UNIVERSITA DEGLI STUDI DI FERRARA

DIPARTIMENTO DI INGEGNERIA

DOTTORATO DI RICERCA IN SCIENZE DELL'INGEGNERIA
CicLo XXX

COORDINATORE Prof. Stefano TRILLO
SETTORE SCIENTIFICO DISCIPLINARE ING-INF /05

Inference and Learning Systems

for Uncertain Relational Data

Dottorando Tutori
Dott. Giuseppe COTA Prof.ssa Evelina LAMMA
Prof. Fabrizio R1IGUZZI

Anni: 2014/2017

Abstract

Representing uncertain information and being able to reason on it is of foremost im-
portance for real world applications. The research field Statistical Relational Learning
(SRL) tackles these challenges. SRL combines principles and ideas from three impor-
tant subfields of Artificial Intelligence: machine learning, knowledge representation and
reasoning on uncertainty. The distribution semantics provides a powerful mechanism
for combining logic and probability theory.

The distribution semantics has been applied so far to extend Logic Programming
(LP) languages such as Prolog and represents one of the most successful approaches
of Probabilistic Logic Programming (PLP), with several PLP languages adopting it
such as PRISM, ProbLog and LPADs. However, with the birth of the Semantic Web,
that uses Description Logics (DLs) to represent knowledge, it has become increasingly
important to have Probabilistic Description Logic (PDLs). The DISPONTE semantics
was developed for this purpose and applies the distribution semantics to description
logics.

The main objective of this dissertation is to propose approaches for reasoning and
learning on uncertain relational data. The first part concerns reasoning over uncertain
data. In particular, with regard to reasoning in PLP, we present the latest advances
in the cplint system, which allows hybrid programs, i.e. programs where some of the
random variables are continuous, and causal inference. Moreover cplint has a web
interface, named cplint on SWISH, which allows the user to easily experiment with
the system. To perform inference on PDLs that follow DISPONTE, a suite of algo-
rithms was developed: BUNDLE (“Binary decision diagrams for Uncertain reasoNing
on Description Logic thEories”), TRILL (“Tableau Reasoner for descrIption Logics in
Prolog” and TRILLY (“TRILL powered by Pinpointing formulas”).

The second part, which focuses on learning, considers two problems: parameter
learning and structure learning. We describe the systems EDGE (“Em over bDds for
description loGics paramEter learning”) for parameter learning and LEAP (“LEArning
Probabilistic description logics”) for structure learning of PDLs. The execution of
these algorithms and those for PLP, such as EMBLEM for parameter learning and
SLIPCOVER for structure learning, is rather expensive from a computational point of
view, taking a few hours on datasets of the order of MBs. In order to efficiently manage
larger datasets in the era of Big Data and Linked Open Data, it is extremely important
to develop fast learning algorithms. One solution is to distribute the algorithms using
modern computing infrastructures such as clusters and clouds. We thus extended
EMBLEM, SLIPCOVER, EDGE and LEAP to exploit these facilities by developing
their MapReduce versions: EMBLEMME, SEMPRE, EDGEM® and LEAPME,

We tested the proposed approaches on real-world datasets and their performance
was comparable or superior to those of state-of-the-art systems.

II1

Acknowledgements

First and foremost, I have to thank my two supervisors, Evelina Lamma and Fabrizio
Riguzzi. I am immensely grateful for all the time they dedicated to me. Their guidance
and support were essential during my PhD years.

I would like to thank my colleagues. Thanks to the interesting discussions and the
fun we had together, the cafeteria food and the sandwiches seemed to be tastier.

I thank all the components of my family that helped me to grow up and become
an adult. In particular, I thank my father Matteo, my mother Maria and my brother
Antonio for forcing me to believe in myself even when I did not want to. I also thank
my grandparents Antonio and Anna for their encouragement throughout my doctoral
years.

A special thank goes to Paola, the talking chicken who interrupts my grouchiness
(often without permission) and fills my days with colourful stories and crayons.

Last but not least, I need to thank all my friends for all the marvelous moments of
joy spent together. Without them I would have published more papers.

Giuseppe Cota

And now for something completely different...

VII

Contents

List of Figures
List of Tables
List of Algorithms

List of Acronyms

-

Introduction
1 Motivation
2 Aims of the Thesis

3 Structure of the Thesis

3.1 Structure
3.2 Thesis Contributions L.
3.2.1 Inference in Probabilistic Logic Programming
3.2.2 Inference in Probabilistic Description Logics
3.2.3 Learning Systems in Probabilistic Logic Programming . . .
3.2.4 Learning Systems in Probabilistic Description Logics . . .
3.3 How toread this thesis

II Probabilistic Logics

4 Fundamentals of First-Order Logic and Logic Programming

4.1 Introduction
4.2 First-Order Logic
421 Syntax
4.2.2 Tarski’s semantics L L
4.3 Logic Programming oL
4.3.1 Prolog
4.3.2 Normal Logic Programs
4.4 First-Order Logic vs Logic Programs
4.5 Conclusions

XV

XVII

XIX

XXI

CONTENTS

Distribution Semantics 31
5.1 Imtroduction 31
5.2 Formal Definition 32
5.3 Conclusions 34
Probabilistic Logic Programming Languages 35
6.1 Introduction 35
6.2 Logic Programs with Annotated Disjunctions 35
6.2.1 LPADs Syntax 35
6.2.2 LPADs Semantics 36
6.3 ProbLog 39
6.3.1 ProbLog Syntax 39
6.4 Conclusions 40
Description Logics and OWL 41
7.1 Introduction 41
7.2 Description Logics oo 42
7.3 Syntax 42
7.3.1 Concept and Role Constructors 43
7.3.2 Concept Constructors 43
7.3.3 Role constructors 44
734 Knowledge Base 45
7.3.5 Nomenclature A7
7.4 Semantics 50
7.4.1 Decidability of Description Logics 54
7.5 Description Logics and First-Order Logic %)
7.6 The OWL Ontology Language 57
7.6.1 OWL Syntax 59
7.6.2 OWL sublanguages 60
7.6.3 Tools for OWL 63
7.7 Conclusions 63
Reasoning in Description Logics 65
8.1 Reasoning Problems L. 65
8.1.1 Closed vs Open World Assumption 67
8.2 Reasoning Techniques 67
8.2.1 Pellet 68
8.2.2 Tableau Algorithm 68
8.2.3 Explanation finding oo 72
8.2.4 Pinpointing formulao 80
8.3 Conclusions 84
Probabilistic Description Logics 85
9.1 Introduction 85
9.2 The Distribution Semantics for Description Logics: DISPONTE 85
9.2.1 Syntax 85

0.2.2 SemantiCs 86

CONTENTS XI

9.2.3 Assumption of Independence 90
9.3 Related Work 92
9.4 Conclusions 94
IIT Inference in Probabilistic Logics 95
10 Decision Diagrams 97
10.1 Introduction 97
10.2 Multivalued Decision Diagrams 97
10.3 Binary Decision Diagrams o0 98
10.4 Conclusions L 100
11 Fundamentals of Exact Probabilistic Logical Inference 101
11.1 Inference Approaches 101
11.2 Exact Probabilistic Logical Inference 102
11.3 Splitting Algorithmo 104
11.4 Inference with Multi-valued Decision Diagrams 107
11.5 Inference with Binary Decision Diagrams 108
11.6 Conclusions 114
12 Inference in Probabilistic Logic Programming 115
12.1 Introduction 115
12.2 cplint e 116
12.2.1 Exact Inference: the PITA module 116
12.2.2 Approximate Inference: the MCINTYRE module 118
12.3 Causal Inference with cplint 121
12.3.1 Causal Inference in Probabilistic Logic Programming 124
12.3.2 Causal Exact Inference with cplint. 125
12.3.3 Causal Approximate Inference with cplint. 126
12.3.4 Notable Examples 127
12.3.5 Simpson’s Paradox L. 127
12.3.6 Viral Marketing oo 129
12.3.7 Experimentso 129
12.4 Hybrid Probabilistic Logic Programs with cplint 136
12.4.1 Sampling the Arguments of Unconditional Queries over Hybrid
Programs 137
12.4.2 Conditional Queries over Hybrid Logic Programs 138
12.5 cplint on SWISH: a Web interface for cplint 141
125.1 SWISH. 141
12.5.2 cplinton SWISH, 143
12.5.3 Exampleso 146
12.6 Related Worko 152
12.6.1 Work on causality inference 152
12.6.2 Work on Hybrid Probabilistic Logic Programs 153
12.6.3 Web application for Probabilistic Logic Programming 153

12.7 Conclusions 154

XII CONTENTS
13 Inference in Probabilistic Description Logics 155
13.1 Introductiono 155
13.2 BUNDLE 156
13.2.1 How touse BUNDLE 158

13.3 TRILL o e 158
13.4 TRILLY 165
13.5 How to use TRILL and TRILLY 166
13.6 TRILL on SWISH 166
13.7 Inference Complexity Lo 167
13.8 Experimentso 168
13.8.1 Comparing the Systems 168

13.9 Related Work 172
13.10Conclusiono 174
IV Learning 175
14 Introduction to Statistical Relational Learning 177
14.1 Introduction 177
14.2 Inductive Logic Programming 178
14.3 Statistical Relational Learning 180
14.3.1 Parameter Learning 182

14.3.2 Structure Learning oo 183

144 Conclusion L 183
15 Distributed Learning in Probabilistic Logic Programming 185
15.1 Introduction 185
15.2 Parameter Learning: EMBLEM 186
15.3 Structure Learning: SLIPCOVER 187
15.4 Distributed Parameter Learning: EMBLEMM® = 188
15.5 Distributed Structure Learning: SEMPRE 189
15.6 Experiments 192
15.7 Conclusions 196
16 Parameter Learning in Probabilistic Description Logics 197
16.1 Introduction Lo 197
16.2 EDGE 197
16.2.1 Expectation Computation 198

