · 0.4 + 0.6 · 0.3 = 0.42 6= 0.348 = P (Q)

where P (Q) was computed in Example 9.2.2. If we knew to obtain the following mutu-
ally exclusive explanations

K ′ = {κ′1, κ
′
2}

κ′1 = {(E1, 1), (E2, 1), (E3, 0)}

κ′2 = {(E1, 1), (E3, 1)}

we would have

P (K ′) = P (κ′1) + P (κ′2) = 0.6 · 0.4 · 0.7 + 0.6 · 0.3 = 0.348 = P (Q)

DISPONTE, like the distribution semantics, defines a distribution over worlds.
Hence, it is worth noticing that, if the regular DL KB obtained by removing the proba-
bilistic annotations is inconsistent, then there will also be worlds that are inconsistent.
An inconsistent DISPONTE KB should not be used to derive consequences, just as a
regular inconsistent DL KB should not.

In order to specify requirements for managing uncertain information in the World
Wide Web, W3C, in 2007, founded the Uncertainty Reasoning for the World Wide Web
Incubator Group (URW3-XG). The final report produced by this group in 2008 [104]
discusses the challenges of reasoning with uncertain information on the World Wide
Web and presents several use cases illustrating conditions under which uncertainty
reasoning is important:

• combining knowledge from multiple, untrusted sources;

• recommending items or services to users in the presence of uncertain information
on the requirements;

• using services in the presence of uncertain information on the service descriptions;

• extracting and annotating information from the web;

• automatically performing tasks for users such as making an appointment, and
handling health-care and life sciences information and knowledge.

90 Probabilistic Description Logics

DISPONTE is a candidate formalism for tackling these problems since it introduces
probability in form of simple axiom annotations for very expressive Description Log-
ics such as SROIQ(D) that, as mentioned previously in Chapter 7, is semantically
equivalent to OWL 2 DL. Moreover DISPONTE can handle information coming from
different untrusted sources, as shown in the following example.

Example 9.2.4 [92]
Consider a KB similar to the one of Example 9.2.1. Suppose the user has the certain
knowledge

∃hasAnimal.Pet v NatureLover

(kevin,fluffy) : hasAnimal

Cat v Pet

In this example there are two sources of information with different reliability. The two
sources represent independent evidence on fluffy being a cat. One source state that fluffy
is a cat with a degree of belief of 0.4, whereas on the other source we have a degree of
belief of 0.3. The user can add the following statements to his KB and reason on the
new knowledge :

E1 = 0.4 :: fluffy : Cat

E2 = 0.3 :: fluffy : Cat

The query axiom Q = kevin : NatureLover is true in three out of the four worlds, those
corresponding to the selections:

{(E1, 1), (E2, 1)}

{(E1, 1), (E2, 0)}

{(E1, 0), (E2, 1)}

So
P (Q) = 0.4 · 0.3 + 0.4 · 0.7 + 0.6 · 0.3 = 0.58

This is reasonable if the two sources can be considered as independent. In fact, If we
associate with E1 and E2 two Boolean random variables X1 and X2 with probabilities
respectively 0.4 and 0.3, we obtain:

P (Q) = P (X1 ∨X2)

= P (X1) + P (X2)− P (X1 ∧X2)

= P (X1) + P (X2)− P (X1)P (X2)

= 0.4 + 0.3− 0.4 · 0.3 = 0.58

9.2.3 Assumption of Independence

The assumption of the independence of the axioms may seem restrictive. However, any
probabilistic relationship between assertions that can be represented with a Bayesian
network can be modeled in this way. For example, suppose you want to model a general

The Distribution Semantics for Description Logics: DISPONTE 91

A(i)

��

B(i)

Prob. Table 1:

P (A(i))

A(i)

0 1− p1

1 p1

Prob. Table 2:

P (B(i)|A(i))

B(i)

A(i)
0 1

0 1− p2 1− p3

1 p2 p3

Figure 9.1: Bayesian Network representing the dependency between A(i) and B(i).

dependency between the assertions A(i) and B(i) relating classes A and B to individual
i. This dependency can be represented with the Bayesian network of Figure 9.1.

The joint probability distribution P (A(i), B(i)) over the two Boolean random vari-
ables A(i) and B(i) is

P (0, 0) = (1− p1) · (1− p2)

P (0, 1) = (1− p1) · (p2)

P (1, 0) = p1 · (1− p3)

P (1, 1) = p1 · p3

This dependence can be modeled with the following DISPONTE KB:

p1 :: i : A (9.3)

p2 :: ¬A v B (9.4)

p3 :: A v B (9.5)

We can associate the Boolean random variables X1 with (9.3), X2 with (9.4) and X3

with (9.5), where X1, X2 and X3 are mutually independent. These three random
variables generate 8 worlds. ¬A(i) ∧ ¬B(i) is true in the worlds

w1 = {}, w2 = {(9.5)}
Let us call P ′ the probability distribution defined by the above KB. Then the proba-
bilities of w1 and w2 are

P ′(w1) = (1− p1) · (1− p2) · (1− p3)

P ′(w2) = (1− p1) · (1− p2) · p3

so P ′(¬A(i),¬B(i)) = (1− p1) · (1− p2) · (1− p3)+ (1− p1) · (1− p2) · p3 = P (0, 0). We
can prove similarly that the distributions P and P ′ coincide for all joint states of A(i)
and B(i).

Modeling the dependency between A(i) and B(i) with the KB above is equivalent
to represent the Bayesian network of Figure 9.1 with the Bayesian network of Figure
9.2.

It can be easily checked that the distributions P and P ′′ of the two networks agree
on the variables A(i) and B(i), i.e., that P (A(i), B(i)) = P ′′(A(i), B(i)) for any value of
A(i) and B(i). From Figure 9.2 is also clear that X1, X2 and X3 are mutually uncondi-
tionally independent, thus showing that it is possible to represent any dependence with
independent random variables. Therefore we can model general dependencies among
assertions with DISPONTE.

92 Probabilistic Description Logics

X1

��

A(i)

��

X2

��

X3

yy

B(i)

Prob. Table 3: Prob. Table 4:

P ′′(X1) P ′′(X2)

X1

0 1− p1

1 p1

X2

0 1− p2

1 p2

Prob. Table 5: Prob. Table 6:

P ′′(A(i)|X1) P ′′(X3)

A(i)

X1
0 1

0 1 0

1 0 1

X3

0 1− p3

1 p3

Prob. Table 7:

P ′′(B(i)|X1, X2, X3)

B(i)

X1, X2, X3
0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

0 1 1 0 0 1 0 1 0

1 0 0 1 1 0 1 0 1

Figure 9.2: Bayesian Network modeling the distribution over A(i), B(i), X1, X2, X3.

9.3 Related Work

Bacchus [105] and Halpern [103] proposed a classification between different types of
probabilistic first-order logics. They defined two types of probability:

Statistical This type of probability2 allows to express statistical information. It puts
probability on entities of the domain and permits the definition of statement such
as “The probability that a randomly chosen bird will fly is 0.9”. It means that
90% of the birds in a population can fly.

Epistemic This type of probability3 allows to express epistemic information which
defines a degree of belief. It puts probability on possible world such that we can
assert statement such as “The probability that Tweety flies is .9”. This sentence
mean that in 90% of possible worlds we have that Tweety can fly.

Assertional axiom can only be epistemic, whereas the intensional axioms (i.e. ax-
ioms in TBox and RBox) can be both statistical and epistemic.

DISPONTE allows to express only epistemic information since the probability as-
sociated with an axiom represent the degree of belief that the whole axiom is true.

2In [103] the author used the term Type 1.
3In [103] the author used the term Type 2.

Related Work 93

During the years, several frameworks emerged in order to conjugate DLs with prob-
ability theory. Here we provide a summary of the possible PDLs. A more detailed and
complete overview about probabilistic DLs can be found in [3], in Chapter 15 of [91]
and in Chapter 13 of [92].

Halpern in [103] proposed a probabilistic extension of OWL for combining the two
types of probabilities. In this extension is possible to define statements such as “The
probability that Tweety flies is greater than the probability that a randomly chosen
bird flies”.

Prob-ALC [106] derives directly from Halpern’s work and considers only epistemic
statements. It follows a possible world semantics and allows the definition of concept
expressions of the form P≥nC which express the set of individuals that belong to C with
probability greater than n, and ∃P≥nR.C which models set of individuals a connected
to at least another individual b of C by role R such that the probability of R(a, b) is
greater than n. Prob-ALC allows also expressions of the form P≥nC(a) and P≥nR(a, b)
directly expressing degrees of belief, as well as P≥nA where A is an ABox. Prob-ALC is
complementary to DISPONTE ALC as it allows new concept and assertion expressions
whereas DISPONTE allows probabilistic axioms. However DISPONTE is not limited
to ALC, but it can be applied to the highly expressive SROIQ(D) language.

Heinsohn [107] extended the DL ALC in order to allow the definition of statistical
information of the form P (C|D) = [p, q] called probabilistic terminological axioms,
where C,D are concept descriptions and 0 ≤ p ≤ q ≤ 1 are real numbers. It states
that the conditional probability for an object belonging to D of belonging also to C is
in the interval [p, q]. The formal semantics of the extended language is defined in terms
of probability measures on the set of all concept descriptions. A finite interpretation
I satisfies P (C|D) = [p, q] iff

|(C uD)I |

|DI |
= [p, q]

A knowledge base K consists of probabilistic terminological axioms. Given K, the main
inference task is to find an interval [p, q], with p maximal and q minimal. Heinsohn
introduced local inference rules for deriving bounds but its approach is not complete,
hence the rules are not sufficient to derive optimal bounds. Furthermore, Heinsohn
semantics does not allow probabilistic assertional axioms. This limit was overcome by
Jaeger in [108]. Unlike DISPONTE, both the approaches in [107] and [108] do not
allow epistemic terminological statements.

A different approach to the combination of DLs with probability is taken in [109,
110], which introduces PR-OWL, a probabilistic extension for OWL. In order to rep-
resent uncertainty in ontologies it allows the use of the first-order probabilistic logic
MEBN [111]. DISPONTE differs from [109, 110] because it does not resort to a full-
fledged first-order probabilistic language, allowing the reuse of inference technology
from DLs.

In [112, 113, 114] the authors presented P-SHIQ(D). P-SHIQ(D) allows both ter-
minological and assertional probabilistic axioms. Terminological probabilistic knowl-
edge is expressed using conditional constraints of the form (D|C)[l, u] as in [107] and
of the form (∃R.{a}|C)[l, u] that states that an arbitrary instance of a concept C
is R-related to the individual a with probability in the interval [l, u]. Assertional
probabilistic knowledge is expressed using constraints of the form (C|{a})[l, u] and

94 Probabilistic Description Logics

(∃R.{b}|{a})[l, u], which represent respectively that the individual a belongs to C and
a is R-related to b with a probability in the interval [l, u]. As in [108], the terminologi-
cal knowledge is interpreted statistically while the assertional knowledge is interpreted
in an epistemic way.

A different approach is given by the combination between DLs and logic programs.
In [115], ontologies are integrated with rules and a tightly coupled approach to (prob-
abilistic) disjunctive description logic programs is used. Under this semantics, a de-
scription logic program as a pair (L, P), where L is a DL KB and P is a disjunctive
logic program which contains rules on concepts and roles of L.

Other approaches try to convert probabilistic description logics into graphical mod-
els. In [116] the authors proposed a probabilistic extension of OWL that can be trans-
lated into Bayesian networks. The semantics defines a probability distribution P (a)
over individuals and assigns a probability to a class C as P (C) =

∑

a∈C P (a). DIS-
PONTE differs from [116] because it specifies a distribution over worlds rather than
individuals.

Koeller et al. [117] presented a probabilistic description logic based on Bayesian
networks that deals with statistical terminological knowledge. They specify a unique
probability distribution on the set of all concept descriptions.

In [118] the authors presented another extension of ALC named crALC. It adopts
a semantics based on interpretations and, differently form DISPONTE, allows the
expression of both statistical and epistemic probability types. Statistical axioms are of
the form P (C|D) = p which means that for any element of the domain, the probability
that an individual is in C given that it is in D is p, and of the form P (R) = p, which
means that for each pair of elements of the domain, the probability that they are linked
by the role R is p. A crALC KB K can be represented as a directed acyclic graph.

Other approaches are the ones proposed in [119] and [120]. The latter combines
Datalog± with Markov networks, the former, instead, combines DL-Lite with Bayesian
networks. In both cases, an ontology is composed of a set of annotated axioms and a
graphical model and the annotations are sets of assignments of random variables from
the graphical model. The semantics is assigned by considering the possible worlds of
the graphical model and by stating that an axiom holds in a possible world if the
assignments in its annotation hold. The probability of a query is then the sum of the
probabilities of the possible worlds where the query holds.

9.4 Conclusions

In this chapter we illustrated a semantics for probabilistic description logics named
DISPONTE, which allows to express epistemic probabilistic axioms.

There are different approaches to represent probabilistic axioms in description log-
ics. DISPONTE is, in our opinion, an interesting semantics because it allows to define
epistemic probabilities on both assertional and terminological axioms. In addition, It
allows the reuse of inference technologies already developed for Description Logics.

This chapter concludes the part of the thesis concerning the techniques of knowledge
representation by probabilistic logics. The next part introduces algorithms and systems
to make inferences on this types of logics.

Part III

Inference in Probabilistic Logics

95

Chapter 10

Decision Diagrams

At this point the reader may be eager to know how to perform inference on probabilistic
logics. However, before discussing inference, we need to introduce Decision Diagrams.
After a brief introduction (Section 10.1), we present Multivalued Decision Diagrams
(Section 10.2) and Binary Decision Diagrams (Section 10.3), finally in Section 10.4 we
conclude the chapter.

10.1 Introduction

Decision Diagrams are graphical structures widely used in many areas of computer
science, such as software and hardware verification. They are used for representing and
manipulating propositional logic formulas. They also find application in probabilistic
inference systems, in fact they are exploited by ProbLog [30] and PITA [121, 122].

10.2 Multivalued Decision Diagrams

Multivalued Decision Diagrams (MDDs) were introduced by Thayse in [123]. They
are rooted directed acyclic graphs which represent a Boolean-valued function f(X)
having B = {0, 1} as range and X, a set of multivalued variables, as domain.

An MDD has the following characteristics

• There is one level for each multivalued variable.

• Each node is associated with a multivalued variable.

• Each node has one outgoing arc for every possible value of the multivalued vari-
able.

• Two leaves, i.e. terminal nodes, that store either 0 (false) or 1 (true).

If we have the values of all the variables X, the value of f(X) can be computed by
traversing the graph starting from the root until a leaf is reached. The value stored in
the reached leaf is the value of f(X).

An MDD can be built by combining multiple MDDs exploiting Boolean operators.
Moreover, in order to reduce the number of node and have a more compact graphical

97

98 Decision Diagrams

representation, it is possible to apply simplification operations like deletion and merging
that reduce the original MDD. Deletion is performed when all arcs from a node point to
the same node, Merging, instead, is performed when the diagram contains two identical
sub-diagrams.

Multivalued Decision Diagrams are really useful because they perform a general-
ization of Shannon’s expansion of the Boolean-valued formula f(X). Let Xi be the
variable associated with the root level of a (sub-)MDD, the formula f(X) is expanded
as follows

f(X) = (Xi = 1) ∧ fXi=1(X) ∨ · · · ∨ (Xi = n) ∧ fXi=n(X)

where fXi=k(X) is the function associated with the k-child of the root nodeXi and it
is equivalent to f(X) with Xi set to k, i.e. fXi=k(X) = f(. . . , Xi−1, Xi = k,Xi+1, . . .).
The expansion can be applied recursively to the functions fXi=k(X). The disjuncts are
now pairwise incompatible due to the presence of Xi = k. The paths in an MDD are
split on the basis of a multivalued variable and the branches are mutually disjoint.

Unfortunately there is a lack of libraries that can manipulate MDDs, most libraries
are limited to work on BDDs. However it is possible to covert an MDD into a BDD
and thus use packages for BDD manipulation.

10.3 Binary Decision Diagrams

Binary decision Diagrams were introduced by Akers [124] and Bryant [125, 126]. A
BDD is a rooted directed acyclic graph that can represent any Boolean formula f :
B
n → B, with the following characteristics

• There is one level for each Boolean variable.

• Each node is labeled with a Boolean variable. We denote with var(n) to indicate
the variable name associated with node n.

• Each node has two possible children. One high child named child1(n) when
var(n) has value 1, and one low child, child0(n), when var(n) has value 0.

• Two leaves, i.e. terminal nodes, that store either 0 (false) or 1 (true).

Boolean functions are a special case of Boolean-valued functions where all the Xs in the
domain are Boolean variables. In fact BDDs can be seen as a special case of MDDs in
which every variable in the domain can have only two values (0 and 1). As for MDDs,
to compute the value of f(X), given all values of X, the graph must be traversed from
the root and the returned value is the value associated with the reached leaf.

In literature, in most cases, the term BDD refers to Reduced Ordered Binary De-
cision Diagrams (ROBDD)1.

Definition 10.1 Ordered BDD: OBDD
Given a total order X1 ≺ X2 ≺ · · · ≺ Xn, A BDD is ordered (OBDD) if the variables
are encountered through all paths respecting the given total order.

1In the next chapters we also adopt this convention.

Binary Decision Diagrams 99

Definition 10.2 Reduced BDD: RBDD
A BDD is reduced (RBDD) we have the following conditions

• (uniqueness) There are no two distinct nodes u and v such that var(u) = var(v),
child0(u) = child0(v) and child1(u) = child1(v), in other words there are no two
distinct nodes that are associated with the same variable and that have the same
low child and the same high child.

• (no-redundancy) There is no variable node n such that the low child and the high
child are the same node, i.e. child1(n) = child0(n).

The order of variables affects the size of the (RO)BDD. In order to obtain a compact
BDD representable in memory, state-of-the-art BDD packages employ heuristics and
optimization techniques to reorder the variables; finding an optimal order is an NP-
complete problem [127]. Some of the libraries for BDD handling are:

• CUDD [128], a BDD package written in C. The main characteristic of this li-
brary is that it represent the BDDs without the 0-leaf and uses complement arcs
(see [128]).

• CAL [129], a BDD package written in C.

• BuDDy [130], a BDD package written in C.

• JDD [131], a pure Java implementation for BDD manipulation based on the C
library BuDDy.

• JavaBDD [132], it includes a pure Java implementation. Moreover, it can also
be used as an interface for the JDD library, or, by exploiting JNI, for the three
aforementioned BDD libraries written in C: BuDDy, CAL and CUDD.

BDDs like MDDs perform Shannon’s expansion of the Boolean function f(X). Let
Xi be the variable associated with the root level of a (sub-)BDD, the function f(X) is
expanded as follows

f(X) = Xi ∧ f
Xi(X) ∨ ¬Xi ∧ f

¬Xi(X)

where fXi (X) (f¬Xi(X)) is the function obtained by f(X) by setting Xi to 1 (0), i.e.
fXi(X) = f(. . . , Xi−1, 1, Xi+1, . . .) (i.e. f¬Xi(X) = f(. . . , Xi−1, 0, Xi+1, . . .)). Now the
two disjuncts Xi ∧ f

Xi(X) and ¬Xi ∧ f
¬Xi(X) are mutually exclusive. The expansion

can be applied recursively to the functions fXi(X) and f¬Xi(X) .

Example 10.3.1
Consider the following Disjunctive Normal Form (DNF) Boolean formula

f(X) = X1 ∧X3 ∨X2 ∧X3

and a total order of the variables X1 ≺ X2 ≺ X3. The disjuncts of f(X) are not
mutually exclusive, for instance, the model {X1 = 1, X2 = 1, X3 = 1} makes both the
disjunct true.

100 Decision Diagrams

The corresponding OBDD is

X1 n1

X2 n′2 n2

X3 n3

1 0

This is equivalent to the following Shannon expansions of f(X). For X1

f(X) = X1 ∧ f
X1(X) ∨ ¬X1 ∧ f

¬X1(X)

= X1 ∧X3 ∨X1 ∧X2 ∧X3 ∨ ¬X1 ∧X2 ∧X3

then for X2

f(X) = X2 ∧ f
X2
1 (X) ∨ ¬X2 ∧ f

¬X2
1 (X)

= X1 ∧X2 ∧X3 ∨X1 ∧ ¬X2 ∧X3 ∨ ¬X1 ∧X2 ∧X3

Shannon expansion for X3 does not change the DNF formula.
We can notice that the BDD is not reduced, indeed the no-redundancy condition is

violated in n′2. Removing the redundant node generates the following ROBDD

X1 n1

X2 n2

X3 n3

1 0

10.4 Conclusions

In this chapter we illustrated the Decision Diagrams, which are directed acyclic graphs.
In particular the Binary Decision Diagrams are of particular importance because they
make mutually exclusive the disjuncts of a DNF propositional formula. For this reason
they are used to perform probabilistic (exact) inference by systems such as ProbLog [30]
and PITA [121, 122].

The next chapter presents the fundamentals ideas for probabilistic (exact) logical
inference.

Chapter 11

Fundamentals of Exact Probabilistic

Logical Inference

In this chapter we discuss methods for probabilistic logical inference and in particular
approaches for exact inference. A brief overview of existing approaches for probabilistic
logical inference is given in Section 11.1. Section 11.2 explains, in general terms, how
to perform exact probabilistic logical inference and the theory behind it. In order to
compute the probability of a query, it is necessary to make the explanations pairwise
incompatible. Here we discuss two approaches to do that: the splitting algorithm,
illustrated in Section 11.3 and approaches based on Binary Decision Diagrams (BDDs),
discussed in Section 11.5. Section 11.6 draws conclusions.

11.1 Inference Approaches

The probabilistic logical inference problem can be divided into two categories: exact
inference and approximate inference.

Exact Inference
The aim is to compute the exact probabilistic value of a query. There are several
approach, this chapter illustrates some of them.

Lifted inference is an important subcategory of exact inference and a research
field of growing interest. Lifted approaches perform exact probabilistic logical inference
at the lifted, i.e. non-ground, level, this means that we treat individual as a whole and
the inference is realized without grounding the model. Example 11.1.1 helps to clarify
the usefulness of lifted inference.

Example 11.1.1
Consider the following ProbLog program

p :: drinks(X).

alcoholic(X) :- friends(X,Y),drinks(Y).

The probability of barney being an alcoholic is P (alcoholic(barney)) = 1−(1−p)m,
where m is number of friends of barney, the more friends barney has the higher the

101

102 Fundamentals of Exact Probabilistic Logical Inference

probability. This means it suffices to know how many friends barney has to compute
the probability that barney is an alcoholic. It is not necessary to know the identities
of these friends, and thus there is no need to ground the clauses.

During the last decade, various approaches for PLP lifted inference have been pro-
posed. For instance Poole in [133] presented a lifted version of variable elimination,
which is a standard method for graphical models to compute probabilistic inference.
In [134] the authors modified the Prolog Factor Language [41] by adding two new op-
erators and applied Lifted Variable Elimination [133]. Van den Broeck et al. in [135,
136, 137] proposed a different approach in which a program is transformed in a general-
ization of a d-DNNF and then weighted model counting is performed. Recent surveys
on lifted inference can be found in [138] and [139].

Approximate Inference
This type of inference is used when one wants to reduce the cost of the inference process
by computing an approximation of the value of probability. One approach is to take a
sample of normal programs from the probabilistic program1 and then count the normal
programs where the query is valid. The probability is the ratio of the programs where
the query succeeds to the size of the sample [49]. Another approach is to compute the
lower and upper bounds of the probability [140, 141].

11.2 Exact Probabilistic Logical Inference

In this section we discuss some techniques for exact inference. In Chapters 6 and 9
we showed the equations for computing the exact probability of a query, for PLP and
PDLs that follow DISPONTE respectively. We said that it can be done by summing
the probabilities of the worlds where the query succeeds. However, we also mentioned
that calculating the probability of a query by generating all possible worlds is infeasible,
for this reason explanations are used (see Definition 6.5 for PLP and Definition 9.4 for
PDLs that follow DISPONTE). We also said that, given a query Q, if a covering set of
composite choices K is pairwise incompatible, then the probability of Q is equal to the
sum of the probabilities of the composite choices (see Equation (6.7)). Now, the set
of all the explanations of Q is a covering set. Unfortunately, in general, explanations
are not mutually exclusive, i.e. pairwise incompatible. However, the following results
obtained by Poole in [142] could help us.

Definition 11.1 Split of a set of composite choices [142]
Let αθ = {(C, θ, 1), . . . , (C, θ, n)} the set of the possible atomic choices for the clause
C given the grounding substitution θ, where n is the number of heads (including,
possibly, the null head); and let κ be a composite choice and C be a clause such
that κ ∩ αθ = ∅, the split of κ on Cθ is the set of composite choices Sκ,Cθ = {κ ∪
{(C, θ, 0)}, κ ∪ {(C, θ, 1)}, . . . , κ ∪ {(C, θ, n)}}. It is important to notice that κ and
Sκ,Cθ identify the same set of possible worlds, i.e., that ωκ = ωSκ,Cθ

.

1If you remember, the distribution semantics defines a distribution over normal logic programs,
called worlds (Chapter 5).

Exact Probabilistic Logical Inference 103

If we are working with PDLs under DISPONTE an atomic choice is a couple of
the form (Ci, k), where Ci is an axiom and k ∈ {0, 1}. Atomic choices for PDLs
do not have a substitution, as we include or exclude axioms as a whole instead of
their instantiations. To perform the split operation in PDLs, we just have to ignore
substitutions.

The following theorem is extremely important in order to compute the probability
of a query.

Theorem 11.1 Splitting [142]
Given a finite set K of finite composite choices, there exists a finite set K ′ of pairwise
incompatible finite composite choices such that K and K ′ are equivalent.

Proof. Given a finite set of finite composite choices K, in order to form a new set K ′

of composite choices equivalent to K, two possibilities are given:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ = K \{κ2}.

2. splitting elements: if κ1, κ2 ∈ K are compatible and neither is a superset of
the other, there is a (C, θ, k) ∈ κ1 \ κ2. We replace κ2 by the split of κ2 on cθ.
Let K ′ = K \ {κ2} ∪ Sκ2,Cθ.

In both cases ωK = ωK′ . Since K is a finite set of finite composite choices, these two
operations can be repeatedly executed until no one can be applied. The resulting set
K ′ is pairwise incompatible and is equivalent to the original set.

Thanks to Theorem 11.1, if we are able to obtain an equivalent set of pairwise
incompatible explanations K ′ from the set of covering explanations K for the query Q,
then we can use Equation 6.7 to calculate the probability of the query.

The proof of Theorem 11.1, is the basis of an algorithm, called splitting algo-
rithm, presented in Section 11.3, which it is known to terminate.

Theorem 11.2 Probability of two equivalent pairwise incompatible sets of
composite choices [143, 142]
If K1 and K2 are both pairwise incompatible finite sets of finite composite choices such
that they are equivalent then P (K1) = P (K2).

Another important result is given by the following theorem

Theorem 11.3 Probability of two pairwise incompatible sets of composite
choices [3]
Given two finite sets of finite composite choices K1 and K2, if K1 ⊆ K2, then P (K1) ≤
P (K2).

Theorem 11.3 is really interesting because it tells us that, even if we find a set of
explanations K that does not cover a query Q, P (K) represents a lower bound of the
exact probability of the query P (Q).

The problem of calculating the probability of a query is therefore re-
duced to that of obtaining a covering set of explanations and then making
it pairwise incompatible.

104 Fundamentals of Exact Probabilistic Logical Inference

We can use different techniques to obtain the explanations for queries. One method
is by means of (a possibly modified version of) SLDNF-resolution, This technique is
used for ICL and LPADs by the PITA and cplint systems [27, 144] and by ProbLog1 [45,
140]. Another one is to use the HST algorithm with the tableau algorithm. Once a cov-
ering set K of explanations for a query Q have been obtained, to make them mutually
incompatible, two approaches are usually exploited:

1. Splitting algorithm.

2. We can associate Boolean variables with axioms and define a DNF Boolean for-
mula fK(X), in which every disjunct represents an explanation. Then translate
the formula to a target language that makes the disjuncts mutually exclusive.

The splitting algorithm is illustrated in detail in Section 11.3. For the latter approach,
do we know a language that makes the disjuncts of a DNF formula mutually exclusive?
Yes, Decision Diagrams! This language was found to give good performances and it is
discussed in detail in Section 11.5.

Alternatively to explanation finding approaches, we can use algorithms that com-
pute the pinpointing formula.

11.3 Splitting Algorithm

From the proof of Theorem 11.1, the splitting algorithm, shown in Algorithm 11.1
can be built by looping the two operations.

Algorithm 11.1 Splitting Algorithm.
1: procedure split(K)
2: Input: set of composite choices K
3: Output: pairwise incompatible set of composite choices equivalent to K
4: loop

5: if ∃κ1, κ2 ∈ K and κ1 ⊂ κ2 then

6: K ← K \ {κ2}
7: else

8: if ∃κ1, κ2 ∈ K compatible then

9: choose (C, θ, k) ∈ κ1 \ κ2
10: Let Sκ2,Cθ be the split of κ2 on Cθ
11: K ← K \ {κ2} ∪ Sκ2,Cθ

12: else

13: exit and return K
14: end if

15: end if

16: end loop

17: end procedure

The lines 5-6 correspond to the first operation of the proof, whereas the second
operation correspond to the pseudo-code in lines 8-11. If no operation can be applied
the algorithm exits (line 13). AILog2 [145] is a system based on the splitting algorithm
which can perform probabilistic logic reasoning on Independent Choice Logic (ICL).

The following example shows a case where it is possible to use the splitting algorithm
for an LPAD.

Splitting Algorithm 105

Example 11.3.1 Splitting algorithm for LPADs
Consider the following LPAD “Crime and Punishment”

nihilist(X) :- killed(X,Y).

C1 = nihilist(X) : 0.3 :- student(X).

C2 = great_man(X) : 0.2 :- nihilist(X).

C3 = killed(ras,aly) : 0.6.

C4 = killed(ras,liz) : 0.5.

student(ras).

This program states that if you killed someone then you are a nihilist, the students are
nihilist with probability 0.3, whoever is a nihilist is a “great man” with probability 0.2
and Raskolnikov (ras) killed Alyona (aly) and Lizaveta (liz) with probability 0.6 and
0.5 respectively.

A covering set of explanations for the query Q = great_man(ras) is

K = {κ1, κ2, κ3}

κ1 = {(C1, {X/ras}, 1), (C2, {X/ras}, 1)}

κ2 = {(C3, ∅, 1), (C2, {X/ras}, 1)}

κ3 = {(C4, ∅, 1), (C2, {X/ras}, 1)}

The explanations κ1 and κ2 are compatible so we can apply the second operation of
splitting algorithm (Algorithm 11.1) (lines 8-11), obtaining

K1 = {κ1, κ
′
2, κ
′′
2, κ3}

κ1 = {(C1, {X/ras}, 1), (C2, {X/ras}, 1)}

κ′2 = {(C3, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0)}

κ′′2 = {(C3, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 1)}

κ3 = {(C4, ∅, 1), (C2, {X/ras}, 1)}

Now κ1 ⊂ κ′′2, i.e. κ1 dominates κ′′2, therefore we can apply the first operation of the
splitting algorithm (lines 5-6) and remove κ′′2, obtaining

K2 = {κ1, κ
′
2, κ3}

The explanations κ1 and κ3 are compatible so we apply again the second operation of
splitting algorithm, obtaining

K3 = {κ1, κ
′
2, κ
′
3, κ
′′
3}

κ1 = {(C1, {X/ras}, 1), (C2, {X/ras}, 1)}

κ′2 = {(C3, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0)}

κ′3 = {(C4, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0)}

κ′′3 = {(C4, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 1)}

We can remove κ′′3 because is dominated by κ1

K4 = {κ1, κ
′
2, κ
′
3}

106 Fundamentals of Exact Probabilistic Logical Inference

Now we have that the explanations κ′2 and κ′3 are compatible so we apply again the
second operation, obtaining

K5 = {κ1, κ
′
2, κ
′′′
3 , κ

′′′′
3 }

κ1 = {(C1, {X/ras}, 1), (C2, {X/ras}, 1)}

κ′2 = {(C3, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0)}

κ′′′3 = {(C4, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0), (C3, ∅, 0)}

κ′′′′3 = {(C4, ∅, 1), (C2, {X/ras}, 1), (C1, {X/ras}, 0), (C3, ∅, 1)}

We can remove κ′′′′3 because is dominated by κ′2

K6 = {κ1, κ
′
2, κ
′′′
3 }

Our covering set of explanations is now pairwise incompatible, we can finally compute
the probability of the query

P (Q) = P (K6) = P (κ1)+P (κ
′
2)+P (κ

′′′
3) = 0.3·0.2+0.6·0.2·0.7+0.5·0.2·0.7·0.4 = 0.172

In the next example we have a knowledge base under DISPONTE and we show
another example of application of the splitting algorithm.

Example 11.3.2 Splitting algorithm for Probabilistic Description Logics
Consider another example inspired by the people+pets ontology proposed in [102]

DogOwner v PetOwner

CatOwner v PetOwner

E1 = 0.6 :: kevin : DogOwner

E2 = 0.6 :: kevin : CatOwner

E3 = 0.7 :: PetOwner v Ecologist

The KB indicates that the individual kevin owns a dog with probability 0.6, the same
individual owns a cat with probability 0.6 and pet owners are ecologists with probability
0.7.

A covering set of explanations for the query Q = kevin : Ecologist is

K = {κ1, κ2}

κ1 = {(E2, 1), (E3, 1)}

κ2 = {(E1, 1), (E3, 1)}

The explanations are compatible so we can apply the second operation of splitting
algorithm (Algorithm 11.1) (lines 8-11), obtaining

K1 = {κ1, κ
′
2, κ
′′
2}

κ1 = {(E2, 1), (E3, 1)}

κ′2 = {(E1, 1), (E3, 1), (E2, 0)}

κ′′2 = {(E1, 1), (E3, 1), (E2, 1)}

Inference with Multi-valued Decision Diagrams 107

Now κ1 ⊂ κ′′2, i.e. κ1 dominates κ′′2, therefore we can apply the first operation of
the splitting algorithm (lines 5-6). The resulting pairwise incompatible set of composite
choices that covers Q are

K2 = {κ1, κ
′
2}

Therefore the probability of Q is

P (Q) = P (K2) = P (κ1) + P (κ′2) = 0.6 · 0.7 · 0.4 + 0.6 · 0.7 = 0.588

11.4 Inference with Multi-valued Decision Diagrams

Let Ci be the clauses/axioms of a knowledge base, we can define the following associ-
ations:

Ciθj ↔ multivalued random variable Xij

(Ci, θj, k)↔ assignment Xij = k, k ∈ {1, . . . , ni}

In this way, given a set of covering explanations K, we obtain the following DNF
formula fK

fK(X) =
∨

κ∈K

∧

(Ci,θj ,k)∈κ

Xij = k (11.1)

The disjuncts in the formula are not necessarily mutually exclusive, the probability of
the query can not be computed by a summation as in Equation (6.7). The problem
of computing the probability of a Boolean formula in DNF, known as disjoint sum, is
#P-complete [146].

We can apply knowledge compilation [147] to the Boolean formula fK(X) in order
to translate it into a “target language” that allows the computation of its probability
in polynomial time. We can use decision diagrams as a target language. Since the
random variables appearing in the Boolean formula that are associated with atomic
choices can take on multiple values, we need to use Multivalued Decision Diagrams
(MDDs) [123].

As mentioned in Chapter 10 an MDD splits its paths on the basis of the values of a
variable, the branches are mutually exclusive and a dynamic programming algorithm
can be applied for computing the probability [45].

Example 11.4.1 MDD of a query
Consider the same LPAD of Example 6.2.1

C1 = epidemic : 0.6; pandemic : 0.3 :- flu(X),cold.

C2 = cold : 0.7.

flu(david).

flu(robert).

Clause C1 has two groundings: C1θ1 with θ1 = {X/david} and C1θ2 with θ2 =
{X/robert}. Clause C2, instead, has only one grounding C2∅.

108 Fundamentals of Exact Probabilistic Logical Inference

We can make the following associations:

C1θ1 ↔ X11

C1θ2 ↔ X12

C2∅ ↔ X21

X11 and X12 can take three values since C1 has three possible heads: epidemic, pandemic
and null , with indices 1, 2 and 3 respectively, whereas X21 can take only two values
since C2 has only two heads: cold, null , with indices 1 and 2 respectively. A possible
set of covering explanations for the query Q = epidemic. is (from Example 6.2.3)

K = {κ1, κ2}

κ1 = {(C1, {X/david}, 1), (C2, ∅, 1)}

κ2 = {(C1, {X/robert}, 1), (C2, ∅, 1)}

Each atomic choice can be associated with the propositional equation Xij = k. Using
Equation (11.1), the query is true if the following DNF formula is true:

fK(X) = (X21 = 1 ∧X11 = 1) ∨ (X21 = 1 ∧X12 = 1) (11.2)

Figure 11.1 shows the MDD corresponding to Equation (11.2).

X11 n1

1
2

3

X12 n2
1

2

3

n3

1
2 3X21 n4

1
2

1 0

Figure 11.1: MDD corresponding to Equation (11.2).

Unfortunately, most packages for the manipulation of decision diagrams are re-
stricted to work on BDDs. These packages offer Boolean operators among BDDs and
apply simplification rules to the results of operations in order to reduce as much as
possible the size of the binary decision diagram, obtaining a reduced BDD2.

11.5 Inference with Binary Decision Diagrams

To work on MDDs with a BDD package we must represent multi-valued variables by
means of binary variables. The following encoding, used in [148], gives good perfor-
mance. For a multi-valued variable Xij, corresponding to a ground clause Ciθj, having

2In Chapter 10 we showed that the order of the variables affect the size of the BDD. Therefore, it
is important to have BDD packages that have a good heuristics to order the variables.

Inference with Binary Decision Diagrams 109

ni values, we use ni− 1 Boolean variables Xij1, . . . , Xijni−1 and we represent the equa-
tion Xij = k for k = 1, . . . ni− 1 by means of the conjunction Xij1∧ . . .∧Xijk−1∧Xijk,
and the equation Xij = ni by means of the conjunction Xij1∧ . . .∧Xijni−1. Binary De-
cision Diagrams obtained in this way can be used as well for computing the probability
of queries by associating a parameter πik with each Boolean variable Xijk, representing
P (Xijk = 1). The parameters are obtained from those of multi-valued variables in this
way:

πi1 = Πi1,

. . . ,

πik =
Πik

∏k−1
j=1(1− πij)

. . .

up to k = ni − 1, where Πik is the probabilistic value assigned to the k-th head atom
of the i-th clause.

Using the above transformation, we can now translate the DNF formula fK of Equa-
tion (11.1) into a BDD. The problem of compiling a Boolean formula into the smallest
BDD is NP-hard [149]. However, Riguzzi in [27] experimentally showed that inference
approaches based on BDDs are faster than those based on the splitting algorithm3.

As mentioned in Section 10.3 BDDs make the disjuncts, and hence the explanations,
pairwise incompatible. Once we have obtained the BDD from the DNF Boolean formula
fK , to compute the probability of the query, we can use function Prob [3, 92, 91] shown
in Algorithm 11.2. This algorithm traverses the diagram from the leaves to the root
and computes the probability of a formula encoded as a BDD.

When a node is visited, its value is stored in a table so that, when the same node
is visited again, its probability can be retrieved from the table. This optimization
is necessary to reach linear cost in the number of nodes. Without it the cost of the
function Prob would be proportional to 2n where n is the number of Boolean variables.

If instead of solving the min-a-enum problem our reasoner computes the pinpoint-
ing formula, we can’t use the splitting algorithm directly. In order to obtain a covering
set of composite choices, we have to convert the pinpointing formula into a DNF for-
mula and removing disjuncts implying other disjuncts. However, it is well-known that
this can cause an exponential blowup. It makes more sense to directly use BDDs.

The following are some inference examples by means of BDDs.

Example 11.5.1 BDD of the query epidemic. (Example 11.4.1 cont.)
We consider the covering set of explanations obtained in Example 11.4.1 for the query
Q = epidemic. We convert each of the 3-valued variables X11 and X12 into two Boolean
variables, X111 and X112 for X11, and X121 and X122 for X12. X21 is a 2-valued variable
and is converted into the Boolean variable X211. Equation 11.2 can be converted into
the equivalent function

f ′K(X) = (X111 ∧X211) ∨ (X121 ∧X211) (11.3)

The equivalent BDD with order X111 ≺ X121 ≺ X211 is shown in Figure 11.2.

3In [27], the author compared a system called PICL, based on BDDs, with AILog2 which uses the
splitting algorithm.

110 Fundamentals of Exact Probabilistic Logical Inference

Algorithm 11.2 Function Prob

1: function Prob(node, nodesTab)
2: Input: a BDD node node
3: Input: a table containing the probability of already visited nodes nodesTab
4: Output: the probability of the Boolean function associated with the node
5: if node is a terminal then

6: return value(node) . value(node) is 0 or 1
7: else

8: scan nodesTab looking for node
9: if found then

10: let P (node) be the probability of node in nodesTab
11: return P (node)
12: else

13: let X be v(node) . v(node) is the variable associated with node
14: P1 ←Prob(child1(node))
15: P0 ←Prob(child0(node))
16: P (node)← P (X) · P1 + (1− P (X)) · P0

17: add the pair (node,P (node)) to nodesTab
18: return P (node)
19: end if

20: end if

21: end function

X111 n1

X121 n2

X211 n3

1 0

Figure 11.2: BDD for Example 11.5.1 equivalent to the MDD in Figure 11.1.