16.2.2 EDGE’s Algorithm L. 200

16.2.3 How to Use EDGE 202

16.3 Conclusion L 203
17 Distributed Parameter Learning for Probabilistic Description Logics205
17.1 Introduction 205
17.2 Distributed Parameter Learning: EDGEM® 205
17.2.1 MapReduce View oo 206

17.2.2 Scheduling Techniques 207

CONTENTS XIII

17.2.3 EDGEM®s Algorithm L. 207

17.3 Experiments 211
17.4 Conclusions 213
18 Structure Learning in Probabilistic Description Logics 215
18.1 Introduction 215
18.2 The Learning Problem 216
18.3 Refinement Operators in Description Logics 216
184 CELOE 219
18.5 DL-Learner 221
18.6 Structure Learning: LEAP 222
18.6.1 Architecture 222

18.6.2 Interfacing CELOE and EDGE 223

18.6.3 LEAP 223

18.7 Related Work 226
18.8 Experiments oo 227
18.9 Conclusions e 228
19 Distributed Stucture Learning in Probabilistic Description Logics 229
19.1 Distributed Structure Learning: LEAPM® 229
19.2 Experiments 230
19.3 Conclusion 231
V Conclusions and Future Work 233
20 Conclusions 235
21 Future Work 239
21.1 Future Work on Inference 239
21.2 Future Work on Learning 240
Bibliography 243
Appendix 263

A List of Publications 263

List of Figures

1.1
3.1
4.1

7.1
7.2
7.3

8.1
8.2
8.3
8.4

9.1
9.2

11.1
11.2
11.3
11.4
11.5
11.6

12.1
12.2

12.3
12.4
12.5
12.6
12.7
12.8

Linked Open Data Cloud 4
Chapter dependency graph L. 14
Prolog SLD resolution tree 24
The Semantic Web Stack. 58
OWL 1 sublanguages. 62
OWL 2 sublanguages. 63
Some Pellet tableau expansion rules 70
HST Example 76
HST for ALL-MINAS(Q,K) 78
Tableau expansion rules for building a pinpointing formula 84
Bayesian Network representing the dependency between A(i) and B(i). 91

Bayesian Network modeling the distribution over A(7), B(i), Xi, Xo, X3. 92

MDD corresponding to Equation (11.2). 108
BDD for Example 11.5.1 equivalent to the MDD in Figure 11.1. 110
BDD for Example 11.5.2. 111
BDD for Example 11.5.3. 112
BDD for Example 11.5.4 with order X; < Xo < X5 < X4 113
BDD for Example 11.5.4 with order X; < X; < Xo < X3.. 114
Bayesian network for a drug study domain. 122
Mutilated version of the Bayesian network of Figure 12.1 for computing

the effect of adrug. 122
Architecture of cplint for causal inference. 128
LPAD for viral marketing. L. 130
Social network for the viral marketing example. 130
Average time for conditional and causal queries with 2 evidence literals. 131

Average time for conditional and causal queries with 4 evidence literals. 133
Average time for conditional and causal queries with 6 evidence literals. 133

12.9 Average time for conditional and causal queries with 8 evidence literals. 134
12.10cplint on SWISH interface. 145
12.11Graphical representations for query pandemic in Example 12.5.1. . . . 147
12.12Density of X of mix(X) obtained by the query in Example 12.5.2. . . . 148

XV

XVI LIST OF FIGURES

12.13Prior and posterior densities of the argument Y of value(0,Y) obtained

by likelihood weighting and particle filtering in Example 12.5.3 150
12.14Representation of the distributions in Example 12.5.4 151
12.15ProbLog program for viral marketing. 152
13.1 Example of ABox in TRILL 159
13.2 Code of the predicate safe/3 160
13.3 Code of the — unfoldrule 161
134 Codeof the — Urule 161
13.5 Application of expansions rules in TRILL 163
13.6 Code of the predicates compute_prob/2 and build_bdd/3. 164
13.7 Predicates test/2 and build_f/3 166
13.8 TRILL on SWISH interface. 167
13.9 Axioms from BRCA 169
13.10Axioms from DBPedia L 169
13.11Axioms from Biopax 171
13.12Axioms from Vicodi. 172
15.1 SEMPRE speedup graph 193
16.1 CBDD equivalent to the BDD in Example 11.5.3. 199
17.1 Scheduling techniques of EDGEM®. 208
17.2 Speedup of EDGEM® . 212
17.3 Memory consumption of EDGEM® 213
18.1 Tllustration of a search tree in a top down refinement approach. 220
18.2 Positive and negative examples in a class learning problem 220
18.3 The architecture of DL-Learner (redrawing from [244]). 222
18.4 LEAP Architecture 223
19.1 LEAPM®R architecture. 229

19.2 Speedup of LEAPM® 231

List of Tables

5.1
5.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

12.1
12.2
12.3
12.4
12.5

13.1
13.2

15.1
15.2
15.3
15.4
15.5

17.1
17.2

18.1

Mpp, for the finite program DB;y. 33
Pp, and Ppp, for the finite program DBy. 33
Some DL constructors with their associated DL language symbols. . . . 49
Syntax and semantics of common concept and individual constructors. 51
Syntax and semantics of common role constructors. 51
Syntax and semantics of common datatype and data value constructors 52
Correspondence between DL axioms and their translation into FOL . . 57
Terminology comparison of FOL, DL, and OWL. 59
DL Axiom Woman C Person in different OWL 2 syntaxes. 60
Most common OWL expressions in DL and Manchester OWL syntax. . 61
Most common OWL axioms in DL and Manchester OWL syntax. . . . 61
Execution time for conditional and causal queries with 2 evidence literals 132

Execution time for conditional and causal queries with 4 evidence literals 132
Execution time for conditional and causal queries with 6 evidence literals 134

Execution time for conditional and causal queries with 8 evidence literals.135
Mean Squared Error for approximate causal inference 135
Average time of BUNDLE, TRILL and TRILL? for different datasets. . 170
Average time of BUNDLE, TRILL and TRILL" for synthetic datasets . 170
SEMPRE execution time 192
AUC-PR and execution time (in seconds) on the Mutagenesis dataset . 194

AUC-PR and execution time (in seconds) on the Carcinogenesis dataset 194

Py
N —

AUC-PR and execution time (in seconds) on the IMDB dataset 195
AUC-PR and execution time (in seconds) on the HIV dataset 195
Characteristics of the datasets used for evaluation. 211
Comparison between EDGE and EDGEM® 212

Results of the experiments in terms of AUCPR and AUCROC averaged
over the folds with EDGE and LEAP 228

XVII

List of Algorithms

8.1
8.2
8.3
8.4
11.1
11.2
12.1
12.2
12.3

13.1

15.1
15.2
15.3
15.4
16.1
16.2
16.3
16.4
16.5
17.1
18.1
19.1

Tableau algorithm executed by Pellet.
SINGLEMINA algorithm.
Black-Box pruning algorithm. 0.
Hitting Set Tree Algorithm.
Splitting Algorithm. o
Function PROB
Algorithm for computing the conditional probabilities.
Algorithm for preparing the knowledge base for exact causal inference.

Algorithm for preparing the knowledge base for approximate causal in-
ference. L
Function BUNDLE: computation of the probability of a query @) given
the (probabilistic) KB IC. o o oo
EMBLEM algorithm.
Function SLIPCOVER
Function EMBLEMM®o oo
Function SEMPRE
EDGE
EXPECTATIONot c e
MAXIMIZATION oo vttt e e e e e
GETFORWARD e
GETBACKWARD
Function EDGEM® . .
LEAP Algorithm
LEAPM® L

XIX

List of Acronyms

BDD Binary Decision Diagram

CNF Conjunctive Normal Form

CRV continuous random variable

DL Description Logic

DNF Disjunctive Normal Form

EM Expectation-Maximization

FOL First-Order Logic

HST hitting set tree

ICL Independent Choice Logic

ILP Inductive Logic Programming

KB knowledge base

LP Logic Programming. Logic Program

LPAD Logic Program with Annotated Disjunctions
MCMC Markov Chain Monte Carlo

MDD Multivalued Decision Diagram

mgu most general unifier

MPI Message Passing Interface

OWL Web Ontology Language

PDL Probabilistic Description Logic

PILP Probabilistic Inductive Logic Programming
PLP Probabilistic Logic Programming. Probabilistic Logic Program

SRL Statistical Relational Learning

XXI

Part 1

Introduction

Chapter 1

Motivation

In the last few years we have witnessed the spread of the Semantic Web and its tech-
nologies for knowledge representation and reasoning. The Semantic Web is promoted
by the World Wide Web Consortium and encourages the publication on the Internet of
particular information, called semantic content, that can be processed and understood
by machines.

In 2013, it was estimated that web content reached 4 Zettabytes. This information
indicates how important it is to develop tools capable of representing and analyzing
a huge amounts of information, which are no longer manageable by traditional (rela-
tional) databases.

Since the dawn of artificial intelligence, the problem of knowledge representation
has been one of the most addressed problems. Logic programming is an area of research
in which knowledge is represented by formalisms based on First-Order Logic (FOL).

Another approach to represent knowledge is by means of ontologies. An ontology is
a formal and explicit representation of a domain of interest, which solves the problems
of ambiguity between entities. An ontology can be expressed with a description logic.

Description Logics (DLs) are a family of logical formalisms used to model knowledge
in terms of concepts, roles and properties. They are usually a decidable fragment of
FOL.