If we apply function Prob in Algorithm 11.2

Prob(n3) = 0.7 · 1 + 0.3 · 0 = 0.7

Prob(n2) = 0.6 · 0.7 + 0.4 · 0 = 0.42

P (Q) = Prob(n1) = 0.6 · 0.7 + 0.4 · 0.42 = 0.588

Example 11.5.2
Consider the LPAD in Example 11.3.1 and the covering set of explanations K for the
query Q = great_man(ras) obtained in the same example.

All the probabilistic clauses have only one grounding: C1θ1, C2θ2, C3∅ and C4∅,
with θ1 = θ2 = {X/ras}.

Inference with Binary Decision Diagrams 111

We can make the following associations:

C1θ1 ↔ X11

C2θ2 ↔ X21

C3∅ ↔ X31

C4∅ ↔ X41

If we set that the null head has index k = 2 in all the triples (Ci, θj, k). Using
Equation (11.1), the query Q is true if the following DNF formula is true:

fK(X) = (X11 = 1 ∧X21 = 1) ∨ (X31 = 1 ∧X21 = 1) ∨ (X41 = 1 ∧X21 = 1)

We convert each of the 2-valued variables X11, X21, X31 and X41 into the Boolean
variables, X111, X211, X311 and X411. fK can be converted into the equivalent following
formula with Boolean variables

f ′K(X) = (X111 ∧X211) ∨ (X311 ∧X211) ∨ (X411 ∧X211) (11.4)

Figure 11.3 shows the BDD corresponding to Equation (11.4) with variable order
X311 ≺ X211 ≺ X411 ≺ X111.

X311 n1

X211 n2 n3

X411 n4

X111 n5

1 0

Figure 11.3: BDD for Example 11.5.2.

By applying function Prob in Algorithm 11.2, we obtain

Prob(n5) = 0.3 · 1 + 0.7 · 0 = 0.3

Prob(n4) = 0.5 · 1 + 0.5 · 0.3 = 0.65

Prob(n3) = 0.2 · 0.65 + 0.8 · 0 = 0.13

Prob(n2) = 0.2 · 1 + 0.8 · 0 = 0.2

P (Q) = Prob(n1) = 0.6 · 0.2 + 0.4 · 0.13 = 0.172

This result is equivalent to the one obtained in Example 11.3.1.

If we are using PDLs under DISPONTE we can use BDDs directly.

112 Fundamentals of Exact Probabilistic Logical Inference

Example 11.5.3
Let us consider the same KB in Example 11.3.2, instead of using the splitting algorithm,
we can use a BDD to compute the probability of the query Q = kevin : Ecologist.

Given the following covering set of explanations

K = {κ1, κ2}

κ1 = {(E2, 1), (E3, 1)}

κ2 = {(E1, 1), (E3, 1)}

If we associate the Boolean random variables X1 to E1, X2 to E2 and X3 to E3, we
obtain the following DNF Boolean formula

fK(X) = (X1 ∧X3) ∨ (X2 ∧X3)

The equivalent BDD with order X1 ≺ X2 ≺ X3 is shown in Figure 11.4

X1 n1

X2 n2

X3 n3

1 0

Figure 11.4: BDD for Example 11.5.3.

By applying function Prob in Algorithm 11.2, we obtain

Prob(n3) = 0.7 · 1 + 0.3 · 0 = 0.7

Prob(n2) = 0.6 · 0.7 + 0.4 · 0 = 0.42

P (Q) = Prob(n1) = 0.6 · 0.7 + 0.4 · 0.42 = 0.588

The result is equal to the one obtained in Example 11.3.2

Example 11.5.4
Consider a slightly different knowledge base [3, 92]:

C1 = ∃hasAnimal.Pet v NatureLover

C2 = (kevin,fluffy) : hasAnimal

C3 = (kevin,tom) : hasAnimal

E1 = 0.4 :: fluffy : Dog

E2 = 0.3 :: tom : Cat

E3 = 0.6 :: Cat v Pet

E4 = 0.5 :: Dog v Pet

Inference with Binary Decision Diagrams 113

A covering set of explanations for the query axiom Q = kevin : NatureLover is

K = {κ1, κ2}

κ1 = {(E1, 1), (E4, 1)}

κ2 = {(E2, 1), (E3, 1)}

If we associate the random variables X1 to E1, X2 to E2, and so on, we obtain the
following DNF Boolean formula

fK(X) = (X1 ∧X4) ∨ (X2 ∧X3)

If we chose the order X1 ≺ X2 ≺ X3 ≺ X4 the BDD associated with the set K of
explanations is shown in Figure 11.5.

X1 n1

X2 n2 n′2

X3 n3 n′3

X4 n4

1 0

Figure 11.5: BDD for Example 11.5.4 with order X1 ≺ X2 ≺ X3 ≺ X4.

By applying the function Prob in Algorithm 11.2 we get

Prob(n4) = 0.5 · 1 + 0.5 · 0 = 0.5

Prob(n3) = 0.6 · 1 + 0.4 · 0.5 = 0.8

Prob(n2) = 0.3 · 0.8 + 0.7 · 0.5 = 0.59

Prob(n′3) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n′2) = 0.3 · 0.6 + 0.7 · 0 = 0.18

Prob(n1) = 0.4 · 0.59 + 0.6 · 0.18 = 0.344

so P (Q) = Prob(n1) = 0.344.
The order of the variables for the BDD is not optimal, if we had chosen the order

X1 ≺ X4 ≺ X2 ≺ X3 we would have had the BDD in Figure 11.6 which is more compact
than the BDD in Figure 11.5.

The size of the BDD affects the number of operations of the function Prob in
Algorithm 11.2, indeed if we apply Prob to the BDD in Figure 11.6, we obtain

Prob(n4) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n3) = 0.3 · 0.6 + 0.7 · 0 = 0.18

Prob(n2) = 0.5 · 1 + 0.5 · 0.18 = 0.59

Prob(n1) = 0.4 · 0.59 + 0.6 · 0.18 = 0.344

114 Fundamentals of Exact Probabilistic Logical Inference

X1 n1

X4 n2

X2 n3

X3 n4

1 0

Figure 11.6: BDD for Example 11.5.4 with order X1 ≺ X4 ≺ X2 ≺ X3.

so P (Q) = Prob(n1) = 0.344.

11.6 Conclusions

In this chapter we discussed how to perform exact probabilistic logical inference. The
problem of calculating the probability of a query consists of obtaining a covering set of
explanations and then make them pairwise incompatible. We examined two approaches
to make the explanations pairwise incompatible: the splitting algorithm and BDDs.
Approaches based on BDDs are usually faster than approaches based on the splitting
algorithm [27]. For this reason the systems for exact probabilistic inference presented
in the next chapters are based on BDDs.

The next two chapters present several inference systems for PLP (Chapter 12) and
for PDLs that follow DISPONTE (Chapter 13).

Chapter 12

Inference in Probabilistic Logic

Programming

In this chapter we present the latest advances of the cplint system and its web interface
cplint on SWISH. The chapter is organized as follows. After a brief introduction in
Section 12.1, the cplint system and its main modules for (conditional) inference are
presented in Section 12.2. Section 12.3 and Section 12.4 discuss causal reasoning and
how to perform inference on hybrid probabilistic logic programs, i.e. probabilistic logic
programs where some of the random variables are continuous, with cplint. cplint’s
web interface, named cplint on SWISH, is described in Subsection 12.5.2. Section 12.6
illustrates related work. Finally Section 12.7 concludes the chapter.

12.1 Introduction

In Chapter 6 we introduced Probabilistic Logic Programming (PLP), this field of re-
search aims to combine logic with probability theory, moreover we provided the the-
oretical foundations for the calculation of the probability of a query. In Chapter 11,
instead, we presented two techniques for the calculation of the exact probability of
a query. One based on splitting algorithm and one based on the use of BDDs. All
the approaches seen so far are only theoretical, no real system that implements these
approaches has been presented.

In [144] Riguzzi and Swift proposed a system called PITA that allows to perform
exact inference. Later Riguzzi in [49] developed MCINTYRE a system for executing
approximate inference by sampling. These two systems were gathered together into
cplint.

The first part of this thesis tackled the problem of representing uncertain infor-
mation by combining logic with probability. This part, instead, concerns reasoning
over uncertain data. In this chapter we deal with reasoning in PLP. In particular, we
present the latest features that we have developed for the cplint system and its web
interface called cplint of SWISH.

115

116 Inference in Probabilistic Logic Programming

12.2 cplint

cplint is a suite of programs for reasoning with LPADs. cplint contains modules for
both inference and learning1. For inference we have two modules:

• the PITA module for exact inference [144], and

• the MCINTYRE module for approximate inference by sampling [49].

Below we illustrate these modules and how to use them.

12.2.1 Exact Inference: the PITA module

PITA [144] computes the probability of a query from a probabilistic program in the
form of an LPAD by knowledge compilation [147]. PITA computes explanations for the
query and encodes them using Binary Decision Diagrams (BDDs). Each explanation
is a conjunction of equations of the form V ar = value, where V ar is a random variable
associated with a ground clause and value is a possible value (the index of one of the
atoms in the head). We can see that V ar is multivalued, we could have used MDDs
to make the explanations pairwise incompatible, but, as said before, many decision
diagram packages only support BDDs.

PITA computes BDDs for explanations by transforming an LPAD into a normal
program containing calls for manipulating BDDs. The idea is to add an extra argument
to each subgoal to store a BDD encoding the explanations for the answers of the
subgoal. The values of the extra argument of the subgoals are combined using a set of
library functions:

• init, end: initialize and terminate the data structures for manipulating BDDs;

• zero(-D), one(-D): return BDD D representing the Boolean constant 0 and 1;

• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean operations be-
tween BDDs;

• get_var_n(+R,+S,+Probs,-Var): returns the multi-valued random variable as-
sociated with rule R with grounding substitution S and list of probabilities Probs;

• equality(+Var,+Value,-D): D is the BDD representing Var=Value, i.e. that the
multivalued random variable Var is assigned Value;

• ret_prob(+D,-P): returns the probability P of the BDD D.

In order to manage and manipulate BDDs we exploit the CUDD2 (Colorado University
Decision Diagram) library. The above functions are implemented in C as an interface
to the CUDD library. A BDD is represented in Prolog as an integer that is a pointer
in memory to the root node of the BDD.

The PITA transformation applies to atoms, literals, conjunctions of literals and
clauses. The transformation for an atom h and a variable D, PITA(h,D), is h with the

1For the learning modules see Chapter 15.
2http://vlsi.colorado.edu/~fabio/CUDD/

cplint 117

variable D added as the last argument. For the sake of simplicity, we consider here only
positive literals, but the transformation can be applied also to negative literals (see
[144]).

The transformation for a conjunction of literals b1,...,bm is

PITA(b1,...,bm,D)=one(DD0),

PITA(b1,D1),and(DD0,D1,DD1),...,

PITA(bm,Dm),and(DDm−1,Dm,D).

The disjunctive clause Cr = h1:Π1;...;hn:Πn :- b1,...,bm. where the parame-
ters sum to 1, is transformed into the set of clauses PITA(Cr):

PITA(Cr,i) = PITA(hi,D) :- PITA(b1,...,bm,DDm),

get_var_n(r,S,[Π1,...,Πn],Var),

equality(Var,i,DD),and(DDm,DD,D).

for i=1,...,n, where S is a list containing all the variables appearing in Cr. If the
parameters do not sum up to 1, the body is empty or the clause is non-disjunctive (a
single head with probability 1), the transformation can be optimised.

We assume programs to be range restricted (see Definition 4.17). If the program
is range restricted, when the goal get_var_n(r,S,[Π1,...,Πn],Var) is called, all
the variables of the original clause, listed in S, are instantiated so get_var_n/4 can
associate a random variable with the instantiation of clause Cr.

The PITA transformation applied to clause C1 of Example 6.2.1 yields

PITA(C1,1) = epidemic(D) :-

one(DD0),flu(X,D1),and(DD0,D1,DD1),

cold(D2),and(DD1,D2,DD2),

get_var_n(1,[X],[0.6,0.3,0.1],Var),

equality(Var,1,DD),and(DD2,DD,D).

PITA(C1,2) = pandemic(D) :-

one(DD0),flu(X,D1),and(DD0,D1,DD1),

cold(D2),and(DD1,D2,DD2),

get_var_n(1,[X],[0.6,0.3,0.1],Var),

equality(Var,2,DD),and(DD2,DD,D).

PITA is available for XSB Prolog [150], YAP Prolog [151] and SWI-Prolog [152].
The XSB version, the initial one, uses tabling, a logic programming technique that

reduces computation time and ensures termination for a large class of programs [150].
The idea of tabling is simple: keep a store of the subgoals encountered in a derivation
together with answers to these subgoals. If one of the subgoals is encountered again,
the answers are retrieved from the store rather than recomputing them. Besides saving
time, tabling ensures termination for programs without function symbols under the
well-founded semantics [24].

PITA also uses a feature of XSB tabling called answer subsumption [150] that, when
a new answer for a tabled subgoal is found, combines old answers with the new one
according to a partial order or lattice. This feature is used to combine the BDDs that
are built for different explanations of a goal, using or/3 as the join operation of the
lattice and zero/1 as the predicate returning the bottom element of the lattice. For
example, a unary predicate p/1 must be declared as tabled by means of the declaration

118 Inference in Probabilistic Logic Programming

table p(_,or/3-zero/1). If an answer p(a,d1) was found and a new answer p(a,d2)
is derived, the answer p(a,d1) is replaced by p(a,d3), where d3 is obtained by calling
or(d1,d2,d3).

To compute the probability of a ground atom A, PITA uses predicate prob/2 whose
definition is

prob(A,Prob) :-

add_bdd_arg(A,D,A1),

call(A1),

ret_prob(D,Prob).

where add_bdd_arg(A,D,A1) performs the PITA transformation PITA(A,D) for a lit-
eral A and a variable D, and A1 contains the transformed literal. Since YAP and SWI-
Prolog do not have answer subsumption in their tabling implementation, the collection
of the various explanations for the goal is performed explicitly with this definition of
prob/2:

prob(A,Prob) :-

add_bdd_arg(A,D,A1),

findall(D,A1,L),

zero(Zero),

foldl(or,L,Zero,DD),

ret_prob(DD,Prob).

where foldl/4 implements the higher order functional programming fold function and
is available in the apply library of YAP and SWI-Prolog.

12.2.1.1 Conditional Exact Inference

To compute the probability of a conjunction of ground goals G given another conjunc-
tion of ground goals E, two clauses are added to the knowledge base:

$goal(D) :- PITA(G,D).

$ev(D) :- PITA(E,D).

and the queries $goal(DG) and $ev(DE) are asked. DG will contain the BDD representing
the explanations for the goal and DE the BDD representing the explanations for the
evidence. Then the conjunction of DG and DE is computed obtaining DGE. The prob-
ability to be returned is the fraction of the probability of DGE over the probability of
DE, as shown in Algorithm 12.1.

12.2.2 Approximate Inference: the MCINTYRE module

MCINTYRE [49] performs approximate inference by sampling. It first transforms the
program and then queries the transformed program. The disjunctive clause

Ci = hi1:Πi1;...;hin:Πini
:- bi1,...,bimi

.

where the parameters sum to 1, is transformed into the set of clauses MC(Ci):

cplint 119

Algorithm 12.1 Algorithm for computing the conditional probabilities.
1: function prob(KB, G, E) . Program KB, goal G, evidence E

2: Add $goal(D) :- PITA(G,D). to KB
3: Add $ev(D) :- PITA(E,D). to KB
4: Ask the queries $goal(DG) and $ev(DE)
5: DGE← bdd_and(DG,DE)

6: PGE← ret_prob(DGE)

7: PE← ret_prob(DE)

8: return PGE/PE

9: end function

MC(Ci,1) = hi1 :- bi1,...,bimi
,

sample_head(ParList,i,S,NH),NH=1.

...

MC(Ci,ni) = hini
:- bi1,...,bimi

,

sample_head(ParList,i,S,NH),NH=ni.
where S is a list containing each variable appearing in Ci and ParList is [Πi1,...,Πini

].
If the parameters do not sum up to 1, the last clause (the one for null) is omitted.
Basically, we create a clause for each head and we sample a head index at the end
of the body with sample_head/4. If this index coincides with the head index, the
derivation succeeds, otherwise it fails. Thus failure can occur either because one of the
body literals fails or because the current clause is not part of the sample.

For example, clause C1 of Example 6.2.1 becomes

MC(C1,1) = epidemic :- flu(X),cold,

sample_head([0.6,0.3,0.1],1,[X],NH),NH=1.

MC(C1,2) = pandemic :- flu(X),cold,

sample_head([0.6,0.3,0.1],1,[X],NH),NH=2.

The predicate sample_head/4 samples an index from the head of a clause and uses
the built-in Prolog predicates recorded/3 and recorda/3 for respectively retrieving
or adding an entry to the internal database. Since sample_head/4 is at the end of
the body and since we assume the program to be range restricted, at that point all
the variables of the clause have been grounded. If the rule instantiation had already
been sampled, sample_head/4 retrieves the head index with recorded/3, otherwise it
samples a head index with sample/2:

sample_head(_ParList,R,VC,NH):-

recorded(exp,(R,VC,N),_),!,

NH=N.

sample_head(ParList,R,VC,N):-

sample(ParList,NH),

recorda(exp,(R,VC,NH),_),

N=NH.

sample(ParList, HeadId) :-

120 Inference in Probabilistic Logic Programming

random(Prob),

sample(ParList, 0, 0, Prob, HeadId).

sample([HeadProb|Tail], Index, Prev, Prob, HeadId) :-

Succ is Index + 1,

Next is Prev + HeadProb,

(Prob =< Next ->

HeadId = Index

;

sample(Tail, Succ, Next, Prob, HeadId)

).

Tabling can be effectively used to speed up the computation. Before executing a
new goal the previous tables obtained by sampling and the previous samples must be
removed. To sample a truth value for a ground atom Goal from the program we use
the following predicate

sample(Goal) :-

abolish_all_tables,

erase_samples,

call(Goal).

To compute the probability of a query, a number N of samples is taken and the prob-
ability is given by S/N where S is the number of times that sample/1 succeeds.

12.2.2.1 Conditional Approximate Inference

Similarly to PITA, to compute the probability of a conjunction of ground goals G given
another conjunction of ground goals E, two clauses are added to the knowledge base:

$goal :- G.

$ev :- E.

Conditional inference in MCINTYRE can be performed by means of rejection sampling
or by Metropolis-Hastings Markov Chain Monte Carlo (MCMC) [7].

Rejection Sampling
In rejection sampling [153], you take a sample by first querying the evidence (with
sample($ev)) and, if the query is successful, query the goal in the same sample (with
sample($goal)), otherwise the sample is discarded. Rejection sampling is the easiest
approach to realize, but it is also very slow.

To submit a conditional query using rejection sampling, you can use the predicate

mc_rejection_sample(:Query:atom,:Evidence:atom,+Samples:int,

-Probability:float)

or

mc_rejection_sample(:Query:atom,:Evidence:atom,+Samples:int,

-Successes:int,-Failures:int,-Probability:float).

Causal Inference with cplint 121

Metropolis-Hastings MCMC
In Metropolis-Hastings MCMC [154], a Markov chain is built by taking an initial
sample and by generating successor samples. A sample corresponds to a composite
choice, which in turn corresponds to a set of worlds (see Chapter 6). The initial
sample κ0 is built with a meta-interpreter that randomly samples the choices so that
the evidence is true. A successor sample κ is obtained by deleting a fixed number of
sampled probabilistic choices, i.e. κ0 ⊃ κ. Then the evidence is queried by taking a
sample κ′ starting with the undeleted choices with κ ⊂ κ′. If the query succeeds, the
goal is queried by taking a sample κ′′ with κ′ ⊂ κ′′, otherwise κ′ is discarded. The
sample is accepted with a probability of min{1, |κ|

|κ′′|
} where |κ| is the number of choices

(i.e. atomic choices) sampled in the previous sample and |κ′′| is the number of choices
sampled in the current sample. Then the number of successes of the query is increased
by 1 if the query succeeded in the last accepted sample. The final probability is given
by the number of successes over the number of samples.

To perform a conditional query using Metropolis-Hastings MCMC, the available
predicate is

mc_mh_sample(:Query:atom,:Evidence:atom,+Samples:int,+Lag:int,

-Successes:int,-Failures:int,-Probability:float).

or

mc_mh_sample(:Query:atom,:Evidence:atom,+Samples:int,+Lag:int,

-Successes:int,-Failures:int,-Probability:float).

12.3 Causal Inference with cplint

The study of causation was connected to graphical models by Pearl [155], even if dia-
grams were already used to represent causal models as early as the 1920’s [156]. Graph-
ical models are used to describe domains characterized by a set of random variables.
Bayesian networks, in particular, are directed acyclic graphs where the variables are
nodes and probabilistic dependences are represented as arcs: an arc from a node A to a
node B means that A probabilistically influences B. An example of a Bayesian network
is shown in Figure 12.1: it describes the domain of a medical study investigating the
effects of a new drug on patients. The domain is described by three Boolean variables:
Gender (F), Drug (C) and Recovery (E). Gender indicates the gender of the patient,
Drug takes value 1 if the drug is administered to the patient under examination and
value 0 if a placebo is administered, and Recovery whether the patient recovered from
his illness. Gender influences Drug because the decision to administer or not the drug
is taken on the basis of the sex of the patient. Gender and Drug influence Recovery
because the outcome of the particular illness under examination depends on the sex of
the patient and, hopefully, on the treatment.

Pearl [155] introduced causal Bayesian networks: these are Bayesian networks where
an arc from a node A to a node B means that A directly causally influences B. Causal
Bayesian networks can be used to perform causal reasoning, such as for example com-
puting the effect of an action.

122 Inference in Probabilistic Logic Programming

Gender F

Drug C

Recovery E

Figure 12.1: Bayesian network for a drug study domain.

Gender F

Drug C

Recovery E

Figure 12.2: Mutilated version of the Bayesian network of Figure 12.1 for computing
the effect of a drug.

An action or intervention in this context means setting a variable, say A, to a
particular value, say a. The Bayesian network of Figure 12.1 is causal as we assume
that the decision to administer or not the drug is taken on the basis of the sex of the
patient. Moreover, the treatment and sex cause the patient to recover or not, as we
assume that the illness depends on the gender.

In such a network one could for example ask what is the probability of recovery
if we make the action of administering the drug, in other words what is the effect of
the drug on recovery, the main aim of medical studies. This corresponds to computing
the probability of E = 1 when setting C to 1. For answering such queries, Pearl
shows that regular probabilistic reasoning cannot be used. So in this case computing
P (E = 1|C = 1) does not answer the question of what is the effect of the drug.

Pearl introduces a different calculus, called do calculus, to infer the effect of actions.
In such a calculus, the action of setting a variable to a value is distinguished from the
observation of that value for the variable. Actions appear inside a special do operator
in the condition part of probabilistic queries. So to compute the effect of the drug on
recovery, the query to answer is P (E = 1|do(C = 1)).

The do calculus reduces a query involving actions to a regular probabilistic query
over a mutilated Bayesian network obtained by removing all incoming arcs from vari-
ables involved in actions. Then the query with actions as observations must be asked
from the mutilated network. For example, to answer P (E = 1|do(C = 1)), the arc
from Gender to Drug must be removed from the network of Figure 12.1 obtaining the
network of Figure 12.2. Then the query P (E = 1|C = 1) must be asked from the
mutilated network. Note that there is no need to specify the conditional probability
table (CPT) of the action variables (C in this case) in the mutilated network as the
action variables are observed so the CPT does not influence the computation.

Equivalently, we can ask an unconditional query from the mutilated network where

Causal Inference with cplint 123

the CPTs for the actions are set so that all the probability mass is assigned to the
values set by the actions. For the example above, the conditional probability table
of C would be given by P (C = 1) = 1 and P (C = 0) = 0 and the query would be
P (E = 1).

It is very important not to confound P (E|do(C)) with P (E|C) because the results
may be very different, as shown by the famous Simpson’s paradox.

Example 12.3.1 Simpson’s Paradox
From [155]:

Simpson’s paradox [...] refers to the phenomenon whereby an event C in-
creases the probability of E in a given population p and, at the same time,
decreases the probability of E in every subpopulation of p. In other words, if
F and ¬F are two complementary properties describing two subpopulations,
we might well encounter the inequalities

P (E|C) > P (E|¬C)

P (E|C, F) < P (E|¬C, F)

P (E|C,¬F) < P (E|¬C,¬F)

[...] For example, if we associate C (connoting cause) with taking a certain
drug, E (connoting effect) with recovery, and F with being a female, then
[...] the drug seems to be harmful to both males and females yet beneficial
to the population as a whole.

Consider the situation exemplified by the following tables from [155]:

Combined E ¬E RecoveryRate

Drug(C) 20 20 40 50%

Nodrug(¬C) 16 24 40 40%

36 44 80

Females E ¬E RecoveryRate

Drug(C) 2 8 10 20%

Nodrug(¬C) 9 21 30 30%

11 29 40

Males E ¬E RecoveryRate

Drug(C) 18 12 30 60%

Nodrug(¬C) 7 3 10 70%

25 15 40

As you can see taking the drug seems to be beneficial overall even if it is not for females
and males.

The paradox derives because we must distinguish seeing from doing: we must distin-
guish observing that the drug was administered from the intervention of administering

124 Inference in Probabilistic Logic Programming

the drug. The conditioning operator in probability calculus stands for “given that we
see”, whereas the do operator means “given that we do”. So the do operator must be used
to infer the effect of actions. If the model of the domain is the network from Figure
12.1, to compute P (E = 1|do(C = 1)) and P (E = 1|do(C = 0)) we must compute
P (E = 1|C = 1) and P (E = 1|C = 0) from the network of Figure 12.2 by using
classical Bayesian inference. For these queries we get respectively 0.4 and 0.5, showing
that the drug is not beneficial in the whole population exactly as it is not in the two
subpopulations.

Pearl’s do calculus also deals with causal Bayesian networks where some of the
variables are unknown, in the sense that we know that they exert an influence but they
are not measurable so it is not possible to quantify this influence, i.e., we don’t know
how many they are and the CPTs where they are involved, we just know that some
exist. When models contain such unknown variables, computing the effect of actions is
not always possible, because we can’t sum out the contribution of such variables since
we don’t know their number and CPTs. The do calculus provides rules for determining
whether it is possible to compute the effect of an action even in the presence of unknown
variables and to actually perform the computation. In cplint we consider only the do
calculus for models with no unknown variables.

12.3.1 Causal Inference in Probabilistic Logic Programming

CP-logic [48] is a PLP language for causal reasoning whose semantics is based on
probability trees that represent possible courses of events. The authors proved that
their semantics is suitable for representing causation and the effects of causal laws. In
particular, they highlighted that the inductive definitions of logic programming and
the well-founded semantics of negation [24] produce models respecting most properties
of causation, provided the program respects some weak constraints. The semantics
of legal CP-logic programs coincides with that of LPADs, but there are LPADs that
are not legal CP-theories, i.e., they cannot be assigned a causal semantics. However,
these are corner cases in which the stratification level of a couple of atoms in a world is
switched in a different world, so that it is not possible to establish a general stratification
coherent with temporal precedence in all worlds.

The authors in [48] showed that the effect of actions in do calculus style can be
computed from CP-theories when there are no unknown variables. In fact, clauses in
CP-theories represent causal laws so in order to know the result of intervening on a
single causal law, that law should be removed from the theory (and possibly replaced
by a different law). For example, to compute the effects of an intervention that prevents
a causal law C, that law must be removed from the theory. In case the intervention
establishes a new causal law C ′, that law must be added to the theory. The modularity
of CP-logic allows this.

Example 12.3.2
The computation of the effects of interventions is illustrated in [48] with a medical
example:

A tumor in a patient’s kidney might cause kidney failure, which might cause

Causal Inference with cplint 125

the death of the patient; however, to make matters even worse, the tumor
can also metastasize to the brain, which might also, independently, kill the
patient. We can represent this as:

kidneyFailure : 0.1 :- kidneyTumor.

brainTumor : 0.1 :- kidneyTumor.

death : 0.5 :- brainTumor.

death : 0.9 :- kidneyFailure.

If we want to know what is the effect of putting the patient on a dialysis machine, which
allows him to survive kidney failure, we can remove the last law and use the resulting
theory for inference.

Starting from the results in [48] we modified the inference in cplint to allow the
computation of the effect of actions of the form do(A) and do(\+A) where A is a ground
literal. do(A) means that the action A was performed i.e., the action makes A true,
whereas do(\+A) means that the action makes the atom A false.

12.3.2 Causal Exact Inference with cplint

When performing causal inference, evidence E may contain ground literals of the form
do(A), meaning that ground literal A is an action rather than an observation.

In this case, evidence E is partitioned into two conjunctions, EO containing only the
observation atoms and EA containing all the literals A for which E contains do(A). Let
remove_do be the function taking as input a conjunction of do literals and returning
remove_do(EA) = {A|do(A) ∈ EA}.

The knowledge base is extended with

$goal(D) :- PITA(G,D).

as for non causal inference, plus

$ev(D) :- PITA(EO,D).

Then Algorithm 12.2 is used to obtain a new program on which conditional infer-
ence as in PITA is performed. The algorithm considers every action of the form
do(A) ∈ EA with A = p(t1,...,tn) or A = \+p(t1,...,tn) and, for each clause
with p(u1,...,un,D) in the head, it adds to the body the conjunction of constraints
dif(u1,t1),...,dif(un,tn). Then the clause

p(t1,...,tn,D) :- one(D).

is added to the program for every action of the form do(p(t1,...,tn)) (positive
actions).

dif/2 is a coroutine predicate that expresses disequality of terms. The actual test
is delayed until the terms are sufficiently instantiated to be found different, or have
become identical. The predicate is available in most Prolog systems and is usually
implemented by means of attributed variables [157].

126 Inference in Probabilistic Logic Programming

By using dif/2, the body of the clause fails as soon as a disequality is violated. If
we had used the disunification predicate \=/2, we should have inserted the disequality
constraints at the end of the body, just before the call to get_var_n/4, because at
the beginning of the body some variables may not be instantiated. This would have
resulted in a waste of computation, as failure would be obtained only after having
resolved all the literals in the body. With dif/2 failure may be obtained earlier.

The result is correct as shown by Theorem 12.1.

Algorithm 12.2 Algorithm for preparing the knowledge base for exact causal infer-
ence.
1: function PreparePITAKB(KB, EA) . Program KB, set of literals appearing

as do actions in the evidence EA

2: for all do(A) ∈ EA with A=p(t1,...,tn) or A=\+p(t1,...,tn) do
3: for all clauses C=p(u1,...,un,D) :- B do
4: Remove C from KB
5: Add p(u1,...,un,D) :- dif(u1,t1),...,dif(un,tn),B to KB
6: end for
7: end for
8: for all do(A) atom in EA with A=p(t1,...,tn) do
9: Add p(t1,...,tn,D) :- one(D). to KB

10: end for
11: return KB
12: end function

Theorem 12.1
Given a a goal G and an evidence E, the probability for G to be true given that E holds
P (G|E) on program KB has the same value as

prob(PreparePITAKB(KB,EA), G,EO).

Proof. By including the dif/2 constraints in the body, we effectively make sure that,
when evaluating the body of the clauses (causal laws), all groundings of the clauses
whose head matches with one of the action atoms produce failure, resulting in the same
effect as removing the ground causal law from the theory.

The addition of clauses

p(t1,...,tn,D) :- one(D).

for every positive action do(p(t1,...,tn)) then ensures that p(t1,...,tn) is forced to
true, and the absence of any clause for p(t1,...,tn) for negative actions do(\+p(t1,...,tn))
ensures that p(t1,...,tn) is forced to false.

In this way we adopt the strategy of [48] for representing interventions in CP-
logic.

12.3.3 Causal Approximate Inference with cplint

As for PITA, the evidence E is partitioned into the conjunctions EO of observation
atoms and EA of action atoms. Then the knowledge base is extended with

$goal :- G.

Causal Inference with cplint 127

as for non causal inference, plus
$ev :- EO.

Then Algorithm 12.3, MCINTYRE’s version of Algorithm 12.2, is used to preprocess
the program before using MCINTYRE algorithms for conditional inference. You can
notice that in Alg. 12.3 the variable D is missing (see predicates in Alg. 12.2), this is
because variable D in exact inference is used to contain the BDD, but in approximate
inference we just use sampling without building any BDDs. It is easy to see that

Algorithm 12.3 Algorithm for preparing the knowledge base for approximate causal
inference.
1: procedure PrepareMCKB(KB, EA) . Program KB, set of literals appearing

as do actions in the evidence EA

2: for all do(A) ∈ EA with A=p(t1,...,tn) or A=\+p(t1,...,tn) do
3: for all clauses C=p(u1,...,un) :- B do
4: Remove C from KB
5: Add p(u1,...,un) :- dif(u1,t1),...,dif(un,tn),B to KB
6: end for
7: end for
8: for all do(A) atom in EA with A=p(t1,...,tn) do
9: Add A to KB

10: end for
11: end procedure

Theorem 12.1 holds also for MCINTYRE. Figure 12.3 shows the architecture of the
cplint system with their module and algorithms used for causal inference.

12.3.4 Notable Examples

In this section we illustrate the implementation in cplint of two famous problems: the
Simpson’s paradox and the viral marketing problem.

12.3.5 Simpson’s Paradox

The medicine study of Example 12.3.1 can be represented with the following LPAD3.

:- use_module(library(pita)).

:- pita.

:- begin_lpad.

:- action drug/0.

female:0.5.

recovery:0.6:- drug,\+ female.

recovery:0.7:- \+ drug,\+ female.

recovery:0.2:- drug,female.

recovery:0.3:- \+ drug,female.

drug:30/40:- \+ female.

3Also available at http://http://cplint.ml.unife.it/example/inference/simpson.swinb.

128 Inference in Probabilistic Logic Programming

SWI-Prolog

cplint

PITA

inference

Algorithm 2

MCINTYRE

inference

Algorithm 3

LPAD

program

PITA

module

MCINTYRE

module

modified

LPAD

modified

LPAD

Figure 12.3: Architecture of cplint for causal inference.

drug:10/40:-female.

:-end_lpad.

Here, :- action drug/0. means that drug/0 is a predicate that can be used to spec-
ify actions. We need the :- action p/n directive because the predicate p should
be declared as dynamic in order to perform retract/1 (execution of line 4 in Algo-
rithm 12.2). In PITA the directive :- action p/n makes the predicate p/n+2 dynamic.
In MCINTYRE, instead, it has the effect to make p/n dynamic.

We query the conditional probabilities of recovery given treatment on the whole
population and on the two subpopulations with:

?- prob(recovery,drug,P).

?- prob(recovery,\+ drug,P).

?- prob(recovery,(drug,female),P).

?- prob(recovery,(\+ drug,female),P).

?- prob(recovery,(drug,\+ female),P).

?- prob(recovery,(\+ drug,\+ female),P).

The results of these queries are those in the tables of Example 12.3.1.
If instead we want to know the probability of recovery given the action treatment

(taking a drug), we must ask

?- prob(recovery,do(drug),P).

?- prob(recovery,do(\+ drug),P).

?- prob(recovery,(do(drug),female),P).

Causal Inference with cplint 129

?- prob(recovery,(do(\+ drug),female),P).

?- prob(recovery,(do(drug),\+ female),P).

?- prob(recovery,(do(\+ drug),\+ female),P).

The results of the last four queries are the same as the last four conditional queries, so
the probability of recovery in the two subpopulations is the same as that for the case
of seeing rather than doing, as the observation of sex makes the arc from sex to drug
irrelevant.

The results of the first two do queries instead differ from the conditional ones:
they are respectively 0.4 and 0.5, showing that the drug is not beneficial and that the
probability of recovery on the whole population is now in accordance with that in the
subpopulations, in particular it is the weighted average of the probability of recovery
in the subpopulations.

12.3.6 Viral Marketing

Let us now consider a viral marketing scenario inspired by [158]. A firm is interested
in marketing a new product to its customers. These are connected in a social network
that is known to the firm: the network represents the trust relationships between
customers. The firm has decided to adopt a marketing strategy that involves giving
the product for free to a number of its customers, in the hope that these influence the
other customers and entice them to buy the product. The firm wants to choose the
customers to which marketing is applied so that its return is maximised. This involves
computing the probability that the non-marketed customers will acquire the product
given the action to the marketed customers.

We can model this domain with an LPAD where the predicate trust/2 encodes
the links between customers in the social network and the predicate has/1 is true for
customers that possess the product, either received as a gift or bought. Predicate
trust/2 is defined by a number of certain facts, while predicate has/1 is defined by
two rules, one expressing the prior probability of a customer to buy the product and
one expressing the fact that if a trusted customer has the product, then there is a
certain probability that the trusting customer buys the product. The complete LPAD
is shown in Figure 12.44. The social network encoded by the program is represented
in Figure 12.5. If the firm wants to estimate the effect of giving the product for free to
customer 3 on the probability of customer 2 buying the product, the query to ask is

?- prob(has(2),do(has(3)),P).

This query on the program above returns 0.136. If instead we query

?- prob(has(2),has(3),P).

we get 0.407, showing that not distinguishing seeing from doing leads to an overly
optimistic estimate.

12.3.7 Experiments

In this section we aim to evaluate the performance of causal reasoning with cplint

while comparing exact inference, performed with PITA, with approximate inference,
4Also available at http://cplint.ml.unife.it/example/inference/viral.swinb.

130 Inference in Probabilistic Logic Programming

:- use_module(library(pita)).

:- pita.

:- begin_lpad.

:- action has/1.

has(_) : 0.1.

has(P) : 0.4 :- trusts(P, Q), has(Q).

trusts(2,1).

trusts(3,1).

trusts(3,2).

trusts(4,1).

trusts(4,3).

:- end_lpad.

Figure 12.4: LPAD for viral marketing.

2 13

4

Figure 12.5: Social network for the viral marketing example.

performed with Metropolis-Hastings of MCINTYRE. Given the different focus of P-log,
a comparison with this system would be unfair. Therefore we compare the performance
of causal reasoning in cplint with regular probabilistic reasoning. All the experiments
here presented were executed on a Linux machine equipped with a Intel Xeon E5-2630
v3 @ 2.40 GHz CPU with 8 GB of main memory.

In particular, we considered the viral marketing domain. We generated random
social networks of increasing size and we evaluated random probabilistic and causal
queries with an increasing number of evidence literals. The random social networks
were generated as scale-free graphs according to the Barabasi-Albert model [159]. We
used the sample_pa5 function of the igraph R library to generate the graphs with
parameter m set to 2 (the number of edges to be added at each time step is 2). We
considered a number of nodes from 10 to 100 in steps of 10 and, for each number of
nodes, we generated 10 graphs (for a total of 100 different generated graphs). For
each number of nodes, we generated conjunctions of literals of the form has(n) where
n is a node sampled uniformly at random from the set of nodes. For each number
of literals from 2 to 8 in steps of 2 we generated 10 random conjunctions with that
number of literals. For each conjunction Cl with l literals, we sampled uniformly a node
m and we prepared the queries Pl = P (has(m)|Cl) and Ql = P (has(m)|do(Cl)), where
do(Cl) = {do(A)|A ∈ Cl}.

Then we posed the queries Pl and Ql to each of the 10 graphs for each number of
nodes and we measured the execution time. The computed time was averaged over

5http://igraph.org/r/doc/sample_pa.html

Causal Inference with cplint 131

the 10 graphs with the same number of nodes and the 10 conjunctions with the same
number of literals. Hence we have 100 queries for each number of nodes. We set a
timeout of 600 seconds for each query and we set to 1000 the number of samples for
MCINTYRE.

The average runtime for conditional and causal queries are then plotted in Figures
12.6-12.9 as a function of the number of nodes. Tables 12.1-12.4 show the average
timings with their 95% confidence intervals.

In particular, Figure 12.7 shows that with 4 evidence literals and a graph size larger
than 60 nodes at least one conditional query with exact inference has encountered the
timeout. Whereas causal queries (both with exact and approximate inference) and
conditional queries with approximate inference are still feasible. Figures 12.8 and
12.9 show that at least one conditional query with exact inference has encountered the
timeout for graphs with more than 10 nodes and queries with 6 evidence literals or more.
In all the figures we can see that the running time of conditional inference increases
with the size of the graphs, while the runtime of causal inference is roughly constant. In
these experiments the average running time for causal approximate inference is below
130 milliseconds for every graph size, whereas causal exact inference is surprisingly
faster than the approximate one and the average running time is below 4 milliseconds
for every graph size. The causal exact inference is faster than the approximate one
because, in our example, there is a small number of explanations for each causal query,
therefore it takes less time to compute all the explanations than it does to sample the
probabilistic logic program 1000 times. Table 12.5 reports the mean squared error of
approximate causal inference (caus mcint). We can notice that the errors are less than
4 · 10−3, proving that the proposed approximate approach gives results close enough to
the exact ones.

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -2

10 -1

10 0

10 1

10 2

10 3

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 12.6: Average time for conditional and causal queries with 2 evidence literals.

132 Inference in Probabilistic Logic Programming

Table 12.1: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 2 evidence literals. The size of the datasets is expressed
in number of nodes of the graph.

Inference method Size of the dataset

10 20 30 40 50

cond exact 0.32± 0.09 0.89± 0.63 3.01± 1.59 2.73± 1.40 2.19± 1.52

caus exact 3.15± 0.55 2.92± 0.05 2.97± 0.05 2.98± 0.07 2.93± 0.06

cond mcint 168.62± 8.04 185.28± 6.15 197.05± 8.32 201.6± 5.91 204.22± 6.77

caus mcint 46.11± 3.19 57.42± 2.5 64.94± 4.08 73.96± 4.2 63.57± 3.44

Inference method Size of the dataset

60 70 80 90 100

cond exact 11.41± 4.96 13.91± 7.31 13.91± 5.65 20.24± 8.34 37.29± 28.30

caus exact 3.03± 0.08 3.01± 0.10 3.00± 0.06 2.98± 0.09 3.36± 0.46

cond mcint 225.34± 8.68 227.66± 8.91 232.13±10.47 237.46± 9.24 252.91± 12.9

caus mcint 74.27± 4.36 78.98± 6.6 77.81± 5.32 77.06± 6.77 81.26± 7.9

Table 12.2: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 4 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method Size of the dataset

10 20 30 40 50

cond exact 4.43± 1.27 66.98± 29.64
811.73±
446.72

936.18±
626.14

854.23±682.3

caus exact 2.84± 0.07 2.95± 0.05 2.95± 0.07 3.04± 0.06 2.9± 0.06

cond mcint 236.18± 8.89 289.33±11.77 350.97±20.46 381.16±25.24 364.11±21.96

caus mcint 41.91± 3.25 56.88± 4.14 65.93± 4.48 79.38± 4.48 63.48± 3.38

Inference method Size of the dataset

60 70 80 90 100

cond exact
2372.11±
1291.21

– – – –

caus exact 3.04± 0.08 3.06± 0.08 3.03± 0.07 3.07± 0.06 3.37± 0.38

cond mcint 438.48±36.96 453.89±34.03 464.05± 35.7 482.93±32.17 522.62±39.74

caus mcint 71.89± 5.27 82.19± 6.04 78.64± 5.98 94.64± 7.01 103.73±10.01

Causal Inference with cplint 133

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

m
s

)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 12.7: Average time for conditional and causal queries with 4 evidence literals.

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 12.8: Average time for conditional and causal queries with 6 evidence literals.

134 Inference in Probabilistic Logic Programming

Table 12.3: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 6 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method Size of the dataset

10 20 30 40 50

cond exact 158.37±38.36 – – – –

caus exact 2.81± 0.08 2.95± 0.06 2.91± 0.06 3.13± 0.08 2.97± 0.07

cond mcint 331± 14.59 506.29±40.93 558.82±68.84 686.51± 91.9
795.54±
122.04

caus mcint 44.5± 1.4 51.95± 4.5 66.74± 5.25 92.36± 7.05 72.96± 4.31

Inference method Size of the dataset

60 70 80 90 100

cond exact – – – – –

caus exact 3.12± 0.08 3.1± 0.08 3.1± 0.07 3.09± 0.07 3.51± 0.54

cond mcint
939.05±
248.19

1075.76±
149.54

1015.65±
160.3

1260.15±
199.99

1240.61±
208.2

caus mcint 86.13± 6.21 99.42± 7.7 83.02± 7.53 96.71± 8.15 109.95±12.87

0 10 20 30 40 50 60 70 80 90 100

Number of nodes

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 (

m
s
)

cond exact

caus exact

cond mcintyre

caus mcintyre

Figure 12.9: Average time for conditional and causal queries with 8 evidence literals.

Causal Inference with cplint 135

Table 12.4: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 8 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method Size of the dataset

10 20 30 40 50

cond exact
1784.48±
451.27

– – – –

caus exact 2.89± 0.07 3.04± 0.06 2.99± 0.07 3.17± 0.08 3.06± 0.07

cond mcint 471.56±34.17
1043.48±
255.12

1366.8±232.7
1952.12±

382.1
1954.56±
336.25

caus mcint 37.71± 2.28 54.86± 3.42 71.15± 4.29 80.67± 8.1 83.86± 5.85

Inference method Size of the dataset

60 70 80 90 100

cond exact – – – – –

caus exact 3.19± 0.08 3.2± 0.08 3.26± 0.09 3.07± 0.06 3.23± 0.09

cond mcint
4306.83±
1759.19

4679.31±
1304.03

3227.32±
1234.65

4265.53±
1375.54

6576.63±
2313.33

caus mcint 94.28± 7.36 116.85± 9.25 101.36± 9.51 100.42± 7.34 115.94± 9.33

Table 12.5: Mean Squared Error for approximate causal inference (caus mcintyre). All
the values must be multiplied by 10−3. The size of the datasets is expressed in number
of nodes of the graph.

Evidence literals Size of the dataset

10 20 30 40 50 60 70 80 90 100

2 2.5 1.7 2.4 2.4 1.6 2.3 2.3 3.0 2.0 2.6

4 0.9 1.8 2.4 2.7 1.6 2.6 2.6 2.2 2.7 2.9

6 1.2 1.4 2.5 3.9 1.7 2.7 2.3 2.3 2.1 2.3

8 0.9 2.2 1.5 3.2 2.3 2.3 3.1 2.0 2.5 2.0

136 Inference in Probabilistic Logic Programming

12.4 Hybrid Probabilistic Logic Programs with cplint

Up to now we have considered only discrete random variables and discrete probabil-
ity distributions. How can we consider continuous random variables and probability
density functions, for example real variables following a Gaussian distribution?

cplint allows the specification of density functions over arguments of atoms in the
head of rules. To specify a probability density on an argument Var of an atom A you
can use rules of the form

A : Density :- Body.

where Density is a special atom identifying a probability density on variable Var

and Body (optional) is a regular clause body. Allowed Density atoms are:

• uniform(Var,L,U): Var is uniformly distributed in [L,U].

• gaussian(Var,Mean,Variance): Var follows a Gaussian distribution with mean
Mean and variance Variance.

• dirichlet(Var,Par): Var is a list of real numbers following a Dirichlet distri-
bution with parameters α specified by the list Par.

• gamma(Var,Shape,Scale): Var follows a gamma distribution with shape param-
eter Shape and scale parameter Scale.

• beta(Var,Alpha,Beta): Var follows a beta distribution with parameters Alpha

and Beta.

This syntax can be used to describe also discrete distribution, with either a finite or
countably infinite support:

• discrete(Var,D) or finite(Var,D): A is an atom containing variable Var and
D is a list of couples Value:Prob assigning probability Prob to Value

• uniform(Var,D): A is an atom containing variable Var and D is a list of values
each taking the same probability (1 over the length of D).

• poisson(Var,Lambda): Var follows a Poisson distribution with parameter Lambda.

This type of clauses are called Distributional Clauses [160].

Example 12.4.1
Consider the following LPAD rule

g(X,Y) : gaussian(Y,0,1) :- object(X).

X takes terms while Y takes real numbers as values. The clause states that, for each X

such that object(X) is true, the values of Y such that g(X,Y) is true follow a Gaussian
distribution with mean 0 and variance 1. You can think of an atom such as g(a,Y) as
an encoding of a continuous random variable associated with term g(a).

Hybrid Probabilistic Logic Programs with cplint 137

This kind of probabilistic logic programs where some of the random variables are
continuous are called Hybrid Probabilistic Logic Programs.

If an atom encodes a continuous random variable (such as g(X,Y) in Example 12.4.1),
asking the probability that a ground instantiation, such as g(a,0.3), is true is not
meaningful, as the probability that a continuous random variables takes a specific
value is always 0. In this case you are more interested in computing the distribution
of Y of a goal g(a,Y), possibly after having observed some evidence. If the evidence is
on an atom defining another continuous random variable, the definition of conditional
probability cannot be applied, as the probability of the evidence would be 0 and so the
fraction would be undefined. This problem is resolved in [161] by providing a definition
using limits.

12.4.1 Sampling the Arguments of Unconditional Queries over

Hybrid Programs

If the query is unconditional, we can use approximate inference with Monte Carlo
sampling as described in the Subsection 12.2.2. When we have continuous random
variables, we are interested in sampling arguments of goals representing continuous
random variables. In this way we can build a probability density of the sampled
argument. To do that it is possible to use the predicate

mc_sample_arg(:Query:atom,+Samples:int,?Arg:var, -Values:list).

that returns in Values a list of couples L-N where L is the list of values of Arg for
which Query succeeds in a world sampled at random and N is the number of samples
returning that list of values.

Example 12.4.2 Gaussian mixture
As example, let us consider the following program that models the mixture of two Gaus-
sians.

heads : 0.6; tails : 0.4.

g(X) : gaussian(X,0,1).

h(X) : gaussian(X,5,2).

mix(X) :- heads, g(X).

mix(X) :- tails, h(X).

A biased coin is thrown, if it lands heads, X in mix(X) is sampled from a Gaussian
with mean 0 and variance 1. If it lands tails, X is sampled from a Gaussian with mean
5 and variance 2.

We can now perform the query

mc_sample_arg(mix(X),1000,X,Values).

Values will contain a list of couples L-N where L is the list of values of X for which
query succeeds in a world sampled at random and N is the number of samples returning
L. Notice that, in every couple L-N, L will contain just one element and N will be always
1. This is because the random variable X is continuous and mix(X) always succeeds
exactly once, therefore the predicate mc_sample_arg/4 will sample 1000 different worlds
and every world will have a different value for X.

138 Inference in Probabilistic Logic Programming

12.4.2 Conditional Queries over Hybrid Logic Programs

As in the previous subsection we are interested in sampling arguments of goals repre-
senting continuous random variables (CRVs), but this time we have also some atoms
as evidence.

To perform this kind of query we must distinguish three cases depending on what
type of evidence we have:

• The evidence does not contain atoms with CRVs (the probability of evidence is
not 0).

• The evidence contains non-ground atoms with CRVs, (the probability of evidence
is not 0).

• The evidence contains groundings of atoms with CRVs (its probability is 0).

For the first two cases you can use rejection sampling or Metropolis-Hastings. However,
when evidence on ground atoms have continuous values as arguments, we cannot use
rejection sampling or Metropolis-Hastings, as the probability of the evidence is 0, but
we can use likelihood weighting [161] or particle filtering [162, 163] to obtain
samples of the continuous arguments of a goal (see Subsubsection 12.4.2.3).

12.4.2.1 Case 1: evidence on atoms without CRVs

To sample the arguments of the queries with rejection sampling and Metropolis-Hastings
MCMC, we can use the following predicates

mc_rejection_sample_arg(:Query:atom,:Evidence:atom, +Samples:int,

?Arg:var,-Values:list).

mc_mh_sample_arg(:Query:atom,:Evidence:atom, +Samples:int,

+Lag:int,?Arg:var,-Values:list).

Example 12.4.3
Let us consider the same program of Example 12.4.2. We want to take 1000 samples
of X in mix(X) given that heads was true using rejection sampling and Metropolis-
Hastings MCMC. We can do it with the following predicates

?- mc_rejection_sample_arg(mix(X),heads,1000,X,Values).

?- mc_mh_sample_arg(mix(X),heads,1000,2,X,Values).

12.4.2.2 Case 2: evidence on non-ground atoms with CRVs

We discuss this case by means of the example below.

Example 12.4.4
Let us consider the same program of Example 12.4.2. We want to take 1000 samples
of X in mix(X) given that X > 2 was true using rejection sampling and Metropolis-
Hastings MCMC. We can do that with the following queries

?- mc_rejection_sample_arg(mix(X),(mix(Y),Y>2),1000,X,Values).

?- mc_mh_sample_arg(mix(X),(mix(Y),Y>2),1000,2,X,Values).

Hybrid Probabilistic Logic Programs with cplint 139

12.4.2.3 Case 3: evidence on groundings of atoms with CRVs

When we have evidence on ground atoms that have continuous values as arguments,
we need to use likelihood weighting [161] or particle filtering [162, 163] to obtain
samples of the continuous arguments of a goal.

Likelihood Weighting For each sample to be taken, likelihood weighting uses a
meta-interpreter to find a sample where the goal is true, randomizing the choice of
clauses when more than one resolves with the goal, in order to obtain an unbiased
sample. This meta-interpreter is similar to the one used to generate the first sample
in Metropolis-Hastings.

Then a different meta-interpreter is used to evaluate the weight of the sample. This
meta-interpreter starts with the evidence as the query and a weight of 1. Each time the
meta-interpreter encounters a probabilistic choice over a continuous variable, it first
checks whether a value has already been sampled. If so, it computes the probability
density of the sampled value and multiplies the weight by it. If the value had not been
sampled, it takes a sample and records it, leaving the weight unchanged. In this way,
each sample in the result has a weight that is 1 for the prior distribution and that may
be different from the posterior distribution, reflecting the influence of evidence.

The predicate

mc_lw_sample_arg(:Query:atom,:Evidence:atom,+N:int,?Arg:var,

-ValList:list).

returns in ValList a list of couples V-W where V is a value of Arg for which Query

succeeds and W is the weight computed by likelihood weighting according to Evidence

(a conjunction of atoms is allowed here).

Example 12.4.5 Bayesian estimation
Consider the following LPAD6 based on a problem proposed on the Anglican [164] web
site7.

value(I,X) :-

mean(M),

value(I,M,X).

mean(M): gaussian(M,1.0,5.0).

value(_,M,X): gaussian(X,M,2.0).

We are trying to estimate the true value of a Gaussian distributed random variable,
given some observed data. The variance is known to be 2 and we suppose that the mean
has a Gaussian distribution with mean 1 and variance 5.

Suppose we have taken different measurement (e.g. at different times), indexed
with an integer. Given that we observe 9 and 8 at indexes 1 and 2, we can ask how the
distribution of the random variable (value at index 0) changes, with the query

?- mc_lw_sample_arg(value(0,X),(value(1,9),value(2,8)),10000,X,V).

6http://cplint.ml.unife.it/example/inference/gauss_mean_est.pl
7http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=

gaussian-posteriors

140 Inference in Probabilistic Logic Programming

This query takes 10, 000 samples of the argument X of value(0,X) before and after
the observation of value(1,9),value(2,8).

Example 12.4.6 Kalman filter
The following LPAD8 (adapted from [154]) encodes a Kalman filter, i.e., a Hidden
Markov model with a real value as state and a real value as output.

kf(N,O,T) :- init(S), kf_part(0,N,S,O,T).

kf_part(I,N,S,[V|RO],T) :-

I < N, NextI is I+1,

trans(S,I,NextS),emit(NextS,I,V),

kf_part(NextI,N,NextS,RO,T).

kf_part(N,N,S,[],S).

trans(S,I,NextS) :-

{NextS =:= E+S},

trans_err(I,E).

emit(NextS,I,V) :-

{V =:= NextS+X},

obs_err(I,X).

init(S) : gaussian(S,0,1).

trans_err(_,E) : gaussian(E,0,2).

obs_err(_,E) : gaussian(E,0,1).

The next state is given by the current state plus Gaussian noise (with mean 0 and
variance 2 in this example) and the output is given by the current state plus Gaussian
noise (with mean 0 and variance 1 in this example). A Kalman filter can be considered
as modeling a random walk of a single continuous state variable with noisy observations.

Continuous random variables are involved in arithmetic expressions (in the pred-
icates trans/3 and emit/3). It is often convenient, as in this case, to use CLP(R)
constraints so that the same clauses can be used both to sample and to evaluate the
weight of the sample on the basis of the evidence, otherwise different clauses have to be
written.

Given that at time 0 the value 2.5 was observed, what is the distribution of the
state at time 1 (filtering problem)? Likelihood weighting can be used to condition the
distribution on evidence on a continuous random variable (evidence with probability 0).
CLP(R) constraints allow both sampling and weighting samples with the same program:
when sampling, the constraint {V=:=NextS+X} is used to compute V from X and NextS.
When weighting, the constraint is used to compute X from V and NextS. The above
query can be expressed in cplint, e.g. with 10000, as follows

?- mc_lw_sample_arg(kf(1,_O2,T),kf(1,[2.5],_T),10000,T,L).

Particle filtering When you have a dynamic model and observations on continuous
variables for a number of time points, or your evidence is represented by many atoms,
likelihood weighting has numerical stability problems, as samples’ weight goes rapidly

8http://cplint.ml.unife.it/example/inference/kalman_filter.pl

cplint on SWISH: a Web interface for cplint 141

to 0. In this case, particle filtering can be useful, because it periodically resamples the
individual samples/particles so that their weight is reset to 1.

In particle filtering, the evidence is a list of atoms. Each sample is weighted by the
likelihood of an element of the evidence and constitutes a particle. After weighting,
particles are resampled and the next element of the evidence is considered.

The predicate

mc_particle_sample_arg(:Query:atom, +Evidence:term, +Samples:int,

?Arg:var,-Values:list).

samples the argument Arg of Query using particle filtering given that Evidence is true.
Evidence is a list of goals and Query can be either a single goal or a list of goals.

When Query is a single goal, the predicate returns in Values a list of couples
V-W where V is a value of Arg for which Query succeeds in a particle in the last set
of particles, and W is the weight of the particle. For each element of Evidence, the
particles are obtained by sampling Query in each current particle and weighting the
particle by the likelihood of the evidence element.

When Query is a list of goals, Arg is a list of variables, one for each query of Query;
in this case Arg and Query must have the same length as Evidence. Values is then
a list of the same length as Evidence and each of its elements is a list of couples V-W

where V is a value of the corresponding element of Arg for which the corresponding
element of Query succeeds in a particle, and W is the weight of the particle. For each
element of Evidence, the particles are obtained by sampling the corresponding element
of Query in each current particle and weighting the particle by the likelihood of the
evidence element.

Example 12.4.7
Consider the LPAD and the conditional query in Example 12.4.5. We can ask the same
thing by using particle filtering, with the query

?- mc_particle_sample_arg(value(0,X),[value(1,9),value(2,8)],

100000,X,V).

12.5 cplint on SWISH: a Web interface for cplint

cplint on SWISH is a web application that allows users to perform reasoning tasks on
probabilistic logic programs. It uses the reasoning algorithms included in the cplint

suite, including exact and approximate inference and parameter and structure learning.

12.5.1 SWISH

SWISH9 is a web application that allows the user to write Prolog programs and ask
queries through the browser. SWISH was originally written by Torbjörn Lager and later
extended by Jan Wielemaker. SWISH is based on SWI-Prolog and uses its Pengines
library [165], which allows to create Prolog engines from an ordinary Prolog thread,
from another Pengine, or from JavaScript running in a web client.

9http://swish.swi-prolog.org/

142 Inference in Probabilistic Logic Programming

The SWISH page is divided into three panes, one with a program editor (on the
left), one with a query editor (on the bottom right) and one that shows the query
results (on the top right). When the user hits return after writing a query, a runner is
created that collects the text in the program editor (if any) and the query and sends
them to the server, which creates a Pengine (Prolog Engine). The Pengine compiles
the program into a temporary private module. The Pengine assesses whether executing
the query can compromise the system. If this fails, an error is displayed. If the query
is considered safe, it executes the query and communicates with the runner about the
results using JSON messages.

A Pengine is composed of a Prolog thread, a dynamic clause database (private to
the Pengine), a message queue for incoming requests and a message queue for outgoing
responses.

Pengines follow a master/slave architecture in which the master creates a Pengine
on the slave and posts a query to it. The conversations between the master and the
slave follow a communication protocol called the Prolog Transport Protocol (PLTP)
that is layered on top of HTTP.

We now show an example from [165]: we use pengine_create/1 to create a slave
Pengine in a remote Pengine server.

:- use_module(library(pengines)).

main :-

pengine_create([

server(’http://pengines.org’),

src_text("

q(X) :- p(X).

p(a). p(b). p(c).

")

]),

pengine_event_loop(handle, []).

handle(create(ID, _)) :-

pengine_ask(ID, q(X), []).

handle(success(ID, [X], false)) :-

writeln(X).

handle(success(ID, [X], true)) :-

writeln(X),

pengine_next(ID, []).

The option src_text is used to send the program to be queried in textual form to the
Pengine. pengine_event_loop/2 is used to start an event loop that listens for event
terms and calls handle/1 on them. If the event term is create(ID,_), it means that
the Pengine with id ID has been created and the event handler uses pengine_ask/3 to
ask the query. Predicate pengine_ask/3 is deterministic, the results of the query will
be returned in the form of event terms. If the event term is of the form success(ID,

Query, More), ID is the Pengine’s id that succeeded in solving the query, Query holds
an instantiation of the query and More is either true or false, indicating whether we
can expect the Pengine to be able to return more solutions or not. If More is true,
handle/1 calls pengine_next/2 to get the following solution. Thus running main/0

cplint on SWISH: a Web interface for cplint 143

will write the terms q(a), q(b) and q(c) to standard output.
Code sent to Pengines is executed in a “sandboxed” environment that ensures that

only predicates that do not have side effects, such as accessing the file system, loading
foreign extensions, defining other predicates outside the sandbox environment, etc., are
called. Goals’ safety is validated using a call to safe_goal/1 of library(sandbox)

prior to execution.
SWI-Prolog also offers a JavaScript library pengine.js that allows the creation of

Pengine JavaScript objects. These, in turn, create Pengine objects on the server that
can be queried from JavaScript.

The SWISH web server is implemented by the SWI-Prolog HTTP package, a series
of libraries for serving data on HTTP [166].

SWISH exploits TogetherJS10 in order to make the development of the code collab-
orative. TogetherJS is an open source JavaScript library built and hosted by Mozilla.
This library permits a real time interaction between users and offers different built-in
features:

Audio and Text Chat The collaborators can chat by talking or texting to each
other.

User Focus The collaborators see each other’s mouse cursors and clicks.

Co-browsing The collaborators can follow each other to different pages on the same
domain.

Real time content sync The content is synchronized between all the collaborators.

It is possible to start collaborating on SWISH by clicking the item “File” in the menu
bar and then clicking on “Collaborate..”. The TogetherJS dock will appear and you
can invite another user by sharing the generated link.

12.5.2 cplint on SWISH

In order to implement cplint on SWISH, we had to modify the foreign language C
library that PITA uses as interface to CUDD so that different threads can use it at
the same time. In fact, the library makes use of static global variables that hold
data structures including the BDD manager and the association between the random
variables and CUDD variables. If two different threads use the library, there would be
a conflict on these variables. Therefore, we added an extra argument Environment,
shortened Env, to all the library predicates defined in Subsection 12.2.1. This argument
holds data structures regarding an individual query, including the BDD manager, and
allows multiple threads to compute the probability of different queries, one thread per
query.

So init(-Env), when called, returns a pointer to a data structure storing the
environment that must be given as input to all the other predicates:

• zero(+Env,-D), one(+Env,-D)

10https://togetherjs.com/

144 Inference in Probabilistic Logic Programming

• and(+Env,+D1,+D2,-DO), or(+Env,+D1,+D2,-DO),

not(+Env,+D1,-DO)

• equality(+Env,+Var,+Value,-D)

• ret_prob(+Env,+D,-P)

• end(+Env)

As a consequence, the PITA transformation of the LPAD must receive the variable Env
that stores the environment.

Note that the init/1 predicate, which initializes the BDD manager, is called for
each query, thus each query, and so each Binary Decision Diagram, is handled by a
different BDD manager. In this way if a thread crashes, the other ones will not be
affected, the client will be notified of the failure and a new query can be immediately
started.

To allow Pengines to execute the PITA library predicates, these must be declared
safe by the code:

:- multifile sandbox:safe_primitive/1.

sandbox:safe_primitive(pita:init).

sandbox:safe_primitive(pita:ret_prob(_,_)).

...

in the pita module file.
The PITA library was also modified with respect to the application of the transfor-

mation of the program. While PITA uses a predicate load/1 that loads the program
file and applies the transformation to it, we decided to use term expansion through
the predicate term_expansion/2, a de-facto standard in Prolog for source-to-source
transformations. When compiling a module, SWI-Prolog will consider each term T

in the program one by one and apply term_expansion(T,NewT), then it will compile
NewT instead of T. So if the user provides clauses for the term_expansion/2 predicate,
the system will compile a modified version of the input.

After loading pita with use_module(library(pita)), the PITA predicate set/2

must be used to set the PITA flag compiling to on. All the clauses for term_expansion/2
check this flag before performing the transformation. If it is not set to on, the trans-
formation is not applied. After setting compiling to on, a file containing an LPAD is
consulted to be translated into Prolog and loaded in memory.

Similarly, if a file containing an LPAD includes the directives
:-use_module(library(pita)). and :-set(compiling,on). at the beginning, when
it is consulted from the top level it is transformed and loaded in memory.

cplint on SWISH has the interface shown in Figure 12.10.
It allows the user to write an LPAD in the left pane and write a query in the

bottom right pane. When the user presses enter at the end of the query or presses the
Run! button, a Pengine is created with the program. This is done by the runner.js

JavaScript file that creates a new Pengine object. The creation of the object was
modified by adding to the program source some directives for loading the pita library,
for disabling the check for discontiguous clauses and for enabling compilation. This is
done by the following snippet of runner.js:

146 Inference in Probabilistic Logic Programming

elem.prologRunner(’setState’, "running");

}

Here data.query.query is a string containing the query. The top right pane will then
show the value of the Prob variable, together with the other variables’ values possibly
present in the query.

cplint on SWISH is robust as each query is executed in a separate thread with
a time limit of 60 seconds. The server, in case of a problem, simply kills the thread
that raised the error and returns the corresponding error message to the client. We ran
several stress tests submitting queries that took more that 60 seconds and saturated the
available memory before the time-out: the corresponding threads were simply killed at
the time-out or at the memory saturation without affecting the other threads. However,
it should be noted that cplint on SWISH is not appropriate for heavy computations,
for which an execution on a local installation is better. cplint on SWISH was designed
for developing and experimenting with the system, also in a collaborative way. The
time limit for the execution of the queries was chosen to ensure the responsiveness of
the server to other clients’ requests. Our tests showed that the system remains active
even in the presence of a high load.

The system contains a wide variety of examples, representing many probabilistic
models such as Markov Logic Networks, generative models, Gaussian processes, Gaus-
sian mixtures, Dirichlet processes, Bayesian estimation and Kalman filters. As such,
the system shows the soundness of PLP also from a software engineering point of view,
opening the way to complex industrial/real world applications. Moreover, a complete
online tutorial [9] is available at http://ds.ing.unife.it/~gcota/plptutorial/.

12.5.3 Examples

In this subsection we show some inference examples by using cplint on SWISH. Fur-
ther examples for can be found in [167] and online at http://cplint.ml.unife.it/.

Example 12.5.1
Let us consider the LPAD in Example 6.2.1. In order to calculate the probability that
a pandemic arises, you can call the query:

?- prob(pandemic,Prob).

or

?- prob_bar(pandemic,Prob).

The latter shows the probabilistic results of the query as a histogram (Figure 12.11a).
The corresponding BDD can be obtained with:

?- bdd_dot_string(pandemic,BDD,Var).

and is represented in Figure 12.11. A solid edge indicates a 1-child, a dashed edge
indicates a 0-child and a dotted edge indicates a negated 0-child. Each level of the
BDD is associated with a variable of the form XIJ indicated on the left: I indicates the
multivalued variable index and J the index of the Boolean variable of I. The table Var

148 Inference in Probabilistic Logic Programming

Figure 12.12: Density of X of mix(X) obtained by the query in Example 12.5.2.

Example 12.5.3 Bayesian estimation cont.
Consider the LPAD and the query performed in Example 12.4.5 and the query in Ex-
ample 12.4.7. The query

?- mc_sample_arg(value(0,Y),10000,Y,L0),

mc_lw_sample_arg(value(0,X),(value(1,9), value(2,8)),10000,X,L),

densities(L0,L,40,Chart).

takes 10,000 samples of the argument X of value(0,X) before and after the observation
of value(1,9),value(2,8) and draws the prior and posterior densities of the samples
using a line chart. Figure 12.13a shows the resulting graph where the posterior is clearly
peaked at around 7.

We can obtain similar results by using particle filtering, but have to use
mc_particle_sample_arg/5 instead of mc_lw_sample_arg/5. The query

?- mc_sample_arg(value(0,Y),Samples,Y,L0),

mc_particle_sample_arg(value(0,X),[value(1,9),value(2,8)],

Samples,X,L),

densities(L0,L,NBins,Chart).

does the same thing of the previous query, but with particle filtering this time. The
results are shown in Figure 12.13b.

Example 12.5.4 Kalman filter cont.
Consider the LPAD and the performed query in Example 12.4.6. We can plot the prior
and posterior distribution after we observed kf(1,[2.5],_T] with the query

?- mc_sample_arg(kf(1,_O1,Y),10000,Y,L0),

mc_lw_sample_arg(kf(1,_O2,T),kf(1,[2.5],_T), 10000,T,L),

densities(L0,L,40,Chart).

This query that returns the graph of Figure 12.14a, from which it is evident that
the posterior distribution is peaked around 2.5.

cplint on SWISH: a Web interface for cplint 149

Given four observations, the value of the state at the same time points can be
sampled by running particle filtering:

?-[O1,O2,O3,O4]=[-0.133, -1.183, -3.212,

-4.586],

mc_particle_sample_arg([kf_fin(1,T1),

kf_fin(2,T2),

kf_fin(3,T3),kf_fin(4,T4)],[kf_o(1,O1),

kf_o(2,O2),

kf_o(3,O3),kf_o(4,O4)],100,[T1,T2,T3,T4],

[F1,F2,F3,F4]).

The list of samples is returned in [F1,F2,F3,F4], with each element being the
sample for a time point.

Given the states from which the observations were obtained, Figure 12.14b shows a
graph with the distributions of the state variable at time 1, 2, 3 and 4 (S1, S2, S3, S4,
density on the left Y axis) and with the points for the observations and the states with
respect to time (time on the right Y axis).

150 Inference in Probabilistic Logic Programming

pre post

(a) Prior and posterior densities of of the argument Y of value(0,Y) ob-
tained by likelihood filtering with 10,000 samples (first query in Exam-
ple 12.5.3).

pre post

(b) Prior and posterior densities of the argument Y of value(0,Y) obtained
by particle filtering with 10,000 samples (second query in Example 12.5.3).

Figure 12.13: Prior and posterior densities of the argument Y of value(0,Y) obtained
by likelihood weighting and particle filtering in Example 12.5.3

152 Inference in Probabilistic Logic Programming

12.6 Related Work

12.6.1 Work on causality inference

To the best of our knowledge, cplint is the first PLP system that allows to perform
causal reasoning in an easy, user-friendly and fast way.

P-log [47] is a probabilistic logic programming language that is equipped with a
system capable of handling causal reasoning. Differently from LPADs, the semantics
of P-log programs is based on Answer Set Programming (ASP) and the possible worlds
are the models of the program interpreted as an ASP program. As such, multiple
worlds are generated not only because of probabilistic constructs but also because of
logical constructs, negation in particular.

The P-log system performs reasoning on such program by computing the whole set
of possible worlds using an ASP reasoner. This means enumerating all possible worlds,
which can be very expensive. P-log is more suited for programs mixing probabilistic
and advanced non-monotonic constructs. If these features are not needed, cplint can
achieve better results.

Some languages, such as ICL [142] and ProbLog [140], only allow facts as proba-
bilistic clauses. This does not limit the expressiveness, as it is possible to transform
an LPAD into an ICL or ProbLog program. For example, the viral marketing program
translated into ProbLog is shown in Figure 12.15.

Considering ProbLog as an example, if an action involves a predicate defined only
by probabilistic facts, causal inference can be performed by conditional inference. Since
probabilistic facts have no parents, in the program above P (has(2)|do(apriori(3))) is
equal to P (has(2)|apriori(3)) and, at the same time, P (has(2)|do(\+apriori(3)))
is equal to P (has(2)|\+apriori(3)). On the other hand, if actions involve predicates
defined by rules, as for example in P (has(2)|do(has(3))), the previous simple ap-
proach does not apply. In fact, for the action do(A), one should look for all groundings
of all probabilistic facts on which A depends and include them in the evidence. This
requires a partial evaluation of the program. For the example above one could compute
P (has(2)|do(has(3))) by computing P (has(2)|apriori(3), viral(3,1), viral(3,2))
but in general the partial evaluation may be costly.

Anyway, in case a program can be rewritten by having all predicates for actions
defined by facts only, then causal inference can be performed by conditional inference or

has(P):- apriori(P).

has(P):- trusts(P, Q), has(Q), viral(P,Q).

apriori(_):0.1.

viral(_,_):0.4.

trusts(2,1).

trusts(3,1).

trusts(3,2).

trusts(4,1).

trusts(4,3).

Figure 12.15: ProbLog program for viral marketing.

Related Work 153

unconditional inference on simple modifications of the program. This is the approach
taken for example in [142], which describes a scenario where there is a robot and a key,
the robot can pick up or put down the key and move to different locations11. In this
example actions are defined only by (certain) facts so their effects can be computed by
adding or removing the facts encoding the actions.

The authors of [168] proposed an approach to perform the full do calculus on
propositional causal models using Answer Set Programming. Moreover, they present
an algorithm for inducing models from data. Our approach differs from this because
we consider inference for relational causal models, albeit in a restricted case. Therefore
our causal random variables can be parameterized by logical variables, as has(P) in the
viral marketing example: we have a different causal Boolean variable has(p) for each
person p and the rules defining the predicate has/2 serve as a template for building a
complex propositional model of the dependence of has(p) from its causes.

12.6.2 Work on Hybrid Probabilistic Logic Programs

A semantics to Hybrid Probabilistic Logic Programs, i.e. logic programs some of the
random variables are continuous, was given independently in [160] and [169]. In [161]
the semantics of these programs, called Hybrid Probabilistic Logic Programs (HPLP),
is defined by means of a stochastic generalization STp of the Tp operator that applies
to continuous variables the sampling interpretation of the distribution semantics: STp
is applied to interpretations that contain ground atoms (as in standard logic program-
ming) and terms of the form t = v where t is a term indicating a continuous random
variable and v is a real number. If the body of a clause is true in an interpretation
I, STp(I) will contain a sample from the head. Moreover the authors proposed an
evolution of Distributional Clauses called Dynamic Distributional Clauses for dynamic
inference with time.

In [169] a probability space for N continuous random variables is defined by consid-
ering the Borel σ-algebra over RN and a Lebesgue measure on this set as the probability
measure. The probability space is lifted to cover the entire program using the least
model semantics of constraint logic programs.

12.6.3 Web application for Probabilistic Logic Programming

cplint on SWISH is a web application based on SWISH for the cplint system. A
similar system is ProbLog2 [30], which also has an online version12. The main dif-
ference between cplint on SWISH and ProbLog2 is that the former currently offers
also structure learning, approximate conditional inference through sampling and han-
dling of continuous variables. Moreover, cplint on SWISH is based on SWISH13 - a
web framework for Logic Programming using features and packages of SWI-Prolog and
its Pengines library - and utilizes a Prolog-only software stack in the server, whereas
ProbLog2 relies on several different technologies, including Python 3 and the DSHARP

11Available also in ProbLog at https://dtai.cs.kuleuven.be/problog/tutorial/various/14_

robot_key.html.
12https://dtai.cs.kuleuven.be/problog/
13http://swish.swi-prolog.org

154 Inference in Probabilistic Logic Programming

compiler. In particular, it writes intermediate files to disk in order to call external pro-
grams such as DSHARP, while we work in main memory only.

A work strictly related to cplint on SWISH is TRILL on SWISH [12]. TRILL
on SWISH allows the user to write probabilistic Description Logic (DL) theories in
RDF/XML format, and compute the probability of queries with a web browser and is
briefly illustrated in Section 13.6.

12.7 Conclusions

In this chapter we presented cplint, a PLP system that allows to perform several
inference tasks, and its web interface named ”cplint on SWISH“.

In cplint causal queries on models with no unknown variables can be answered with
exact and approximate inference by exploiting the PITA and MCINTYRE modules
respectively. We conducted experiments on the viral marketing problem with random
social networks of increasing size. We compared the performance of causal reasoning in
cplint with regular probabilistic reasoning. The results show that the modification of
the inference algorithms do not impact on the execution time and that causal reasoning
is in effect cheaper than conditional inference, as expected, thus showing that causal
inference is suitable for real life applications.

Like [48], we assume that the causal structure of the model is fully known. Pearl’s
do calculus is more general, as it allows to compute the effect of actions also on models
with unknown variables. Exploiting the full power of the do calculus in PLP is a very
interesting direction for future work.

Hybrid probabilistic logic programs, probabilistic logic programs where some of
the random variables are continuous, can also be handled with cplint by using the
MCINTYRE module, in particular if the evidence contains an atom with continuous
values as arguments, you need to use likelihood weighting or particle filtering. Both of
them are implemented in the MCINTYRE module of cplint, proving that cplint is
a very useful tool to represent different types of knowledge bases.

Web-based systems are, today, the way to reach out to a wider audience. In order to
popularize Probabilistic Logic Programming, we have implemented the web application
”cplint on SWISH“ that allows the user to easily write a Probabilistic Logic Program
and compute the probability of queries with a web browser. cplint on SWISH already
includes a number of examples that cover a wide range of domains and provide inter-
esting applications of Probabilistic Logic Programming. cplint on SWISH has been
implemented by exploiting the features of the system SWISH for Prolog programming
and querying on the Web, and by porting the PITA system for inference on LPADs
from its original XSB implementation to SWI-Prolog.

In the next chapter we present algorithms of exact inference for Probabilistic De-
scription Logics that follow DISPONTE.

Chapter 13

Inference in Probabilistic Description

Logics

In this chapter we present several algorithms for exact logical inference on Probabilistic
Description Logics (PDLs) that follow DISPONTE. Section 13.1 introduces the chapter.
Then the following systems are discussed in order: BUNDLE in Section 13.2, TRILL in
Section 13.3 and TRILLP in Section 13.4. Section 13.5 shows how to install TRILL and
its derivative systems. Section 13.6 presents a web application for TRILL and TRILLP .
Then a discussion about the complexity of the proposed inference systems is provided
in Section 13.7. The experimental results in Section 13.8 show how our systems behave
on real world datasets. Related work is discussed in Section 13.9. Finally Section 13.10
draws conclusion and discusses the limitations of our systems and the next steps to
undertake.

13.1 Introduction

In Chapter 9 we introduced DISPONTE, a semantics to represent uncertain informa-
tion with description logics. While in the previous chapter we have illustrated cplint,
a system that can perform different types of inference on LPADs, in this chapter we
show different implemented systems to perform logical probabilistic inference on PDLs
that follow DISPONTE. In particular, here we present BUNDLE, TRILL and TRILLP .

The methods shown in Chapter 11 are still valid for Probabilistic Description Log-
ics that follow DISPONTE. One of the methods for performing logical probabilistic
inference is to find the covering set of explanations for a query and make, in some way,
all the explanations mutually exclusive. This is the approach used by BUNDLE and
TRILL systems. Given a query Q and a KB K, the explanation finding problem has
been examined in Subsection 8.2.3 and we defined the problem min-a-enum which
concern the extraction of the set all the possible MinAs All-MinAs(Q,K), i.e. the
covering set of all the possible minimal explanations.

While BUNDLE is written in Java; TRILL and TRILLP are written in Prolog.

155

156 Inference in Probabilistic Description Logics

13.2 BUNDLE

In Subsection 8.2.3 we described how to solve the min-a-enum problem by means of the
hitting set tree (HST) algorithm. This algorithm repeatedly calls a modified tableau
algorithm1 which builds a MinA, i.e. a minimal explanation, from a DL KB from which
some axioms are removed depending on the previously found MinAs. BUNDLE [11, 3],
for “Binary decision diagrams for Uncertain reasoNing on Description Logic thEories”,
computes the probability of query from a KB that follows DISPONTE by first finding
a covering set of explanations and then making them pairwise incompatible by using
BDDs (see Section 11.5). To solve the min-a-enum BUNDLE uses the HST algorithm
and, every time a new MinA is needed, BUNDLE exploits Pellet reasoner and its
tableau algorithm [82]. Finally, it computes the probability from the BDD by using
function Prob of Algorithm 11.2.

Algorithm 13.1 shows BUNDLE’s main procedure. It first builds a data structure
PMap that associates each probabilistic DL axiom Ei with its probability pi (line 8).
If Ei is associated with more than a probability, BUNDLE aggregates all the values fol-
lowing the semantics (see Example 9.2.4), the resulting probability is inserted in PMap.
Then it computes the MinAs for the query Q by calling the ExpHST function (line
9) which in turn executes the HittingSetTree function2, shown in Algorithm 8.4.
ExpHST can also take as input several parameters such as the maximum number of
explanations to be generated maxEx and the time limit maxTime for the inference
process. If one of the limits is reached during the execution of the HST algorithm,
ExpHST stops and returns the set of explanations found so far.

Two data structures are initialized: V arAx is an array that contains the association
between Boolean random variables (whose index is the array index) and pairs (axiom,
probability), and BDD stores a BDD. BDD is initialized to the zero Boolean function
(lines 10-11).

Then BUNDLE builds a BDD representing the set of explanations by means of
two nested loops (lines 12-29). In the outer loop it iterates over explanations, whereas
in the inner loop it iterates over the axioms that compose the current explanation.
JavaBDD3 [132] is exploited to manipulate BDDs. As mentioned in Section 10.3, it
is a Java BDD library and an interface to a number of underlying BDD manipulation
packages. The underlying package to use can be dynamically chosen by means of a
specific argument, by default BuDDy is used.

In the inner loop, BUNDLE generates the BDD for a single explanation, indicated
as BDDE, which is initialized to the one Boolean function (lines 14-27). The axioms
of each MinA are considered one by one. If the axiom is certain, then the one Boolean
function is stored in BDDA (line 16). Otherwise, the axiom Ax is searched for in
PMap and the associated probability value p is extracted. The axiom is also searched
for in V arAx to check whether a random variable has already been assigned to it (lines
18-19). If not, a cell is added to V arAx to store the pair (line 21). At this point we know
the position i of the pair (Ax, p) in the array V arAx, that is the index of its Boolean

1The HST algorithm is not restricted to tableau algorithms, it can be used with any algorithm
that retrieves a MinA given a query.