Different ontologies may have a common concept. For example, the concept Eye
within an ontology concerning human pathologies is the same in an ontology of human
anatomy. The fact that an entity is the same in two different knowledge bases (KBs)
establishes a sort of semantic link. Linked Open Data is a methodology for publishing
Open Data (structured data without copyright and automatically processable) on the
Web, so as to link data and make it easier for both man and machine to access additional
information. With this methodology we can link KBs that come from different areas of
expertise, generating a huge semantic network called Linked Open Data Cloud, shown
in Figure 1.1, in which each node is a KB and each link between nodes means there
are some relationships between entities from different KBs (i.e. owl:sameAs).

Logic programming languages and description logics are logical formalisms that
can be used to represent datasets containing huge amount of information. However, in
the real world domain, information may be uncertain, and neither logic programs nor
description logics can represent it. Therefore, it becomes essential to provide methods
for representing this type of information.

Motivation

Publications

—ncoming Links
Emmmm—=Qutgoing Links

(-

Nv
oo

w_

Figure 1.1: Linked Open Data Cloud. Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar,
Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/. Last updated: 2017-08-22.

In 1995 Taisuke Sato defined the distribution semantics [1], which provides a pow-
erful mechanism to combine logic with probability theory, in fact this semantics yielded
a new subfield of SRL called Probabilistic Logic Programming (PLP) and several PLP
languages, such as PRISM, ProbLog and LPADs.

In order to apply the acquired knowledge in the field of Probabilistic Logic Program-
ming in the case of Description Logics, in [2, 3| the authors formalized DISPONTE,
a semantics that applies the distribution semantics to description logics, thus defining
Probabilistic Description Logics (PDLs).

Information can become knowledge only if it has some useful and even applicable
use. Thus, once we defined these logical formalisms and their semantics, a first im-
portant step is to define and develop systems for automatic reasoning, both for PLP
languages and PDLs. In fact, while in traditional databases all the knowledge is ex-
plicit, a knowledge base expressed by a logical formalism contains implicit knowledge
that can be made explicit only by using an inference system, also called reasoner.

Reasoners, however, do not introduce new knowledge, but, as just said, they just
make explicit an already acquired knowledge. Therefore, the next step is to develop
automatic methods to enrich an initial knowledge base with new knowledge. The field
of artificial intelligence that concerns the development of this type of methods is known
under the name of Machine Learning.

Statistical Relational Learning (SRL) is a relatively new research field that com-
bines principles and ideas from three important areas of Artificial Intelligence: machine
learning, knowledge representation and reasoning on uncertainty. In SRL the knowl-
edge is represented with a probabilistic logical formalism. The development of systems
in the field of SRL is of considerable importance, to solve the problems arising from
this discipline.

An important problem faced by machine learning researchers is managing Big Data.
Learning from big data raises a lot of problems. One of the most common approaches
to solving them is to use distributed algorithms.

Chapter 2

Aims of the Thesis

The main objective of this thesis is to propose approaches for reasoning, parameter
learning and structure learning on knowledge bases represented with a probabilistic
logic-based formalism.

We tested the proposed approaches on real-world datasets and their performances
was comparable or superior to other state-of-the-art systems.

The first part of this thesis concerns reasoning over uncertain data. In particular,
with regard to reasoning in PLP, we present the latest advances in the cplint system,
which allows hybrid programs, i.e. programs where some of the random variables are
continuous, and causal inference. Moreover we developed a web interface for cplint,
named cplint on SWISH, which allows the user to experiment with the system with-
out having to install anything on the local machine. To perform inference on PDLs
that follow DISPONTE, a suite of algorithms is presented: BUNDLE (“Binary decision
diagrams for Uncertain reasoNing on Description Logic thEories”), TRILL (“Tableau
Reasoner for descrlption Logics in Prolog” and TRILLY (“Tableau Reasoner for de-
scrlption Logics in Prolog powered by Pinpointing formula”).

The second part of our thesis focuses on machine learning. Machine learning is a
huge area of research, with several subfields and algorithms. We can group machine
learning algorithms into supervised, unsupervised, and reinforcement learning methods.

e In supervised learning, training data is composed by examples where each of
them is labeled with the correct output class. Given this training data, the aim of
the learning algorithm is to find a function mapping between input and output.

e In unsupervised learning, training data is not labeled and the aim of the
learner is to extract relationships or correlations from the available data.

e In reinforcement learning, the learning algorithm performs actions in an envi-
ronment and receives rewards or punishments as feedback. Given a certain state
of the environment, the learner tries to maximize the rewards and minimize the
punishments by choosing the appropriate actions to perform.

Our research area is inside the Statistical Relational Learning (SRL) field that can
be seen as a subfield of machine learning. All the learning systems proposed in this
work are supervised. Moreover we use probabilistic logic-based formalisms to repre-
sent knowledge. Logical formalisms fall into the category of symbolic formalisms (as

7

8 Aims of the Thesis

opposed to non-symbolic and sub-symbolic). This means that our learning approaches
produce logical, human understandable solutions. Non-symbolic methods such as neu-
ral networks do not produce human understandable results. Sub-symbolic methods are
between these two extremes.

SRL is a relatively young field. There are many opportunities to develop new
methods for real-world problems. In SRL the two main learning problems are:

e parameter learning, given the probabilistic knowledge base (composed of logic
formulas) we want to learn the parameters, and

e structure learning, we want to learn both new probabilistic logic formulas (the
structure) and the parameters.

In this dissertation we propose systems to solve both these problems, whether we use
PLP languages or PDLs that follow DISPONTE.

The learning systems proposed in these thesis can be grouped into two categories:
systems for PLP and systems for PDLs. In the past, various learning algorithms for
PLP have been proposed, among these we mention EMBLEM [4] for parameter learning
and SLIPCOVER |[5] for structure learning. However, the execution of these algorithms
is rather expensive from a computational point of view, taking a few hours on datasets
of the order of MBs. In order to efficiently manage larger datasets in the era of Big
Data and Linked Open Data, it is of foremost importance to develop algorithms and
techniques for improving the performances and reaching scalability. One solution is to
distribute the algorithms using modern computing infrastructures such as clusters and
clouds. We thus developed the distributed versions of EMBLEM and SLIPCOVER:
EMBLEMM*® and SEMPRE (“Structure 1Earning by MaPREduce”).

As learning systems for PDLs, we present EDGE (“Em over bDds for description
loGics paramEter learning”) for parameter learning and LEAP (“LEArning Proba-
bilistic description logics”) for structure learning. For the same reasons that led us
to develop SEMPRE, we extended EDGE and LEAP by developing their distributed
versions: EDGEM" and LEAPM®.

Chapter 3

Structure of the Thesis

3.1 Structure

The content of this thesis is divided into individual parts and chapters as follows.

Part I - Introduction
This part contains introductory chapters explaining the motivations (Chapter 1), aims
of this thesis (Chapter 2) and the structure of the thesis (this chapter).

Part II - Probabilistic Logics

Most logical formalisms are based on First-Order Logic (FOL), Part II provides the
background knowledge to understand them and the main differences between Logic
Programming (LP) and FOL. Chapter 5 presents the distribution semantics as defined
by Taisuke Sato. In Chapter 6 we illustrate LPADs and ProbLog, two of the most
famous PLP languages, and how they apply the distribution semantics. Besides logic
programming languages we can represent knowledge by means of Semantic Web tech-
nology. Web Ontology Language (OWL) is one of them and it based on Description
Logics. Description Logics and OWL are both discussed in Chapter 7. Like in the LP
framework, DLs are not capable of representing uncertain information. DISPONTE;,
explained in Chapter 9, applies the distribution semantics to description logics and we
named the resulting formalism Probabilistic Description Logics (PDLs).

Part III - Inference in Probabilistic Logics

In this part of the thesis we introduce systems for probabilistic logical inference. Binary
Decision Diagrams (BDDs), illustrated in Chapter 10 are a graphic method to represent
Boolean formulas. They are used when performing exact probabilistic logical inference,
see Chapter 11. In Chapter 12 and Chapter 13 we present inference systems for LPADs
and PDLs respectively.

Part IV - Learning

This part of the thesis concerns machine learning, in particular one of its subfields
known as Statistical Relational Learning (SRL). An introduction to SRL and a dis-
cussion of its main learning problems are provided in Chapter 14. The main learning
problem are parameter learning and structure learning. In Chapter 15 we propose a

9

10 Structure of the Thesis

distributed structure learning algorithm for LPADs called SEMPRE. For parameter
learning in the PDL paradigm we illustrate EDGE in Chapter 16, and we present its
distributed version EDGEM® in Chapter 17. For structure learning, instead, we pro-
pose LEAP in Chapter 18 and LEAPM® which integrates EDGEM® into LEAP, in
Chapter 19.

Part V - Conclusions and Future Work
This part closes this thesis with some final remarks on our study (Chapter 20), in-

cluding a discussion of the limitations of our systems and possible future directions
(Chapter 21).

3.2 Thesis Contributions

We can classify the contributions of this thesis into four categories. The first two are
related to probabilistic logical inference, whereas the last two to Statistical Relational
Learning (SRL).

3.2.1 Inference in Probabilistic Logic Programming

In Chapter 12 we present the latest advances in the cplint system. cplint contains

programs for exact and approximate probabilistic logical inference. We extended this

system in order to perform causal inference and reason over hybrid probabilistic logic

programs, i.e. programs where some of the random variables are continuous. Moreover

in this chapter we propose cplint on SWISH, a web application that let the user to

experiment with cplint without having to install anything on the local machine.
Chapter 12 is based on the following publications:

e F. Riguzzi, G. Cota, E. Bellodi, and R. Zese. “Causal inference in cplint”.
In: International Journal of Approximate Reasoning 91 (2017), pp. 216-232.
ISSN: (0888-613X. DOI: https://doi.org/10.1016/j.1ijar.2017.09.
007. URL: https://www. sciencedirect . com/science/article/pii/
50888613X17301640.

e M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, and R. Zese. “cplint on SWISH:
Probabilistic Logical Inference with a Web Browser”. In: Intelligenza Artificiale
11.1 (2017), pp. 47-64. DOI: 10.3233/IA-170105

e F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Probabilistic Logic
Programming on the Web”. In: Software: Practice and Ezperience 46.10 (Oct.
2016), pp. 1381-1396. DOI: 10.1002/spe.2386

In all these works I have been involved in the development of the extensions of the
cplint system and its web application cplint on SWISH. In addition, with regard to
the causal inference of cplint, I have taken care of all the experiments, which are
easily reproducible, by downloading the scripts at https://goo.gl/wq3X9i. In order
to spread the use of cplint, I also have developed an online tutorial [9] available at
http://ds.ing.unife.it/~gcota/plptutorial/.