2As mentioned before the MinAs correspond to the conflict sets found by the HST Algorithm.
3Available at http://javabdd.sourceforge.net/

BUNDLE 157

Algorithm 13.1 Function Bundle: computation of the probability of a query Q
given the (probabilistic) KB K.

1: function Bundle(Q,K,maxEx,maxT ime)
2: Input: Q (the query (a concept) to be tested for satisfiability)
3: Input: K (the knowledge base)
4: Input: maxEx (the maximum number of explanations to find)
5: Input: maxTime (the time limit for the inference)
6: Output: the set of explanations (MinAs) found for the unsatisfiability of Q w.r.t. K
7: Output: the probability of the query Q w.r.t. K
8: Build Map PMap with sets of pair (axiom, probability)
9: MinAs←ExpHST(Q,K,maxEx,maxT ime)

10: Initialize V arAx to empty . V arAx is an array of pairs (axiom, probability)
11: BDD ←BDDZero

12: for all MinA ∈MinAs do

13: BDDE ←BDDOne

14: for all Ax ∈MinA do

15: if Ax in K is a certain axiom then

16: BDDA←BDDOne

17: else

18: p← PMap(Ax)
19: Scan V arAx looking for Ax
20: if !found then

21: Add to V arAx a new cell containing (Ax, p)
22: end if

23: Let i be the position of (Ax, p) in V arAx
24: BDDA← BDDGetIthVar(i)
25: end if

26: BDDE ←BDDAnd(BDDE,BDDA)
27: end for

28: BDD ←BDDOr(BDD,BDDE)
29: end for

30: queryProb←Prob(BDD, ∅) . V arAx is used to compute P (X) in Prob

31: return (MinAs, queryProb)
32: end function

random variable Xi. We obtain a BDD representing Xi = 1 with BDDGetIthVar
in BDDA (line 24). BDDA is finally conjoined with the current BDDE to get the
BDD representing a single explanation (line 26).

In the outermost loop, BUNDLE combines BDDs for different explanations through
disjunction between BDD and the current explanation BDDE (line 28).

After the two cycles, the BDD BDD is fully built. we can finally invoke function
Prob of Algorithm 11.2 to compute the probability of the query from BDD.

In [3] the authors proved BUNDLE correctness.

Theorem 13.1 BUNDLE correctness ([3])
Given a DISPONTE knowledge base K, a query Q and one or both limits maxEx and
maxTime for the number of explanations to find and for the inference time respectively,
the probability returned by BUNDLE, Bundle(Q,K,maxEx,maxT ime) could be:

• A lower bound on P (Q) if a maximum number of explanations to compute and/or
a time limit are set and at least one of the limits is reached, i.e.,

Bundle(Q,K,maxEx,maxT ime) ≤ P (Q)

158 Inference in Probabilistic Description Logics

This means that we have computed a subset of the covering set of minimal expla-
nations for the query Q. This is a direct consequence of Theorem 11.3.

• Equal to P (Q), i.e.,

Bundle(Q,K,maxEx,maxT ime) = P (Q)

This means that we have computed all the explanations of the query Q and there-
fore we have obtained the exact probability of Q. This is a direct result of Theo-
rem 11.2.

13.2.1 How to use BUNDLE

The latest stable version of BUNDLE is 2.3.1 and it can be downloaded at https:

//bitbucket.org/machinelearningunife/bundle/downloads/. It can be used as
standalone desktop application. The manual to use BUNDLE can be found at https:
//bitbucket.org/machinelearningunife/bundle/wiki/Home.

If your application needs to perform probabilistic logical inference, BUNDLE can
also be used as a library. If you are using Maven, all you have to do is to add the
following lines in your POM.xml.

<dependency>

<groupId>it.unife.endif.ml</groupId>

<artifactId>bundle</artifactId>

<version>2.3.1</version>

</dependency>

Then you can obtain the probability of query in just few lines:

Bundle reasoner = new Bundle();

reasoner.setRootOntology(rootOntology);

reasoner.computeQuery(query);

where rootOntology and query are objects of the classes OWLOntology and OWLAxiom

of OWLAPI library respectively.
BUNDLE has been integrated in DL-Learner 1.3 [170], together with EDGE (see

Chapter 16) and LEAP (see Chapter 18).

13.3 TRILL

In Subsection 8.2.2 we discussed Pellet’s tableau algorithm (Algorithm 8.1), and its
expansions rules (Figure 8.1). Some of these expansion rules are non-deterministic and
in order to find all the explanations all the non-deterministic choices must be explored.
The HST algorithm, discussed in Section 8.2.3, is a way for procedural languages, such
as Java, to manage with the non-determinism of the tableau.

Prolog is a declarative language that natively supports non-determinism by means
of backtracking facilities. This led to the development of TRILL.

TRILL stands for “Tableau Reasoner for descrIption Logics in Prolog”, it implements
the tableau algorithm in Prolog, so the management of the non-determinism of the rules

TRILL 159

is delegated to the language, and solves min-a-enum. It can answer concept and role
membership queries, subsumption queries and can test the unsatisfiability of a concept
of the KB or the inconsistency of the entire KB.

The code of TRILL is available at https://github.com/rzese/trill.
We use the Thea2 library [171] for converting OWL DL KBs into Prolog. Thea2

performs a direct translation of OWL axioms into Prolog facts. For example, a simple
subclass axiom between two named classes Cat v Pet is written using the subClassOf/2
predicate as subClassOf(‘Cat’,‘Pet’). For more complex axioms, Thea2 exploits the
list construct of Prolog, so the axiom

NatureLover ≡ PetOwner t GardenOwner

becomes

equivalentClasses([‘NatureLover’, unionOf([‘PetOwner’,‘GardenOwner’])]).

In order to represent the tableau, TRILL uses a pair Tableau = (A, T), where

• A represents the ABox, it is a list containing information about individuals and
class assertions with the corresponding value of the tracing function, i.e. the
corresponding set of explanations. An example of ABox A is shown in Figure 13.1,
which states that kevin is a nominal (nominal(’kevin’)) and that it belongs to
concept Man and to concept Person.

[(classAssertion(’Person’,’kevin’),

[subClassOf(’Man’,’Person’),

classAssertion(’Man’,’kevin’)]),

(classAssertion(’Man’,’kevin’),[

classAssertion(’Man’,’kevin

’)]),

nominal(’kevin’)]}

Figure 13.1: Example of ABox in TRILL

• T is a triple (G, RBN , RBR) in which G is a directed graph that contains the
structure of the tableau, RBN is a red-black tree (a key-value dictionary), where
a key is a couple of individuals and its value is the set of the labels of the edge
between the two individuals, and RBR is a red-black tree, where a key is a role
and its value is the set of couples of individuals that are linked by the role. This
representation allows to quickly find the information needed during the execution
of the tableau algorithm.

For managing the blocking system we use a predicate for each blocking state: nominal/2,
blockable/2, blocked/2, indirectly_blocked/2 and safe/3. Each predicate takes
as arguments the individual Ind and the tableau (ABox, Tab). safe/3, shown in Fig-
ure 13.2, takes as input also the role R ; rb_lookup/3 looks for a pair of individuals
connected by the role R and neighbors/3 returns the list of neighbors of Ind in N.

160 Inference in Probabilistic Description Logics

safe(Ind,R,(ABox,Tab)):-

(T,RBN,RBR) = Tab,

rb_lookup(R,V,RBR),

member((X,Ind),V),

blockable(X,(ABox,(T,RBN,RBR)))

,!.

safe(Ind,R,(ABox,Tab)):-

(T,RBN,RBR) = Tab

rb_lookup(R,V,RBR),

member((X,Ind),V),

nominal(X,(ABox,(T,RBN,RBR))),!,

\+ blocked(Ind,(ABox,(T,RBN,RBR)

)).

Figure 13.2: Code of the predicate safe/3. An R-neighbour Ind of X is safe if (i) X is
blockable - corresponding with the first definition, where the predicate blockable/2 is
called - or if (ii) X is a nominal node and Ind is not blocked - checked by nominal/2

and blocked/2 -. The predicates rb_lookup/3 and member/2 are used to find an
R-predecessor X to check if Ind is safe following the definition.

During initialization of the tableau, for each individual Ind in the ABox, we add the
atom nominal(Ind) to A, then every time we have to check the blocking status of an
individual we call the corresponding predicate that returns the status by checking the
tableau.

Deterministic and non-deterministic tableau expansion rules are implemented fol-
lowing a different interface; this will facilitate the insertion of new rules in the future.

Deterministic rules are implemented by a predicate rule_name(Tab,Tab1) that,
given the current tableau Tab, returns the tableau Tab1 obtained by the application of
the rule to Tab.

Figure 13.3 shows part of the code of the deterministic rule→ unfold. The predicate
unfold_rule/2 searches in (ABox, Tab) for an individual to which the rule can be
applied and calls the predicate find_sub_sup_class/3 in order to find the class to be
added to the label of the individual.

All non-deterministic rules are implemented following the interface rule_name(Tab,
TabList), thus they take as input the current tableau Tab and return the list of
tableaux TabList created by the application of the rule to Tab.

Figure 13.4 shows the code of the non-deterministic rule → t. The predicate
or_rule/2 searches in the tableau Tab0, which corresponds to the pair (ABox0,Tabs0),
for an individual to which the rule can be applied and unifies L with the list of new
tableaux created by scan_or_list/6. find/2 implements the search for a class asser-
tion. Since the data structure that stores class assertions is currently a list, find/2
simply calls member/2. absent/3 checks if the class assertion axiom with the associ-
ated explanation is already present in ABox, and in this case it checks the applicability
of the expansion rule.

TRILL 161

unfold_rule((A,T),([(classAssertion(D,Ind),[(Ax,Ind)|Expl])|A],T)):-

find((classAssertion(C,Ind),Expl),A),

atomic(C),

find_sub_sup_class(C,D,Ax),

absent(classAssertion(D,Ind),[(Ax,Ind)|Expl],(A,T)).

find_sub_sup_class(C,D,subClassOf(C,D)):-

subClassOf(C,D).

find_sub_sup_class(C,D,equivalentClasses(L)):-

equivalentClasses(L),

member(C,L),

member(D,L),

dif(C,D).

Figure 13.3: Code of the → unfold rule. It takes an atomic class C from the input
tableau and looks for a class D which is a superclass or an equivalent class of C and it
is not already in the tableau, builds the explanation for the new class assertion found
and adds it to the resulting tableau.

or_rule((ABox0,Tabs0),L):-

find((classAssertion(unionOf(LC),Ind),Expl),ABox0),

\+indirectly_blocked(Ind,(ABox0,Tabs0)),

findall((ABox1,Tabs0),scan_or_list(LC,Ind,

Expl,ABox0,Tabs0,ABox1),L),

dif(L,[]),!.

scan_or_list([],_Ind,_Expl,ABox,_Tabs,ABox).

scan_or_list([C|_T],Ind,Expl,ABox,Tabs,

[(classAssertion(C,Ind),Expl)|ABox]):-

absent(classAssertion(C,Ind),Expl,(ABox,Tabs)).

scan_or_list([_C|T],Ind,Expl,ABox0,Tabs,ABox):-

scan_or_list(T,Ind,Expl,ABox0,Tabs,ABox).

Figure 13.4: Code of the → t rule. It unifies the list L with all the tableau resulting
by the application of the rule.

162 Inference in Probabilistic Description Logics

Expansion rules are applied in order by apply_all_rules/2, first the determin-
istic ones and then the non-deterministic ones, as shown in Figure 13.5. The predi-
cate apply_det_rules/3 takes as input the list of deterministic rules and the current
tableau and returns a tableau obtained by the application of one of the rules. It is
called as apply_det_rules(RuleList,Tab,Tab1). After the application of a deter-
ministic rule, a cut avoids backtracking to other possible choices for the deterministic
rules.

Then, non-deterministic rules are tried sequentially with apply_nondet_rules/3,
shown in Figure 13.5, that is called as apply_nondet_rules(RuleList, Tab, Tab1).
It takes as input the list of non-deterministic rules and the current tableau and returns
a tableau obtained with the application of one of the rules. If a non-deterministic
rule is applicable, the list of tableaux obtained by its application is returned by the
predicate corresponding to the applied rule, a cut is performed to avoid backtracking
to other rule choices and a tableau from the list is non-deterministically chosen with
the member/2 predicate. If no rule is applicable, the input tableau is returned and the
rule application stops, otherwise a new round of rule application is performed.

Finally, the findall/3 predicate is used on the set of the built tableaux for finding
all the clashes contained in them in order to collect all the possible explanations.

In each rule application round, the applicability of a rule is checked by looking
whether its result is not already present in the tableau. This avoids both infinite loops
in the rule application and considering alternative rules when a rule is applicable. In
fact, if a rule is applicable in a tableau, it will also be so in any tableau obtained by the
expansion of the original one. In this case, the choice of which expansion rule to apply
introduces “don’t care” non-determinism. Differently, “don’t know” non-determinism is
introduced by non-deterministic rules, since a single tableau is expanded into a set of
tableaux. We use Prolog search only to handle “don’t know” non-determinism.

In Figure 8.1, the symbol (∗) denotes the rules used by TRILL. When a concept is
already present in a node label, TRILL checks whether to update the tracing function
by verifying that the corresponding set of axioms is not a subset of τ .

TRILL is limited to to SHIQ KBs. In particular we can notice that the NN-
rule [93] is not implemented. This rule is necessary if the DL KB involves inverse roles,
number restrictions and nominals.

When the set of covering explanations is found, TRILL computes the probabil-
ity of a query by means of the compute_prob/2 predicate, shown in Figure 13.6.
build_bdd/3 takes each explanation in Expls and, for each axiom in the explana-
tions, looks for its probability using get_prob_ax/3 (certain axioms have probability
1). Expls is a list similar to the ABox in Figure 13.1.

The probability of the query is finally computed from the newly built BDD by using
ret_prob/3. one/2 and zero/2 return BDDs representing the Boolean constants 1
and 0; and/4 and or/4 perform the AND and OR Boolean operations between BDDs.
get_var_n/5 returns the random variable V associated with axiom AxN and the list of
probabilities [Prob,ProbN], where ProbN = 1− Prob. equality/4 returns the BDD
BDDeq associated with the expression V = val where V is a random variable and val is
0 or 1. The ret_prob/3, one/2, zero/2, and/4, or/4 and equality/4 predicates are
the same predicates defined in Subsection 12.2.1.

TRILL 163

apply_all_rules(Tab0,Tab):-

apply_det_rules(

[o_rule,and_rule,unfold_rule,

add_exists_rule,forall_rule,

forall_plus_rule,exists_rule,

min_rule],

Tab0, Tab1),

(Tab0=Tab1 *->

Tab=Tab1;

apply_all_rules(Tab1,Tab)

).

apply_det_rules([],Tab0,Tab):-

apply_nondet_rules([or_rule,max_rule],

Tab0,Tab).

apply_det_rules([H|_],Tab0,Tab):-

call(H,Tab0,Tab),!.

apply_det_rules([_|T],Tab0,Tab):-

apply_det_rules(T,Tab0,Tab).

apply_nondet_rules([],Tab,Tab).

apply_nondet_rules([H|_],Tab0,Tab):-

call(H,Tab0,L),!,

member(Tab,L),

dif(Tab0,Tab).

apply_nondet_rules([_|T],Tab0,Tab):-

apply_nondet_rules(T,Tab0,Tab).

Figure 13.5: Application of the expansion rules by means of the predicates
apply_all_rules/2, apply_det_rules/3 and apply_nondet_rules/3. The list
[o_rule,and_rule,...] contains the available rules in TRILL.

164 Inference in Probabilistic Description Logics

compute_prob(Expl,Prob):-

get_number_of_probabilistic_axioms(NV),

init_test(NV,Env),

build_bdd(Env,Expls,BDD),

ret_prob(Env,BDD,Prob),

end_test(Env), !.

build_bdd(Env,[X],BDD):- !,

bdd_and(Env,X,BDD).

build_bdd(Env, [H|T],BDD):-

build_bdd(Env,T,BDDT),

bdd_and(Env,H,BDDH),

or(Env,BDDH,BDDT,BDD).

build_bdd(Env,[],BDD):- !,

zero(Env,BDD).

bdd_and(Env,[X],BDDeq):-

get_prob_ax(X,AxN,Prob),!,

ProbN is 1-Prob,

get_var_n(Env,AxN,[],[Prob,ProbN],V),

equality(Env,V,0,BDDeq),!.

bdd_and(Env,[_X],BDDX):- !,

one(Env,BDDX).

bdd_and(Env,[H|T],BDDAnd):-

get_prob_ax(H,AxN,Prob),!,

ProbN is 1-Prob,

get_var_n(Env,AxN,[],[Prob,ProbN],V),

equality(Env,V,0,BDDeq),

bdd_and(Env,T,BDDT),

and(Env,BDDeq,BDDT,BDDAnd).

bdd_and(Env,[_H|T],BDDAnd):- !,

one(Env,BDDH),

bdd_and(Env,T,BDDT),

and(Env,BDDH,BDDT,BDDAnd).

Figure 13.6: Code of the predicates compute_prob/2 and build_bdd/3.

TRILLP 165

13.4 TRILLP

TRILLP stands for “Tableau Reasoner for descrIption Logics in Prolog powered by
Pinpointing formula”. It is based on the reasoner TRILL, but instead of resolving
min-a-enum like TRILL, it builds a pinpointing formula representing the set of all
MinAs for a given query, following the approach defined in Subsection 8.2.4.

Since TRILLP is based on TRILL, the representation of the tableau and the man-
agement of the blocking system are the same of TRILL. However, there are some
differences due to the different representation of the explanations. Both TRILL and
TRILLP represent the tableau as a couple Tableau = (A, T), but in TRILLP the label
of each class assertion in the list A contains the pinpointing formula instead of the
explanations.

The pinpointing formula is encoded as a combination of predicates */1 and +/1.
For instance, the Boolean formula ((E2 ∧ E4) ∨ (E3 ∧ E5)) ∧ E6 ∧ E1 from Example
8.2.3 is modeled as *([+([*([E2,E4]),*([E3,E5])]),E6,E1]).

As mentioned in Subsection 8.2.4, the algorithm used for computing the pinpointing
formula is limited to SHI KBs, therefore TRILLP uses a subset of TRILL’s expansion
rules. In particular, it uses the rules defined in Figure 8.4.

The ψ−insertability test is done by means of a satisfiability solver. In particular,
TRILLP conjoins the negation of the pinpointing formula lab(a) contained in the label
of the individual in the tableau with the new Boolean formula ψ to add to the label and
tests the satisfiability of such formula. In other words to check whether ψ |= lab(a),
TRILLP checks whether ψ ∧ ¬lab(a) is satisfiable. If the formula is satisfiable, i.e.
ψ 6|= lab(a) then the assertion is ψ-insertable. This step is performed by the test/2

predicate shown in Figure 13.7. The predicate test/2 first calls build_f/3 which
takes two Boolean formulas L1 (ψ) and L2 (lab(a)) and creates the conjunction that
will be tested by means of the satisfiability solver. Predicates cnf/2 and sat/1 are
Prolog libraries providing an interface to a SAT solver. Predicate cnf/2 converts a
propositional formula F, into a Conjunctive Normal Form (CNF) Cnf. Finally, sat/1
takes as input such a CNF formula and succeeds if it is satisfiable. If the test returns
true, TRILLP combines the two Boolean formulas with the OR Boolean operator. The
YAP version of sat/1 exploits a library [172] that interfaces with the MiniSat SAT
solver [173], a small (about 1200 lines of C code) and efficient sat-solver; whereas the
SWI-Prolog version exploits the solver contained in the clpb4 library.

4http://www.swi-prolog.org/pldoc/man?section=clpb

166 Inference in Probabilistic Description Logics

test(L1,L2):-

build_f(L1,L2,F),

cnf(F,Cnf),

sat(Cnf).

build_f([L1],[L2],(F1*(-F2))):-

build_f1(L1,F1,[],Var1),

build_f1(L2,F2,Var1,_Var).

Figure 13.7: Definition of the predicates test/2 and build_f/3. In particular,
build_f1/4 takes as input a Boolean formula (the first argument) and a list containing
the correspondence between Boolean variables and axioms (the third argument) and
returns the Boolean formula in a format suitable for the predicate cnf/2 (the second
argument) and the updated correspondence list.

13.5 How to use TRILL and TRILLP

TRILL and TRILLP are available both for Yap Prolog5 [151] and in SWI-Prolog6

[152]. Using SWI-Prolog, with the goal pack_install(trill) the user will install
all these systems. After the installation, they can be loaded with the command
use_module(library(trill)). The code is available at https://github.com/rzese/
trill.

13.6 TRILL on SWISH

In order to popularize DISPONTE, we developed a Web application called TRILL
on SWISH and available at http://trill.lamping.unife.it. TRILL on SWISH is
strictly related to cplint on SWISH. As for cplint on SWISH, we exploited SWISH
[165], a recently proposed Web framework for logic programming that is based on
various features and packages of SWI-Prolog (see Subsection 12.5.1).

We modified it in order to manage OWL KBs. TRILL-on-SWISH allows users to
write a KB in the RDF/XML format directly in the web page or load it from a URL,
and specify queries that are answered by TRILL running on the server. Once the
computation ends, the results are sent to the client browser and visualized in the Web
page.

Figure 13.8 shows the interface of TRILL on SWISH. We can notice that is very
similar to the interface of cplint on SWISH.

5http://www.dcc.fc.up.pt/~vsc/Yap/
6http://www.swi-prolog.org/

168 Inference in Probabilistic Description Logics

We have already seen that the input of the sum-of-products problem is of
at least exponential size in the worst case, moreover sum-of-products was
shown to be #P-hard [179], hence computing the probability of an axiom from
a SHIQ(D) (and SROIQ(D)) knowledge base is intractable. However, the
algorithms that have been proposed for solving the two problems proved to be
able to work on input of real world size. For example, all MinAs have been found
for various entailments over many real world ontologies within a few seconds [90,
95]. Concerning the sum-of-products problem, algorithms based on BDDs
were able to solve problems with hundreds of thousands of variables (see e.g. the
works on inference on probabilistic logic programs [45, 180, 27, 181, 140, 182,
144, 49, 183]). Also methods for weighted model counting [148, 184] can be used
to solve the sum-of-products problem.

Moreover, Section 13.8 shows that in practice our algorithms can compute the
probability of entailments on KBs of real-world size.

13.8 Experiments

In [185, 3] BUNDLE was compared with PRONTO by running queries w.r.t. increas-
ingly complex ontologies. The experiments showed that BUNDLE can manage larger
KBs than PRONTO due to the low amount of memory needed and it is faster. Starting
from these results we compared our system taking BUNDLE as basis for comparison.
The experiment were performed on a Linux machine with an Intel Core 2 Quad CPU
Q6600 @ 2.40GHz.

13.8.1 Comparing the Systems

We conducted two different experiments to compare the inference times spent to answer
a probabilistic query by our systems BUNDLE, TRILL and TRILLP 8.

For the first test we used four real world KBs of various complexity as in [10]:

• BRCA9, which models the risk factors of breast cancer;

• an extract of the DBPedia10 ontology obtained from Wikipedia;

• Biopax level 311, which models metabolic pathways;

• Vicodi12, which contains information on European history.

BRCA (“Breast Cancer Risk Assessment”) [186] states the risk factors of breast cancer
depending on several factors such as age, drugs taken, ethnicity, etc. For example,
as shown in Figure 13.9, it states that known factors for the disease are the lack of
exercise or having the first child at a late age. The original version presented in [186]

8We used the SWI-Prolog version of TRILL and TRILLP .
9http://www2.cs.man.ac.uk/~klinovp/pronto/brc/cancer_cc.owl

10http://dbpedia.org/
11http://www.biopax.org/
12http://www.vicodi.org/

Experiments 169

...

<owl:Class rdf:about="&cancer_ra;

LackOfExercise">

<rdfs:subClassOf rdf:resource="&cancer_ra

;KnownFactor"/>

</owl:Class>

<owl:Class rdf:about="&cancer_ra;

LateFirstChild">

<rdfs:subClassOf rdf:resource="&cancer_ra

;KnownFactor"/>

</owl:Class>

...

Figure 13.9: Axioms from BRCA. They state that the lack of exercise may increase
the risk of having breast cancer as well as having the first child at old age.

...

<owl:Class rdf:about="&dbpedia;

ComicsCreator">

<rdfs:subClassOf rdf:resource="&dbpedia;

Person"/>

</owl:Class>

...

<owl:Class rdf:about="&dbpedia;Hospital">

<rdfs:subClassOf rdf:&dbpedia;Place"/>

</owl:Class>

...

Figure 13.10: Axioms from DBPedia. They state that a comic creator is a person and
that hospitals are places.

reduced risk assessment to probabilistic entailment in P-SHIQ(D). For this test we
took only the non-probabilistic part and we made probabilistic 50 axioms randomly
chosen. BRCA has ALCHF(D) expressiveness and contains 491 axioms, 154 different
classes and 15 different properties (12 object properties and 3 data properties).

DBPedia contains structured information about Wikipedia. It is built on the data
contained in the sideboxes shown in wiki pages. Some examples of axioms are shown
in Figure 13.10. DBPedia’s expressiveness is EL. The portion we consider contains
267 axioms and 118 classes.

Biopax [187] was defined in order to allow integration on analysis of biological
pathways data. The BioPax project defines 3 different levels, in this test we used level
3 that represents molecular and genetic interactions together with pathways including
molecular states. Figure 13.11 shows the axioms asserting that physical entities are
composed of complexes which are in turn physical entities different from DNAs, RNAs

170 Inference in Probabilistic Description Logics

Table 13.1: Average time of BUNDLE, TRILL and TRILLP for different datasets.

BioPax BRCA DBPedia Vicodi

TRILL 0.113 0.572 22.972 0.034

TRILLP 0.078 1.083 4.764 0.026

BUNDLE 1.85 6.96 3.79 1.12

Table 13.2: Average time (in seconds) for computing the probability of queries with the
reasoners BUNDLE, TRILL and TRILLP for synthetic datasets. The cells containing
“–” mean that the execution was timed out (600 s). In particular, with n = 10, TRILLP

took more than 24 hours.

2 4 6 8 10

TRILL 0.004 0.102 7.027 556.927 –

TRILLP 0.018 0.680 93.546 – –

BUNDLE 0.23 0.733 6.032 – –

or small molecules. The version of Biopax used has SHIN (D) expressiveness and has
925 axioms, 69 classes, 55 object properties and 41 data properties.

Finally, Vicodi [188] is an extract of the Vicodi knowledge base that contains infor-
mation on European history. It models historical events and important personalities
such as popes or princes, as shown in Figure 13.12. Vicodi’s expressiveness is ALH(D)
and contains 209 axioms, 168 classes, 6 object properties and 2 data properties

We used a version of the DBPedia and Biopax KBs without the ABox and a version
of BRCA and Vicodi with an ABox containing 1 individual and 19 individuals respec-
tively. For each KB we added a probability annotation to each axiom. We randomly
created 50 subclass-of queries for DBPedia and Biopax and 50 instance-of queries for
the other KBs, ensuring each query has at least one explanation.

Table 13.1 shows the average time in seconds to answer the queries for BUNDLE,
TRILL and TRILLP . In particular, BRCA and DBPedia contain many subclass ax-
ioms between complex concepts, resulting in many explanations. On BRCA, TRILLP

performs worse than TRILL because the SAT solver is called many times with complex
formulas. As can be seen, the SAT solver has a large impact on performances.

In the second experiment we used the KB of Example 8.2.4 where all the axioms
were made probabilistic, annotating them with a random value of probability. We
increased n from 2 to 10 in steps of 2 and we collected the running time, averaged
over 50 executions. Table 13.2 shows, for each n, the average time in seconds that the
systems took for computing the probability of the query Q. For the computation we
set a timeout of 10 minutes for each query execution, so the cells with “–” indicate that
the time out occurred.

Experiments 171

...

<owl:ObjectProperty rdf:about="&biopax;

component">

<rdf:type rdf:resource="&owl;

InverseFunctionalProperty"/>

<rdfs:domain rdf:resource="&biopax;

Complex"/>

<rdfs:range rdf:resource="&biopax;

PhysicalEntity"/>

</owl:ObjectProperty>

...

<owl:Class rdf:about="&biopax;Complex">

<rdfs:subClassOf rdf:resource="&biopax;

PhysicalEntity"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="&biopax

;memberPhysicalEntity"/>

<owl:allValuesFrom rdf:resource="&

biopax;Complex"/>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="&biopax;

Dna"/>

<owl:disjointWith rdf:resource="&biopax;

DnaRegion"/>

<owl:disjointWith rdf:resource="&biopax;

Protein"/>

<owl:disjointWith rdf:resource="&biopax;

Rna"/>

<owl:disjointWith rdf:resource="&biopax;

RnaRegion"/>

<owl:disjointWith rdf:resource="&biopax;

SmallMolecule"/>

...

</owl:Class>

...

Figure 13.11: Axioms from Biopax. A complex is a physical entity different from
DNAs, RNAs or their regions, proteins and small molecules. It can be part of another
physical entity.

172 Inference in Probabilistic Description Logics

...

<owl:Class rdf:about="&vicodi;Pope">

<rdfs:subClassOf rdf:resource="&vicodi;

Religious-Leader"/>

</owl:Class>

...

<owl:Class rdf:about="&vicodi;Prince">

<rdfs:subClassOf rdf:resource="&vicodi;

Head-of-State"/>

</owl:Class>

...

<owl:Class rdf:about="&vicodi;War">

<rdfs:subClassOf rdf:resource="&vicodi;

Event"/>

</owl:Class>

...

Figure 13.12: Axioms from Vicodi. A Pope is a religious leader, while a prince is a
head of a state. Finally a war is an historical event.

13.9 Related Work

Usually, DL reasoners implement a tableau algorithm using a procedural language.
Since some tableau expansion rules are non-deterministic, the developers have to im-
plement a search strategy from scratch. Moreover, in order to solve min-a-enum, all
different ways of entailing an axiom must be found.

Reasoners written in Prolog can exploit its backtracking facilities for performing
the search. This has been observed in various works. In [189] was proposed a tableau
reasoner in Prolog for FOL based on free-variable semantic tableaux. However, the
reasoner is not tailored to DLs. Meissner [190] presented the implementation of a
Prolog reasoner for the DL ALCN . This work was the basis of [191], that considered
ALC and improved [190] by implementing heuristic search techniques to reduce the
running time. In [192] was added to [191] the possibility of returning explanations for
queries but it still handled only ALC.

In [88] the authors presented the KAON2 algorithm that exploits basic superposi-
tion, a refutational theorem proving method for FOL with equality, and a new inference
rule, called decomposition, to reduce a SHIQ KB to a disjunctive datalog program.

DLog [193] is an ABox reasoning algorithm for the SHIQ language that permits
storing the content of the ABox externally in a database and answers instance check
and instance retrieval queries by transforming the KB into a Prolog program. TRILL
differs from these works for the considered DL and from DLog for the capability of
answering general queries.

A different approach is shown in [194], that introduced a system for reasoning on a
logic-based ontology representation language, called OntoDLP, which is an extension
of (disjunctive) ASP and can interoperate with OWL. This system, called OntoDLV,

Related Work 173

rewrites the OWL KB into the OntoDLP language, can retrieve information directly
from external OWL ontologies and answers queries by using ASP. OntoDLV cannot
find the set of explanations thus it is not applicable to DISPONTE KBs.

All the above systems are not able to compute the probability of queries. One of
the first probabilistic reasoners is PRONTO [195]. This system is based on Pellet like
BUNDLE, but differently from it, PRONTO exploits also a linear program solver such
as GLPK13 in order to execute inference on P-SHIQ(D) [114] KBs. as briefly described
in Section 9.3, in these KBs the probabilistic part contains conditional constraints
of the form (D|C)[l, u] that informally mean “generally, if an object belongs to C,
then it belongs to D with a probability in the interval [l, u]”. PRONTO performs
probabilistic lexicographic entailment by means of solving Probabilistic Satisfiability
problems (PSATs) and tight logical entailments. Pellet is used to help the generation
of linear programs given as input to the linear program solver.

FOProbLog [196] is an extension of ProbLog where a program contains a set of
probabilistic facts, i.e. facts annotated with probabilities, and a set of general clauses
which can have positive and negative probabilistic facts in their body. Each fact is
assumed to be probabilistically independent. FOProbLog follows the distribution se-
mantics and exploits BDDs to compute the probability of queries. FOProbLog is a
reasoner for FOL that is not tailored to DLs, so the algorithm could be suboptimal for
them.

A combination between DLs and logic programs was presented in [115] in order to
integrate ontologies and rules. They use a tightly coupled approach to (probabilistic)
disjunctive description logic programs. They define a description logic program as a
pair (L, P), where L is a DL KB and P is a disjunctive logic program which contains
rules on concepts and roles of L. P may contain probabilistic alternatives in the style of
ICL [44]. Interpretations assign a probability to ground atoms, in the style of Nilsson
probabilistic logic [197]. Queries can be answered by finding all answer sets. Differently
from [115], in DISPONTE interpretations are not probabilistic and they are assigned
a probability, instead of being a mapping from atoms to probabilities.

In [119] and [198] a KB is associated with a Bayesian network with variables V .
Axioms take the form E : X = x where E is a DL axiom and X = x is an annotation
with X ⊆ V and x a set of values for these variables. The Bayesian network assigns
a probability to every assignment of V , called a world. The authors show that the
probability of a query Q = E : X = x is given by the sum of the probabilities of
the worlds where X = x is satisfied and where E is a logical consequence of the
theory composed of the axioms whose annotation is true in the world. DISPONTE is
a special case of these semantics where every axiom Ei : Xi = xi is such that Xi is a
single Boolean variable and the Bayesian network has no edges, i.e., all the variables
are independent. This is an important special case that greatly simplifies reasoning, as
computing the probability of the worlds takes a time linear in the number of variables.
However, in case the added expressiveness of these formalisms is needed, the Bayesian
network could be translated into an equivalent one with only mutually unconditionally
independent random variables as shown in Figure 9.2.

A similar approach was presented in [120] where Markov networks are used instead
of Bayesian networks. The approach of [198] was applied in [199, 200] to extend the

13https://www.gnu.org/software/glpk/

174 Inference in Probabilistic Description Logics

EL DL, defining the probabilistic DL called BEL. The system BORN [200] answers
probabilistic subsumption queries w.r.t. BEL KBs. It exploits ProbLog for managing
the probabilistic part of the KB.

In [201] and [202], we addressed representation and reasoning for Datalog± ontolo-
gies in an Abductive Logic Programming framework, with existential and universal
variables, and Constraint Logic Programming constraints in rule heads. The underly-
ing abductive proof procedure can be directly exploited as an ontological reasoner for
query answering and consistency check.

13.10 Conclusion

In this chapter we presented three inference systems for probabilistic description logics
that follow DISPONTE.

The first one is BUNDLE, a system written in Java to perform probabilistic logical
inference on OWL 2 KB. It tries to obtain the covering set of minimal explanations for
a given query and then uses BDDs to make the explanations pairwise incompatible.
In [185, 3] the authors compared BUNDLE with PRONTO showing that BUNDLE has
generally better performances. However, there is still room for improvement in this
system. Currently BUNDLE depends on Pellet to get explanations. Unfortunately,
this reasoner has become closed source since version 2.3.0 and we are currently making
efforts to modularize BUNDLE and make it independent of the reasoner used to get
explanations.

The second system is TRILL, which implements the tableau algorithm in Prolog
and exploits Prolog’s backtracking facility to obtain all the explanations of a given
query. TRILL is limited to SHIQ(D) KBs. In the future we plan to extend TRILL
by adding the tableau rules defined in [61] in order to support SROIQ(D) KBs.

Finally the third one is called TRILLP . It uses the tableau rules defined in Fig-
ure 8.4, but, instead of computing all the explanations for a given query, TRILLP is
based on the approach defined in [101] and computes the pinpointing formula by ex-
ploiting a SAT solver to test ψ-insertability. Due to this approach TRILLP is limited
to SHI KBs.

We developed a web application for for TRILL and TRILLP called TRILL on
SWISH (Section 13.6).

BUNDLE was compared in [185, 3] to PRONTO and BUNDLE showed better
performances. Starting from these results we compared BUNDLE with TRILL and
TRILLP , the results of our experiments are reported in Section 13.8.

This chapter concludes the part of this thesis related to logical inference on prob-
abilistic logics. In the next part we present (distributed) algorithms and systems for
parameter and structure learning.

Part IV

Learning

175

Chapter 14

Introduction to Statistical Relational

Learning

This chapter is devoted to introduce Inductive Logic Programming and its probabilistic
evolution Probabilistic Inductive Logic Programming, also known as Statistical
Relational Learning. After a brief introduction in Section 14.1, the basic principles
of ILP and SRL are provided in Section 14.2 and Section 14.3 respectively. Section 14.4
draws conclusion.

14.1 Introduction

In Part II - Probabilistic Logics of this thesis we have introduced some proba-
bilistic logical formalisms to represent knowledge, while in Part III - Inference in
Probabilistic Logics we have discussed various methods to make inference with this
type of formalisms. This part of the thesis deals with machine learning, i.e. how to
automatically learn new knowledge from data. This part of machine learning is mainly
related to the Statistical Relational Learning (SRL), a.k.a. Probabilistic Inductive
Logic Programming (PILP), a probabilistic evolution of Inductive Logic Programming
(ILP).

In addition, in this work we deal with supervised learning (as opposed to unsuper-
vised and reinforcement learning). It means that our learning system is trained with
input-output examples. Given this training data, the learning system tries to learn a
mapping function between input and output, so that it is applicable with new inputs
never seen before.

Inductive Logic Programming (ILP) and its probabilistic evolution SRL has
some important advantages over other machine learning approaches.

• Logic, and First-Order Logic in particular, is a very well known mathematical
field, which provides theoretical foundations to ILP concept, approaches and
results.

• Logical formalisms provide expressive and uniform means of representation: the
background KB, the examples and the induced hypothesis can all be represented
as logic formulas.

177

178 Introduction to Statistical Relational Learning

• Knowledge represented by a logical formalism is human-readable and understand-
able. A set of logic formulas induced by an ILP or SRL system is easy to interpret
for a human.

However, ILP (and consequently SRL) has some important drawbacks, compared to
other machine learning approaches.

• It is generally slower. This is mainly due to the fact that ILP performs combina-
torial search and relies on deduction, i.e. reasoning, to find and to prove that an
induced hypothesis is correct. Reasoning can be highly computational expensive.
The more expressive a logic is, the more complex the reasoning.

• ILP can handle a small number of examples. Learning from small numbers of
examples is more difficult and unreliable than learning from lots of data.

ILP is unable to handle uncertain data, for this reason was extended to SRL. However,
reasoning in SRL is even more complex than ILP. In fact, in Chapter 11 we explained
that to perform exact probabilistic logical inference of a given query, you have to find
all the explanations of that query and then make them mutually exclusive.

In the following section we provide an introduction to ILP and SRL, and discuss
the main problems they tackle.

14.2 Inductive Logic Programming

ILP has been defined by Muggleton in [203, 204] as an intersection of Machine Learning
and Logic Programming. In ILP the goal of the learning process is to find hypotheses,
in the form of logic program, that provide information about the instance data starting
from a set of positive and negative examples (induction). In ILP the knowledge is
expressed in some logical formalism. ILP traditionally uses logic programs like Prolog
for logical representation, but the same principles are applicable to Description Logics
(DLs).

The ILP learning problem can be defined as follows.

Definition 14.1 ILP Learning Problem
Given:

• a hypothesis language LH ;

• a set of positive examples E+;

• a set of negative examples E−;

• a background KB K; and

• a covers relation covers(e,H,K) ∈ {false, true} that returns the classification of
an example e with respect to H and K.

Induce a hypothesis, i.e. a logic theory, H ∈ LH such that H covers all positive
examples and none of the negative examples.

Inductive Logic Programming 179

The found hypothesis can be complete, consistent and/or correct.

Definition 14.2 Hypothesis Completeness
A hypothesis H is complete with respect to the set of positive examples E+ iff ∀e ∈ E+

H covers e. Otherwise it is too week.

Definition 14.3 Hypothesis Consistency
A hypothesisH is consistent with respect to the set of negative examples E− iff ∀e ∈ E−

H does not cover e. Otherwise it is too strong.

Definition 14.4 Hypothesis Correctness
H is correct with respect to E+ and E− iff H is complete w.r.t. E+ and consistent w.r.t.
E−. A hypothesis is overly general if it is complete, but not consistent. It is overly
specific if it is consistent, but not complete.

Definition 14.5 Generality Relation
A hypothesis G is more general than a hypothesis S, denoted G � S, if G covers all the
instances that are also covered by S, denoted as covers(S) ⊆ covers(G). G is called a
generalization of S, and S a specialization of G.

In ILP, finding a satisfactory hypothesis means that we have to search the correct
theory in the hypothesis space defined by the hypothesis language LH . Two steps are
usually used to find the correct hypothesis: specialization and generalization.

Generalization If the current hypothesis H together with the background KB is not
complete, i.e. it does not cover all positive examples, then it means that H is
too weak and one needs to find a more general hypothesis such that all positive
examples are covered.

Specialization If the current hypothesis together with the background knowledge is
not consistent, i.e. some negative examples are covered by H, then it means that
H is too strong and one needs to find a more specific hypothesis such that is
consistent with respect to the negative examples.

Usually two paradigms are used to search the hypothesis: top-down and bottom-up.
While top-down approaches successively specialize a very general starting hypothesis,
bottom-up approaches successively generalize a very specific one.

The search of the correct hypothesis in the hypothesis space LH is performed by
the refinement operator .

Definition 14.6 ILP Refinement Operator
Given a quasi-ordered set 〈LH ,�〉, where LH is a logical formalism used as hypothesis
language and � is the generality relation defined in Definition 14.5. A refinement
operator is a function

ρ : LH → P(LH)

where P(LH) is the powerset of LH .

We can have two types of refinement operators: downward and upward, that can
be used, respectively, for specialization and generalization of a hypothesis.

180 Introduction to Statistical Relational Learning

Definition 14.7 Downward Refinement Operator
A downward refinement operator for a quasi-ordered set 〈LH ,�〉 is a refinement
operator ρ such that, for every H ∈ LH

ρ(H) ⊆ {H ′ | H � H ′}

Definition 14.8 Upward Refinement Operator
An upward refinement operator for a quasi-ordered set 〈LH ,�〉 is a refinement
operator ρ such that, for every H ∈ LH

ρ(H) ⊆ {H ′ | H � H ′}

It still remains to define the coverage relation. In the literature [205, 206], various
ILP settings has been considered. The most notably ones are: learning from entail-
ment [207, 208], learning from interpretations [209, 210, 5] and learning from
proofs [211].

Definition 14.9 Learning from Entailment
In the learning from entailment setting, a hypothesis H covers an example e with
respect to a background KB K iff K∪H |= e. Moreover we say that G is more general
that S iff G |= S.

Definition 14.10 Learning from Interpretations
In the learning from interpretations setting, a hypothesis H covers an example e with
respect to a background KB K iff e |= K∪H. Moreover we say that G is more general
that S iff S |= G.

Definition 14.11 Learning from Proofs
In the learning from proofs setting, the examples are logical proofs and an example e
is covered by a hypothesis H with respect to a background KB K iff e is a proof for
K ∪H.

See [212] for details about ILP.

14.3 Statistical Relational Learning

ILP was developed to cope with relational data and it does not handle uncertainty.
However, in the real world domain, the information is often uncertain. We want to
represent this kind of information and be able to perform reasoning and learning over
it. To fulfill this need a new research area known as Statistical Relational Learning
(SRL) [213, 214], Probabilistic Inductive Logic Programming (PILP) [205, 206]
or Probabilistic Logic Learning [215] extends ILP with probability. SRL combines
principles and ideas from three important subfields of Artificial Intelligence: machine
learning, knowledge representation and reasoning on uncertainty.

Statistical Relational Learning 181

In Part II we introduced the distribution semantics. This semantics provide a pow-
erful mechanism to combine logical representation with the probability theory and led
to the definition of several Probabilistic Logic Programming (PLP) languages, such
as PRISM [1], ProbLog [45] and LPADs [31] (see Chapter 6). In Chapter 9 the dis-
tribution semantics has been applied to Description Logics (DLs) and the resulting
semantics was named DISPONTE.

Once the semantics was defined, the general SRL learning problem can be formalized
as follows.

Definition 14.12 SRL Learning Problem
Given:

• a probabilistic logical formalism LH ;

• a set of positive examples E+;

• a set of negative examples E−;

• a background KB K; and

• a probabilistic coverage relation covers(e,H,K) = P (e | H,K).

Induce a hypothesis H∗ ∈ LH that maximise the maximum likelihood1

H∗ = argmax
H

∏

e+∈E+

P (e+, H,K)
∏

e−∈E−

(1− P (e−, H,K)) (14.1)

or the maximum log-likelihood

H∗ = argmax
H

∑

e+∈E+

logP (e+, H,K) +
∑

e−∈E−

log(1− P (e−, H,K)) (14.2)

If the user wants a correct hypothesis the following constraints should hold:

• ∀e+ ∈ E+, covers(e+, H∗,K) = P (e+ | H∗,K) > 0

• ∀e− ∈ E−, covers(e−, H∗,K) = P (e− | H∗,K) = 0

The hypothesis is essentially a probabilistic logic KB S annotated with probabilistic
parameters λ, i.e. H = (S, λ). In SRL we have typically two kinds of learning problems:

Parameter learning The underlying logic KB S, also called structure, is assumed
to be fixed, and the learning task consists of estimating the parameters λ that
maximize the likelihood.

Structure learning Both S and λ have to be learned.

1Assuming that the examples are independent and identically distributed (i.i.d.).

182 Introduction to Statistical Relational Learning

14.3.1 Parameter Learning

The problem of parameter learning concerns the estimation of the values of the param-
eters λ of a fixed probabilistic logic KB that best explain the examples E = E+ ∪ E−.
The parameter learning problem can be formalized as follows.

Definition 14.13
Given

• a set of positive examples E+;

• a set of negative examples E−;

• a probabilistic model M(λ) = (S, λ), with structure S, i.e. a fixed probabilistic
KB, and parameters λ;

• a probabilistic coverage relation covers(e,H,K) = P (e | M(λ)) which computes
the probability of the example e given the model M(λ);

• a scoring function score(E ,M(λ)) which uses the probabilistic coverage relation.

Induce the parameters λ∗ such that

λ∗ = argmax
λ

score(E ,M(λ)) (14.3)

If all examples are fully observable, maximum (log-)likelihood reduces to frequency
counting. If instead we are dealing with missing data, i.e. with partially observed data,
we cannot compute the maximum likelihood estimates with closed form formulas. It is
a numerical optimization problem. One of the most commonly adapted techniques for
SRL is the Expectation-Maximization (EM) algorithm [216]. This algorithm randomly
initializes the parameters and then iteratively performs the following two steps until
convergence:

Expectation Step Given the partially observed data and the present parameters of
the model, estimate the conditional distribution of the unobserved variables, also
known as hidden variables or latent variables.

Maximization Step Update the parameters of the structure S by using the expec-
tations computed in the previous step.

EM is exploited in many systems such as PRISM [217], LFI-ProbLog [30], EM-
BLEM [4] and RIB [218].

Gradient descent methods compute the gradient of the target function and itera-
tively modify the parameters following the direction of the gradient. LeProbLog [219]
is a system that uses a dynamic programming algorithm for computing the gradient
exploiting BDDs.

Conclusion 183

14.3.2 Structure Learning

In the parameter learning problem we have assumed that the structure of the proba-
bilistic model is given and fixed. This is not always the case. In structure learning, the
problem is to learn both the structure and the parameters of an initial probabilistic
logical KB. The problem can be formalized as follows.

Definition 14.14
Given

• a set of positive examples E+;

• a set of negative examples E−;

• a language LM of possible models of the form M = (S, λ), with structure S, i.e.
a probabilistic KB, and parameters λ;

• a probabilistic coverage relation covers(e,H,K) = P (e |M) which computes the
probability of the example e given the model M ;

• a scoring function score(E ,M) which uses the probabilistic coverage relation.

Induce the model M∗ = (S, λ) such that

M∗ = argmax
M

score(E ,M) (14.4)

Like the ILP problem, structure learning is essentially a search problem. There is a
space of possible models, defined by LM , to be traversed. The goal is to find the best
one according to the scoring function.

See [213] and [214] for an introduction to SRL.

14.4 Conclusion

In this chapter we introduced Inductive Logic Programming (ILP) and its evolution
Statistical Relational Learning (SRL). Moreover we presented the problems that these
research fields try to tackle. In particular, we provided a formalization of the param-
eter learning problem, that concerns the estimation of the probabilistic parameters
of a given probabilistic logic KB, and a formalization of the structure learning prob-
lem, where we are interested in inferring both the structure and the parameters of a
probabilistic logic KB.

The next chapters will present and discuss algorithms for parameter and structure
learning on LPADs and PDLs that follow DISPONTE. The execution of these algo-
rithms is rather expensive from a computational point of view, taking a few hours on
datasets of the order of MBs. Therefore, in order to efficiently manage larger datasets,
we distributed these algorithms using a MapReduce approach.

Chapter 15

Distributed Learning in Probabilistic

Logic Programming

In this chapter we illustrate some algorithms for (distributed) parameter and struc-
ture learning. The chapter is organized as follows. After a brief introduction of the
considered problems and the state of the art in Section 15.1, Section 15.2 and Sec-
tion 15.3 briefly describe EMBLEM and SLIPCOVER, two algorithms for parameter
and structure learning respectively. EMBLEMMR, a distributed version of EMBLEM,
is illustrated in Section 15.4, whereas in Section 15.5 presents SEMPRE, the distributed
version of SLIPCOVER.

15.1 Introduction

In Chapter 14 we said that the two main tasks of SRL are parameter and structure
learning. LPADs [31] discussed in Section 6.2 are a probabilistic logical formalisms for
the PLP framework. The parameter learning problem was considered since the birth
of the distribution semantics [1]. In fact in [1], Taisuke Sato, besides the distribu-
tion semantics, proposed a parameter learning algorithm based on the EM algorithm.
Starting from the work of Ishihata et al. [220] the authors of [4] developed EMBLEM
for parameter learning on LPADs. Other algorithms have been proposed for learning
the parameters of probabilistic logic programs under the distribution semantics, such
as PRISM [217] and ProbLog2 [30]. Recently, systems for learning the structure of
these programs have started to appear. Among these, SLIPCOVER [5] which exploits
EMBLEM for structure learning on LPADs.

EMBLEM and SLIPCOVER are able to learn good quality solutions in a variety
of domains [5] but they are usually computational expensive, often taking some hours
to complete on datasets of the order of MBs. In order to deal with Big Data, it is
fundamental to reduce learning times by exploiting modern computing infrastructures
such as clusters and clouds.

Therefore, distributed version of EMBLEM and SLIPCOVER were developed,
namely EMBLEMMR and SEMPRE, which both exploit the MapReduce approach.
MapReduce [221] distributes the work among a pool of “mapper” and “reducer” work-
ers. The computation is performed by dividing the input among the mappers, each
taking a set of units of information and returning a set of (key, value) pairs. These sets

185

186 Distributed Learning in Probabilistic Logic Programming

are then given to reducers in the form of pairs (key, list of values) and the reducers
compute an aggregate of the values returning a set of (key, aggregated value) couples
that represent the output of the task.

15.2 Parameter Learning: EMBLEM

EMBLEM [4], for “EM over Bdds for probabilistic Logic programs Efficient Mining”
performs parameter learning of LPADs by using an Expectation Maximization (EM)
algorithm (see Algorithm 15.1). It takes as input a set of interpretations I and the
theory T for which we want to learn the parameters. An interpretation is a set of
ground facts describing a portion of the domain. EMBLEM is targeted at discriminative
learning, since the user has to indicate which predicate(s) of the domain is/are target,
the one(s) for which we are interested in good predictions. The interpretations must
contain also negative facts for target predicates. The ground atoms for the target
predicates (E) represent the positive and negative examples (queries) for which BDDs
are built, encoding the disjunction of their explanations.

Algorithm 15.1 EMBLEM algorithm.
1: function EMBLEM(I, T , ε,δ)
2: Identify examples E
3: Build BDDs for the examples E using T and I
4: LL = −∞
5: repeat
6: LL0 = LL

7: LL = Expectation(BDDs)
8: Maximization

9: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
10: return LL, π
11: end function

After building the BDDs, EMBLEM maximizes the LL for the positive and negative
target examples with an EM cycle, until it has reached a local maximum. The E-step
computes the expectations of the latent variables directly over BDDs and returns the
LL of the data that is used in the stopping criterion. The expected counts are then
used in the M-step, which updates the parameters π for all clauses for the next EM
iteration by relative frequency.

For each target fact Q, the expectations are E[Xijk = x|Q] for all Cis, k = 1, . . . , ni−
1, j ∈ g(i) := {j|θj is a substitution grounding Ci} and x ∈ {0, 1}. E[Xijk = x|Q] is
given by

E[Xijk = x|Q] = P (Xijk = x|Q) · 1 + P (Xijk = (1− x)|Q) · 0 = P (Xijk = x|Q).

From E[Xijk = x|Q] one can compute the expectations E[cik0|Q] and E[cik1|Q] where
cikx is the number of times a Boolean variable Xijk takes on value x for x ∈ {0, 1} and
for all j ∈ g(i):

E[cikx|Q] =
∑

j∈g(i)

E[Xijk = x|Q].

The expected counts E[cik0] and E[cik1] are obtained by summing E[cik0|Q] and E[cik1|Q]
over all examples:

E[cikx] =
∑

Q

E[cikx|Q].

Structure Learning: SLIPCOVER 187

P (Xijk = x|Q) is given by P (Xijk=x,Q)

P (Q)
, where P (Xijk = x,Q) and P (Q) can be com-

puted with two traversals of the BDD built for the query Q.
EMBLEM is strictly related to EDGE, the two algorithms are very similar. The

latter is a parameter learner for PDLs and is discussed in detail in Chapter 16, whereas
we refer to [4] for details about the former.

15.3 Structure Learning: SLIPCOVER

SLIPCOVER [5] (see Algorithm 15.2) learns the structure of probabilistic logic pro-
grams with a two-phase search strategy: (1) beam search in the space of clauses in
order to find a set of promising clauses and (2) greedy search in the space of theories.
In the first phase, SLIPCOVER performs clause search for each target predicate sep-
arately. The beam for each target predicate is initialized (Function InitialBeams)
with a number of bottom clauses built as in Progol [222]. Then SLIPCOVER gen-
erates refinements of the best clause in the beam and evaluates them through LL by
invoking EMBLEM. Each clause is then inserted in the new beam of promising clauses
and in the sets of target and background clauses ordered according to the LL. This
is repeated until the original beam becomes empty. The whole process is repeated at
most NI steps.

The search in the space of theories starts from an empty theory which is iteratively
extended with one target clause at a time from those generated in the previous beam
search. The algorithm starts with an empty theory and then iteratively adds a new
clause to the theory, runs EMBLEM to compute the corresponding LL and checks
whether to keep the clause in the theory or not. If the LL of the new theory decreases,
SLIPCOVER discards the clause.

Finally, background clauses, the ones with a non-target predicate in the head, are
added en bloc to the theory so built. A further parameter optimization step is exe-
cuted with EMBLEM and clauses that are never involved in an example derivation are
removed.

188 Distributed Learning in Probabilistic Logic Programming

Algorithm 15.2 Function SLIPCOVER
1: function SLIPCOVER(I,NInt ,NS ,NA,NI ,NV ,NB ,NTC ,NBC , ε, δ)
2: IBs =InitialBeams(I,NInt ,NS ,NA) . Clause search
3: TC ← []
4: BC ← []
5: for all (PredSpec,Beam) ∈ IBs do
6: Steps ← 1
7: NewBeam ← []
8: repeat
9: while Beam is not empty do

10: Remove the first couple ((Cl ,Literals),LL) from Beam . Remove the first clause
11: Refs ←ClauseRefinements((Cl ,Literals),NV) . Find all refinements Refs of (Cl ,Literals) with at

most NV variables
12: for all (Cl ′,Literals′) ∈ Refs do
13: (LL′′, {Cl ′′})←EMBLEM(I, {Cl ′}, ε, δ)
14: NewBeam ←Insert((Cl ′′,Literals′),LL′′,NewBeam,NB)
15: if Cl ′′ is range restricted then
16: if Cl ′′ has a target predicate in the head then
17: TC ←Insert((Cl ′′,Literals′),LL′′,TC ,NTC)
18: else
19: BC ←Insert((Cl ′′,Literals′),LL′′,BC ,NBC)
20: end if
21: end if
22: end for
23: end while
24: Beam ← NewBeam

25: Steps ← Steps + 1
26: until Steps > NI

27: end for
28: T ← ∅, T LL← −∞ . Theory search
29: repeat
30: Remove the first couple (Cl, LL) from TC
31: (LL′, T ′)←EMBLEM(I, T ∪ {Cl}, ε, δ)
32: if LL′ > T LL then
33: T ← T ′, T LL← LL′

34: end if
35: until TC is empty
36: T ← T

⋃
(Cl,LL)∈BC

{Cl}

37: (LL, T)←EMBLEM(I, T , D,NEM , ε, δ)
38: return T
39: end function

15.4 Distributed Parameter Learning: EMBLEM
MR

In order to parallelize structure learning, first we developed a MapReduce version
of EMBLEM called EMBLEMMR, where the Expectation step is performed in parallel
following the approach proposed in [223] for applying MapReduce to the EM algorithm.

In particular, EMBLEMMR (see Algorithm 15.3) creates n workers indexed from 1
to n. Worker 1 is the “master” and is in charge of splitting work among the “slaves”
(the other n−1 workers). The Map function is performed by all processes; the Reduce
function and the Maximization step are performed by the master (also referred to as
the “reducer”).

During the Map phase, the input interpretations I and the input theory T whose
parameters are to be learned are replicated among all workers, while the examples E
are evenly divided into n subsets E1, . . . , En by the master. When splitting examples,
E1 is handled by the master, while E2, . . . , En are sent to the slaves (also referred to
as “mappers") (line 4-5). The m-th subset is sent to mapper m that builds the BDDs
for the examples belonging to it (line 6 and lines 18-19). The assignment of subsets
of examples to different mappers is possible because each of them stores I and T in

Distributed Structure Learning: SEMPRE 189

main memory and each example (and thus each BDD) is independent of the others,
allowing one to divide and treat them separately. After that, all the mappers stay
active keeping the BDDs in memory.

During the learning phase (EM cycle), the Expectation step is executed in parallel.
The master sends the current values of the parameters to each mapper m and com-
putes the expectations for its examples (lines 10-11). The slaves, after receiving the
parameters π, compute the expectations for their subset of examples, using the BDDs
stored in memory (lines 22-23). By keeping the BDDs in memory, the mappers only
need to receive the parameters’ updated values to accomplish their task.

Then, during the Reduce phase, the expectations are sent back to the reducer (line
24), that simply sums them up with its own values obtaining the total expected counts
(lines 12-13). Finally, the Maximization step is performed serially (line 14).

This parallelization strategy is implemented using the Message Passing Interface
(MPI). We preferred it over a standard MapReduce framework (such as Hadoop) be-
cause we wanted to customize the parallelization strategy to better suit our needs: our
mappers have side-effects because they have to retain in main memory all the BDDs
through all iterations, so they are not purely functional, as is required by standard
MapReduce frameworks. This would have been a limitation because it would have
forced us to build the BDDs in every step.

Algorithm 15.3 Function EMBLEMMR

1: function EMBLEMMR(I, T , n, ε,δ)
2: if MASTER then
3: Identify examples E
4: Split examples E into n subsets E1, . . . , En

5: Send Em to each worker m, 2 ≤ m ≤ n
6: Build BDDs1 for examples E1 using T and I
7: LL = −∞
8: repeat
9: LL0 = LL

10: Send the parameters π to each worker m, 2 ≤ m ≤ n
11: LL = Expectation(BDDs1)
12: Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
13: Update LL and the expectations
14: Maximization

15: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
16: return LL, π
17: else . the j-th slave
18: Receive Ej from master
19: Build BDDsj for examples Ej using T and I
20: LL = −∞
21: repeat
22: Receive the parameters π from master
23: LLj = Expectation(BDDsj)
24: Send LLj and the expectations to master
25: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
26: end if
27: end function

15.5 Distributed Structure Learning: SEMPRE

SEMPRE (see Algorithm 15.4) parallelizes three operations of the structure learning
algorithm SLIPCOVER by employing n workers, one master and n− 1 slaves. All the
workers initially receive all the input data.

190 Distributed Learning in Probabilistic Logic Programming

The first operation is the scoring of the clause refinements: when the revisions Refs
for a clause are generated (line 12), the master process splits them evenly into n subsets
Refs1, . . . ,Refsn and assigns Refs2, ...,Refsn to the slaves. The subset Refs1 is handled
by the master. Then, SEMPRE enters the Map phase (lines 20-30), when each worker
is listening for requests to score a set of refinements and returns the set of refinements
with their log-likelihood (LL). Scoring is performed using (serial) EMBLEM which is
run over a theory containing only one clause: since the BDDs built for clauses are
usually small, using EMBLEMMR would imply a too large overhead.

Once the master has received all sets of scored refinements from the workers, it
enters the Reduce phase (lines 32-35), where it updates the beam of promising clauses
(NewBeam) and the sets of target and background clauses (TC and BC respectively):
the scored refinements are inserted in order of LL into these lists. NTC (NBC) is the
maximum size for TC (BC).

The second parallelized operation is parameter learning for the theories. In this
phase (lines 45-52), each clause from TC is tentatively added to the theory, which is
initially empty. In the end, it contains all the clauses that improved its LL (search in
the space of theories). In this case, the BDDs that are being built can be quite complex
since the theory contains multiple clauses, so EMBLEMMR is used.

The third parallelized operation is the final parameter optimization for the theory
including also the background clauses (lines 53-54). All the background clauses are
added to the theory previously learned and the parameters of the theory are learned
by means of EMBLEMMR because of the computational complexity.

Distributed Structure Learning: SEMPRE 191

Algorithm 15.4 Function SEMPRE
1: function SEMPRE(I, n,NInt ,NS ,NA,NI ,NV ,NB ,NTC ,NBC , ε, δ)
2: IBs =InitialBeams(I,NInt ,NS ,NA) . Clause search
3: TC ← []
4: BC ← []
5: for all (PredSpec,Beam) ∈ IBs do
6: Steps ← 1
7: NewBeam ← []
8: repeat
9: while Beam is not empty do

10: if MASTER then
11: Remove the first couple ((Cl ,Literals),LL) from Beam . Remove the first clause
12: Refs ←ClauseRefinements((Cl ,Literals),NV) . Find all refinements Refs of (Cl ,Literals)

with at most NV variables
13: Split evenly Refs into n subsets Refs1, . . . ,Refsn
14: for m = 2 to n do
15: Send Refsm to worker m
16: end for
17: else . the j-th slave
18: Receive Refsj from master
19: end if
20: for all (Cl ′,Literals′) ∈ Refsj do

21: (LL′′, {Cl ′′})←EMBLEM(I, {Cl ′}, ε, δ)
22: NewBeam ←Insert((Cl ′′,Literals′),LL′′,NewBeam,NB)
23: if Cl ′′ is range restricted then
24: if Cl ′′ has a target predicate in the head then
25: TC ←Insert((Cl ′′,Literals′),LL′′,TC ,NTC)
26: else
27: BC ←Insert((Cl ′′,Literals′),LL′′,BC ,NBC)
28: end if
29: end if
30: end for
31: if MASTER then
32: for m = 2 to n do
33: Collect the set {(LL′′, {Cl ′′})|∀(Cl ′,Literals) ∈ Refsm} from worker m
34: Update NewBeam,TC ,BC

35: end for
36: else . the j-th slave
37: Send the set {(LL′′, {Cl ′′})|∀(Cl ′,Literals) ∈ Refsj} to master
38: end if
39: end while
40: Beam ← NewBeam

41: Steps ← Steps + 1
42: until Steps > NI

43: end for
44: if MASTER then
45: T ← ∅, T LL← −∞ . Theory search
46: repeat
47: Remove the first couple (Cl, LL) from TC
48: (LL′, T ′)←EMBLEMMR(I, T ∪ {Cl}, n, ε, δ)
49: if LL′ > T LL then
50: T ← T ′, T LL← LL′

51: end if
52: until TC is empty
53: T ← T

⋃
(Cl,LL)∈BC{Cl}

54: (LL, T)←EMBLEMMR(I, T , n, ε, δ)
55: return T
56: end if
57: end function

192 Distributed Learning in Probabilistic Logic Programming

15.6 Experiments

SEMPRE was implemented in Yap Prolog [151] using the lam_mpi library for interfac-
ing Prolog with the underlying MPI framework. lam_mpi is a built-in library of Yap
Prolog which provides an interface to LAM MPI, one of the first implementation of
MPI. LAM MPI is now at the basis of the OpenMPI library, one of the most widespread
libraries for developing MPI applications.

SEMPRE was tested on the following seven real world datasets: Hepatitis [224],
Mutagenesis [225], UWCSE [226], Carcinogenesis [227], IMDB [228], HIV [229] and
WebKB [230]. All experiments were performed on GNU/Linux machines with an Intel
Xeon Haswell E5-2630 v3 (2.40GHz) CPU with 8GB of memory allocated to the job.

Table 15.1 shows the wall time in seconds taken by SEMPRE to perform learning
averaged over the folds (ten for Mutagenesis, four for WebKB, one for Carcinogenesis
and five for all the others). The experiments were performed with 1, 8, 16 or 32 workers.
Figure 15.1 shows the speedup of SEMPRE as a function of the number of workers.
The speedup for n workers is the fraction of the time for 1 worker over the time for n
workers. Ideally, one wants to achieve a linear speedup. The speedup is always larger
than 1 and grows with the number of workers achieving the best with 32 workers,
except for HIV and IMDB, where there is a slight decrease for 16 and 32 workers due
to the overhead caused by the distribution itself; however, these two datasets were the
smallest and less in need of a parallel solution.

We have evaluated SEMPRE speedup during both distributed parameter and struc-
ture learning. We discovered that it is remarkable in both phases and that SEMPRE
spends most of the time in the beam search of clause refinements: for example, for
UWCSE the time for clause search is around 94% of the total time, while for WebKB
it is around 96%. The average time to handle each refinement is small, around 23ms
for UWCSE and 80ms for WebKB. Therefore, the parallelization decisions taken seem
justified: since the refinement handling time is small, it does not make sense to perform
distributed parameter learning for clause refinements, while it is more reasonable to
distribute the refinements to workers. These results show that SEMPRE is able to
exploit the availability of processors in most cases.

In order to compare the performances of SEMPRE with other probabilistic learning

Table 15.1: SEMPRE execution time (in seconds) as the number of workers varies.

Dataset Number of workers

1 8 16 32

Hepatitis 19,867 4,246 2,392 1,269

Mutagenesis 14,784 2,887 2,587 1,579

UWCSE 12,758 5,401 3,152 1,899

Carcinogenesis 170 23 18 16

IMDB 481 104 113 177

HIV 508 118 136 295

WebKB 2,441 486 322 256

Experiments 193

Nodes

0 5 10 15 20 25 30 35

S
p

e
e

d
u

p

0

2

4

6

8

10

12

14

16

Hepatitis

Mutagenesis

UWCSE

Carcinogenesis

IMDB

HIV

WebKB

Figure 15.1: SEMPRE speedup graph referred to Table 15.1.

systems we exploited the results presented in [231]. For our purpose we focus on the
LEMUR, SLIPCASE [232], ALEPH++ExactL1 [233], MLN-BC [234], MLN-BT [234]
and RDN-B [235] systems and on the Mutagenesis, Carcinogenesis, IMDB and HIV
datasets. These experiments were performed on GNU/Linux machines with an Intel
Core 2 Duo E6550 (2.333 GHz) processor and 4 GB of RAM. In order to compare the
learning times of these systems with those of SEMPRE, the execution times of the
latter have been scaled of a factor 1,029, which corresponds to the ratio between the
two CPU core frequencies.

Tables 15.2, 15.3, 15.4 and 15.5 show the average AUC-PR and time for Mutagene-
sis, Carcinogenesis, IMDB and HIV respectively. The systems are sorted in decreasing
AUC-PR. The experiments show that SEMPRE achieves good quality results, compa-
rable with those of the other systems considered. SEMPRE with multiple workers is
often faster than the competing systems, indicating that it can be a valid alternative
when execution time is an important factor.

194 Distributed Learning in Probabilistic Logic Programming

Table 15.2: Results of the experiments in terms of average AUC-PR and execution time
(in seconds) on the Mutagenesis dataset. The standard deviations are also shown.

System AUC-PR Time(s)

RDN-B 0.964 ± 0.026 70

LEMUR 0.952 ± 0.062 11,230

ALEPH++ExactL1 0.949 ± 0.043 198

SEMPRE 1W 0.948 ± 0.030 15,213

SEMPRE 8W 0.948 ± 0.030 2,971

SEMPRE 16W 0.948 ± 0.030 2,662

SEMPRE 32W 0.948 ± 0.030 1,625

MLN-BT 0.922 ± 0.087 175

SLIPCASE 0.921 ± 0.087 5,135

MLN-BC 0.690 ± 0.201 55

Table 15.3: Results of the experiments in terms of AUC-PR and execution time (in
seconds) on the Carcinogenesis dataset.

System AUC-PR Time(s)

ALEPH++ExactL1 0.738 147

SEMPRE 1W 0.724 175

SEMPRE 8W 0.724 24

SEMPRE 16W 0.724 19

SEMPRE 32W 0.724 16

LEMUR 0.691 23436

SLIPCASE 0.628 1

MLN-BC 0.619 45

RDN-B 0.550 84

MLN-BT 0.503 114

Experiments 195

Table 15.4: Results of the experiments in terms of average AUC-PR and execution
time (in seconds) on the IMDB dataset. The standard deviations are also shown.

System AUC-PR Time(s)

SEMPRE 1W 1.000 ± 0.000 495

SEMPRE 8W 1.000 ± 0.000 107

SEMPRE 16W 1.000 ± 0.000 116

SEMPRE 32W 1.000 ± 0.000 182

ALEPH++ExactL1 1.000 ± 0.000 9

RDN-B 1.000 ± 0.000 199

SLIPCASE 1.000 ± 0.000 64

LEMUR 1.000 ± 0.000 1,781

MLN-BT 0.977 ± 0.047 459

MLN-BC 0.942 ± 0.071 266

Table 15.5: Results of the experiments in terms of average AUC-PR and execution
time (in seconds) on the HIV dataset. The standard deviations are also shown.

System AUC-PR Time(s)

SEMPRE 1W 0.844 ± 0.034 523

SEMPRE 8W 0.844 ± 0.034 121

SEMPRE 16W 0.844 ± 0.034 139

SEMPRE 32W 0.844 ± 0.034 304

LEMUR 0.830 ± 0.050 1,290

SLIPCASE 0.777 ± 0.047 44

MLN-BC 0.512 ± 0.041 125

MLN-BT 0.288 ± 0.037 278

RDN-B 0.284 ± 0.057 69

196 Distributed Learning in Probabilistic Logic Programming

15.7 Conclusions

The main purpose of this chapter was to illustrate the state of the art of distributed
learning algorithms for PLP. EMBLEM and SLIPCOVER are two PLP learning al-
gorithms for parameter and structure learning respectively. Starting from this two al-
gorithms we developed their distributed versions: EMBLEMMR and SEMPRE. These
systems exploit the MapReduce approach for performing learning in parallel. SEM-
PRE has been tested on a number of domains and compared with six different learning
systems. The results show that parallelization is indeed effective at reducing running
time, even if in some cases the overhead may be significant. Finally, SEMPRE proves
to be even more competitive than SLIPCOVER in comparison to the other learning
systems, since it inherits SLIPCOVER’s performance (in terms of AUCPR) and, in
addition, it gains the capability to scale thanks to parallelization.

In the next chapters we presents learning algorithms for PDLs that follow DIS-
PONTE.

Chapter 16

Parameter Learning in Probabilistic

Description Logics

This chapter presents EDGE, an algorithm for parameter learning on PDLs. The
chapter is organized as follows. In Section 16.1 we provide an introduction, Section 16.2
illustrates the details of EDGE and finally Section 16.3 concludes the chapter.

16.1 Introduction

As mentioned in Section 14.3 one of the main SRL learning problems is parameter
learning. In Chapter 15 we discussed some parameter and learning methods for PLP.
In particular, in Section 15.2 we illustrated EMBLEM, a parameter learning algorithm
for LPADs. In this chapter we present EDGE [14] a parameter learning approach for
PDLs that follow DISPONTE.

EDGE [14] adapts the algorithm EMBLEM [4, 236] to the case of PDLs under
DISPONTE and exploits the theory presented in [237] It starts from examples of in-
stances (positive examples) and non-instances (negative examples) of concepts and
builds BDDs for representing their explanations from the theory. The parameters are
then tuned using an EM algorithm [216] in which the required expectations are com-
puted directly on the BDDs.

16.2 EDGE

EDGE, for “Em over bDds for description loGics paramEter learning”, takes as input
a DL KB and a number of examples that represent the queries. For each query,
it generates the BDD encoding its explanations using BUNDLE (see Section 13.2).
Usually, the queries are concept assertions divided into positive and negative examples:
positive examples represent information that is true and for which we would like to get
high probability, while negative examples are information that we regard as false and
for which we would like to get low probability.

After all the BDDs have been encoded, EDGE enters the EM cycle in which ex-
pectation and maximization are repeated until the log-likelihood LL of the examples
reaches a guaranteed local maximum, which however may not be a global maximum.

197

198 Parameter Learning in Probabilistic Description Logics

The steps of the EM cycle are:

Expectation for each query Q, EDGE computes E[ci0|Q] and E[ci1|Q] for all axioms
Ei, where cix is the number of times a variable Xi takes value x, for x ∈ {0, 1}:

E[cix|Q] = P (Xi = x|Q)

Then it sums up the contributions of the different examples

E[cix] =
∑

Q

E[cix|Q] =
∑

Q

P (Xi = x|Q) (16.1)

Maximization EDGE computes pi for all axioms Ei:

pi =
E[ci1]

E[ci0] + E[ci1]

16.2.1 Expectation Computation

P (Xi = x|Q) is given by P (Xi=x,Q)
P (Q)

. So (16.1) becomes:

E[cix] =
∑

Q

P (Xi = x,Q)

P (Q)
(16.2)

Suppose for the moment that we are working with a subset of the family of BDDs
called Complete Binary Decision Diagram (CBDD). A CBDD is such that each path
from the root to the leaves contains one node for every variable. In particular, on this
type of BDDs, the deletion rule is not applied1. Then

P (Xi = x,Q) =
∑

w∈WK

P (Xi = x,Q,w) (16.3)

=
∑

w∈WK

P (Xi = x,Q|w)P (w) (16.4)

=
∑

w∈WK

P (Q|w)P (Xi = x|w)P (w) (16.5)

=
∑

w∈WK:w|=Q

P (Xi = x|w)P (w) (16.6)

(16.7)

where (16.3) and (16.4) follow for the marginalization and the product rule of the theory
of probability respectively, (16.5) holds because Xi and Q are conditional independent
w.r.t. w and (16.6) stands on because P (Q|w) = 1 if w |= Q and 0 otherwise. P (Xi =
x|w) = 1 if (Ei, x) ∈ w and 0 otherwise.

There is a one to one correspondence between the possible worlds where Q is true
and the paths to a 1 leaf in a CBDD. For this reason,

P (Xi = x,Q) =
∑

ρ∈R(Q)

P (Xi = x|ρ)
∏

d∈ρ

p(d) (16.8)

1Deletion is performed when both arcs from a node point to the same node (see Definition 10.2).

EDGE 199

where w corresponds to a path ρ, P (Xi = x|w) = P (Xi = x|ρ), R(Q) is the set of
paths in the BDD for query Q that lead to a 1 leaf, d is an edge of ρ and p(d) is the
probability associated with the edge: if d is the 1-branch from a node associated with
a variable Xi, then p(d) = pi, if d is the 0-branch, then p(d) = 1− pi.

Example 16.2.1
Consider the BDD of Example 11.5.3 in Figure 11.4, the equivalent CBDD is shown
in Figure 16.1.

X1 n1

X2 n′2 n2

X3 n3 n3

1 0

Figure 16.1: Complete Binary Decision Diagram equivalent to the BDD in Exam-
ple 11.5.3

For a CBDD, P (Xi = x,Q) can be further expanded as

P (Xi = x,Q) =
∑

ρ∈R(Q)∧(Xi=x)∈ρ

∏

d∈ρ

p(d)

where (Xi = x) ∈ ρ means that ρ contains an x-edge from a node associated with Xi.
We can then write

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi∧ρn∈Rn(Q)∧ρn∈Rchildx(n)(Q)

pix
∏

d∈ρn

p(d)
∏

d∈ρn

p(d)

where N(Q) is the set of nodes of the CBDD, v(n) is the variable associated with node
n, Rn(Q) is the set containing the paths from the root to n, Rn(Q) is the set of paths
from n to the 1 leaf and where pix is pi if x = 1 and (1− pi) if x = 0. Therefore

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi

∑

ρn∈Rn(Q)

pix
∏

d∈ρn

p(d)
∑

ρn∈Rchildx(n)(Q)

∏

d∈ρn

p(d)

=
∑

n∈N(Q)∧v(n)=Xi

F (n)B(childx(n))pix

where
F (n) =

∑

ρn∈Rn(Q)

∏

d∈ρn

p(d)

is called forward probability [237], the probability mass of the paths from the root to
n, while

B(n) =
∑

ρn∈Rn(Q)

∏

d∈ρn

p(d)

200 Parameter Learning in Probabilistic Description Logics

is called backward probability [237], the probability mass of paths from n to the 1 leaf.
If root is the root of a BDD for a query Q then B(root) = P (Q).

The expression F (n)B(childx(n))pix stands for the sum of the probabilities of all
the paths passing through the x-edge of node n. We use the notation ex(n) to indicate
such an expression. Thus

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi

ex(n) (16.9)

For the case of a fully simplified BDD, i.e. a BDD obtained by applying also the
deletion rule, Formula 16.9 is no longer valid since also paths where there is no node
associated with Xi can contribute to P (Xi = x,Q). In fact, it is necessary to consider
the deleted paths too. Suppose that a node n associated with variable Y has a level
higher than variable Xi and suppose that child0(n) is associated with variable W that
has a lower level than variable Xi. The nodes associated with variable Xi have been
deleted from the paths from n to child0(n). If we associate a node m to variable Xi,
we can imagine that the current BDD has been obtained from a BDD having a node
m that is a descendant of n along the 0-branch and whose outgoing edges both end to
child0(n). The original BDD can be reobtained by applying a deletion operation that
merges the two paths passing through m. The probability mass of the two paths that
were merged was e0(n)(1 − pi) and e0(n)pi for the paths passing through the 0-child
and 1-child of m respectively.

Let Delx(X) be the set of nodes n such that the level of X is below that of n and
is above the level of childx(n), i.e., X is deleted between n and childx(n). For the
BDD in Figure 11.4, for example, Del1(X2) = {n1}, Del0(X2) = ∅, Del1(X3) = ∅,
Del0(X3) = {n2}. Then

P (Xi = x,Q) =
∑

n∈N(Q)∧v(n)=Xi

ex(n) +

pix ·





∑

n∈Del0(Xi)

e0(n) +
∑

n∈Del1(Xi)

e1(n)





where pix is pi if x = 1 and (1− pi) if x = 0.

16.2.2 EDGE’s Algorithm

Algorithm 16.1 shows the main procedure of EDGE. It takes as input a theory K a set of
positive examples PE, a set of negative examples NE and two thresholds ε and δ. EDGE
consists of an EM cycle, in which procedures Expectation and Maximization are
repeatedly called until the log-likelihood of the examples converges to a local maximum.
The former procedure returns the log-likelihood LL, the latter maximize it. The log-
likelihood is obtained by Equation:

LL =
∑

Q

logP (Q)

EDGE 201

The EM cycle stops when the difference between the LL of the current iteration and
the one of the previous iteration drops below a threshold ε or when this difference is
below a fraction δ of the previous log-likelihood.

Algorithm 16.1 Procedure EDGE
1: function EDGE(K, PE , NE , ε, δ)
2: Build BDDs . uses BUNDLE to build all the BDDs
3: LL = −∞
4: repeat
5: LL0 = LL
6: LL = Expectation(BDDs)
7: Maximization

8: until LL− LL0 < ε ∨ LL− LL0 < −LL0 · δ
9: return LL, pi for all i

10: end function

Algorithm 16.2 shows the procedure Expectation. It takes as input a list of
BDDs, one for each example (query), and computes the expectations for each one, i.e.
P (Xi = x,Q) for all variables Xi in the BDD. In this procedure we use ηx(i) to indicate
P (Xi = x,Q). Expectation first calls GetForward and GetBackward. They
respectively compute the forward and the backward probability of nodes and ηx(i) for
non-deleted paths only. GetBackward returns the probability of the query P (Q),
called Prob in the procedure. Then, to take into account deleted paths, Expectation
updates ηx(i).

Algorithm 16.2 Procedure Expectation

function Expectation(BDDs)
LL = 0
for all i ∈ Axioms do

E[ci0] = 0
E[ci1] = 0

end for
for all BDD ∈ BDDs do

for all i ∈ Axioms do
η0(i) = 0
η1(i) = 0

end for
for all variables X do

ς(X) = 0
end for
GetForward(root(BDD))
Prob=GetBackward(root(BDD))
T = 0
for l = 1 to levels(BDD) do

Let Xi be the variable associated with level l
T = T + ς(Xi)
η0(i) = η0(i) + T · (1− pi)
η1(i) = η1(i) + T · pi

end for
for all i ∈ Axioms do

E[ci0] = E[ci0] + η0(i)/Prob
E[ci1] = E[ci1] + η1(i)/Prob

end for
LL = LL+ log(Prob)

end for
return LL

end function

202 Parameter Learning in Probabilistic Description Logics

Procedure Maximization, shown in Algorithm 16.3, computes the parameter val-
ues for the next EM iteration.

Algorithm 16.3 Procedure Maximization

function Maximization

for all i ∈ Axioms do

pi =
E[ci1]

E[ci0]+E[ci1]

end for
end function

As said before, procedure GetForward (Algorithm 16.4), computes the value
of the forward probabilities. Starting from the root level (where F (root) = 1)), it
traverses the BDD one level at each iteration. For each level it considers each node n
and computes its contribution to the forward probabilities of its children. Then the
forward probabilities of its children, stored in table F , are updated.