Thesis Contributions 11

3.2.2 Inference in Probabilistic Description Logics

DISPONTE is a semantics for Probabilistic Description Logics (PDLs) defined in [3].
This semantics assumes that all the axioms in the knowledge base are independent,
i.e. it makes the so-called independence assumption. In Subsection 9.2.3 we prove that
this assumption is valid. This subsection is based on the publication:

e R. Zese, E. Bellodi, F. Riguzzi, G. Cota, and E. Lamma. “Tableau Reasoning for
Description Logics and its Extension to Probabilities”. In: Annals of Mathematics
and Artificial Intelligence (2016), pp. 1-30. DOI: 10.1007/s10472-016-9529-3.
URL: http://dx.doi.org/10.1007/s10472-016-9529-3f

In Chapter 13 we illustrate three PDL inference systems: BUNDLE [11, 3|, TRILL and
TRILL”. Moreover we present a web interface for TRILL and TRILL?, called TRILL
on SWISH. This chapter is based on the following publications:

e R. Zese, E. Bellodi, F. Riguzzi, G. Cota, and E. Lamma. “Tableau Reasoning for
Description Logics and its Extension to Probabilities”. In: Annals of Mathematics
and Artificial Intelligence (2016), pp. 1-30. DOI: 10.1007/s10472-016-9529-3.
URL: http://dx.doi.org/10.1007/s10472-016-9529-3f

e E. Bellodi, E. Lamma, F. Riguzzi, R. Zese, and G. Cota. “A web system for
reasoning with probabilistic OWL”. in: Software: Practice and Ezxperience 47.1
(2017), pp. 125-142

In all these works, in addition to writing the papers, I have dealt with part of the
implementation of the systems mentioned above. In addition, much of the work done
in the field of inference in PDLs consists of "hidden" engineering contributions on
previously developed systems, which have not led to publications. For example, I
worked on the development of the later versions of BUNDLE, which has undergone
several modifications and optimizations, in order to be efficiently used by learning
algorithms. I also focused on the integration of BUNDLE into DL-Learner, increasing
the chances for it to be used by others.

3.2.3 Learning Systems in Probabilistic Logic Programming

In SRL the two main learning problems are parameter learning and structure learning.
For the former problem, in [4] the authors developed EMBLEM, a parameter learning
algorithm for LPADs, which are a PLP language. Then, to solve the latter, the same
authors, in [5] developed a structure learning algorithm called SLIPCOVER.

In Chapter 15 we present the distributed versions of these algorithms called EM-
BLEMMR and SEMPRE, respectively. This chapter is based on the following publica-
tion:

e . Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. “Scaling Structure

Learning of Probabilistic Logic Programs by MapReduce”. In: Proceedings of
the 22nd Furopean Conference on Artificial Intelligence. Ed. by M. Fox and G.
Kaminka. Vol. 285. Frontiers in Artificial Intelligence and Applications. 10S
Press, 2016, pp. 1602-1603. DOI: 10.3233/978-1-61499-672-9- 1602

In this work I have contributed to the implementation of the mentioned distributed
systems.

12 Structure of the Thesis

3.2.4 Learning Systems in Probabilistic Description Logics

EDGE [14] is a parameter learning algorithm for PDLs. In Chapter 17 we propose
EDGEM® which is a distributed version of EDGE. This chapter is based on the publi-
cation:

e G. Cota, R. Zese, E. Bellodi, F. Riguzzi, and E. Lamma. “Distributed Parameter
Learning for Probabilistic Ontologies”. 1In: 25th International Conference on
Inductive Logic Programming. Ed. by K. Inoue, H. Ohwada, and A. Yamamoto.
2015

In Chapter 18 we propose a structure learning algorithm for PDLs, called LEAP. In
Chapter 19 we present its distributed version called LEAPMR. These chapters are
based on the following publications:

e F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. “Learning Probabilis-
tic Description Logics”. English. In: Uncertainty Reasoning for the Semantic
Web III. ed. by F. Bobillo et al. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer International Publishing, 2014, pp. 63-78. ISBN: 978-3-
319-13412-3. DOI: 10.1007/978-3-319-13413-0_4

e G. Cota, R. Zese, E. Bellodi, E. Lamma, and F. Riguzzi. “Structure Learning
with Distributed Parameter Learning for Probabilistic Ontologies”. In: Doctoral
Consortium of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD 2015). Ed. by J.
Hollmen and P. Papapetrou. 2015, pp. 75-84. ISBN: 978-952-60-6443-7. URL:
http://urn.fi/URN:ISBN:978-952-60-6443-7

Work on learning systems for PDLs was maybe the topic on which I have concentrated
most of my efforts. I was the main developer of these systems and my contributions
ranged from theoretical contributions to the actual implementation of these systems.
In addition, for all these systems I contributed to the experimental phase.

Here too, there were many "hidden" engineering contributions. I am not an author
of the paper on EDGE [14], but I have optimized it several times in order to be used
with LEAP. In addition, I worked on the integration of EDGE into DL-Learner.

3.3 How to read this thesis

The aim of this work is to propose systems for inference and learning on probabilistic
logics. In this thesis we use two logical formalisms for representing uncertain informa-
tion: Logic Programs with Annotated Disjuntions (LPADs) and Probabilistic Descrip-
tion Logics (PDLs). LPADs are a Probabilistic Logic Programming (PLP) language,
whereas PDLs are based on Description Logics (DLs) and follow the DISPONTE se-
mantics (see Chapter 9). Therefore the proposed systems can be split into two main
categories: PLP systems and PDL systems.

This thesis is designed such that can be read by both experts of logic programming
and experts of description logics. If the reader is only interested in PLP systems there
is no need to read the whole thesis but only a part of it. The same if the reader is

How to read this thesis 13

only interested in PDL systems. Figure 3.1 depicts the dependencies among different
chapters. The common chapters useful to understand both PLP and PDL systems are
in gray; the chapters concerning PLP systems are in blue; whereas the chapters dealing
with PDLs that follow DISPONTE and the systems proposed for this formalism are in
green.

We define the following reading sequences of the main chapters essential to under-
stand this thesis according to reader’s interest:

e Chapter sequence for PLP systems:

— Part II - Probabilistic Logics: 4, 5 and 6.
— Part III - Inference in Probabilistic Logics: 10, 11 and 12.
— Part IV - Learning: 14 and 15.

e Chapter sequence for PDL systems:

— Part II - Probabilistic Logics: 4, 5, 7, 8 and 9.
— Part III - Inference in Probabilistic Logics: 10, 11 and 13.
— Part IV - Learning: 14, 16, 17, 18 and 19.

14 Structure of the Thesis

&)

[0 Common
O PLP
] PDLs

Q@
®ee

Probabilistic Logics

N

<or>

b

Q@
. &

Inference in Probabilistic Logics

Figure 3.1: Dependency graph of the main chapters. For instance, to understand
Chapter 17 you have to read chapters 14 and 15 first.

Part 11

Probabilistic Logics

15

Chapter 4

Fundamentals of First-Order Logic
and Logic Programming

This chapter introduces the main concepts of First-Order Logic (FOL) and Logic Pro-
gramming (LP) and it underlines the main differences between FOL and LP.

The chapter is organized as follows. After a brief introduction in Section 4.1,
Sections 4.2 and 4.3 provide the basis for understanding First-Order Logic and Logic
Programming respectively. Section 4.4 compares these two frameworks. The final
section (Section 4.5) draws some final considerations.

4.1 Introduction

Logic proved to be a very powerful tool for representing the complexity of real world
domains, where the entities of interest are composed of subparts connected by a network
of relations. Probabilistic logic tries to combine logic with probability theory. In this
thesis we mainly use two family of probabilistic logical formalisms for representing
knowledge: Probabilistic Logic Programming (PLP) languages, see Chapter 6 and
Probabilistic Description Logics (PDLs), see Chapter 9. Before illustrating them, we
overview the fundamentals of First-Order Logic (FOL) and Logic Programming (LP).
Indeed PLP languages are extensions of logic programming languages (usually Prolog),
whereas many DLs can be seen as decidable fragments of FOL.

4.2 First-Order Logic

First-Order Logic (FOL), also known as predicate logic, extends propositional
logic by allowing the use of formulas that contain variables.

4.2.1 Syntax

FOL is a formal system with an alphabet ¥ consisting of seven classes of symbols:

e Logical Variables, a sequence of alphanumeric characters that refer to objects
in the domain.

17

18 Fundamentals of First-Order Logic and Logic Programming

—eg X, Y, Z
e Constants, objects in the domain.
—e.g. a,b,c,jeff,ann

e Function symbols, a relation that maps n objects to another object, with arity
(number of arguments) n > 0. We use the notation f/n to denote a function f
with arity n.

— e.g. if we have these formulas f(a,b), s(X), mother of(mary), the functions
are /2, s/1, mother of /1.

e Predicate symbols, a relations that maps n objects onto truth values, with
arity n > 0. As for functions, we use the notation p/n to denote a predicate p
with arity n

— e.g. if we have these formulas p(X), mother(ann, mary), parent(jeff , paul),
the predicates are p/1, mother/2, parent /2.

e Logical connectives, used to connect formulas.
—eg AV, &, &
e Quantifiers, expressing generality.

— e.g. V universal quantifier (“for all”), 3 existential quantifier (“for some”,
“there exists”)

e Punctuation symbols, used to make formulas more readable.
— eg. c)?) 4(7
A signature! consists of a triple A = (C, F, P), where C, F and P are sets of constant,
function and predicate symbols respectively. A term is a variable, a constant, or a
function applied to terms. An atom is a predicate symbol followed by its terms, e.g.
parent(jeff, paul). A literal is an atom (positive literal) or the negation of an atom
(negative literal), e.g. mother(ann, mary), ~mother(mary, ann). FOL formulas are

recursively constructed from atoms using logical connectives and quantifiers. If ¢) and
¢ are formulas then the following are formulas too:

e — (logical negation), which is true < v is not true.

e Y A ¢ (logical conjunction), which is true < both 1) and ¢ are true.
e UV ¢ (logical disjunction), which is true < v or ¢ is true.

o) < ¢ (logical implication), which is true < ¢ is false or) is true.

o) <> ¢ (logical equivalence), is a shorthand for (1) <— @) A (¢ <)

!Sometimes called vocabulary.

First-Order Logic 19

e 31X (existential quantification), which is true < 1 is true for at least one object
in the domain replaced for X.

o VX (universal quantification), which is true < 1 is true for every object replaced
for X.

An occurrence of a variable is free iff it is outside the scope of a quantifier of that
variable, otherwise it is bound. For instance:

e in the formula VXp(X,Y), X is bound, whereas Y is free;

e in the formula ¢(X)V3p(X), the first occurrence of X is free, whereas the second
one is bound.

A formula which contains at least one free occurrence of a variable is called open
formula, otherwise is called closed formula or sentence.

A clause is a formula where all the variables are universally quantified and is of
the form

AV VA,V =B V-V B, (4.1)
where A; and B, are atoms. Formula 4.1 is logically equivalent to:
AyV---VA, <~ B AN---NBp, (4.2)

AV ---V A, is the head of the clause, whereas By A --- A B,, is the body. If the body
is empty the clause is called fact?. A clause can be read as “if the conjunction of all
the Bjs are true, the disjunction of all A;s are true”.

An expression is a term, atom, conjunction or clause. An expression is called
ground if it does not contain variables. A FOL theory is a set of formulas that
implicitly form a conjunction. Clausal logic is an important subset of FOL. A clausal
theory consists of a set of clauses.

The Herbrand universe hu(T) of a theory T is the set of all the ground terms
that can be built from functions and constants appearing in 7. The Herbrand base
of a FOL theory T, denoted as hb(T'), is the set of all the ground atoms constructed
with the predicates in the alphabet of 7" and the terms of the Herbrand universe.

Example 4.2.1
Given the following FOL theory T

parent (jeff , paul)
parent(paul, ann)

grandparent(X,Y) < parent(X, Z), parent(Z, Y)
its Herbrand universe hu(T) is
ho(T) ={jeff, paul, ann}
whereas, its Herbrand base hb(T) is

ho(T) ={parent(jeff, jeff), parent(paul, paul), parent(ann, ann),

parent (jeff , paul), parent(jeff , ann), parent(paul, jeff), . . .,
grandparent (jeff, jeff), grandparent(paul, paul), . ..}

2A fact can also be seen as a rule that has true as its body.

20 Fundamentals of First-Order Logic and Logic Programming

4.2.2 Tarski’s semantics

Usually when we talk about the semantics of FOL we refer to Tarski’s semantics,
defined by the Polish logician Alfred Tarski.

Tarski’s semantics can be defined as a structure consisting of a triple S = (U, A, Z),
where U is a non-empty set, called domain or universe, which defines the domain of
discourse, A is a signature, and Z, called interpretation, is a function which assigns a
“meaning” to every symbol in the signature A.

Definition 4.1 FOL Interpretation
An interpretation Z indicates how a signature A is interpreted on a domain U. An
interpretation 7 of a signature A assigns meanings as follows.

e For each constant symbol ¢ in A, Z(c) assigns an individual ¢ € U.
e For each function symbol f of arity n, Z(f) assigns a function fZ:U" — U.

e For each predicate symbol p of arity n, Z(p) assigns a relation p? over U™, i.e.
pt CuUn.
O
Definition 4.2 FOL Assignment Function
An assignment v associates each variable of a formal language £ to an individual

in the domain of discourse U. The assignment function is required in order to give a
meaning to formulas with free variables. O

Combining interpretations and assignments provides a way to assign meanings to
terms.

Definition 4.3 Interpretation given an Assignment

Let t be a term, S a structure S = (U, A,Z), with domain U and an interpretation 7
of a signature A, and v an assignment, we define the function Z%(¢) (interpretation Z
given an assignment v/), that assigns a meaning to ¢, as follows

e if ¢ is a constant, then Z"(t) = Z(t);
e if ¢ is a variable, then Z"(t) = v(t);
e Given the terms ti,...,t,, if ¢t is a function f(t1,...,t,), then

() = Z(f(tr, - -) = Z(N(Z"(01), - - -, T¥ ()

]

With the notation v[z/v] we indicate a new assignment function which is equal to
v except for the variable x that is assigned to the individual v € U. We provide now
the definition of satisfiability of a logic formula according to Tarski’s semantics.

Definition 4.4 Satisfiability of a formula with Tarski semantics

Given a structure S = (U, A, Z), with domain U and an interpretation Z of a signature
A, and the assignment function v, the satisfiability of a formula v, denoted as Z" = 1,
is defined as follows

Logic Programming 21

e if ¢ is an atom ¢ = p(ty,...,t,), IV E ¥ iff p(v(t1),...,v(t,)) € Z(p);
o if Y = ¢, IV |= ¢ iff it is not the case Z" |= ¢, also written Z" [~ ¢;

o ifp =Ny, IV Ey it TV | ¢ and I = ~;

e« if Y=V, TV Vi T b gor TV = v

cif =6y, TG T Y Gor TV v

e ify=0¢p< v, Z"EYiff IV E ¢ and ¥ = v, or ¥ I~ ¢ and IV [~ 7;
o if = 3IX¢, IV |= ¢ iff, for some v € U, Z"*/"] |= ¢;

o if =VX¢, IV = ¢ iff, for all v € U, TVF/V |= ¢,

In) is satisfied in an interpretation Z given an assignment v, we also say that a formula
1 is true in an interpretation Z given an assignment v. O

If ¢ is a sentence, i.e. a formula without free variables, the satisfiability of a
sentence ¢ does not depend on v, hence we can simply write Z = 1.

Definition 4.5 FOL Model
Let S be a set of sentences, we say that Z satisfies S or is a model of S iff Z |= 1) for
all P € S. m

Definition 4.6 Logical entailment

We say that the sentence 1) is a logical entailment or logical consequence of the
set of sentences S, denoted as S |= 1) if every model of S is also a model of . In this
case, we also say that S entails ¢, or ¢ is a consequence of S, or again ¢ follows
from S. O

Definition 4.7 Herbrand Interpretation
A Herbrand interpretation Z for a FOL theory T is an interpretation of a structure
S = (U, A, Z) whose domain U is the Herbrand universe of T, i.e. U = hu(T). O

Definition 4.8 Herbrand Model
A Herbrand interpretation is a Herbrand model of a theory if it satisfies all formulas
in the theory, i.e. all the formulas in the theory are true given that interpretation. [J

4.3 Logic Programming

Logic Programming (LP) is based on First-Order Logic and in particular on clausal
logic, but has a slightly different semantics. Work on LP started in the 70’s, in partic-
ular Kowalski in 1974 formalized the concept of logic programming language [18|.

A disjunctive logic program is a set of clauses, also called rules of this form:

ay;...;a, - by,...,by. (4.3)

(392

where n > 0, m > 0, a;s are atoms, b;s are literals, the character “;” is equivalent to

W

disjunction V, “” is equivalent to conjunction A, and “.” indicates the end of a clause.

22 Fundamentals of First-Order Logic and Logic Programming

If n > 1 the clause is also called disjunctive clause, whereas if n = 1 the clause
is called non-disjunctive or normal clause. A normal logic program is a logic
program composed only of normal clauses.

A definite logic program [19] is a logic program that has exactly one atom in
the conclusion, i.e. n = 1, and all the b;s are positive literals, i.e. atoms. Formally, a
definite logic program rule/clause is of the form:

a:i-by,..., by (4.4)

A two-valued Herbrand interpretation 7 of a logic program P is a subset of
hb(P). A Herbrand interpretation Z represents a possible world where all the elements
in Z are true and the elements of hb(P) \ Z are false. As in First-Order Logic, an
Herbrand interpretation is a model if all the formulas in P evaluate to true in that
interpretation.

In 1976, van Emden and Kowalski in [19] presented different semantics for definite
logic programs. These are known as model-theoretic, procedural and fixpoint seman-
tics. The model-theoretic semantics exploits the Herbrand model intersection property
and defines the model of a logic program as the intersection of all Herbrand models of
the logic program, i.e. the Least Herbrand Model (LHM). The LHM is equal to the
least of all the Herbrand models w.r.t. set inclusion ordering, i.e. the model that makes
the fewest atoms true. Intuitively, the LHM is the set of all ground atoms that are
entailed by the definite logic program. The second one was named procedural seman-
tics where it is possible to use a proof procedure called linear resolution with selection
function for definite logic programs (SLD-resolution) that succeeds for the atoms true
in the logic program. Finally, the fixpoint semantics is defined using the immediate
consequence operator Tp, a mapping from Herbrand interpretations to Herbrand inter-
pretations. All these semantics compute the same set of ground atoms that are logical
consequences of the logic program.