Algorithm 16.4 Procedure GetForward: computation of the forward probability
function GetForward(root)

F (root) = 1
F (n) = 0 for all nodes
for l = 1 to levels do . levels is the number of levels of the BDD rooted at root

Nodes(l) = ∅
end for
Nodes(1) = {root}
for l = 1 to levels do

for all node ∈ Nodes(l) do
Let Xi be v(node), the variable associated with node
if child0(node) is not terminal then

F (child0(node)) = F (child0(node)) + F (node) · (1− pi)
Add child0(node) to Nodes(level(child0(node))) . level(node) returns the level of

node
end if
if child1(node) is not terminal then

F (child1(node)) = F (child1(node)) + F (node) · pi
Add child1(node) to Nodes(level(child1(node)))

end if
end for

end for
end function

Algorithm 16.5 shows the procedure GetBackward. This function computes the
backward probability of nodes by traversing recursively the tree from the leaves to the
root.

16.2.3 How to Use EDGE

EDGE is written in Java and has been integrated in DL-Learner 1.3 [170]. The
latest stable version is 3.2 and it can be downloaded at https://bitbucket.org/

machinelearningunife/edge/downloads/. It can be used as standalone desktop ap-
plication. The user manual for EDGE can be found at https://sites.google.com/

a/unife.it/ml/edge/manual.
If your application needs to perform parameter learning on DISPONTE KBs, EDGE

can also be used as a library. If you are using Maven, all you have to do is to add the
following lines in your POM.xml.

Conclusion 203

Algorithm 16.5 Procedure GetBackward: computation of the backward probabil-
ity, updating of η and of ς

function GetBackward(node)
if node is a terminal then

return value(node)
else

Let Xi be v(value)
B(child0(node)) = GetBackward(child0(node))
B(child1(node)) = GetBackward(child1(node))
e0(node) = F (node) ·B(child0(node)) · (1− pi)
e1(node) = F (node) ·B(child1(node)) · pi
η0(i) = η0t (i) + e0(node)
η1(i) = η1t (i) + e1(node)
V Succ = succ(v(node)) . succ(X) returns the variable following X in the order
ς(V Succ) = ς(V Succ) + e0(node) + e1(node)
ς(v(child0(node))) = ς(v(child0(node)))− e

0(node)
ς(v(child1(node))) = ς(v(child1(node)))− e

1(node)
return B(child0(node)) · (1− pi) +B(child1(node)) · pi

end if
end function

<dependency>

<groupId>unife</groupId>

<artifactId>edge</artifactId>

<version>3.2</version>

<exclusions>

<exclusion>

<groupId>${project.groupId}</

groupId>

<artifactId>manpageGenerator-

maven-plugin</artifactId>

</exclusion>

</exclusions>

</dependency>

16.3 Conclusion

EDGE is a parameter learning algorithm for PDLs that follow DISPONTE. In [14] the
authors compared EDGE with Association Rules (ARs) and the experimental results
showed that EDGE has better performances. In this chapter we investigated the details
of EDGE in order to be able to understand the next chapter (Chapter 17), which
presents a distributed version of EDGE, called EDGEMR.

Chapter 17

Distributed Parameter Learning for

Probabilistic Description Logics

In this chapter we illustrate an algorithm for distributed parameter learning on PDLs
that follow DISPONTE named EDGEMR. After an introduction of the motivations in
Section 17.1 that led to the development of EDGEMR, this algorithm is explained in
Section 17.2. Section 17.3 shows the results of the experiments for evaluating EDGEMR.
Finally, Section 17.4 draws conclusions.

17.1 Introduction

In Chapter 9 we illustrated DISPONTE, which adapts the distribution semantics for
probabilistic logic programming to DLs and allows to integrate probabilistic informa-
tion in DLs.

In Chapter 16 we illustrated EDGE [14], an algorithm for learning the parameters
of PDLs following DISPONTE. EDGE was tested on various datasets and was able to
find good solutions. However, like EMBLEM, the execution of this algorithm is rather
expensive from a computational point of view. In order to reduce EDGE running time,
we developed EDGEMR, which represents a MapReduce implementation of EDGE.

Various MapReduce frameworks are available, such as Hadoop. However, as for
EMBLEM and SEMPRE, we chose not to use any framework and to implement a
MapReduce approach for EDGEMR based on the Message Passing Interface (MPI).

17.2 Distributed Parameter Learning: EDGE
MR

Like most MapReduce frameworks, EDGEMR architecture follows a master-slave model.
The communication between the master and the slaves adopts the Message Passing
Interface (MPI), in particular we used the OpenMPI1 library which provides a Java
interface to the native library. The processes of EDGEMR are not purely functional,
as required by standard MapReduce frameworks such as Hadoop, because they have
to retain in main memory the BDDs during the whole execution. This forced us to
develop a parallelization strategy exploiting MPI.

1http://www.open-mpi.org/

205

206 Distributed Parameter Learning for Probabilistic Description Logics

EDGEMR can be split into three phases: Initialization, Query resolution and Expec-
tation-Maximization. All these operations are executed in parallel and synchronized
by the master.

Initialization During this phase data is replicated and a process is created on each
machine. Then each process parses its copy of the probabilistic knowledge base
and stores it in main memory. The master, in addition, parses the files containing
the positive and negative examples (the queries).

Query resolution The master divides the set of queries into subsets and distributes
them among the workers. Each worker generates its private subset of BDDs
and keeps them in memory for the whole execution. Two different scheduling
techniques can be applied for this operation. See Subsection 17.2.2 for details.

Expectation-Maximization After all the nodes have built the BDDs for their queries,
EDGEMR starts the Expectation-Maximization cycle. During the Expectation
step all the workers traverse their BDDs and calculate their local eta array. Then
the master gathers all the eta’s from the workers and aggregates them by sum-
ming the arrays component-wise. Then it calls the Maximization procedure in
which it updates the parameters and sends them to the slaves. The cycle is
repeated until one of the stopping criteria is satisfied.

17.2.1 MapReduce View

Since EDGEMR is based on MapReduce, it can be split into three phases: Initialization,
Map and Reduce.

Initialization As described above.

Map This phase can be seen as a function that returns a set of (key, value) pairs,
where key is an example identifier and value is the array eta.

• Query resolution: each worker resolves its chunks of queries and builds its
private set of BDDs. Two different scheduling techniques can be applied for
this operation. See Subsection 17.2.2 for details.

• Expectation Step: each worker calculates its local eta.

Reduce This phase is performed by the master (also referred to as the “reducer”) and
it can be seen as a function that returns pairs (i, pi), where i is an axiom identifier
and pi is its probability.

• Maximization Step: the master gathers all the eta arrays from the workers,
aggregates them by summing component wise, performs the Maximization
step and sends the newly updated parameters to the slaves.

The Map and Reduce phases implement the Expectation and Maximization functions
respectively, hence they are repeated until a local maximum is reached. It is important
to notice that the Query Resolution step in the Map phase is executed only once
because the workers keep in memory the generated BDDs for the whole execution of
the EM cycle; what changes among iterations are the random variables’ parameters.

Distributed Parameter Learning: EDGEMR 207

17.2.2 Scheduling Techniques

In a distributed context the scheduling strategy influences significantly the perfor-
mances. We evaluated two scheduling strategies, single-step scheduling and dynamic
scheduling, during the generation of the BDDs for the queries, while the initialization
and the EM phases are independent of the chosen scheduling method.

Single-step Scheduling if N is the number of the slaves, the master divides the total
number of queries into N + 1 chunks, i.e. the number of slaves plus the master.
Then the master starts N +1 threads, one building the BDD for its queries while
the others sending the other chunks to the corresponding slaves. After the master
has terminated dealing with its queries, it waits for the results from the slaves.
When the slowest slave returns its results to the master, EDGEMR proceeds to
the EM cycle. Figure 17.1a shows an example of single-step scheduling with two
slaves.

Dynamic Scheduling is more flexible and adaptive than single-step scheduling. Han-
dling each query chunk may require a different amount of time. Therefore, with
single-step scheduling, it could happen that a slave takes much more time than
another one to deal with its chunk of queries. This may cause the master and
some slaves to wait. Dynamic scheduling mitigates this issue. The user can es-
tablish a chunk dimension, i.e. the number of examples in each chunk. At first,
each machine is assigned a chunk of queries in order. When it finishes handling
the chunk, it takes the following chunk. So if the master ends handling its chunk,
it just picks the next one, while if a slave ends handling its chunk, it asks the
master for another one. During this phase the master runs a listener thread that
waits for slaves’ requests of new chunks. For each request, the listener starts a
new thread that sends a chunk to the requesting slave (to improve the perfor-
mances this is done through a thread pool). When all the BDDs for the queries
are built, EDGEMR starts the EM cycle. An example of dynamic scheduling with
two slaves and a chunk dimension of one example is displayed in Figure 17.1b.

17.2.3 EDGEMR’s Algorithm

EDGEMR’s main procedure is shown in Algorithm 17.1. First each process reads the
given input, every process has a copy of the knowledge base. Then the master, using
the scheduling chosen by the user, sends the examples to the slaves. The master keeps
a part of the examples and builds its BDDs (lines 14-27). Here, in particular, if dy-
namic scheduling is chosen, the master initializes a thread listener (line 17) which sends
a chunk of examples to the slaves at every request it receives. The slaves, according
to the scheduling technique, receive the examples and build the corresponding BDDs
(lines 40-49). All the BDDs are built by using BUNDLE, where NL and TL represent
the maximum number of explanations and the reasoning time limit. Once all the BDDs
are built, we don’t need to perform reasoning anymore, but we have to perform the
EM algorithm. The master sends the probability values pi to the slaves (line 31) which
receive and store them (line 51). Now, the Expectation procedure (Algorithm 16.2)
can be executed by all the workers (lines 32 and 52). Finally, all workers enter in the

Distributed Parameter Learning: EDGEMR 209

maximization phase where the master collects all the values, executes the Maximiza-
tion procedure (Algorithm 16.3) and checks whether a new round of EM must be
performed according to the thresholds ε and δ (line 33-37), while the slaves only wait
for a signal from master which indicates whether to execute either Expectation or
stop.

210 Distributed Parameter Learning for Probabilistic Description Logics

Algorithm 17.1 Function EDGEMR

1: function EDGEMR(K, E+, E−, ε, δ,NL, TL, S)
2: Input: a knowledge base K
3: Input: a set of positive examples E+

4: Input: a set of negative examples E−

5: Input: a threshold ε for the difference between LLs
6: Input: a threshold δ for the fraction of the difference between LLs
7: Input: the maximum number of explanations to find for each example NL
8: Input: the time limit for the inference process for each example TL
9: Input: the scheduling method S

10: Output: the final LL
11: Output: probabilities pi of the probabilistic axioms
12: Read knowledge base K
13: if MASTER then
14: Identify examples E
15: if S == dynamic then . dynamic scheduling
16: Send an example ej to each slave
17: Start thread listener . Thread for answering query requests from slaves
18: c = m− 1 . c counts the computed examples
19: while c < |E| do
20: c = c+ 1
21: Build BDDc for example ec . performed by BUNDLE
22: end while
23: else . single-step scheduling
24: Split examples E into n subsets E1, . . . , En

25: Send Em to each worker m, 2 ≤ m ≤ n
26: Build BDDs1 for examples E1

27: end if
28: LL = −∞
29: repeat
30: LL0 = LL

31: Send the parameters pi to each worker m, 2 ≤ m ≤ n
32: LL = Expectation(BDDs1)
33: Collect LLm and the expectations from each worker m, 2 ≤ m ≤ n
34: Update LL and the expectations
35: Maximization

36: until LL− LL0 < ε ∨ LL− LL0 < −LL · δ
37: Send STOP signal to all slaves
38: return LL, pi for all i
39: else . the j-th slave
40: if S == dynamic then . dynamic scheduling
41: while c < |E| do
42: Receive ej from master
43: Build BDDj for example ej
44: Request another example to the master
45: end while
46: else . single-step scheduling
47: Receive Ej from master
48: Build BDDsj for examples Ej

49: end if
50: repeat
51: Receive the parameters pi from master
52: LLj = Expectation(BDDsj)
53: Send LLj and the expectations to master
54: until Receive STOP signal from master
55: end if
56: end function

Experiments 211

17.3 Experiments

In order to evaluate the performances of EDGEMR, four datasets were selected:

• Mutagenesis2 [225], contains information about a number of aromatic and het-
eroaromatic nitro drugs, including their chemical structures in terms of atoms,
bonds and a number of molecular substructures.

• Carcinogenesis3 [227], which describes the carcinogenicity of more than 300
chemical compounds.

• an extract of DBPedia4 [238], a knowledge base obtained by extracting the
structured data from Wikipedia.

• education.data.gov.uk5, which contains information about school institutions
in the United Kingdom.

The last three datasets are the same as in [16]. All experiments have been performed
on a cluster of 64-bit Linux machines with 2 GB (max) memory allotted to Java per
node. Each node of this cluster has 8-cores Intel Haswell 2.40 GHz CPUs.

For the generation of positive and negative examples, we randomly chose a set of
individuals from the dataset. Then, for each extracted individual a, we sampled three
named classes: A and B were selected among the named classes to which a explicitly
belongs, while C was taken from the named classes to which a does not explicitly
belong but that exhibits at least one explanation for the query a : C. The axiom
a : A was added to the KB, while a : B was considered as a positive example and
a : C as a negative example. Then both the positive and the negative examples were
split in five equally sized subsets and we performed five-fold cross-validation for each
dataset and for each number of workers. Information about the datasets and training
examples is shown in Table 17.1. We performed the experiments with 1, 3, 5, 9 and

Table 17.1: Characteristics of the datasets used for evaluation.

Dataset
of all
axioms

of proba-
bilistic
axioms

of pos.
examples

of neg.
examples

Fold size
(MiB)

Carcinogenesis 74409 186 103 154 18.64

DBpedia 5380 1379 181 174 0.98

education.data.gov.uk 5467 217 961 966 1.03

Mutagenesis 48354 92 500 500 6.01

17 nodes, where the execution with 1 node corresponds to the execution of EDGE.
Furthermore, we used both single-step and dynamic scheduling in order to evaluate
the two scheduling approaches. It is important to point out that the quality of the
learning is independent of the type of scheduling and of the number of nodes, i.e. the

2http://www.doc.ic.ac.uk/ shm/mutagenesis.html
3http://dl-learner.org/wiki/Carcinogenesis
4http://dbpedia.org/
5http://education.data.gov.uk

212 Distributed Parameter Learning for Probabilistic Description Logics

parameters found with 1 node are the same as those found with n nodes. Table 17.2
shows the running time in seconds for parameter learning on the four datasets with the
different configurations. Figure 17.2 shows the speedup obtained as a function of the

Table 17.2: Comparison between EDGE and EDGEMR in terms of running time (in
seconds) for parameter learning.

Dataset EDGE

EDGE
MR

Dynamic Single-step

3 5 9 17 3 5 9 17

Carcinogenesis 847 442 241 147 94 384 268 179 118

DBpedia 1552 1260 634 365 215 1156 724 453 373

education.data.gov.uk 6924 3878 2157 1086 623 3612 2290 1332 749

Mutagenesis 1439 636 400 223 130 578 359 230 125

number of machines (nodes). The speedup is the ratio of the running time of 1 worker
to the running time of n workers. We can note that the speedup is significant even if it
is sublinear, showing that a certain amount of overhead (the resources, and therefore
the time, spent for the MPI communications) is present. The dynamic scheduling
technique has generally better performance than single-step scheduling.

4 6 8 10 12 14 16
0

2

4

6

8

10

12

N. of Processes

S
p

e
e

d
u

p

Carcinogenesis dynamic

Carcinogenesis single−step

DBPedia dynamic

DBPedia single−step

EDU−UK dynamic

EDU−UK single−step

Mutagenesis dynamic

Mutagenesis single−step

Figure 17.2: Speedup of EDGEMR relative to EDGE with single-step and dynamic
schedulings.

We also tested memory consumption of EDGEMR on these datasets. The results,
shown in Fig. 17.3, show that the allocated memory per node is almost always inversely

Conclusions 213

proportional to the number of nodes. There is no difference between Single-step and
Dynamic scheduling in terms of used memory.

Single−step total memory
Dynamic per−process memory
Single−step per−process memory

Dynamic total memory

(a) Legend for memory consumption graphs

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N. of Processes

A
llo

c
a
te

d
 M

e
m

o
ry

 (
G

B
)

(b) Carcinogenesis

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

N. of Processes

A
llo

c
a
te

d
 M

e
m

o
ry

 (
G

B
)

(c) DBPedia

4 6 8 10 12 14 16
0

0.5

1

1.5

N. of Processes

A
llo

c
a
te

d
 M

e
m

o
ry

 (
G

B
)

(d) EDU-UK

4 6 8 10 12 14 16
0

0.5

1

1.5

2

N. of Processes

A
llo

c
a
te

d
 M

e
m

o
ry

 (
G

B
)

(e) Mutagenesis

Figure 17.3: Memory consumption of EDGEMR for different datasets.

17.4 Conclusions

EDGE is an algorithm for learning the parameters of probabilistic knowledge bases
under the DISPONTE semantics. In this chapter we presented EDGEMR, which is a
distributed version of EDGE based on the MapReduce approach.

We performed experiments over four datasets with an increasing number of nodes.
The results show that parallelization significantly reduces the execution time, even if

214 Distributed Parameter Learning for Probabilistic Description Logics

in a sublinear trend. The sublinearity is caused by the overhead and because some
threads are devoted to communication tasks.

In the next chapter we introduce a structure learning algorithm for PDLs called
LEAP.

Chapter 18

Structure Learning in Probabilistic

Description Logics

In this chapter we present the LEAP system, which performs structure learning on
PDLs that follow DISPONTE. The chapter is organized as follows. Section 18.1 intro-
duces the chapter. Section 18.2 illustrates the learning problem. Section 18.3 provides
an overview of the theory of the refinement operators for DLs. Section 18.4 quickly
describes CELOE [239]. Section 18.5 depicts in a few words DL-Learner [170], an open
source project which contains and implements CELOE, the refinement operators and
several other components. Section 18.6 is the central section of this chapter where
we illustrate LEAP. In Section 18.7 and Section 18.8 we discuss related work and the
experimental results respectively. Finally, section 18.9 draws conclusions.

18.1 Introduction

In Chapters 16 and 17 we investigated how to perform parameter learning on PDLs in
a sequential and distributed way. As mentioned before, the other learning task of SRL
is structure learning. To solve this problem we developed LEAP.

The Semantic Web is becoming more and more widespread, but despite its dif-
fusion, there are still several knowledge bases that does not have refined structures.
A knowledge base with a refined structure, and instance data coherent with it, al-
lows more powerful reasoning and better consistency checking. Therefore strategies for
automated structure building of ontologies are beginning to come out.

In order to learning the structure, i.e. new probabilistic axioms, LEAP combines
two algorithms, CELOE [239] and EDGE. It first finds good candidate axioms (sub-
sumption axioms) by means of CELOE, then it performs a greedy search in the space
of theories by exploiting EDGE for learning the parameter of the probabilistic KB.

In Chapter 16 we already described EDGE, in this chapter we give a brief overview
of CELOE and the theory that underlies it. CELOE is a learning algorithm whose goal
is to provide a semi-automatic method to learn class expressions of target concepts
and hence improve the structure of the background knowledge base.

LEAP is written in Java and is now part of DL-Learner since version 1.3.

215

216 Structure Learning in Probabilistic Description Logics

18.2 The Learning Problem

In this section we briefly present the concept learning problem in description logics.
The definition here provided is a particular case of the definition of the ILP problem
given in Definition 14.1, when the target predicate is unary.

Learning from entailment problem in description Logics can be defined as follows.

Definition 18.1 Concept Learning from Entailment Problem in Description
Logics
Given:

• a concept name Target;

• a background knowledge base K not containing Target;

• a space of possible concepts C;

• a set of positive examples E+ with elements of the form a : Target (a ∈ I);

• a set of negative examples E− with elements of the form a : Target (a ∈ I).

Find a concept C ∈ C such that:

• Target ≡ C;

• Target does not occur in C (acyclic definition);

• ∀e+ ∈ E+,K ∪ {Target ≡ C} |= e+;

• ∀e− ∈ E−,K ∪ {Target ≡ C} 6|= e−.

Let K′ = K∪{Target ≡ C} we say that a concept C covers an example e ∈ E+∪E−

if K′ |= e. Here, if both sets E+ and E− of individuals are given the problem takes the
name of Positive and Negative Examples Learning Problem, while if only the set E+ is
available it is called Positive Examples Learning Problem. Thus, the goal of learning
is to discover a correct concept C with respect to the individuals.

18.3 Refinement Operators in Description Logics

Finding a correct concept can be seen as a search process in the space of possible con-
cepts. In Inductive Logic Programming a well-known approach is to impose an ordering
on the search space of hypotheses and use the refinement operators to traverse it.
Downward (upward) refinement operators produce specialization (generalization) of
hypotheses (see Section 14.2).

The subsumption relation v is a quasi-ordering, hence it can be used for ordering
the search space and the refinements operators can be used to search the space. We
can define the refinement operator for description logics as follows.

Refinement Operators in Description Logics 217

Definition 18.2 Refinement Operator in Description Logics
Let Lr be a description logic. A refinement operator in the quasi-ordered space (Lr,v)
is called an Lr refinement operator.

It is of fundamental importance to say that the description logic of the background
knowledge base can be more expressive than the description language of the learned
concept C. For example we can learn ALCQ concepts, but the language of the knowl-
edge base can be SHOIN (D) or SROIQ(D).

In [240] Jens Lehmann et al. provided a theoretical investigation of the properties
of ALCQ refinement operators. These properties are then exploited for the definition
and the construction of suitable refinement operators. The theory exposed in [240] is
based on earlier work [241, 242].

Below we illustrate a quick overview of the theoretical analysis provided in [240] for
ALCQ refinement operators. The definitions and the theorems exposed in the
rest of this section are from [240, 241, 242].

Definition 18.3 Refinement Chain
A refinement chain of an Lr refinement operator ρ of length n from a concept C to
a concept D is a finite concatenation C0, C1, . . . , Cn of concepts, where C = C0, C1 ∈
ρ(C0), C2 ∈ ρ(C1), . . . , Cn ∈ ρ(Cn−1), D = Cn. We say that D can be reached from
C. This refinement chain goes through E iff there is a Ci with 1 ≤ i ≤ n such that
E = Ci. ρ∗(C) identifies the set of all the concepts, which can be reached from C by
ρ. ρm(C) denotes the set of all the concepts reachable from C by a refinement chain
of ρ of length m.

Definition 18.4 Downward and Upward Cover
Let C, D and E be concept.

• A concept C is a downward cover of a concept D iff C @ D and there does not
exist a concept E such that C @ E @ D.

• A concept C is an upward cover of a concept D iff D @ C and there does not
exist a concept E such that D @ E @ C.

Definition 18.5 equivalence, (syntactic equality, weak equality)
Let C, D be two concepts.

Equivalence C and D are equivalent C ≡ D if they identify the same subset of
individuals.

Equality C and D are equal if they are syntactically equal.

Weak equality C and D are weakly equal, denoted by C ' D iff they are equal
up to permutation of arguments of conjunction and disjunction. For example
Male u ∃hasChild.> ' ∃hasChild.> uMale

218 Structure Learning in Probabilistic Description Logics

A refinement operator can have various properties which could influence the per-
formance and the quality of the learning process.

Definition 18.6 Properties of DL refinement operators
An Lr refinement operator ρ is called

• (locally) finite iff ρ(C) is finite for all concept C.

• redundant iff there exists a refinement chain from a concept C to a concept D,
which does not go through some concept E and a refinement chain from C to a
concept D′, which goes through E and D′ ' D.

• proper iff for all concepts C and D, D ∈ ρ(C) =⇒ C 6≡ D.

An Lr downward refinement operator ρ is called

• complete iff for all concepts C, D with C @ D we can reach a concept E with
E ≡ C from D by ρ.

• weakly complete iff for all concepts C @ > we can reach a concept E with E ≡ C
from > by ρ.

• minimal iff for all C, ρ(C) contains only downward covers and all its elements
are incomparable with respect to v.

An Lr upward refinement operator ρ is called

• complete iff for all concepts C, D with D @ C we can reach a concept E with
E ≡ C from D by ρ.

• weakly complete iff for all concepts ⊥ @ C we can reach a concept E with E ≡ C
from ⊥ by ρ.

• minimal iff for all C, ρ(C) contains only upward covers and all its elements are
incomparable with respect to v.

An Lr refinement operator ρ is called

• ideal iff it is finite, complete and proper.

The following theorem if essential, in order to design a suitable refinement operator.

Theorem 18.1
Considering the properties of completeness, weak completeness, properness, finiteness,
and non-redundancy, the following are maximal sets of properties (in the sense that
no other of the mentioned properties can be added) of Lr refinement operators (Lr ∈
{ALC,ALCQ,SHOIN ,SROIQ}):

1. {weakly complete, complete, finite}

CELOE 219

2. {weakly complete, complete, proper}

3. {weakly complete, non-redundant, finite}

4. {weakly complete, non-redundant, proper}

5. {non-redundant, finite, proper}

The authors of [240] proposed a refinement operator that respects the properties
listed in point 2. The refinement operator is redundant and infinite. Redundancy
elimination and infinity handling are tasks that are left to the learning algorithm.
To improve the performance of the refinement operator ρ, a learning algorithm can
implement a method that transforms the subsumption graph1 into two trees: one tree
for downward refinement of atomic concepts and one tree for upward refinement of
atomic concepts2.

18.4 CELOE

CELOE [239] stands for "Class Expression Learning for Ontology Engineering". It is
a learning algorithm implemented within the open-source framework DL-Learner3.

Let us consider a knowledge base K and a class Target whose formal description we
want to learn. Target has (inferred or asserted) instances in the knowledge base K. If
Target is already described by a class expression C through axioms such as Target v C
or Target ≡ C, it is possible to learn a description for Target by refining C, or by
relearning from scratch.

Definition 18.7 Class Learning Problem
Let an existing named class Target be in a knowledge base K. Let RK(C) be a retrieval
reasoner operation that returns the set of all instances of C. The class learning
problem is to find an expression C such that RK(Target) = RK(C).

CELOE is a semi-automatic approach, that finds a set of n class expressions Ci
(1 ≤ i ≤ n) sorted according to a heuristic. Such expressions are candidates for adding
axioms of the form Target ≡ Ci or Target v Ci. It is a decision of the knowledge base
engineer to add or not these axioms to the background knowledge base. CELOE can
take as input a target class, a set of positive and negative examples or a set of only
positive examples. When a target class is defined, CELOE can be seen as a learning
algorithm that resolves the class learning problem as determined in Definition 18.7.
On the other hand, if a set of positive and negative examples or a set of only positive
examples is given, CELOE can be seen as a learning algorithm that resolves the learning
problem described in Definition 18.1.

A learning algorithm can be built as a combination of a refinement operator and a
search algorithm. The former determines how the search tree can be built, the latter
controls how the tree is traversed.

1a quasi-ordered space identifies a directed graph
2Indeed, inside DL-Learner, there is the method ClassHierarchy#thinOutSubsumptionHierarchy()

that does this job
3http://dl-learner.org/Projects/DLLearner

DL-Learner 221

false positive and the remaining instances (RK(>) \ (RK(C) ∪ RK(A))) are the true
negatives.

Performing instance retrieval can be very expensive for large ontologies. In order
to make CELOE scalable, three performance optimizations are provided:

Reduction of instance checks: it consists of the reduction of the number of objects
we are looking at by using background knowledge. Let consider the case we want
to learn an equivalence axiom for class A which has a super class A′. It is useful
to start the top-down search with A′ instead of >. In this way the number of
negative examples is lower.

Approximate and closed world reasoning: it consists of using a reasoner designed
for performing a high number of instance checks. The authors of CELOE created
an approximate incomplete reasoning procedure for fast instance checks (FIC)
which partially follows the closed world assumption.

Stochastic coverage computation: randomly drawn objects are tested until a fixed
width of the interval of confidence is reached. The confidence interval is computed
by using the improved Wald method defined in [243]. See [239] and [243] for
further details.

18.5 DL-Learner

From the DL-Learner [170] manual4:

DL-Learner is a machine learning framework for OWL and description
logics. It includes several learning algorithms and is easy to extend. DL-
Learner widens the scope of Inductive Logic Programming to description
logics and the Semantic Web.

DL-Learner is written in Java, therefore it can be used on almost all operative systems.
In order to be flexible and easily extensible, DL-Learner uses a modular architec-

ture shown in Figure 18.3. There are four types of components: knowledge sources,
reasoners, learning problems and learning algorithms. For each type there are several
implemented components. Each component can have various configuration options
that are used to change the parameters/settings of a component.

• Knowledge Sources integrate background knowledge. DL-Learner supports all
the OWL formats: RDF/XML, OWL/XML, Manchester OWL Syntax, or Turtle.
Furthermore it allows to use SPARQL endpoints as background knowledge.

• Reasoner Components provide connections to existing or own reasoners. Sev-
eral reasoner are implemented. OWL API and DIG interfaces can be used in
conjunction with the major reasoners such as Pellet, FaCT++, etcetera. In
addiction, DL-Learner offers its own reasoner based on Pellet: Fast Instance
Checker. This reasoner partially follows the closed world assumption (CWA) and
hence it is not correct with respect to the OWL semantics.

4https://dl-learner.org/Resources/Documents/manual.pdf

224 Structure Learning in Probabilistic Description Logics

First of all, a set of class expressions are generated by using CELOE (line 11), then
the positive (PI) and negative (NI) set of individuals is extracted according to the
following rules (see section 4.3 of the DL-Learner manual).

• If a set of positive and negative individuals has been given as input to CELOE,
then no extraction is necessary. LPtype = Positive and Negative Examples Learn-
ing Problem.

• if a set of positive only individuals has been given, then the set of positive ex-
amples is already defined, the set of negative examples is composed of a subset
of all the individuals of the knowledge base except the positive ones. LPtype =
Positive Examples Learning Problem.

• if a target class to be described is given, then we consider the existing instances
(inferred or asserted) of the target class as positive individuals and the remaining
instances as negative individuals. LPtype = Class Learning Problem (cf. Defini-
tion 18.7)

After the extraction, the assertional axioms, which represent the examples (queries)
for EDGE, are created (lines 13-18). The dummyClass is a class created ad-hoc6 in
order to run EDGE. The initial ontology is backed up (line 19).

Then LEAP performs a greedy search in the space of theories, described in lines 20-
29. One subsumption axiom of the form p :: CE v dummyClass is added at a time to
the ontology K, where p is a random probabilistic value. After each addition, EDGE
is run on the extended theory K′ = K ∪ {CE v dummyClass} and the log-likelihood
LL and the new parameters of the probabilistic axioms are computed (line 23. If LL
is better than the current best LL0, the axiom is kept in the knowledge base and the
list LearnedAxioms is updated, otherwise the added axiom is discarded.

Finally, if the knowledge engineer has defined a target class, the right-hand side
of each learned subsumption axiom is replaced with the target class (cf. lines 30-34).
The final theory, obtained from the union of the initial ontology and the probabilistic
learned axioms, is returned to the user (line 35).

6The name of this class is learnedClass, see the source code for details.

Structure Learning: LEAP 225

Algorithm 18.1 LEAP Algorithm
1: procedure LEAP(K, LPtype, NC, TLC, ε, δ,NE, TLE)
2: Input: a knowledge base K
3: Input: the type LPtype of learning problem
4: Input: the maximum number of class expressions to find NC
5: Input: the time limit for the inference for CELOE TLC
6: Input: a threshold ε for the difference between LLs
7: Input: a threshold δ for the fraction of the difference between LLs
8: Input: the maximum number of explanations to find for each example NE
9: Input: the time limit for the inference process for each example TLE

10: Output: the learned knowledge base K
11: Generate up to NC ClassExpressions . generated by CELOE
12: (PI , NI) = ExtractIndividuals(LPtype) . PI and NI are the positive and negative

individuals
13: for all ind ∈ PI do
14: Add ind : dummyClass to E+ . E+ the set of positive examples
15: end for
16: for all ind ∈ NI do
17: Add ind : dummyClass to E− . E− is the set of negative examples
18: end for
19: Kinitial = K
20: for all CE ∈ ClassExpressions do
21: Axiom = p :: CE v dummyClass
22: K′ = K ∪ {Axiom}
23: (LL,K′) = EDGE(K, E+, E−, ε, δ,NE, TLE)
24: if LL > LL0 then
25: K = K′

26: Add Axiom to LearnedAxioms
27: LL0 = LL
28: end if
29: end for
30: if LPtype is ClassLearning then
31: for all Axiom ∈ LearnedAxioms do
32: Axiom = CE v TargetClass
33: end for
34: end if
35: K = Kinitial ∪ LearnedAxioms
36: end procedure

226 Structure Learning in Probabilistic Description Logics

18.7 Related Work

GoldMiner [245, 246] is an algorithm that exploits Association Rules (ARs) for building
ontologies. GoldMiner extracts information about individuals, named classes and roles
using SPARQL queries. From these data, it builds two transaction tables: one that
stores the classes to which each individual belongs and one that stores the roles to
which each couple of individuals belongs. Finally, the APRIORI algorithm [247] is
applied to each table in order to find ARs. Implications of the form A ⇒ B can be
converted to subclass axioms of the form A v B. Moreover, the confidence p of an AR
can be interpreted as the probability of the axiom p :: A v B. So GoldMiner can be
used to obtain a probabilistic knowledge base.

The structure learner LEAP is inspired to SLIPCOVER, an algorithm proposed for
learning probabilistic logic programs based on distribution semantics [5]. LEAP shares
with it the search strategy and the use of the log-likelihood of the data as the score of the
learnt theories. Like SLIPCOVER, it divides the search between learning promising
axioms and building in a greedy way a theory whose parameters are optimized by
relying on a parameter learning algorithm.

A work that integrates parameter and structure learning for a probabilistic exten-
sion of ALC, named crALC, is [118]. crALC allows statistical axioms of the form
P (C|D) = α, meaning that for any element x in D, the probability that it is in C given
that is in D is α, and of the form P (R) = β, meaning that for each couple of elements
x and y in D, the probability that x is linked to y by the role R is β. crALC does not
allow to express a degree of belief in axioms as DISPONTE.

An algorithm is presented in [118] that learns parameters and structure of crALC
KBs. It starts from positive and negative examples for a single concept and from the
general concept > in the root of a search tree to be refined. For a set of candidate
concept definitions, their probabilistic parameters are learned using an EM algorithm
and a score is assigned to the corresponding node. If the best score in the tree is above
a threshold, a deterministic concept definition is returned, otherwise a probabilistic
inclusion Ci is searched on a weighted spanning tree, where the target concept is
added as a parent of each vertex and probabilities are learned as P (Ci|Parents(Ci)).
We share the top-down procedure for building axioms (CELOE) but we exploit the
BDD structures instead of resorting to inference in a graphical model to compute the
expected counts for EM.

The paper [248] presents a statistical relational learning system for learning termi-
nological naïve Bayesian classifiers, which estimate the probability that an individual
a belongs to a certain target concept given its membership to a set of induced DL
(feature) concepts. The classifier consists of a Bayesian Network (BN) modelling the
dependency relations between the feature concepts and the target one. The learn-
ing process handles three different assumptions that can be made about the lack of
knowledge (under OWA) regarding concept-membership, reflecting in the adoption of
different scoring functions and search strategies of the optimal network and parameters.
Under one of the assumptions - the probability of concept-membership of a depends
on the knowledge on a available in K - the EM method is proposed to train the BN
parameters. The classifier can be seen as a learner of probabilistic assertional axioms,
while LEAP learns probabilistic terminological axioms. We exploit BDDs instead of

Experiments 227

BNs, while we share with them the use of EM.

18.8 Experiments

LEAP has been evaluated on three KBs:

• Carcinogenesis7 [227] describing the carcinogenicity of more than 300 chemical
compounds. It contains 22,372 individuals and 74,409 axioms.

• The SoftWiki Ontology for Requirements Engineering (SWORE) [249] defining
core concepts of requirements engineering and the way they are interrelated. It
contains 107 individuals and 926 axioms.

• The Moral8 KB that qualitatively simulates moral reasoning. It contains 202
individuals and 4710 axioms.

Regarding Carcinogenesis, we randomly selected 180 individuals, 103 of which repre-
senting positive examples for the class Compound, i.e. individuals that belong to the
class Compound, and 77 representing negative examples, i.e. individuals that do not
belong to the class Compound. For SWORE, we used all the 5 individuals that belong
to the class CustomerRequirement as positive examples and 30 representing negative
examples. For the Moral KB we selected all the 24 individuals for the class Vicarious
as positive examples and 175 individuals randomly selected among the remaining ones
as negative examples.

In the training phase, we first assigned a random probability to every axiom of the
KB and we applied a 5-fold cross validation. We ran EDGE on the original KBs for
learning the parameters associated with the probabilistic axioms, with NE = 3 and
TLE =∞ for the call to BUNDLE (cf. Alg. 16.1) in order to limit the runtime. Then,
we separately ran LEAP on the original KBs for learning probabilistic subsumption
axioms and the associated parameters for the class: Compound for Carcinogenesis KB,
for which LEAP learned 1 axiom in every fold; CustomerRequirement for SWORE, for
which LEAP learned 1 axiom in every fold and Vicarious for the Moral KB, where
LEAP learned 9 axioms in three folds and 8 axioms in the others.

For CELOE, we set LPtype = Positive and Negative Examples Learning Problem, for
Carcinogenesis we set NC = 3 while for the others we set NC = 10 and timeout TLC
for its execution of 120 seconds: when the timeout expires or the maximum number of
class expressions are found, the current set of them is returned to the caller.

In the testing phase, we computed the probability of the examples (queries) in
the test set according to the KBs learned by LEAP and the original ones, by applying
BUNDLE. We drew the PR and ROC curves and computed the AUCPR and AUCROC.
Table 18.1 shows the AUCPR and the AUCROC averaged over the folds together with
the standard deviation for all the KBs.

Most of the learning time was spent for building the BDDs of the examples. For
instance, for the Carcinogenesis KB, on a total learning time of about 1,905 seconds,

7http://dl-learner.org/wiki/Carcinogenesis
8https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner

228 Structure Learning in Probabilistic Description Logics

Table 18.1: Results of the experiments in terms of AUCPR and AUCROC averaged
over the folds with EDGE and LEAP. The first column shows the areas computed w.r.t.
the resulting KB after the execution of EDGE. Standard deviations are also shown.

EDGE LEAP

AUCPR AUCROC AUCPR AUCROC

Carcinogenesis 0.534± 0.108 0.445± 0.051 0.801± 0.240 0.798± 0.246

SWORE 0.148± 0.063 0.453± 0.272 1± 0 1± 0

Moral 0.119± 0.009 0.5± 0 1± 0 1± 0

only 139 seconds was used by CELOE, while 1,765 seconds was used for building BDDs.
Only 0.206 seconds was spent for the initialization of the systems.

The p-value of a paired two-tailed t-test of the difference in AUCPR and AUCROC
between the LEAP ontologies and the initial ones is 0.0603 and 0.0360 respectively for
Carcinogenesis, 7.143 ·10−6 and 0.0109 for SWORE, and 2.734 ·10−9 and 0 for Moral.
The results show that LEAP is useful in achieving better areas under both the PR and
ROC curves, with statistically significant difference at the 5% significance level except
for AUCPR on Carcinogenesis.

18.9 Conclusions

LEAP learns the structure on DISPONTE KBs by first performing a search in the
space of promising axioms, by exploiting CELOE to learn class expressions of target
concepts, and then a greedy search in the space of the ontologies. In this second phase
the probabilities of the new axioms are computed by EDGE. The experiments show
that LEAP achieves larger areas under both the PR and the ROC curve than a single
execution of EDGE.

In the next chapter we show how we adapted LEAP to run with EDGEMR.

230 Distributed Stucture Learning in Probabilistic Description Logics

Algorithm 19.1 shows LEAPMR’s main procedure: it takes as input the knowledge
base K and the configuration settings for CELOE and EDGEMR, then generates NumC
class expressions by exploiting CELOE and the sets of positive and negative examples
which will be the queries (concept membership axioms) for EDGEMR. Then LEAPMR

adds to K one probabilistic subsumption axiom generated from the class expression set
at a time. After each addition, EDGEMR is performed on the extended KB to compute
the LL of the data and the parameters. If the LL is better than the current best,
the new axiom is kept in the knowledge base and the parameter of the probabilistic
axiom are updated, otherwise the learned axiom is removed from the ontology and the
previous parameters are restored. The final theory is obtained from the union of the
initial ontology and the probabilistic axioms learned.