LP semantics considers only the least model of an LP because it makes the closed
world assumption [20] (CWA). Under the CWA, everything that is not inferred to
be true is assumed to be false.

4.3.1 Prolog

Prolog stands for “PROgrammation en LOGique” (PROgramming in LOGic). It is
the first logic programming language, developed in 1972 by Alain Colmerauer and
Philippe Roussel at the University of Marseille by exploiting the ideas of Kowalski and
van Emdem.

In this section we provide an informal description of SLD-resolution implemented
in Prolog. For a formal treatment please refer to [18, 19].

First of all, we define some concepts. As mentioned before, a clause is ground if
it does not contain variables. A substitution 6 is an assignment of terms to variables
0 = {Vi/t1,...,V,,/t,}, where V; is a variable and t; is the value associated with the
variables. The application of a substitution to clause C' (atom a), is denoted with C'0
(af). It means we are replacing the variables appearing in C' (a) with the corresponding
values defined in 6. Given two atoms a and b and a substitution 8, we say that a and
b can be unified if there exists a # such that af and bf are identical. The substitution

Logic Programming 23

0 is the most general unifier (mgu) if there is no substitution w that unifies a and (b)
and such that 0 = wo, where ¢ is a substitution.
SLD-resolution starts form a clause called goal or query that we want to resolve.

a1, a2,...,ap

with n > 0.

Then, it iteratively selects a subgoal, i.e. an atom of the clause, and replaces this
subgoal with the body of the clause contained in the program whose head can be
unified with the selected subgoal. For example, if the selected subgoal is the first and
the clause is

by :- by,...,bm

where m > 0 and by can be unified with a; through the mgu substitution #, then the
goal becomes

(bl, ...,bm, A9, .uny an)e

Prolog’s SLD-resolution differs from SLD-resolution because the subgoal selection strat-
egy is fixed, the first subgoal on the left is always chosen. The execution ends when
no more resolutions can be done, and in this case the query fails, or when the goal is
empty, and in this case the query succeeds.

SLD-resolution was proven sound, i.e. the conclusions returned by the algorithm are
logical consequences of the program. SLD-resolution itself is also complete for definite
logic programs. If a query () is a logical consequence of a program P, then there is
a refutation of P U {Q} by SLD-resolution. Conversely, Prolog’s SLD-resolution is
incomplete because the leftmost order in the choice of the next subgoal to prove can
lead to infinite derivations.

In the following example, we graphically show the resolution of a query following
Prolog’s SLD-resolution.

Example 4.3.1
Consider the following Prolog program

uncle(X,Y) :- brother(X,Z),parent(Z,Y). (4.
parent(X,Y) :- father(X,Y). (4.
parent(X,Y) :- mother(X,Y). (4.
mother(della,huey). (4.
brother(donald,della). (4.

= e e e
© o ~ O ot
~— — — ~— ~—

Suppose the query is uncle(donald,huey)., first the goal is rewritten using (4.5).
Then, brother(donald,Z) wunifies with clause (4.9) by using the substitution 6, =
{Z/della} and is removed from the goal (the body of a fact is empty). At this point,
the truth of parent(della, huey) must be proved. Here two possible ways can be tested,
but only one results in the empty clause. All these steps are shown in Figure 4.1.

In the next example we show the incompleteness of Prolog’s SLD-resolution.

24 Fundamentals of First-Order Logic and Logic Programming

uncle(donald, huey)

brother(donald, Z), parent(Z, huey)
{Z/della}

parent(della, huey)

/ \

mother(della, huey) father(della, huey)

O

Figure 4.1: Prolog SLD resolution tree for the query uncle(donald, huey) w.r.t. the
theory of Example 4.3.1.

Example 4.3.2
Consider the following program.:

married(X,Y) :- married(Y,X). (4.10)
married(a,b). (4.11)

with query married(a,X). The goal is unified with the head of rule (4.10) creating
a new goal identical to the query. Then, an infinite number of resolution steps are
performed. In this example, this issue can be avoided by moving rule (4.10) textually
after fact (4.11), so that all refutations are found before going into an infinite cycle.

4.3.2 Normal Logic Programs

In normal LPs we can have negative literals in the rule bodies that are usually in-
terpreted using negation as failure®, a non-monotonic inference rule that considers
negation as failure to prove. The notation not p, may be read as “p is not provable”, or
“there is no proof for p”. Note that not p is different from the classical, truth-functional
logical negation —p.

Several alternative semantics for negation as failure exist. The most common are:
Clark’s completion [21], stable models [22| and the well-founded semantics |23,
24]. The first two semantics are two-valued, i.e. a literal can only be true or false,
whereas the third one also allows for a third value L representing “don’t know”.

4.3.2.1 Clark’s completion

Clark’s completion [21] was the first attempt to deal with negation as failure. In
this semantics, the original logic program in converted into a new program, called
completion or completed program, and treated as a FOL theory. Then, only the literals,
whether positive or negative, that are logical consequences of the completed program
are considered true. In this semantics, negation as failure not in the original logic

3Also known as default negation.

Logic Programming 25

program has the same meaning of the classical logic negation — in the completed
program.

To generate the completion of a logic program, in Clark’s completion, we replace
not with —, thereafter we collect all the rules having the same head predicate into a
single rule whose body is a disjunction of conjunctions, then replace the symbol “:-”
with “<”. Finally we add the Clark’s equality theory, which are clauses for equality.
Clark’s completion can be used for acyclic logic programs.

Definition 4.9 Acyclic Program ([25])

A program P is acyclic if there is a function mapping | | : hb(P) — N, which maps
each ground literal to a natural number, named level, so that for every rule r and every
literal 1 € body(r) we have that || < |head(r)|, where body(r) is the set of literals in
the body of r and head(r) is the atom head of r. O

For acyclic logic programs the completion has a single model (Theorem 2.5 [25]). For
cyclic logic program, instead, the uniqueness of the model of the completion does
not hold and the completed program can be inconsistent. SLDNF-resolution (SLD
with Negation as Failure), which is the most common proof procedure for normal logic
programs, is sound, but not complete in general, with respect to Clark’s completion.

4.3.2.2 Stable Models

The stable model semantics, introduced by Gelfond and Lifschitz in [22]|, provides
another semantics for normal logic programs and thus for negation as failure.

In this semantics, we first generate the Herbrand instantiation Py of a logic program
P, then a transformation on a given interpretation Z, called stability transformation
and denoted as S(Z), is performed. The stability transformation is divided into three
phases:

1. For each rule instantiation in Py, if it contains a negative subgoal not a such that
a € 7, i.e. the negative subgoal is inconsistent with Z, then the rule instantiation
is discarded.

2. Remove all negative subgoals from the rules of P’, leaving a Horn program P”.
3. Obtain the least Herbrand model of P”.

A model M of a normal logic program P is stable if it is a fixed point of S, that is, if
M = S(M). A stable model is also called answer set.

The stable model semantics is at the basis of the Answer Set Programming (ASP)
research field. In ASP, this semantics has been extended for programs with arbitrary
aggregates and complex reasoning systems have been proposed for this field [26].

4.3.2.3 Well-Founded Semantics

Before explaining the well-founded semantics [23, 24|, we must provide some prelimi-
nary definitions.

26 Fundamentals of First-Order Logic and Logic Programming

Preliminary Definitions

Definition 4.10 Partial Order, Upper Bound, Lower Bound

A relation on a set S is a partial order if it is reflexive, antisymmetric and transitive.
In the following, let S be a set with a partial order <. a € S is an upper bound of a
subset X C S if x < a for all x € X. Similarly, b € S is a lower bound of X if b < x
for all z € X. O]

Definition 4.11 Least Upper Bound, Greatest Upper Bound

An element a € S is the least upper bound of a subset X C S if a is an upper bound
of X and, for all upper bounds a’ of X, we have a < a/. Similarly, b € S is the greatest
lower bound of a subset X C S if b is a lower bound of X and, for all lower bounds
b of X, we have ' < b. The least upper bound of X is unique, if it exists, and is
denoted by [ub(X). Similarly, the greatest lower bound of X is unique, if it exists, and
is denoted by ¢lb(X). O

Definition 4.12 Complete Lattice

A partially ordered set L is a complete lattice if lub(X) and g¢lb(X) exist for every
subset X C L. We let T denote the top element [ub(L) and L denote the bottom
element glb(L) of the complete lattice L. O

Definition 4.13 Monotonicity of a Mapping Operator, Least Fixed Point

Let L be a complete lattice and T : L — L be a mapping. We say T is monotonic if
T(z) 2 T(y), whenever z < y. We say a € L is the least fized point of T if a is a fixed
point (that is, T(a) = a) and for all fixed points b of T' we have a < b. Similarly, we
define the greatest fized point. m

Definition 4.14 Mapping Operator Iteration

Let L be a complete lattice and T : L — L be monotonic. Then we define T 10 = 1;
T+ a=T(TT (a—1)),if o is a successor ordinal; T T a = wb({T 1 6| 5 < a}), if
a is a limit ordinal; T | 0=T; T | a = T(T | (o — 1)), if a is a successor ordinal;
T]la=gb({T|p|F<a}),if ais a limit ordinal. O

Proposition 4.1
Let L be a complete lattice and T : L — L be monotonic. Then T has a least fixed
point, ifp(T) and a greatest fixed point gfp(T).]

Well-Founded Semantics

The well-founded semantics (WF'S) [23, 24] assigns a three-valued model to a program,
i.e. it identifies a consistent three-valued interpretation as the meaning of the program.
A three-valued interpretation Z of a logic program P is a pair (Zr,Zr), where Zr and
Tr are subset of the Herbrand base hb(P) and represent the set of true and false atoms
respectively. A positive literal p is true in Z if p € Zr, and is false if p € Zp. A negative
literal not p is true in Z if p € Zp and is false if p € Zp. If Z = (Zr,Zp) is such that
Zr NZr = () the we say that Z is consistent, otherwise it is inconsistent. The union of
two three-valued interpretations (Zp, Zr) U (Jr, Jr) is defined as (Zr U Jr, Zr U JF).
Intersection is defined analogously.

Logic Programming 27

The space of three-valued interpretations for a program P form a complete lattice,
where the partial order relation < is defined as (Zr,Zrp) X (Jr,Jr) if Zr C Jr
and Zrp C Jp. Since the space of three-valued interpretations is a complete lattice
there exist a least upper bound, lub(X) = |J;.xZ, and the greatest lower bound

glb(X) = HZEX 1.
We now define the two operators Tz and Uz as follows.

Definition 4.15

Let P be a normal logic program, Z = (Zr, Zr) be a three valued interpretation, where
Zr and Zr are the sets of true and false atoms respectively, and let T" and F' be two
sets of ground atoms. We define the operators Tz(T') : P(hb(P)) — P(hb(P)) and
Uz(F) : P(hb(P)) — P(hb(P)) as

Tz(T)= {p | p ¢ Zr; and there is a rule q :- 14,...,1, in P, and a grounding
substitution 6 such that p = qf and every 1 < i < n, either 1,0 is true in Z or
1,0 eT}

Uz(F)= {p|p ¢ Zr; and for every rule q :- 14,...,1, in P, and a grounding substi-
tution € such that p = qf there is some 7, with 1 < ¢ < n, such that 1,0 is false
inZorl#ekF}

]

We now define the operator W(Z), which construct successive three-valued inter-
pretations as follows.

Definition 4.16
Let P be a normal logic program, Z be a three valued interpretation. We define the
operator W(Z) : P(hb(P)) x P(hb(P)) — P(hb(P)) x P(hb(P)), where P denotes the

power set operator, as

W(Z) = ZU (ifp(Tz(0)), gfp(Uz(hb(P))))
O

W (Z) is monotonic [23] and thus it has a least fixed point, which is indeed the
well-founded model WFM of the logic program P

WFM(P) = lfp(W(Z))

The well-founded model is the main semantics for normal logic programs. In the
case of definite logic programs, the well-founded model is identical to the Least Herbrand
Model (LHM). For these programs, the LHM is guaranteed to exist and be unique.

If a normal logic program is acyclic then the well-founded semantics, stable models
and Clark’s completion, coincide. (Theorem 1 in [27]) Moreover, if the program is
range restricted* (see below), SLDNF resolution is a correct and complete procedure
for answering queries in them [25].

4Range restriction avoids the foundering of the subgoals.

28 Fundamentals of First-Order Logic and Logic Programming

Definition 4.17 Range Restricted Program
A program is range restricted if for each rule all the variables appearing in the head
of each rule also appear in positive literals in the body. O

The requirement of acyclicity is a quite strong restriction that rules out many
interesting programs. However, Fages in [28] proved that if an logic program is tight,
i.e. without positive cycles, then the Herbrand models of its Clark’s completion [21]
are minimal and coincide with the stable models of the original logic program. Any
logic program can be transformed into a tight program that preserves the program’s
completion semantics. In [27] Riguzzi showed that, if a logic program P is modular
acyclic, its well-founded model WFM (P) is two-valued and coincides with the unique
stable model and with the unique Herbrand model of Clark’s completion of the program.

4.4 First-Order Logic vs Logic Programs

There is a crucial difference between LP and FOL since FOL does not make the CWA.
For example the FOL theory {a < b}, has 3 models {—a, b}, {a,—b} and {a,b}.
The LP theory {a :- b} is a definite program, therefore it has only one well-founded
model, that is its Least Herbrand Model (.

FOL and LP have different semantics and expressiveness. In fact, in FOL we can
express that a given relation is transitive but we can’t express a non-ground transi-
tive closures (a.k.a. inductive definitions). For example, consider the following logic
program written in Prolog (taken from [29]).

Example 4.4.1

edge(1,2).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

The least Herbrand model of this program is {edge(1,2), path(1,2)}, which
corresponds to the transitive closure of the relation edge/2. The transitive closure of
a relation® R is the minimal relation R* which contains R and is transitive. If we
interpret the mentioned program in First-Order Logic we have a total of six possible
Herbrand models:

{—edge(1,1), edge(1,2), medge(2, 1), medge(2, 2), path(1,2), -path(1,1), —path(2,1), ~path(2,2)}
{—edge(1,1), edge(1,2), medge(2,1), medge(2, 2), path(1,2), path(1,1), ~path(2,1), =path(2,2)}
{—edge(1,1), edge(1,2), medge(2,1), ~edge(2, 2), path(1, 2), path(1,1), path(2, 1), ~path(2,2)}
{—edge(1,1), edge(1,2), medge(2,1), medge(2,2), path(1,2), -path(1,1), ~path(2,1), path(2,2)}
{—edge(1,1), edge(1, 2), medge(2,1), ~edge(2, 2), path(1, 2), path(1,1), ~path(2,1), path(2,2)}
{—edge(1,1), edge(1,2), ~edge(2,1), medge(2,2), path(1,2), path(1,1), path(2,1), path(2,2)}

5A predicate is a relation between objects in the domain.

Conclusions 29

It can be seen that while path is transitive in each of these models, the transitive
closure holds only in the first model.

4.5 Conclusions

In this chapter we illustrated the fundamentals of First-Order Logic (FOL) and Logic
Programming (LP). In addition, we briefly described Prolog, the first and the most
famous logic programming language, in the case of definite programs. For normal logic
programs, i.e. logic programs with negations in the body, we have three different se-
mantics: Clark’s completion [21], stable models [22] and the well-founded semantics |23,
24]. Moreover we discussed the semantical differences between FOL and LP.

The limits of FOL expressiveness carry over to the probabilistic case: we can express
transitive closure with Probabilistic Logic Programming languages like ProbLog [30]
and LPADs [31] (see Chapter 6) but not with FOL-based languages like Markov Logic
Networks [32]. This does not mean that formalisms based on First-Order Logic are
not practical. Working with FOL-based formalisms is useful when much information
is unknown and we want monotonic reasoning® or we want to obtain all the possible
models of a FOL theory, for example in the Semantic Web, where the information could
be distributed and not complete”. However, if we want transitive closures and CWA,
logic programming could be the best choice.

In the next chapters we present the distribution semantics and two family of prob-
abilistic logics: Probabilistic Logic Programming (PLP) languages (Chapter 6) and
Probabilistic Description Logics (PDLs) (Chapter 9).

6Monotonic reasoning means that if we add a new axiom in the knowledge, the previously obtained
logical consequences are still valid.

"Indeed we will see that OWL, used to represent knowledge in the Semantic Web, is a family of
logical formalisms based on FOL.

Chapter 5

Distribution Semantics

In this chapter we present the distribution semantics [1].The aim of this part ot the
thesis is to introduce probabilistic logical formalisms and this semantics underlies many
Probabilistic Logic Programming languages (see Chapter 6) and it is the semantics
on which DISPONTE is based. DISPONTE stands for “DIstribution Semantics for
Probabilistic ONTologiEs” and assigns a meaning to Probabilistic Description Logics
(see Chapter 9). After the introduction in Section 5.1 of the problems tackled in this
chapter, we present the distribution semantics’ foundations in Section 5.2. Section 5.3
concludes the chapter.

5.1 Introduction

In real world domains the information is often uncertain, hence it is of foremost impor-
tance to be able to model uncertainty and to reason over it. Moreover the diffusion of
Logic Programming (LP) techniques made clear that an integration with probability
theory was necessary. As a consequence, in the the last decades, several semantics
were proposed that presented different probabilistic semantics for LP languages |33,
34, 35, 1. Among them, two different approaches emerged, one that makes use of
variants of the distribution semantics [1] and one that exploits Knowledge Base Model
Construction (KBMC) |36, 37].

In the latter approach, the program is converted into a graphical model, usually a
Bayesian network or a Markov network, in order to model probabilistic information and
compute the probability of queries, whereas the former approach defines a probability
distribution over normal logic programs, also called worlds. This distribution is then
extended to a joint distribution over worlds and queries, from which the probability of
a query, i.e. a ground fact, is computed by marginalization, i.e., by summing out the
worlds.

Languages that apply a KBMC approach include Probabilistic Knowledge Bases [38],
Bayesian Logic Programs [39]|, CLP(BN) [40] and the Prolog Factor Language [41].
These approaches specify a model through features that are associated with a real
value, i.e. a probability value or weight.

The distribution semantics was first presented in 1995 by Taisuke Sato [1]. He
presented a semantics applicable to definite logic programs and defined the basis for
probabilistic inference and parameter learning. Later in [42, 43| the authors showed

31

32 Distribution Semantics

that the distribution semantics works also with normal logic programs with function
symbols. Nowadays the distribution semantics underlies many Probabilistic Logic Pro-
gramming languages such as the Independent Choice Logic [44|, PRISM |[1], Logic
Programs with Annotated Disjunctions [31] and ProbLog [45].

In the next section we briefly describe the distribution semantics, for further reading
and deep understanding we refer to [1].

5.2 Formal Definition

Let F' be a set of facts and R be a set of definite rules. DB = F U R is a definite
program, with countably many variables, function and predicate symbols, which respect
the following conditions:

e DB is ground or it can be reduced to the set of all possible ground instantiations
of the clauses.

e DB is countably infinite.

e DB satisfies the disjoint condition which imposes that no atom in F' unifies with
the head of a rule in R.