Algorithm 19.1 Function LEAPMR.
1: function LEAPMR(K, LPtype, NumC, ε, δ, S)
2: Input: a knowledge base K
3: Input: the type LPtype of learning problem
4: Input: the maximum number of class expressions to find NC
5: Input: the time limit for the inference for CELOE TLC
6: Input: a threshold ε for the difference between LLs
7: Input: a threshold δ for the fraction of the difference between LLs
8: Input: the maximum number of explanations to find for each example NL
9: Input: the time limit for the inference for each example TLE

10: Input: the scheduling method S
11: Output: the learned knowledge base K
12: ClassExpressions = up to NL or until TLC is reached . generated by CELOE
13: (PI , NI) = ExtractIndividuals(LPtype) . LPtype: specifies how to extract (PI , NI)
14: for all ind ∈ PI do . PI : set of positive individuals
15: Add ind : Target to E+ . E+: set of positive ex
16: end for
17: for all ind ∈ NI do . NI : set of negative individuals
18: Add ind : Target to E− . E−: set of negative examples
19: end for
20: (LL,K′) = EDGEMR(K′, E+, E−, ε, δ,NL, TLE, S) .
21: for all CE ∈ ClassExpressions do
22: Axiom = p :: CE v Target

23: K′ = K ∪ {Axiom}
24: (LL,K′) = EDGEMR(K′, E+, E−, ε, δ,NL, TLE, S) . Call to EDGEMR

25: if LL > LL0 then
26: K = K′

27: LL0 = LL
28: end if
29: end for
30: return K
31: end function

19.2 Experiments

In order to test how much the exploitation of EDGEMR can improve the performances
of LEAPMR, we did a preliminary test where we considered the Moral1 KB which
qualitatively simulates moral reasoning. It contains 202 individuals and 4710 axioms
(22 axioms are probabilistic).

We performed the experiments on a cluster of 64-bit Linux machines with 8-cores
Intel Haswell 2.40 GHz CPUs and 2 GB (max) memory allotted to Java per node. We
allotted 1, 3, 5, 9 and 17 nodes, where the execution with 1 node corresponds to the

1https://archive.ics.uci.edu/ml/datasets/Moral+Reasoner

Conclusion 231

execution of LEAP, while for the other configurations we used the dynamic scheduling
with chunks containing 3 queries. For each experiment 2 candidate probabilistic axioms
are generated by using CELOE and a maximum of 3 explanations per query was set
for EDGEMR. Figure 19.2 shows the speedup obtained as a function of the number
of machines (nodes). The speedup is the ratio of the running time of 1 worker to the
one of n workers. We can note that the speedup is significant even if it is sublinear,
showing that a certain amount of overhead (the resources, and thereby the time, spent
for the MPI communications) is present.

3 5 9 17
2

4

6

8

10

12

N. of Nodes

S
p
e
e
d
u
p

Figure 19.2: Speedup of LEAPMR relative to LEAP for Moral KB.

19.3 Conclusion

This chapter presented the algorithm LEAPMR for learning the structure of proba-
bilistic description logics under DISPONTE. LEAPMR performs EDGEMR which is a
MapReduce implementation of EDGE, exploiting modern computing infrastructures
for performing distributed parameter learning.

As future work we would like to distribute both the structure and the parame-
ter learning of probabilistic knowledge bases by exploiting EDGEMR also during the
building of the class expressions. In particular, we would like to distribute the scoring
function used to evaluate the obtained refinements. In this function EDGEMR take as
input a KB containing only the individuals and the class expression to test. Finally,
the class expressions found are sorted according to the LL returned by EDGEMR and
their initial probability are the probability learned during the execution of EDGEMR.

With this chapter we conclude the part of this thesis dedicated to learning. The
major issue of the proposed systems is that they do not scale well. In the next chapters
we provide some final remarks of the work done and we discuss some ideas for future
work.

Part V

Conclusions and Future Work

233

Chapter 20

Conclusions

The Distribution Semantics has provided a way to combine logic programs with prob-
ability theory. The logical languages that use the distributions semantics are called
Probabilistic Logic Programming (PLP) languages. Among these we have LPADs, one
of the formalisms used in this thesis.

With the advent of Semantic Web, that makes use of formalisms based on Descrip-
tion Logics (DLs) to represent knowledge, it has become increasingly important to have
Probabilistic Description Logics. DISPONTE was developed to meet this requirement
and applies the Distribution Semantics to Description Logics.

We worked both on Probabilistic Logic Programming (PLP) and Probabilistic De-
scription Logic (PDL) research fields because we are convinced that the two areas are
strictly intertwined, and that the advances achieved in one of them can improve the
other.

The aim of this thesis was to provide inference and learning systems for uncertain
relational data expressed in a probabilistic logical formalism such as LPAD and PDLs
that follow DISPONTE.

Once we defined our semantics and our formalisms in Part II - Probabilistic
Logics, we divided our developed systems into two parts. Part III - Inference in
Probabilistic Logics presented our inference systems for PLP and PDLs, whereas
Part IV - Learning presented our learning systems.

Inference

The proposed systems can be split into two main categories.

PLP Inference Systems cplint is a system that allows to perform approximate and
exact inference on LPADs even if the LPAD contains predicates whose arguments
are continuous random variables. Moreover cplint supports causality when the
model is fully known. cplint on SWISH is a web application that allows to write
and test LPADs without installing anything in the local machine. The causality
feature was tested on random social networks of increasing size and compared
to conditional inference. Surprisingly, the results show that exact probabilistic
inference is faster than the approximate one.

235

236 Conclusions

PDL Inference Systems All the proposed systems perform probabilistic logic-based
inference on PDLs that follow DISPONTE. The system BUNDLE, written in
Java, resolves the min-a-enum problem for a given query on SROIQ(D) DIS-
PONTE KBs and then builds the corresponding BDD. TRILL, instead, imple-
ments the tableau algorithm in Prolog. TRILL is limited to SHIQ(D) KBs.
TRILL showed that a Prolog implementation is possible. Therefore we imple-
mented a third reasoner called TRILLP . This system instead of computing all
the explanations for a given query, it computes the pinpointing formula by ex-
ploiting a SAT solver to test ψ-insertability. Since the explanations may grow
exponentially, the complexity of all these systems is high. Moreover the compu-
tation of the probability through Binary Decision Diagrams has a #P-complexity
in the number of explanations. Nevertheless, experiments applied on a real world
datasets proved that these systems handle domains of significant size.

Learning

In the field of Statistical Relational Learning (SRL), the two main learning tasks are
the parameter learning, we know the structure (the logic formulas) of the KB but we
want to know the parameters (weights) of the logic formulas, and structure learning
where both the structure and the parameters have to be learned.

The proposed systems tackles both the learning tasks. Here again, we can divide
the developed learning systems into two categories.

PLP Learning Systems We presented an algorithm for structure learning of prob-
abilistic logic programs, SEMPRE. This algorithm is a MapReduce implementa-
tion of SLIPCOVER. SEMPRE relies on a distributed parallel algorithm named
EMBLEMMR, which, in turn, is a MapReduce version of EMBLEM, a parameter
learning algorithm for probabilistic logic programs.

PDL Learning Systems We have presented the EDGE system (Chapter 16), a su-
pervised parameter learning algorithm which learns probability parameters of
DISPONTE KBs by exploiting an Expectation Maximization algorithm executed
over the BDDs built using BUNDLE. Starting from these results, we developed
LEAP (Chapter 18), a supervised learning system able to learn both the structure
and the parameters of a DL KB. LEAP exploits CELOE for creating candidate
axioms and EDGE to both test the quality of the candidate axioms and learn
the parameters of the resulting KB. The experiments showed that LEAP can
achieve better results than simply tuning the parameters of an existing KB by
using EDGE. All these algorithms are sequential and are rather expensive from
a computational point of view. The diffusion of Big Data and the increased im-
portance of Linked Open Data motivated us to develop parallel and distributed
algorithms in order to manage huge amount of data. EDGEMR is a distributed
version of EDGE based on the MapReduce approach (Chapter 17). It distributes
the computational tasks between different workers. In particular, the examples’
BDD building and the expectation step are split among the workers which run
in parallel. We can have two different scheduling techniques: single-step and

237

dynamic. We exploit the Message Passing Interface (MPI) standard for commu-
nication. Finally the system LEAPMR exploits EDGEMR to speed up the learning
time during the parameter learning phase (Chapter 19).

In our distributed algorithms, we did not use conventional MapReduce frameworks
such as Hadoop, since they commonly require purely functional operations, while we
have to deal with operations that have to keep part of information in memory.

The experimental results of our distributed systems showed that distribution is
beneficial to effectively reduce the learning time.

Chapter 21

Future Work

In previous chapters we often mentioned some improvements that can be applied to
our systems. In this chapter we concentrate and briefly analyse all the ideas for im-
provement scattered all over the thesis. Moreover, we present some ideas and concepts
for possibly new systems. We can divide our future work in two folds, one dedicated
to future work on inference (Section 21.1) and one to learning (Section 21.2).

21.1 Future Work on Inference

cplint

cplint causality feature can be extended to support Pearl’s full do calculus. In fact
we assume that the causal structure of the model is fully known. Pearl’s do calculus,
instead, is more general, as it allows to compute the effect of actions also on models
with unknown variables. Exploiting the full power of the do calculus in PLP is a very
interesting direction for future work.

BUNDLE
The current version of BUNDLE uses Pellet as reasoner under the hood, during the
HST algorithm. However, the new versions of Pellet are no more open source. We
are currently working to re-engineer BUNDLE in order to modularize it and make
it work with other OWL reasoners. The OWLExplanation library1 seems useful to
reach this purpose, although the original fork has not been updated for two years.
Moreover we are thinking of developing a web inference for BUNDLE integrated with
WebProtégé [250] and a BUNDLE plugin for the ontology editor Protégé [76].

TRILL
TRILL currently supports SHIQ(D) KBs. It can be extended by adding the expansion
rules needed to reason over SROIQ(D) KBs.

TRILL on SWISH
Currently in TRILL on SWISH we can write KBs only in OWL RDF/XML format.

1https://github.com/matthewhorridge/owlexplanation

239

240 Future Work

To overcome this limit we are planning to integrate TRILL on SWISH with WebPro-
tégé [250].

New Systems and Ideas
Some ideas and new systems for the future are:

• A new reasoner for approximate inference for DISPONTE KBs, that performs
inference by sampling, can be developed by using the same techniques mentioned
in Subsection 12.2.2.

• Allow our systems to automatically retrieve information on-line via public end-
points, such as SPARQL servers;

21.2 Future Work on Learning

EDGE
At present, EDGE depends on BUNDLE for obtaining the covering set of explanations.
In the future, we plan to develop a reengineered version of EDGE such that it is
independent of BUNDLE and can be used with other (probabilistic) OWL reasoners
that returns the explanations such as TRILL.

LEAP and LEAP
MR

We can optimize these systems as follows.

• Improving the scalability of our algorithms, in order to handle larger datasets. In
particular we can think to use approaches for knowledge fragment selection [251,
252], i.e. extracting only the relevant part of the knowledge, in order to reduce
the reasoning and hence the learning time.

• Exploiting scraping methods [253] to enrich our initial knowledge base and im-
prove the learning.

• For LEAPMR we could think to exploit EDGEMR also when building class expres-
sions. Similarly to SEMPRE [254, 13] (Section 15.5), we would like to distribute
the scoring function used to evaluate the obtained refinements. In this function
EDGEMR takes as input a KB containing only the individuals and the class ex-
pression to test. Finally, the class expressions found are sorted according to the
LL returned by EDGEMR and their initial probability are the probability learned
during the execution of EDGEMR. Currently LEAP and LEAPMR support only
supervised learning, we plan to add semi-supervised or unsupervised learning.
Another branch of research is to adapt LEAPMR to exploit Apache Spark and to
run the queries on GPUs.

New Systems and Ideas
Concerning the development of new learning algorithms we can take two different
directions. One based on purely symbolic SRL approaches and one that tries to combine
probabilistic logics with neural networks.

Future Work on Learning 241

Purely symbolic Structure Learning in PDL can be limited by DL expressivity. In
fact, in order to reach decidability, there are severe restrictions on the way variables
and quantifiers can be used. For instance in OWL it is impossible to write rules as the
one in the following example (from [255]).

Example 21.2.1
In DL it is impossible to assert that individuals who live and work at the same location
are “Home workers”. With logic programs instead it is easy to represent that. For
instance in Prolog:

home_worker(X) :- work(X,Y), live(X,Z), located(Y,W),

located(Z,W).

These expressivity restrictions of DLs limit the rules that can be learned by struc-
ture learning algorithms. A way to avoid this problem is to map DLs (some specific
fragments) to logic programs without losing the semantics, as proposed in [255] and
[193]. Then we could think to use PLP learning algorithms such as SLIPCOVER or
SEMPRE to build rules on top of DISPONTE KBs.

Neural-symbolic integration The success of neural network technologies is un-
deniable. There are countless academic and industrial applications. In these years
several approaches which combine artificial neural networks with symbolic logical rep-
resentation techniques have emerged. For knowledge extraction from trained neural
networks [256, 257, 258] and for learning new RDF triples by means of entity latent
features [259]. A parallel thread of our research will concern a study of these methods.

Bibliography

[1] T. Sato. “A Statistical Learning Method for Logic Programs with Distribution
Semantics”. In: 12th International Conference on Logic Programming, Tokyo,
Japan. Ed. by L. Sterling. Cambridge, Massachusetts: MIT Press, 1995, pp. 715–
729. isbn: 0-262-69177-9.

[2] E. Bellodi, E. Lamma, F. Riguzzi, and S. Albani. “A Distribution Semantics for
Probabilistic Ontologies”. In: 7th International Workshop on Uncertainty Rea-
soning for the Semantic Web. Vol. 778. CEUR Workshop Proceedings. Aachen,
Germany: Sun SITE Central Europe, 2011, pp. 75–86.

[3] F. Riguzzi, E. Bellodi, E. Lamma, and R. Zese. “Probabilistic Description Logics
under the Distribution Semantics”. In: Semantic Web – Interoperability, Usabil-
ity, Applicability 6.5 (2015), pp. 447–501. doi: 10.3233/SW-140154.

[4] E. Bellodi and F. Riguzzi. “Expectation Maximization over Binary Decision
Diagrams for Probabilistic Logic Programs”. In: Intelligent Data Analysis 17.2
(2013), pp. 343–363.

[5] E. Bellodi and F. Riguzzi. “Structure Learning of Probabilistic Logic Programs
by Searching the Clause Space”. In: Theory and Practice of Logic Programming
15.2 (2015), pp. 169–212. doi: 10.1017/S1471068413000689.

[6] F. Riguzzi, G. Cota, E. Bellodi, and R. Zese. “Causal inference in cplint”. In:
International Journal of Approximate Reasoning 91 (2017), pp. 216–232. issn:
0888-613X. doi: https://doi.org/10.1016/j.ijar.2017.09.007. url:
https://www.sciencedirect.com/science/article/pii/S0888613X17301640.

[7] M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, and R. Zese. “cplint on SWISH:
Probabilistic Logical Inference with a Web Browser”. In: Intelligenza Artificiale
11.1 (2017), pp. 47–64. doi: 10.3233/IA-170105.

[8] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Probabilistic Logic
Programming on the Web”. In: Software: Practice and Experience 46.10 (Oct.
2016), pp. 1381–1396. doi: 10.1002/spe.2386.

[9] F. Riguzzi and G. Cota. Probabilistic Logic Programming Tutorial. London, UK,
Apr. 2016. url: http://www.cs.nmsu.edu/ALP/2016/03/probabilistic-
logic-programming-tutorial/.

[10] R. Zese, E. Bellodi, F. Riguzzi, G. Cota, and E. Lamma. “Tableau Reasoning
for Description Logics and its Extension to Probabilities”. In: Annals of Mathe-
matics and Artificial Intelligence (2016), pp. 1–30. doi: 10.1007/s10472-016-
9529-3. url: http://dx.doi.org/10.1007/s10472-016-9529-3f.

243

244 BIBLIOGRAPHY

[11] F. Riguzzi, E. Bellodi, E. Lamma, and R. Zese. “Reasoning with Probabilistic
Ontologies”. In: Proceedings of the 24th International Joint Conference on Arti-
ficial Intelligence, Buenos Aires, Argentina. Ed. by Q. Yang and M. Wooldridge.
Palo Alto, California USA: AAAI Press/International Joint Conferences on Ar-
tificial Intelligence, 2015, pp. 4310–4316. isbn: 978-1-57735-738-4.

[12] E. Bellodi, E. Lamma, F. Riguzzi, R. Zese, and G. Cota. “A web system for
reasoning with probabilistic OWL”. In: Software: Practice and Experience 47.1
(2017), pp. 125–142.

[13] F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. “Scaling Structure
Learning of Probabilistic Logic Programs by MapReduce”. In: Proceedings of
the 22nd European Conference on Artificial Intelligence. Ed. by M. Fox and
G. Kaminka. Vol. 285. Frontiers in Artificial Intelligence and Applications. IOS
Press, 2016, pp. 1602–1603. doi: 10.3233/978-1-61499-672-9-1602.

[14] F. Riguzzi, E. Bellodi, E. Lamma, and R. Zese. “Parameter Learning for Prob-
abilistic Ontologies”. In: 7th International Conference on Web Reasoning and
Rule Systems (RR 2013), Mannheim, Germany. Ed. by W. Faber and D. Lembo.
Vol. 7994. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 265–270. isbn: 978-3-642-39665-6. doi: 10.1007/978-3-642-39666-3_26.

[15] G. Cota, R. Zese, E. Bellodi, F. Riguzzi, and E. Lamma. “Distributed Parame-
ter Learning for Probabilistic Ontologies”. In: 25th International Conference on
Inductive Logic Programming. Ed. by K. Inoue, H. Ohwada, and A. Yamamoto.
2015.

[16] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Learning Probabilis-
tic Description Logics”. English. In: Uncertainty Reasoning for the Semantic
Web III. Ed. by F. Bobillo et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer International Publishing, 2014, pp. 63–78. isbn: 978-3-319-
13412-3. doi: 10.1007/978-3-319-13413-0_4.

[17] G. Cota, R. Zese, E. Bellodi, E. Lamma, and F. Riguzzi. “Structure Learning
with Distributed Parameter Learning for Probabilistic Ontologies”. In: Doctoral
Consortium of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2015). Ed. by
J. Hollmen and P. Papapetrou. 2015, pp. 75–84. isbn: 978-952-60-6443-7. url:
http://urn.fi/URN:ISBN:978-952-60-6443-7.

[18] R. A. Kowalski. “Predicate Logic as Programming Language”. In: IFIP Congress.
1974, pp. 569–574.

[19] M. H. Van Emden and R. A. Kowalski. “The semantics of predicate logic as a
programming language”. In: Journal of the ACM 23.4 (1976), pp. 733–742.

[20] R. Reiter. “On closed world data bases”. In: Logic and Data Bases. Plenum
Press, 1978, pp. 55–76.

[21] K. L. Clark. “Negation as failure”. In: Logic and data bases. Springer, 1978,
pp. 293–322.

BIBLIOGRAPHY 245

[22] M. Gelfond and V. Lifschitz. “The stable model semantics for logic program-
ming.” In: Logic Programming, 5th International Conference and Symposium,
Seattle, Washington. Vol. 88. MIT Press, 1988, pp. 1070–1080.

[23] T. C. Przymusinski. “Every Logic Program Has a Natural Stratification And an
Iterated Least Fixed Point Model”. In: Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-1989).
ACM Press, 1989, pp. 11–21.

[24] A. Van Gelder, K. A. Ross, and J. S. Schlipf. “The Well-founded Semantics for
General Logic Programs”. In: J. ACM 38.3 (1991), pp. 620–650.

[25] K. R. Apt and M. Bezem. “Acyclic Programs”. In: New generation computing
9.3-4 (1991), pp. 335–363.

[26] W. Faber, G. Pfeifer, and N. Leone. “Semantics and complexity of recursive
aggregates in answer set programming”. In: Artificial Intelligence 175.1 (2011),
pp. 278–298.

[27] F. Riguzzi. “Extended Semantics and Inference for the Independent Choice
Logic”. In: Logic Journal of the IGPL 17.6 (2009), pp. 589–629. doi: 10.1093/
jigpal/jzp025.

[28] F. Fages. “Consistency of Clark’s completion and existence of stable models”.
In: Meth. of Logic in CS 1.1 (1994), pp. 51–60.

[29] L. De Raedt and A. Kimmig. “Probabilistic (Logic) Programming Concepts”.
In: Machine Learning 100.1 (2015), pp. 5–47.

[30] D. Fierens et al. “Inference and Learning in Probabilistic Logic Programs using
Weighted Boolean Formulas”. In: Theory and Practice of Logic Programming
15.3 (2015), pp. 358–401.

[31] J. Vennekens, S. Verbaeten, and M. Bruynooghe. “Logic Programs With An-
notated Disjunctions”. In: Logic Programming, 24th International Conference,
ICLP 2004, Saint-Malo, France, Proceedings. Ed. by B. Demoen and V. Lifs-
chitz. Vol. 3131. Lecture Notes in Computer Science. Berlin Heidelberg, Ger-
many: Springer, 2004, pp. 431–445. isbn: 978-3-540-27775-0. doi: 10.1007/978-
3-540-27775-0_30.

[32] M. Richardson and P. Domingos. “Markov logic networks”. In: Machine Learning
62.1-2 (2006), pp. 107–136.

[33] E. Dantsin. “Probabilistic Logic Programs and their Semantics”. In: Russian
Conference on Logic Programming. Vol. 592. LNCS. Springer, 1991, pp. 152–
164.

[34] R. T. Ng and V. S. Subrahmanian. “Probabilistic Logic Programming”. In: In-
formation and Computation 101.2 (1992), pp. 150–201.

[35] D. Poole. “Logic Programming, Abduction and Probability - A Top-Down Any-
time Algorithm for Estimating Prior and Posterior Probabilities”. In: New Gen.
Comp. 11.3 (1993), pp. 377–400.

[36] M. P. Wellman, J. S. Breese, and R. P. Goldman. “From knowledge bases to
decision models”. In: The Knowledge Engineering Review 7.1 (1992), pp. 35–53.

246 BIBLIOGRAPHY

[37] F. Bacchus. “Using First-Order Probability Logic for the Construction of Bayesian
Networks”. In: 9th Conference Conference on Uncertainty in Artificial Intelli-
gence (UAI 1994). Morgan Kaufmann Publishers, 1993, pp. 219–219.

[38] L. Ngo and P. Haddawy. “Answering queries from context-sensitive probabilistic
knowledge bases”. In: Theoretical Computer Science 171.1 (1997), pp. 147–177.

[39] K. Kersting and L. De Raedt. “Towards Combining Inductive Logic Program-
ming with Bayesian Networks”. In: 11th International Conference on Inductive
Logic Programming. Springer, 2001, pp. 118–131.

[40] V. S. Costa, D. Page, M. Qazi, and J. Cussens. “CLP (BN): Constraint Logic
Programming for Probabilistic Knowledge”. In: 19th International Conference
on Uncertainty in Artificial Intelligence (UAI-03). Morgan Kaufmann Publish-
ers, 2003, pp. 517–524.

[41] T. Gomes and V. S. Costa. “Evaluating Inference Algorithms for the Prolog
Factor Language”. In: 22nd International Conference on Inductive Logic Pro-
gramming. Ed. by F. Riguzzi and F. Zelezný. Vol. 7842. LNCS. Springer, 2012,
pp. 74–85.

[42] F. Riguzzi and T. Swift. “Well-Definedness and Efficient Inference for Prob-
abilistic Logic Programming under the Distribution Semantics”. In: Theory
and Practice of Logic Programming 13.2 (2013), pp. 279–302. doi: 10.1017/
S1471068411000664.

[43] F. Riguzzi. “The Distribution Semantics for Normal Programs with Funtion
Symbols”. In: International Journal of Approximate Reasoning 77 (2016), pp. 1–
19.

[44] D. Poole. “The Independent Choice Logic for Modelling Multiple Agents under
Uncertainty”. In: Artificial Intelligence 94 (1997), pp. 7–56.

[45] L. De Raedt, A. Kimmig, and H. Toivonen. “ProbLog: A Probabilistic Prolog
and Its Application in Link Discovery”. In: Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India (IJCAI-07). Ed. by
M. M. Veloso. Vol. 7. Palo Alto, California USA: AAAI Press, 2007, pp. 2462–
2467.

[46] N. Fuhr. “Probabilistic datalog: Implementing logical information retrieval for
advanced applications”. In: Journal of the American Society for Information
Science 51 (2000), pp. 95–110.

[47] C. Baral, M. Gelfond, and N. Rushton. “Probabilistic reasoning with answer
sets”. In: Theory and Practice of Logic Programming 9.1 (2009), pp. 57–144.
doi: 10.1017/S1471068408003645.

[48] J. Vennekens, M. Denecker, and M. Bruynooghe. “CP-logic: A language of causal
probabilistic events and its relation to logic programming”. In: Theory and Prac-
tice of Logic Programming 9.3 (2009), pp. 245–308.

[49] F. Riguzzi. “MCINTYRE: A Monte Carlo System for Probabilistic Logic Pro-
gramming”. In: Fundamenta Informaticae 124.4 (2013), pp. 521–541. doi: 10.
3233/FI-2013-847.

BIBLIOGRAPHY 247

[50] F. Riguzzi. “The Distribution Semantics for Normal Programs with Function
Symbols”. In: International Journal of Approximate Reasoning 77 (2016), pp. 1
–19. doi: 10.1016/j.ijar.2016.05.005.

[51] L. De Raedt et al. “Towards digesting the alphabet-soup of statistical relational
learning”. In: NIPS*2008 Workshop on Probabilistic Programming. 2008.

[52] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
eds. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. New York, NY, USA: Cambridge University Press, 2003. isbn: 0-521-
78176-0.

[53] F. Baader, I. Horrocks, and U. Sattler. “Description Logics”. In: Handbook of
Knowledge Representation. Amsterdam: Elsevier, 2008. Chap. 3, pp. 135–179.
isbn: 978-0-444-52211-5.

[54] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Tech-
nologies. Chapman & Hall/CRC, 2009.

[55] W3C. OWL 2 Web Ontology Language. Dec. 2012. url: http://www.w3.org/
TR/2012/REC-owl2-overview-20121211/.

[56] W3C. OWL 2 web ontology language: Structural specification and functional-
style syntax. Dec. 2012. url: https://www.w3.org/TR/owl2-syntax/.

[57] G. Chapman, J. Cleese, T. Gilliam, E. Idle, T. Jones, and M. Palin. Monty
Python and the Holy Grail. 1975.

[58] F. Baader and U. Sattler. “Number Restrictions on Complex Roles in Descrip-
tion Logics”. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fifth International Conference. 1996, pp. 328–339.

[59] I. Horrocks, U. Sattler, and S. Tobies. “Practical reasoning for expressive de-
scription logics”. In: Logic for Programming and Automated Reasoning. Vol. 99.
Springer. 1999, pp. 161–180.

[60] I. Horrocks and U. Sattler. “A description logic with transitive and inverse roles
and role hierarchies”. In: Journal of Logic and Computation 9.3 (1999), pp. 385–
410.

[61] I. Horrocks, O. Kutz, and U. Sattler. “The Even More Irresistible SROIQ”.
In: Principles of Knowledge Representation and Reasoning: Proceedings of the
Tenth International Conference. Vol. 6. Lake District, UK: AAAI Press, 2006,
pp. 57–67. isbn: 978-1-57735-271-6. url: http://dl.acm.org/citation.cfm?
id=3029947.3029959.

[62] Y. Kazakov. “RIQ and SROIQ are harder than SHOIQ”. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Eleventh Inter-
national Conference. KR’08. Sydney, Australia: AAAI Press, 2008, pp. 274–
284. isbn: 978-1-57735-384-3. url: https://www.cs.ox.ac.uk/files/362/
Kazakov_KR08_RIQ_SROIQ.pdf.

[63] A. Borgida. “On the relative expressiveness of description logics and predicate
logics”. In: Artificial Intelligence 82.1-2 (1996), pp. 353–367.

248 BIBLIOGRAPHY

[64] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. “Description Logic Programs:
Combining Logic Programs with Description Logic”. In: Proceedings of the12th
International Conference on World Wide Web. WWW ’03. Budapest, Hungary:
ACM Press, 2003, pp. 48–57. isbn: 1-58113-680-3. doi: 10 . 1145 / 775152 .

775160. url: http://doi.acm.org/10.1145/775152.775160.

[65] W3C. Semantic Web Activity. 2001. url: http://www.w3.org/2001/sw/.

[66] W3C OWL Working Group. OWL Web Ontology Language. 2004. url: http:
//www.w3.org/TR/owl-features/.

[67] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
“OWL 2: The next step for OWL”. In: Journal of Web Semantics 6.4 (2008),
pp. 309–322.

[68] W3C OWL Working Group. OWL 2 Web Ontology Language New Features and
Rationale (Second Edition). Dec. 2012. url: https://www.w3.org/TR/owl2-
new-features/.

[69] W3C. RDF/XML Syntax Specification. 2004. url: http://www.w3.org/TR/
REC-rdf-syntax/.

[70] W3C. Turtle - Terse RDF Triple Language. 2011. url: http://www.w3.org/
TeamSubmission/turtle/.

[71] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. Wang.
“The Manchester OWL Syntax”. In: OWLED2006 Second Workshop on OWL
Experiences and Directions. 2006.

[72] W3C. OWL 2 Web Ontology Language Manchester Syntax (Second Edition).
2012. url: http://www.w3.org/TR/owl2-manchester-syntax/.

[73] W3C. OWL 1.1 Web Ontology Language: Structural Specification and Functional-
Style Syntax. 2008. url: http://www.w3.org/TR/owl11-syntax/.

[74] W3C. OWL 2 Web Ontology Language XML Serialization (Second Edition).
2012. url: http://www.w3.org/TR/2012/REC-owl2-xml-serialization-
20121211/.

[75] W3C. OWL 2 Web Ontology Language: Profiles. Dec. 2012. url: https://www.
w3.org/TR/owl2-profiles/.

[76] University of Stanford. Protégé. url: http://protege.stanford.edu.

[77] MIND lab at University of Maryland. Swoop. url: https://code.google.
com/p/swoop/.

[78] R. Shearer, B. Motik, and I. Horrocks. “HermiT: A Highly-Efficient OWL Rea-
soner.” In: OWL: Experiences and Direction. Vol. 432. 2008, p. 91.

[79] University of Oxford. Hermit. url: http://hermit-reasoner.com/.

[80] FaCT++. url: https://code.google.com/p/factplusplus/.

[81] D. Tsarkov and I. Horrocks. “FaCT++ Description Logic Reasoner: System
Description”. In: IJCAR’06 (2006), pp. 292–297. doi: 10.1007/11814771_26.
url: http://dx.doi.org/10.1007/11814771_26.

BIBLIOGRAPHY 249

[82] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz. “Pellet: A
practical OWL-DL reasoner”. In: Journal of Web Semantics 5.2 (2007), pp. 51–
53.

[83] M. Horridge and S. Bechhofer. “The owl api: A java api for owl ontologies”. In:
Semantic Web 2.1 (2011), pp. 11–21.

[84] OWL API. url: http://owlapi.sourceforge.net/.

[85] A. S. Foundation. Jena. url: http://jena.apache.org/.

[86] D. Calvanese, G. De Giacomo, and M. Lenzerini. “Reasoning in Expressive De-
scription Logics with Fixpoints Based on Automata on Infinite Trees”. In: Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence,
Stockholm, Sweden (IJCAI-99). IJCAI’99. Stockholm, Sweden: Morgan Kauf-
mann Publishers Inc., 1999, pp. 84–89. url: http://dl.acm.org/citation.
cfm?id=1624218.1624231.

[87] U. Hustadt and R. A. Schmidt. “Using resolution for testing modal satisfiability
and building models”. In: Journal of Automated Reasoning 28.2 (2002), pp. 205–
232.

[88] U. Hustadt, B. Motik, and U. Sattler. “Deciding expressive description logics in
the framework of resolution”. In: Information and Computation 206.5 (2008),
pp. 579–601.

[89] F. Baader, S. Brandt, and C. Lutz. “Pushing the EL envelope”. In: Proceedings
of the 19th International Joint Conference on Artificial Intelligence, Edinburgh,
Scotland (IJCAI-05). Vol. 5. Morgan Kaufmann Publishers, 2005, pp. 364–369.

[90] A. Kalyanpur. “Debugging and Repair of OWL Ontologies”. PhD thesis. The
Graduate School of the University of Maryland, 2006.

[91] E. Bellodi. “Integration of Logic and Probability in Terminological and Inductive
Reasoning”. PhD thesis. Università degli Studi di Ferrara, 2013.

[92] R. Zese. Probabilistic Semantic Web: Reasoning and Learning. Vol. 28. Studies
on the Semantic Web. Amsterdam: IOS Press, 2017. isbn: 978-1-61499-733-7.
doi: 10.3233/978-1-61499-734-4-i. url: http://ebooks.iospress.nl/
volume/probabilistic-semantic-web-reasoning-and-learning.

[93] I. Horrocks and U. Sattler. “A Tableau Decision Procedure for SHOIQ”. In:
Journal of Automated Reasoning 39.3 (2007), pp. 249–276.

[94] C. Halaschek-Wiener, A. Kalyanpur, and B. Parsia. Extending Tableau Tracing
for ABox Updates. Tech. rep. University of Maryland, 2006.

[95] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. “Finding All Justifications
of OWL DL Entailments”. In: The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Korea, November 11-15, 2007. Ed. by K. Aberer et al. Vol. 4825.
Lecture Notes in Computer Science (LNCS). Berlin: Springer, 2007, pp. 267–
280.

250 BIBLIOGRAPHY

[96] A. Kalyanpur, B. Parsia, E. Sirin, and J. A. Hendler. “Debugging unsatisfiable
classes in OWL ontologies”. In: Journal of Web Semantics 3.4 (2005), pp. 268–
293.

[97] S. Schlobach and R. Cornet. “Non-Standard Reasoning Services for the De-
bugging of Description Logic Terminologies”. In: IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003. Ed. by G. Gottlob and T. Walsh. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2003, pp. 355–362.

[98] A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Kalyanpur, Aditya and
Parsia, Bijan and Cuenca-Grau, Bernardo and Sirin, Evren. Tech. rep. 2005-66.
University of Maryland, 2005.

[99] R. Reiter. “A Theory of Diagnosis from First Principles”. In: Artificial Intelli-
gence 32.1 (1987), pp. 57–95.

[100] F. Baader and R. Peñaloza. “Automata-Based Axiom Pinpointing”. In: Journal
of Automated Reasoning 45.2 (2010), pp. 91–129.

[101] F. Baader and R. Peñaloza. “Axiom Pinpointing in General Tableaux”. In: Jour-
nal of Logic and Computation 20.1 (2010), pp. 5–34.

[102] F. Patel-Schneider P, I. Horrocks, and S. Bechhofer. Tutorial on OWL. 2003.
url: http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/.

[103] J. Y. Halpern. “An Analysis of First-Order Logics of Probability”. In: Artificial
Intelligence 46.3 (1990), pp. 311–350.

[104] URW3-XG. Uncertainty Reasoning for the World Wide Web, Final report. 2008.

[105] F. Bacchus. Representing and reasoning with probabilistic knowledge - a logical
approach to probabilities. Cambridge, MA, USA: MIT Press, 1990, pp. 1–233.

[106] C. Lutz and L. Schröder. “Probabilistic Description Logics for Subjective Uncer-
tainty”. In: Principles of Knowledge Representation and Reasoning: Proceedings
of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada,
May 9-13, 2010. Ed. by F. Lin, U. Sattler, and M. Truszczynski. Menlo Park,
CA, USA: AAAI Press, 2010, pp. 393–403.

[107] J. Heinsohn. “Probabilistic Description Logics”. In: Proceedings of the 10th Con-
ference Conference on Uncertainty in Artificial Intelligence (UAI 1994), Jul
29-31 1994, Seattle, WA. Ed. by R. L. de Mántaras and D. Poole. Morgan
Kaufmann, 1994, pp. 311–318.

[108] M. Jaeger. “Probabilistic Reasoning in Terminological Logics”. In: Proceedings of
the 4th International Conference on Principles of Knowledge Representation and
Reasoning. Ed. by J. Doyle, E. Sandewall, and P. Torasso. Morgan Kaufmann,
1994, pp. 305–316.

[109] P. C. G. Da Costa, K. B. Laskey, and K. J. Laskey. “PR-OWL: A Bayesian
Ontology Language for the Semantic Web”. In: Proceedings of the 2005 Inter-
national Conference on Uncertainty Reasoning for the Semantic Web - Volume
173. Uncertainty Reasoning for the Semantic Web I. Galway, Ireland: CEUR-
WS.org, 2005, pp. 23–33.

BIBLIOGRAPHY 251

[110] R. N. Carvalho, K. B. Laskey, and P. C. G. Costa. “PR-OWL 2.0 - Bridging the
gap to OWL semantics”. In: Uncertainty Reasoning for the Semantic Web II.
Ed. by F. Bobillo and et al. Vol. 654. CEUR Workshop Proceedings. Sun SITE
Central Europe, 2010.

[111] K. B. Laskey and P. C. G. da Costa. “Of Starships and Klingons: Bayesian Logic
for the 23rd Century”. In: Proceedings of the 21st Conference in Uncertainty in
Artificial Intelligence, Edinburgh (UAI 2005), Scotland, July 26-29, 2005. AUAI
Press, 2005, pp. 346–353.

[112] R. Giugno and T. Lukasiewicz. “P-SHOQ(D): A Probabilistic Extension of
SHOQ(D) for Probabilistic Ontologies in the Semantic Web”. In: Logics in Arti-
ficial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, Proceed-
ings. Ed. by S. Flesca, S. Greco, N. Leone, and G. Ianni. Vol. 2424. Lecture
Notes in Computer Science. Springer, 2002, pp. 86–97.

[113] T. Lukasiewicz. “Probabilistic Default Reasoning with Conditional Constraints”.
In: Annals of Mathematics and Artificial Intelligence 34.1-3 (2002), pp. 35–88.

[114] T. Lukasiewicz. “Expressive probabilistic description logics”. In: Artificial Intel-
ligence 172.6-7 (2008), pp. 852–883.

[115] A. Calì, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt. “Tightly coupled
probabilistic description logic programs for the Semantic Web”. In: Journal on
Data Semantics XII (2009), pp. 95–130.

[116] Z. Ding and Y. Peng. “A Probabilistic Extension to Ontology Language OWL”.
In: 37th Hawaii International Conference on System Sciences (HICSS-37 2004),
CD-ROM / Abstracts Proceedings, 5-8 January 2004, Big Island, HI, USA.
IEEE Computer Society, 2004.

[117] D. Koller, A. Y. Levy, and A. Pfeffer. “P-CLASSIC: A Tractable Probablistic
Description Logic”. In: Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island. Ed.
by B. Kuipers and B. L. Webber. AAAI Press / The MIT Press, 1997, pp. 390–
397.

[118] J. E. O. Luna, K. Revoredo, and F. G. Cozman. “Learning Probabilistic Descrip-
tion Logics: A Framework and Algorithms”. In: Advances in Artificial Intelli-
gence - 10th Mexican International Conference on Artificial Intelligence, MICAI
2011, Puebla, Mexico, November 26 - December 4, 2011, Proceedings, Part I.
Ed. by I. Z. Batyrshin and G. Sidorov. Vol. 7094. Lecture Notes in Computer
Science. Berlin: Springer, 2011, pp. 28–39.

[119] C. d’Amato, N. Fanizzi, and T. Lukasiewicz. “Tractable Reasoning with Bayesian
Description Logics”. In: Scalable Uncertainty Management, Second International
Conference, SUM 2008, Naples, Italy, October 1-3, 2008. Proceedings. Ed. by
S. Greco and T. Lukasiewicz. Vol. 5291. Lecture Notes in Computer Science.
Berlin: Springer, 2008, pp. 146–159.

252 BIBLIOGRAPHY

[120] G. Gottlob, T. Lukasiewicz, and G. I. Simari. “Conjunctive Query Answer-
ing in Probabilistic Datalog+/- Ontologies”. In: 5th International Conference
on Web Reasoning and Rule Systems (RR 2011), Galway, Ireland. Ed. by S.
Rudolph and C. Gutierrez. Vol. 6902. Lecture Notes in Computer Science.
Berlin: Springer, 2011, pp. 77–92.

[121] F. Riguzzi and T. Swift. “Tabling and Answer Subsumption for Reasoning on
Logic Programs with Annotated Disjunctions”. In: Technical Communications
of the 26th Int’l. Conference on Logic Programming (ICLP’10). Vol. 7. Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2010, pp. 162–171. isbn: 978-3-939897-17-0. doi: 10.
4230/LIPIcs.ICLP.2010.162.

[122] F. Riguzzi and T. Swift. “The PITA system: Tabling and answer subsumption
for reasoning under uncertainty”. In: Theory and Practice of Logic Programming
11.4-5 (2011), pp. 433–449.

[123] A. Thayse, M. Davio, and J. P. Deschamps. “Optimization of multivalued de-
cision algorithms”. In: International Symposium on Multiple-Valued Logic. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1978, pp. 171–178.

[124] S. B. Akers. “Binary decision diagrams”. In: IEEE Transactions on Computers
6 (1978), pp. 509–516.

[125] R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation”.
In: IEEE Transactions on Computers 35.8 (Aug. 1986), pp. 677–691. issn: 0018-
9340. doi: 10.1109/TC.1986.1676819. url: http://dx.doi.org/10.1109/
TC.1986.1676819.

[126] R. E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-decision
Diagrams”. In: ACM Computing Surveys 24.3 (Sept. 1992), pp. 293–318. issn:
0360-0300. doi: 10.1145/136035.136043. url: http://doi.acm.org/10.
1145/136035.136043.

[127] B. Bollig and I. Wegener. “Improving the Variable Ordering of OBDDs Is NP-
Complete”. In: IEEE Trans. Computers 45.9 (1996), pp. 993–1002.

[128] F. Somenz. CUDD: CU Decision Diagram Package Release 3.0.0. University of
Colorado. 2015. url: http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf.

[129] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. Sangiovanni-Vincentelli.
“High performance BDD package by exploiting memory hierarchy”. In: Pro-
ceedings of the 33rd annual Design Automation Conference. ACM Press, 1996,
pp. 635–640.

[130] BuDDy: A BDD package. url: http://buddy.sourceforge.net/manual/
main.html.

[131] A. Vahidi. JDD: a pure Java BDD and Z-BDD library. https://bitbucket.
org/vahidi/jdd. 2015.

[132] J. Whaley. JavaBDD. url: http://javabdd.sourceforge.net/.

[133] D. Poole. “First-order Probabilistic Inference”. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI-03). Ed. by G.
Gottlob and T. Walsh. Morgan Kaufmann Publishers, 2003, pp. 985–991.

BIBLIOGRAPHY 253

[134] E. Bellodi, E. Lamma, F. Riguzzi, V. S. Costa, and R. Zese. “Lifted Variable
Elimination for Probabilistic Logic Programming”. In: Theory and Practice of
Logic Programming 14.4-5 (2014), pp. 681–695. doi: 10.1017/S1471068414000283.

[135] G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt. “Lifted
Probabilistic Inference by First-Order Knowledge Compilation”. In: Proceedings
of the 22nd International Joint Conference on Artificial Intelligence. Ed. by T.
Walsh. IJCAI/AAAI, 2011, pp. 2178–2185.

[136] G. Van den Broeck. “On the Completeness of First-Order Knowledge Compi-
lation for Lifted Probabilistic Inference”. In: Advances in Neural Information
Processing Systems. 2011, pp. 1386–1394.

[137] G. Van den Broeck. “Lifted Inference and Learning in Statistical Relational
Models”. PhD thesis. Ph. D. Dissertation, KU Leuven, 2013.

[138] F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. “A Survey of Lifted
Inference Approaches for Probabilistic Logic Programming under the Distribu-
tion Semantics”. In: International Journal of Approximate Reasoning 80 (Jan.
2017), pp. 313–333. issn: 0888-613X. doi: 10.1016/j.ijar.2016.10.002.

[139] K. Kersting. “Lifted probabilistic inference”. In: Proceedings of the 20th Euro-
pean Conference on Artificial Intelligence. IOS Press. 2012, pp. 33–38.

[140] A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha. “On the
implementation of the probabilistic logic programming language ProbLog”. In:
Theory and Practice of Logic Programming 11.2-3 (2011), pp. 235–262.

[141] J. Renkens, A. Kimmig, G. Van den Broeck, and L. De Raedt. “Explanation-
Based Approximate Weighted Model Counting for Probabilistic Logics”. In: Pro-
ceedings of the 13th AAAI Conference on Statistical Relational AI. AAAIWS’14-
13. AAAI Press, 2014, pp. 86–92.

[142] D. Poole. “Abducing through Negation as Failure: Stable models within the
independent choice logic”. In: J. Logic Program. 44.1-3 (2000), pp. 5–35.

[143] D. Poole. “Probabilistic Horn Abduction and Bayesian Networks”. In: Artificial
Intelligence 64.1 (1993), pp. 81–129.

[144] F. Riguzzi and T. Swift. “The PITA System: Tabling and Answer Subsumption
for Reasoning under Uncertainty”. In: Theory and Practice of Logic Program-
ming 11.4–5 (2011), pp. 433–449. doi: 10.1017/S147106841100010X.

[145] D. Poole. AILog User Manual Version 2.3. 2008.

[146] L. G. Valiant. “The complexity of enumeration and reliability problems”. In:
SIAM Journal on Computing 8.3 (1979), pp. 410–421.

[147] A. Darwiche and P. Marquis. “A Knowledge Compilation Map”. In: Journal of
Artificial Intelligence Research 17 (2002), pp. 229–264.

[148] T. Sang, P. Beame, and H. A. Kautz. “Performing Bayesian Inference by Weighted
Model Counting”. In: 20th National Conference on Artificial Intelligence. Palo
Alto, California USA: AAAI Press, 2005, pp. 475–482.

254 BIBLIOGRAPHY

[149] C. Meinel and A. Slobodová. “On the complexity of constructing optimal ordered
binary decision diagrams”. In: Mathematical Foundations of Computer Science
(1994), pp. 515–524.

[150] T. Swift and D. S. Warren. “XSB: Extending Prolog with Tabled Logic Program-
ming”. In: Theory and Practice of Logic Programming 12.1-2 (2012), pp. 157–
187. doi: 10.1017/S1471068411000500.

[151] V. Santos Costa, R. Rocha, and L. Damas. “The YAP Prolog system”. In: Theory
and Practice of Logic Programming 12.1-2 (2012), pp. 5–34.

[152] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. “SWI-Prolog”. In: Theory
and Practice of Logic Programming 12.1-2 (2012), pp. 67–96. doi: 10.1017/
S1471068411000494.

[153] J. Von Neumann. “Various Techniques Used in Connection With Random Dig-
its”. In: Nat. Bureau Stand. Appl. Math. Ser. 12 (1951), pp. 36–38.

[154] A. Nampally and C. Ramakrishnan. “Adaptive MCMC-Based Inference in Prob-
abilistic Logic Programs”. In: arXiv preprint arXiv:1403.6036 (2014).

[155] J. Pearl. Causality. Cambridge University Press, 2000.

[156] S. Wright. “Correlation and causation”. In: Journal of agricultural research 20.7
(1921), pp. 557–585.

[157] C. Holzbaur. “Metastructures vs. attributed variables in the context of extensi-
ble unification”. In: Programming Language Implementation and Logic Program-
ming: 4th International Symposium, PLILP’92 Leuven, Belgium, August 26–28,
1992 Proceedings. Ed. by M. Bruynooghe and M. Wirsing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1992, pp. 260–268. isbn: 978-3-540-47297-1. doi:
10.1007/3-540-55844-6_141.

[158] G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt. “DTProbLog: A
Decision-Theoretic Probabilistic Prolog”. In: 24th AAAI Conference on Artificial
Intelligence, AAAI’10, Atlanta, Georgia, USA, July 11-15, 2010. Ed. by M. Fox
and D. Poole. AAAI Press, 2010, pp. 1217–1222.

[159] A.-L. Barabási and R. Albert. “Emergence of scaling in random networks”. In:
Science 286.5439 (1999), pp. 509–512.

[160] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt. “The magic
of logical inference in probabilistic programming”. In: Theory and Practice of
Logic Programming 11.4-5 (2011), pp. 663–680.

[161] D. Nitti, T. De Laet, and L. De Raedt. “Probabilistic logic programming for
hybrid relational domains”. In: Machine Learning 103.3 (2016), pp. 407–449.
issn: 1573-0565. doi: 10.1007/s10994-016-5558-8.

[162] R. M. Fung and K.-C. Chang. “Weighing and Integrating Evidence for Stochastic
Simulation in Bayesian Networks”. In: Fifth Annual Conference on Uncertainty
in Artificial Intelligence. North-Holland Publishing Co. 1990, pp. 209–220.

[163] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. Adaptive computation and machine learning. Cambridge, MA: MIT
Press, 2009. isbn: 9780262013192.

BIBLIOGRAPHY 255

[164] F. Wood, J. W. van de Meent, and V. Mansinghka. “A New Approach to Prob-
abilistic Programming Inference”. In: Proceedings of the 17th International con-
ference on Artificial Intelligence and Statistics. 2014, pp. 1024–1032.

[165] T. Lager and J. Wielemaker. “Pengines: Web Logic Programming Made Easy”.
In: Theory and Practice of Logic Programming 14.4-5 (2014), pp. 539–552.
doi: 10.1017/S1471068414000192. url: http://dx.doi.org/10.1017/

S1471068414000192.

[166] J. Wielemaker, Z. Huang, and L. van der Meij. “SWI-Prolog and the web”.
In: Theory and Practice of Logic Programming 8.3 (2008), pp. 363–392. doi:
10.1017/S1471068407003237.

[167] A. Nguembang Fadja and F. Riguzzi. “Probabilistic Logic Programming in Ac-
tion”. In: Towards Integrative Machine Learning and Knowledge Extraction. Ed.
by A. Holzinger, R. Goebel, M. Ferri, and V. Palade. Vol. 10344. Springer.
Heidelberg, Germany: Springer, 2017. doi: 10.1007/978-3-319-69775-8_5.

[168] A. Hyttinen, F. Eberhardt, and M. Järvisalo. “Do-calculus when the True Graph
Is Unknown.” In: 31st International Conference on Uncertainty in Artificial
Intelligence (UAI-15). 2015, pp. 395–404.

[169] M. A. Islam, C. Ramakrishnan, and I. Ramakrishnan. “Inference in probabilistic
logic programs with continuous random variables”. In: Theory and Practice of
Logic Programming 12 (Special Issue 4-5 2012), pp. 505–523. issn: 1475-3081.

[170] L. Bühmann, J. Lehmann, and P. Westpha. “DL-Learner – A framework for
inductive learning on the Semantic Web”. In: Journal of Web Semantics 39
(2016), pp. 15–24.

[171] V. Vassiliadis, J. Wielemaker, and C. Mungall. “Processing OWL2 Ontologies
using Thea: An Application of Logic Programming”. In: Proceedings of the 6th
International Workshop on OWL: Experiences and Directions. Vol. 529. CEUR
Workshop Proceedings. CEUR-WS.org, 2009.

[172] M. Codish, V. Lagoon, and P. J. Stuckey. “Logic programming with satisfiabil-
ity”. In: Theory and Practice of Logic Programming 8.1 (2008), pp. 121–128.

[173] N. Eén and N. Sörensson. “An Extensible SAT-solver”. In: Theory and Applica-
tions of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. Ed. by E.
Giunchiglia and A. Tacchella. Vol. 2919. Lecture Notes in Computer Science.
Springer, 2003, pp. 502–518.

[174] R. Penaloza and B. Sertkaya. “Axiom Pinpointing is Hard.” In: Description
Logics 477 (2009).

[175] R. Penaloza and B. Sertkaya. “Complexity of axiom pinpointing in the DL-Lite
family”. In: 23rd International Workshop on Description Logics. 2010, p. 173.

[176] R. Penaloza and B. Sertkaya. “Complexity of Axiom Pinpointing in the DL-Lite
Family of Description Logics.” In: Proceedings of the 19th European Conference
on Artificial Intelligence. Vol. 215. 2010, pp. 29–34.

256 BIBLIOGRAPHY

[177] F. Baader, R. Penaloza, and B. Suntisrivaraporn. “Pinpointing in the Descrip-
tion Logic EL+”. In: Applied Artificial Intelligence (2007), p. 52.

[178] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. “On Generating All
Maximal Independent Sets”. In: Information Processing Letters 27.3 (1988),
pp. 119–123.

[179] A. Rauzy, E. Châtelet, Y. Dutuit, and C. Bérenguer. “A practical comparison
of methods to assess sum-of-products”. In: Reliability Engineering and System
Safety 79.1 (2003), pp. 33–42.

[180] F. Riguzzi. “A Top Down Interpreter for LPAD and CP-logic”. In: AI*IA 2007:
Artificial Intelligence and Human-Oriented Computing, 10th Congress of the
Italian Association for Artificial Intelligence, Rome. Vol. 4733. LNAI. Springer,
2007, pp. 109–120. doi: 10.1007/978-3-540-74782-6_11.

[181] F. Riguzzi and T. Swift. “Tabling and Answer Subsumption for Reasoning on
Logic Programs with Annotated Disjunctions”. In: 26th International Confer-
ence on Logic Programming. Vol. 7. LIPIcs. Saarbrücken, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010, pp. 162–171. isbn: 978-3-
939897-17-0. doi: 10.4230/LIPIcs.ICLP.2010.162.

[182] F. Riguzzi and T. Swift. “Well-Definedness and Efficient Inference for Prob-
abilistic Logic Programming under the Distribution Semantics”. In: Theory
and Practice of Logic Programming 13.2 (2013), pp. 279–302. doi: 10.1017/
S1471068411000664.

[183] F. Riguzzi. “Speeding Up Inference for Probabilistic Logic Programs”. In: The
Computer Journal 57.3 (2014), pp. 347–363. doi: 10.1093/comjnl/bxt096.

[184] M. Chavira and A. Darwiche. “On probabilistic inference by weighted model
counting”. In: Artif. Intell. 172.6-7 (2008), pp. 772–799.

[185] F. Riguzzi, E. Lamma, E. Bellodi, and R. Zese. “BUNDLE: A Reasoner for
Probabilistic Ontologies”. In: 7th International Conference on Web Reasoning
and Rule Systems (RR 2013), Mannheim, Germany. Ed. by W. Faber and D.
Lembo. Vol. 7994. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2013, pp. 183–197. isbn: 978-3-642-39665-6. doi: 10.1007/978-3-642-
39666-3_14.

[186] P. Klinov and B. Parsia. “Optimization and Evaluation of Reasoning in Proba-
bilistic Description Logic: Towards a Systematic Approach”. In: The Semantic
Web - ISWC 2008 - 7th International Semantic Web Conference. Ed. by A.
P. Sheth et al. Vol. 5318. Lecture Notes in Computer Science. Springer, 2008,
pp. 213–228.

[187] E. Demir et al. “The BioPAX community standard for pathway data sharing”.
In: Nature biotechnology 28.9 (2010), pp. 935–942.

[188] G. Nagypál, R. Deswarte, and J. Oosthoek. “Applying the Semantic Web: The
VICODI Experience in Creating Visual Contextualization for History”. In: Lit-
erary and Linguistic Computing 20.3 (2005), pp. 327–349.

[189] B. Beckert and J. Posegga. “leanTAP: Lean Tableau-based Deduction”. In: Jour-
nal of Automated Reasoning 15.3 (1995), pp. 339–358.

BIBLIOGRAPHY 257

[190] A. Meissner. “An automated deduction system for description logic with ALCN
language”. In: Studia z Automatyki i Informatyki 28-29 (2004), pp. 91–110.

[191] T. Herchenröder. “Lightweight Semantic Web Oriented Reasoning in Prolog:
Tableaux Inference for Description Logics”. MA thesis. School of Informatics,
University of Edinburgh, 2006.

[192] I. Faizi. A Description Logic Prover in Prolog, Bachelor’s thesis, Informatics
Mathematical Modelling, Technical University of Denmark. 2011.

[193] G. Lukácsy and P. Szeredi. “Efficient description logic reasoning in Prolog:
The DLog system”. In: Theory and Practice of Logic Programming 9.3 (2009),
pp. 343–414.

[194] F. Ricca, L. Gallucci, R. Schindlauer, T. Dell’Armi, G. Grasso, and N. Leone.
“OntoDLV: An ASP-based System for Enterprise Ontologies”. In: Journal of
Logic and Computation 19.4 (2009), pp. 643–670.

[195] P. Klinov. “Pronto: A Non-monotonic Probabilistic Description Logic Reasoner”.
In: The Semantic Web: Research and Applications, 5th European Semantic Web
Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Pro-
ceedings. Ed. by S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis.
Vol. 5021. Lecture Notes in Computer Science. Springer, 2008, pp. 822–826.

[196] M. Bruynooghe et al. “ProbLog Technology for Inference in a Probabilistic First
Order Logic”. In: ECAI 2010 - 19th European Conference on Artificial Intelli-
gence, Lisbon, Portugal, August 16-20, 2010, Proceedings. Vol. 215. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2010, pp. 719–724.

[197] N. J. Nilsson. “Probabilistic Logic”. In: Artificial Intelligence 28.1 (1986), pp. 71–
87.

[198] İ. İ. Ceylan and R. Peñaloza. “Bayesian Description Logics”. In: Informal Pro-
ceedings of the 27th International Workshop on Description Logics, Vienna,
Austria, July 17-20, 2014. Ed. by M. Bienvenu, M. Ortiz, R. Rosati, and M.
Simkus. Vol. 1193. CEUR Workshop Proceedings. Aachen: Sun SITE Central
Europe, 2014, pp. 447–458.

[199] İ. İ. Ceylan and R. Peñaloza. “Probabilistic Query Answering in the Bayesian
Description Logic BEL”. In: Proceedings of Scalable Uncertainty Management -
9th International Conference, SUM 2015. Ed. by C. Beierle and A. Dekhtyar.
Vol. 9310. Lecture Notes in Computer Science. Springer, 2015, pp. 21–35.

[200] İ. İ. Ceylan, J. Mendez, and R. Peñaloza. “The Bayesian Ontology Reasoner is
BORN!” In: Informal Proceedings of the 4th International Workshop on OWL
Reasoner Evaluation (ORE-2015) co-located with the 28th International Work-
shop on Description Logics (DL 2015). Ed. by M. Dumontier et al. Vol. 1387.
CEUR Workshop Proceedings. CEUR-WS.org, 2015, pp. 8–14.

258 BIBLIOGRAPHY

[201] M. Gavanelli, E. Lamma, F. Riguzzi, E. Bellodi, R. Zese, and G. Cota. “Abduc-
tive Logic Programming for Datalog± Ontologies”. In: Proceedings of the 30th
Italian Conference on Computational Logic (CILC2015), Genova, Italy, 1-3 July
2015. Ed. by D. Ancona, M. Maratea, and V. Mascardi. CEUR Workshop Pro-
ceedings 1459. Aachen, Germany: Sun SITE Central Europe, 2015, pp. 128–143.
url: http://ceur-ws.org/Vol-1459/paper21.pdf.

[202] M. Gavanelli, E. Lamma, F. Riguzzi, E. Bellodi, R. Zese, and G. Cota. “An
Abductive Framework for Datalog±Ontologies”. In: Proceedings of the Technical
Communications of the 31st International Conference on Logic Programming
(ICLP 2015), Cork, Ireland, August 31 - September 4, 2015. Ed. by M. D.
Vos, T. Eiter, Y. Lierler, and F. Toni. Vol. 1433. CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

[203] S. Muggleton. “Inductive logic programming”. In: New generation computing 8.4
(1991), pp. 295–318.

[204] S. Muggleton and L. De Raedt. “Inductive logic programming: Theory and meth-
ods”. In: Journal of Logic Programming 19 (1994), pp. 629–679.

[205] L. De Raedt and K. Kersting. “Probabilistic Inductive Logic Programming”.
In: Algorithmic Learning Theory, 15th International Conference, ALT 2004,
Padova, Italy, October 2-5, 2004, Proceedings. Ed. by S. Ben-David, J. Case,
and A. Maruoka. Vol. 3244. Lecture Notes in Computer Science. Springer, 2004,
pp. 19–36. doi: 10.1007/978-3-540-30215-5_3.

[206] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, eds. Probabilistic
Inductive Logic Programming. Vol. 4911. LNCS. Springer, 2008. isbn: 978-3-
540-78651-1.

[207] S. Muggleton et al. “Stochastic logic programs”. In: Advances in inductive logic
programming 32 (1996), pp. 254–264.

[208] S. Muggleton. “Learning Stochastic Logic Programs”. In: Electron. Trans. Artif.
Intell. 4.B (2000), pp. 141–153.

[209] L. De Raedt and S. Dzeroski. “First-Order jk-Clausal Theories are PAC-Learnable”.
In: Artificial Intelligence 70.1-2 (1994), pp. 375–392.

[210] N. Helft. “Induction as Nonmonotonic Inference.” In: Proceedings of the 1st
International Conference on Principles of Knowledge Representation and Rea-
soning. 1989, pp. 149–156.

[211] E. Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.

[212] S.-H. Nienhuys-Cheng and R. de Wolf, eds. Foundations of Inductive Logic Pro-
gramming. Vol. 1228. LNCS. Springer, 1997. isbn: 3-540-62927-0.

[213] L. De Raedt. Logical and Relational Learning. Cognitive Technologies. Springer,
2008. isbn: 978-3-540-20040-6. doi: 10.1007/978-3-540-68856-3. url: http:
//dx.doi.org/10.1007/978-3-540-68856-3.

[214] L. D. Raedt, K. Kersting, S. Natarajan, and D. Poole. “Statistical relational ar-
tificial intelligence: Logic, probability, and computation”. In: Synthesis Lectures
on Artificial Intelligence and Machine Learning 10.2 (2016), pp. 1–189.

BIBLIOGRAPHY 259

[215] L. De Raedt and K. Kersting. “Probabilistic logic learning”. In: ACM SIGKDD
Explorations Newsletter 5.1 (2003), pp. 31–48.

[216] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society. Series B (methodological) (1977), pp. 1–38.

[217] T. Sato and Y. Kameya. “Parameter Learning of Logic Programs for Symbolic-
Statistical Modeling”. In: Journal of Artificial Intelligence Research 15 (2001),
pp. 391–454.

[218] F. Riguzzi and N. Di Mauro. “Applying the Information Bottleneck to Statistical
Relational Learning”. In: Machine Learning 86.1 (2012), pp. 89–114. doi: 10.
1007/s10994-011-5247-6.

[219] B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. “Parameter Learning in
Probabilistic Databases: A Least Squares Approach”. In: European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD 2008). Vol. 5211. Lecture Notes in Computer Science.
Springer-Verlag, 2008, pp. 473–488.

[220] M. Ishihata, Y. Kameya, T. Sato, and S. Minato. “Propositionalizing the EM
algorithm by BDDs”. In: Late Breaking Papers of the 18th International Con-
ference on Inductive Logic Programming (ILP 2008). 2008, pp. 44–49.

[221] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[222] S. Muggleton. “Inverse Entailment and Progol”. In: New Generation Computing
13 (1995), pp. 245–286.

[223] C. Chu et al. “Map-Reduce for Machine Learning on Multicore”. In: Advances in
Neural Information Processing Systems 19 (NIPS 2006). Ed. by B. Schölkopf,
J. C. Platt, and T. Hoffman. MIT Press, 2006, pp. 281–288. isbn: 0-262-19568-
2. url: http://papers.nips.cc/paper/3150-map-reduce-for-machine-
learning-on-multicore.

[224] H. Khosravi, O. Schulte, J. Hu, and T. Gao. “Learning compact Markov logic
Networks with decision trees”. In: Machine Learning 89.3 (2012), pp. 257–277.

[225] A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. “Theories
for Mutagenicity: A Study in First-Order and Feature-Based Induction”. In:
Artificial Intelligence 85.1-2 (1996), pp. 277–299.

[226] S. Kok and P. Domingos. “Learning the structure of Markov Logic Networks”.
In: 22nd international conference on Machine learning. ACM, 2005, pp. 441–
448.

[227] A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. “Carcinogen-
esis Predictions Using ILP”. In: 7th International Workshop on Inductive Logic
Programming. Ed. by N. Lavrac and S. Dzeroski. Vol. 1297. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1997, pp. 273–287.

[228] L. Mihalkova and R. J. Mooney. “Bottom-up Learning of Markov Logic Network
Structure”. In: 24th International Conference on Machine Learning. ACM, 2007,
pp. 625–632.

260 BIBLIOGRAPHY

[229] N. Beerenwinkel et al. “Learning Multiple Evolutionary Pathways from Cross-
Sectional Data”. In: Journal of Computational Biology 12 (2005), pp. 584–598.

[230] M. Craven and S. Slattery. “Relational Learning with Statistical Predicate In-
vention: Better Models for Hypertext”. In: Machine Learning 43.1-2 (2001),
pp. 97–119.

[231] N. Di Mauro, E. Bellodi, and F. Riguzzi. “Bandit-based Monte-Carlo structure
learning of probabilistic logic programs”. In: Machine Learning 100.1 (2015),
pp. 127–156. doi: 10.1007/s10994-015-5510-3.

[232] E. Bellodi and F. Riguzzi. “Learning the Structure of Probabilistic Logic Pro-
grams”. In: ILP 2012. Ed. by S. Muggleton, A. Tamaddoni-Nezhad, and F. Lisi.
Vol. 7207. LNCS. Springer Berlin Heidelberg, 2012, pp. 61–75.

[233] T. N. Huynh and R. J. Mooney. “Discriminative structure and parameter learn-
ing for Markov logic networks”. In: 25th international conference on Machine
learning. Ed. by W. W. Cohen, A. McCallum, and S. T. Roweis. ACM, 2008,
pp. 416–423. isbn: 978-1-60558-205-4.

[234] T. Khot, S. Natarajan, K. Kersting, and J. W. Shavlik. “Learning Markov Logic
Networks via Functional Gradient Boosting.” In: Proceedings of the 11th IEEE
International Conference on Data Mining. IEEE, 2011, pp. 320–329.

[235] S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. “Gradient-
based Boosting for Statistical Relational Learning: The Relational Dependency
Network Case”. In: Machine Learning 86.1 (2012), pp. 25–56.

[236] E. Bellodi and F. Riguzzi. “Experimentation of an Expectation Maximization
Algorithm for Probabilistic Logic Programs”. In: Intelligenza Artificiale 8.1
(2012), pp. 3–18. doi: 10.3233/IA-2012-0027.

[237] M. Ishihata, Y. Kameya, T. Sato, and S. Minato. Propositionalizing the EM
algorithm by BDDs. Tech. rep. TR08-0004. Dep. of Computer Science, Tokyo
Institute of Technology, 2008.

[238] J. Lehmann et al. “DBpedia - A Large-scale, Multilingual Knowledge Base Ex-
tracted from Wikipedia”. In: Semantic Web – Interoperability, Usability, Appli-
cability 6.2 (2015), pp. 167–195.

[239] J. Lehmann, S. Auer, L. Bühmann, and S. Tramp. “Class expression learning
for ontology engineering”. In: Journal of Web Semantics 9.1 (2011), pp. 71–81.

[240] J. Lehmann and P. Hitzler. “Concept learning in description logics using refine-
ment operators”. In: Machine Learning 78.1-2 (2010), p. 203.

[241] J. Lehmann and P. Hitzler. “A refinement operator based learning algorithm
for the ALC description logic”. In: 17th International Conference on Inductive
Logic Programming. Vol. 4894. Springer, 2007, pp. 147–160.

[242] J. Lehmann and P. Hitzler. “Foundations of refinement operators for descrip-
tion logics”. In: 17th International Conference on Inductive Logic Programming.
Vol. 4894. Springer, 2007, pp. 161–174.

BIBLIOGRAPHY 261

[243] A. Agresti and B. A. Coull. “Approximate is better than “exact” for interval
estimation of binomial proportions”. In: The American Statistician 52.2 (1998),
pp. 119–126.

[244] S. Hellmann, J. Lehmann, and S. Auer. “Learning of OWL Class Descriptions
on Very Large Knowledge Bases”. In: International Journal on Semantic Web
and Information Systems 5.2 (2009), pp. 25–48.

[245] J. Völker and M. Niepert. “Statistical schema induction”. In: The Semantic Web:
Research and Applications. Springer Berlin Heidelberg, 2011, pp. 124–138.

[246] D. Fleischhacker and J. Völker. “Inductive learning of disjointness axioms”.
In: On the Move to Meaningful Internet Systems: OTM 2011. Springer, 2011,
pp. 680–697.

[247] R. Agrawal and R. Srikant. “Fast Algorithms for Mining Association Rules in
Large Databases.” In: International Conference on Very Large Data Bases. Mor-
gan Kaufmann, 1994, pp. 487–499.

[248] P. Minervini, C. d’Amato, and N. Fanizzi. “Learning probabilistic description
logic concepts: Under different assumptions on missing knowledge”. In: Proceed-
ings of the 27th Annual ACM Symposium on Applied Computing. ACM. 2012,
pp. 378–383.

[249] T. Riechert, K. Lauenroth, J. Lehmann, and S. Auer. “Towards semantic based
requirements engineering”. In: Proceedings of the 7th International Conference
on Knowledge Management. 2007, pp. 144–151.

[250] T. Tudorache, J. Vendetti, and N. F. Noy. “Web-Protege: A Lightweight OWL
Ontology Editor for the Web.” In: OWLED. Vol. 432. 2008.

[251] S. Hellmann, J. Lehmann, and S. Auer. “Learning of OWL Class Expressions on
Very Large Knowledge Bases and its Applications”. In: 2011. Chap. 5, pp. 104–
130.

[252] G. T. Williams, J. Weaver, M. Atre, and J. A. Hendler. “Scalable reduction of
large datasets to interesting subsets”. In: Journal of Web Semantics 8.4 (2010),
pp. 365–373.

[253] W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, and S. Schlobach.
“LOD laundromat: a uniform way of publishing other people’s dirty data”. In:
13th International Semantic Web Conference. Springer. 2014, pp. 213–228.

[254] F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. “Structure Learning
of Probabilistic Logic Programs by MapReduce”. In: 25th International Con-
ference on Inductive Logic Programming. Ed. by K. Inoue, H. Ohwada, and A.
Yamamoto. 2015.

[255] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. “Description Logic Pro-
grams: Combining Logic Programs with Description Logic”. In: Proceedings of
the Twelfth International World Wide Web Conference, WWW 2003, Budapest,
Hungary, May 20-24, 2003. Ed. by G. Hencsey, B. White, Y. R. Chen, L. Kovács,
and S. Lawrence. New York, NY, USA: ACM, 2003, pp. 48–57. doi: 10.1145/
775152.775160. url: http://doi.acm.org/10.1145/775152.775160.

262 BIBLIOGRAPHY

[256] A. d. Garcez, K. Broda, and D. M. Gabbay. “Symbolic knowledge extraction
from trained neural networks: A sound approach”. In: Artificial Intelligence
125.1 (2001), pp. 155–207.

[257] A. S. A. Garcez and G. Zaverucha. “The connectionist inductive learning and
logic programming system”. In: Applied Intelligence 11.1 (1999), pp. 59–77.

[258] J. Lehmann, S. Bader, and P. Hitzler. “Extracting reduced logic programs from
artificial neural networks”. In: Applied Intelligence 32.3 (2010), pp. 249–266.

[259] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. “A review of relational ma-
chine learning for knowledge graphs”. In: Proceedings of the IEEE 104.1 (2016),
pp. 11–33.

Appendix A

List of Publications

The work described in this thesis is based on the following publications.

Journal papers

• Fabrizio Riguzzi, Giuseppe Cota, Elena Bellodi, and Riccardo Zese
Causal inference in cplint
In: International Journal of Approximate Reasoning 91 (2017), pp. 216–232. doi:
10.1016/j.ijar.2017.09.007.

• Marco Alberti, Elena Bellodi, Giuseppe Cota, Fabrizio Riguzzi, and Riccardo Zese
cplint on SWISH: Probabilistic Logical Inference with a Web Browser
In: Intelligenza Artificiale 11 (2017), pp. 47–64. doi: 10.3233/IA-170105.

• Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, Riccardo Zese, and Giuseppe
Cota
A web system for reasoning with probabilistic OWL
In: Software, Practice and Experience 47 (2017), pp. 125–142. doi: 10.1002/

spe.2410.

• Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and Evelina Lamma
A survey of lifted inference approaches for probabilistic logic program-
ming under the distribution semantics
In: International Journal of Approximate Reasoning 80 (2017), pp. 313–333. doi:
10.1016/j.ijar.2016.10.002.

• Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese, and Giuseppe
Cota
Probabilistic logic programming on the web
In: Software, Practice and Experience 46 (2016), pp. 1381–1396. doi: 10.1002/
spe.2386.

• Riccardo Zese, Elena Bellodi, Fabrizio Riguzzi, Giuseppe Cota, and Evelina Lamma
Tableau reasoning for description logics and its extension to probabil-
ities
In: Annals of Mathematics and of Artificial Intelligence (2016), pp. 1–30. doi:
10.1007/s10472-016-9529-3.

263

264 List of Publications

Book chapters

• Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, Riccardo Zese, and Giuseppe
Cota
Learning Probabilistic Description Logics
In: Uncertainty Reasoning for the Semantic Web III. ISWC International Work-
shops, URSW 2011-2013, Revised Selected Papers. Vol. 8816. Berlin: Springer
Verlag, 2014, pp. 63–78. doi: 10.1007/978-3-319-13413-0_4.

Conference and workshop papers

• Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese,
and Giuseppe Cota
Abductive Logic Programming for Normative Reasoning and Ontolo-
gies
In: New Frontiers in Artificial Intelligence (JSAI-isAI 2015 Workshops, LENLS,
JURISIN, AAA, HAT-MASH, TSDAA, ASD-HR and SKL, Kanagawa, Japan,
November 16-18, 2015, Revised Selected Papers). Vol. 10091. Springer, 2017,
pp. 187–203. doi: 10.1007/978-3-319-50953-2_14.

• Fabrizio Riguzzi, Riccardo Zese, and Giuseppe Cota
Probabilistic inductive logic programming on the web
In: 20th International Conference on Knowledge Engineering and Knowledge
Management, EKAW 2016. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 10180. Springer Verlag, 2017, pp. 172–175. doi: 10.1007/

978-3-319-58694-6_25.

• Giuseppe Cota
Systems and Learning Algorithms for Probabilistic Logical Knowledge
Bases
In: Proceedings of the Doctoral Consortium of AI*IA 2016 co-located with the
15th International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2016). Vol. 1769. Aachen: Sun SITE Central Europe, 2017, pp. 5–10.

• Fabrizio Riguzzi, Evelina Lamma, Marco Alberti, Elena Bellodi, Riccardo Zese,
and Giuseppe Cota
Probabilistic logic programming for natural language processing
In: URANIA 2016, Deep Understanding and Reasoning: A Challenge for Next-
generation Intelligent Agents, Proceedings of the AI*IA Workshop on Deep Un-
derstanding and Reasoning: A Challenge for Next-generation Intelligent Agents
2016. Vol. 1802. Aachen: Sun SITE Central Europe, 2017, pp. 30–37.

• Fabrizio Riguzzi, Riccardo Zese, and Giuseppe Cota
Probabilistic inductive logic programming on the web
In: 20th International Conference on Knowledge Engineering and Knowledge

265

Management, EKAW 2016. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Vol. 10180. Springer Verlag, 2017, pp. 172–175. doi: 10.1007/

978-3-319-58694-6_25.

• Marco Alberti, Elena Bellodi, Giuseppe Cota, Evelina Lamma, Fabrizio Riguzzi,
and Riccardo Zese
Probabilistic Constraint Logic Theories
In: Proceedings of the 3nd International Workshop on Probabilistic Logic Pro-
gramming (PLP). Vol. 1661. Aachen: Sun SITE Central Europe, 2016, pp.
15–28.

• Marco Alberti, Giuseppe Cota, Fabrizio Riguzzi, and Riccardo Zese
Probabilistic Logical Inference On the Web
In: Proceedings of the 15th Conference of the Italian Association for Artificial
Intelligence (AI*IA2016), Genova, Italy, 28 November - 1 December 2016. Vol.
10037. Heidelberg: Springer International Publishing, 2016, pp. 351–363. doi:
10.1007/978-3-319-49130-1_26.

• Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese, Giuseppe Cota, and Evelina Lamma
Scaling Structure Learning of Probabilistic Logic Programs by MapRe-
duce
In: 22nd European Conference on Artificial Intelligence (ECAI 2016). Vol. 285.
Amsterdam: IOS Press, 2016, pp. 1602–1603. doi:
10.3233/978-1-61499-672-9-1602.

• Giuseppe Cota, Riccardo Zese, Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma
Distributed Parameter Learning for Probabilistic Ontologies
In: Inductive Logic Programming: 25th International Conference, ILP 2015,
Kyoto, Japan, August 20-22, 2015, Revised Selected Papers. Vol. 9575. Hei-
delberg: Springer International Publishing Switzerland, 2016, pp. 30–45. doi:
10.1007/978-3-319-40566-7_3.

• Giuseppe Cota, Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi
Learning Probabilistic Ontologies with Distributed Parameter Learn-
ing In: Proceedings of the Doctoral Consortium (DC) co-located with the 14th
Conference of the Italian Association for Artificial Intelligence (AI*IA 2015). Vol.
1485. Aachen: Sun SITE Central Europe, 2015, pp. 7–12.

• Giuseppe Cota, Riccardo Zese, Elena Bellodi, Evelina Lamma, and Fabrizio Riguzzi
Structure Learning with Distributed Parameter Learning for Proba-
bilistic Ontologies
In: Proceedings of the ECMLPKDD 2015 Doctoral Consortium. Aalto: Aalto
University Library, 2015, pp. 75–84.

• Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese,
and Giuseppe Cota
Abductive logic programming for Datalog± ontologies
In: CILC 2015 Italian Conference on Computational Logic. Proceedings of the

266 List of Publications

30th Italian Conference on Computational Logic. Vol. 1459. CEUR Workshop
proceedings, 2015, pp. 128–143.

• Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese,
and Giuseppe Cota
An Abductive Framework for Datalog± Ontologies
In: Proceedings of the Technical Communications of the 31st International Con-
ference on Logic Programming (ICLP 2015). Vol. 1433. CEUR Workshop pro-
ceedings, 2015, pp. 1–13.

Miscellaneous

• Fabrizio Riguzzi and Giuseppe Cota
Probabilistic Logic Programming Tutorial
The Association for Logic Programming Newsletter. 2016. url: http://www.cs.
nmsu.edu/ALP/2016/03/probabilistic-logic-programming-tutorial/.

To be published

• Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese,
and Giuseppe Cota
Reasoning on Datalog± Ontologies with Abductive Logic Program-
ming
In: Fundamenta Informaticae, Special Issue CILC 2015.

	Frontispiece
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	I Introduction
	Motivation
	Aims of the Thesis
	Structure of the Thesis
	Structure
	Thesis Contributions
	Inference in Probabilistic Logic Programming
	Inference in Probabilistic Description Logics
	Learning Systems in Probabilistic Logic Programming
	Learning Systems in Probabilistic Description Logics

	How to read this thesis

	II Probabilistic Logics
	Fundamentals of First-Order Logic and Logic Programming
	Introduction
	First-Order Logic
	Syntax
	Tarski's semantics

	Logic Programming
	Prolog
	Normal Logic Programs

	First-Order Logic vs Logic Programs
	Conclusions

	Distribution Semantics
	Introduction
	Formal Definition
	Conclusions

	Probabilistic Logic Programming Languages
	Introduction
	Logic Programs with Annotated Disjunctions
	LPADs Syntax
	LPADs Semantics

	ProbLog
	ProbLog Syntax

	Conclusions

	Description Logics and OWL
	Introduction
	Description Logics
	Syntax
	Concept and Role Constructors
	Concept Constructors
	Role constructors
	Knowledge Base
	Nomenclature

	Semantics
	Decidability of Description Logics

	Description Logics and First-Order Logic
	The OWL Ontology Language
	OWL Syntax
	OWL sublanguages
	Tools for OWL

	Conclusions

	Reasoning in Description Logics
	Reasoning Problems
	Closed vs Open World Assumption

	Reasoning Techniques
	Pellet
	Tableau Algorithm
	Explanation finding
	Pinpointing formula

	Conclusions

	Probabilistic Description Logics
	Introduction
	The Distribution Semantics for Description Logics: DISPONTE
	Syntax
	Semantics
	Assumption of Independence

	Related Work
	Conclusions

	III Inference in Probabilistic Logics
	Decision Diagrams
	Introduction
	Multivalued Decision Diagrams
	Binary Decision Diagrams
	Conclusions

	Fundamentals of Exact Probabilistic Logical Inference
	Inference Approaches
	Exact Probabilistic Logical Inference
	Splitting Algorithm
	Inference with Multi-valued Decision Diagrams
	Inference with Binary Decision Diagrams
	Conclusions

	Inference in Probabilistic Logic Programming
	Introduction
	cplint
	Exact Inference: the PITA module
	Approximate Inference: the MCINTYRE module

	Causal Inference with cplint
	Causal Inference in PLP
	Causal Exact Inference with cplint
	Causal Approximate Inference with cplint
	Notable Examples
	Simpson's Paradox
	Viral Marketing
	Experiments

	Hybrid Probabilistic Logic Programs with cplint
	Sampling the Arguments of Unconditional Queries over Hybrid Programs
	Conditional Queries over Hybrid Logic Programs

	cplint on SWISH: a Web interface for cplint
	SWISH
	cplint on SWISH
	Examples

	Related Work
	Work on causality inference
	Work on Hybrid Probabilistic Logic Programs
	Web application for PLP

	Conclusions

	Inference in Probabilistic Description Logics
	Introduction
	BUNDLE
	How to use BUNDLE

	TRILL
	TRILLP
	How to use TRILL and TRILLP
	TRILL on SWISH
	Inference Complexity
	Experiments
	Comparing the Systems

	Related Work
	Conclusion

	IV Learning
	Introduction to Statistical Relational Learning
	Introduction
	Inductive Logic Programming
	Statistical Relational Learning
	Parameter Learning
	Structure Learning

	Conclusion

	Distributed Learning in Probabilistic Logic Programming
	Introduction
	Parameter Learning: EMBLEM
	Structure Learning: SLIPCOVER
	Distributed Parameter Learning: EMBLEMMR
	Distributed Structure Learning: SEMPRE
	Experiments
	Conclusions

	Parameter Learning in Probabilistic Description Logics
	Introduction
	EDGE
	Expectation Computation
	EDGE's Algorithm
	How to Use EDGE

	Conclusion

	Distributed Parameter Learning for Probabilistic Description Logics
	Introduction
	Distributed Parameter Learning: EDGEMR
	MapReduce View
	Scheduling Techniques
	EDGEMR's Algorithm

	Experiments
	Conclusions

	Structure Learning in Probabilistic Description Logics
	Introduction
	The Learning Problem
	Refinement Operators in Description Logics
	CELOE
	DL-Learner
	Structure Learning: LEAP
	Architecture
	Interfacing CELOE and EDGE
	LEAP

	Related Work
	Experiments
	Conclusions

	Distributed Stucture Learning in Probabilistic Description Logics
	Distributed Structure Learning: LEAPMR
	Experiments
	Conclusion

	V Conclusions and Future Work
	Conclusions
	Future Work
	Future Work on Inference
	Future Work on Learning

	Bibliography
	Appendix
	List of Publications