Let Ay, As,... be an arbitrary enumeration of ground atoms appearing in F. Each
ground atom A; is associated with a Boolean random variable which takes value 1 (if
A; is true) or 0 (if A; is false). An interpretation w for F' is an assignment of truth to
atoms A; in F, it is identified as a possibly infinite vector w = (1, xs,...), where x;
is the truth value of A;. Q) is the set of all interpretations for F' and it is defined as a
Cartesian product of {0,1}s

0 = [T10.13, 5.1

A basic distribution Pr for F' is a probability measure on the algebra of the sample
space Q. The corresponding distribution function is Pl(p”) (x1,...,2p) forn=1,2,....

Each interpretation w = (1, xs,...) € Qp defines a set F,, C F of true ground
atoms, thus we can define a logic program F,, U R and its least model Mpp(w) which
decides all truth values of atoms in DB.

Example 5.2.1
Given the finite program DBy :

DBl - Fl UR1
Fl = {A17A2}
Rl = {Bl < Al, Bl < AQ, BQ <— AQ}

we have Qp = {0,1} x {0,1} and w = (x1,22) € Qp means that A; takes the truth
value x; (i = 1,2). Mpp is shown in Table 5.1.

Formal Definition 33

Table 5.1: Mpp, for the finite program D B;.

w = (71, T9) Fiy, Mpp, (w)
(0,0) {} {}
(1,0) {Ai} {A1, B}
(0,1) {Aq} {Az, B1, By}
(1,1) {A1, Ay} | {Ay, Ay, By, Bs}

Table 5.2: Pr, and Ppp, for the finite program DB;.

w = (71, T2) Pr, (w) w = (1,72, Y1, Y2) Ppg, (w)
(0,0) 0.2 (0,0,0,0) 0.2
(1,0) 0.3 (1,0,1,0) 0.3
(0,1) 0.4 0,1,1,1) 0.4
(1,1) 0.1 (1,1,1,1) 0.1
others 0.0 others 0.0
Let Ay, Ay, ... be an enumeration of all atoms appearing in DB this time!. Qpp,

similarly to 2, represents the set of all possible interpretations for ground atoms
appearing in DB and it is a Cartesian product of {0,1}s. w € Qpp determines the
truth value of each ground atom.

Let us introduce the notation A? for an atom A; which means that A? = A; ifx =1
and A7 = —A; if z; = 0. We can now extend Pr to define the probability measure Ppp
over {)pp as follows

[A:fl VANRIIVAN Ain]p = {w € QF|MDB(CU) |: Agfl N A A";EL"} (52)
PU(ay, .. wn) = Pp([AT A A A p) (5.3)

where ng is the corresponding finite distribution function of Ppg. Intuitively, Ppg
is identified with an possibly infinite joint distribution Ppg(x1, s, ...) on the proba-
bilistic ground atoms A;, As, ... in the Herbrand base of DB. This way a program
denotes a distribution in this semantics.

Example 5.2.2

Consider the program DBy in Ezample 5.2.1 and the distribution Pp, shown in Ta-
ble 5.2, w = (x1,22,Yy1,y2) € Qpp, indicates that x; is the value of A; and y; is the
value of B, where i,j = 1,2. Ppp, can be computed from Pp,. See Table 5.2.

Let GG an arbitrary formula without free variables whose predicates are among DB,
[G] is defined as

[G]:{WEQDB|W':G}

!Note that this is is different from the previous definition. Previously we defined A1, A,,... as an
enumeration of all atoms in F.

34 Distribution Semantics

[G] contains all the possible worlds where G is satisfied. Then the probability of G
is defined as Ppp([G]), which represents the probability mass assigned to the set of
interpretations satisfying G.

5.3 Conclusions

The distribution semantics [1] was the main topic of this chapter. This semantics tries
to syncretize logic with probability theory, in order to represent uncertain information.

This semantics underlies many Probabilistic Logic Programming languages, which
are the topic of the next chapter.

Chapter 6

Probabilistic Logic Programming
Languages

In this chapter, after a brief introduction (Section 6.1) we present two of the most
famous Probabilistic Logic Programming languages based on distribution semantics:
Logic Programs with Annotated Disjunctions (LPADs), illustrated in Section 6.2, and
ProbLog presented in Section 6.3.

6.1 Introduction

The distribution semantics presented in Chapter 5 underlies many Probabilistic Logic
Programming (PLP) languages such as Probabilistic Logic Programs [33], Probabilis-
tic Horn Abduction [35], Independent Choice Logic [44|, PRISM [1], pD [46], Logic
Programs with Annotated Disjunctions (LPADs) [31], ProbLog [45, 30|, P-log [47] and
CP-logic [48].

The main difference between these logical languages is the definition of the distri-
bution over logic programs. However, each language can be translated into the others
using transformation algorithms which have linear complexity. Moreover, these lan-
guages are Turing complete, hence they are very expressive.

In this chapter we present Logic Programs with Annotated Disjunctions [31], be-
cause they have the most general syntax and are the knowledge representation language
used in our PLP systems proposed in Chapter 12 and Chapter 15, and ProbLog [45,
30] for its simplicity.

6.2 Logic Programs with Annotated Disjunctions

This section presents the formalism of LPADs;, introduced by J. Vennekens et al. in [31].

6.2.1 LPADs Syntax

An LPAD is a finite set of annotated disjunctive clauses of the form
hil Hll,,th 1_1”1Z . bil,...,bimi. (61)

35

36 Probabilistic Logic Programming Languages

where 7 is the index of the rule, b;,..., b;,, are literals, h;;,...h;, are atoms and
L1, ..., I, are annotations which are real numbers in the interval [0, 1]. This clause
can be interpreted as “if by, ..., by, is true, then h;; is true with probability II;; or

7

. or hy,, is true with probability Il;,,.” If n; = 1 and II;; = 1 the clause is non-
disjunctive, while if n; > 1 then > I < 1. If 7" Tl < 1, there is an implicit
atom null : (1 — > 7" II;) that does not appear in the body of any clauses of the
program.

Example 6.2.1
The following LPAD T from [49] encodes a very simple model of the development of
an epidemic or a pandemic:

(1 = epidemic : 0.6; pandemic : 0.3 :- flu(X),cold.
Cy=cold : 0.7.

flu(david).

flu(robert).

An epidemic or a pandemic may arise if somebody has the flu and the climate is cold.
We are uncertain whether the climate is cold and we know for sure that David and
Robert have the flu.

6.2.2 LPADs Semantics

For the sake of simplicity we consider only the case of LPADs without function symbols.

Definition 6.1 Atomic choice
An atomic choice is a selection of the k-th atom for a grounding C;6; of a probabilistic
clause C; and is represented by the triple (C;, 8, k), where 6; is a substitution (a set of

couples V;/v;, where V; is variable and v; is a constant) and k € {1,...,n;}. An atomic
choice represents an equation of the form X;; = k where Xj; is a random variable
associated with C;0;. O

Definition 6.2 Consistency of an atomic choice
A set of atomic choices & is consistent if (C;,0;,k) € K, (C;,0;, m) € k implies k = m,
i.e., only one head is selected for a ground clause. O]

Definition 6.3 Composite choice
A composite choice « is a consistent set of atomic choices. O

The probability of a composite choice k is
Pr)=][] Ta (6.2)
(Ci,ej,k)eli
where II;; is the probability annotation of head k of clause C;.

Definition 6.4 Selection
A selection o is a total set of atomic choices (one atomic choice for every grounding
of each probabilistic clause). O]

Logic Programs with Annotated Disjunctions 37

A selection o identifies a logic program w, called a world. The probability of w, is

P(w,)= [T (6.3)

(Ci,ej,k)EO'

Since the program does not contain function symbols, the set of worlds is finite
W ={w,...,w,} and P(w) is a distribution over worlds: >\, P(w) = 1.

We consider only sound LPADs where, for each selection o, the well-founded model
of the program w, is two-valued. We write w, = @ to mean that the query @ is true
in the well-founded model of the program w,. Since the well-founded model of each
world is two-valued, () can only be true or false in w,.

We define the conditional probability of a query @ given a world as P(Q|w) = 1 if
w = @ and 0 otherwise. It is now possible to define the probability of @ by using two
rules of the theory of probability:

e marginalization or sum rule:

P(Q) =) P(Qw)

wew

e and product rule:

P(Q,w) = P(Qw)P(w)
So the the probability of) becomes:

P(Q) => PQuw) =Y PQuwPw = > P (6.4)

weWw wew weEW:wkEQ

Example 6.2.2

For the LPAD T of Example 6.2.1, clause Cy has two groundings, C16, with 6, =
{X/david} and C10, with 6, = {X/robert}, while clause Cy has a single grounding Cs{).
T has 3 x 3 x 2 worlds, the query () = epidemic is true in 5 of them and its probability
is P(Q) =0.6-0.6-0.740.6-0.3-0.7+4+0.6-0.1-0.740.3-0.6-0.7+0.1-0.6-0.7 = 0.588.

It is often infeasible to find all the worlds where the query is true, so inference
algorithms find, instead, explanations for the query, i.e. particular types of composite
choices (read below).

A composite choice k identifies a set of worlds w, = {w,|0c € S,0 2 K}, the set
of worlds whose selection is a superset of k, where § is the set of all the possible
selections. The set of worlds identified by a set of composite choices K is defined as

WK = U/@GK Wi -

Definition 6.5 Explanation (for PLP)
A composite choice k is an explanation for a query @ if @) is entailed by every world
of w,. O

A set of composite choices K is covering @ if every world w, € W in which @
is entailed is such that w, € wg, i.e. wxg = {w,loc € S ANw, = Q}. In other words
a covering set K identifies all the worlds in which @) succeeds. The set of all the
explanations for Q) is a covering set of Q).

38 Probabilistic Logic Programming Languages

Example 6.2.3
Consider the LPADs in Example 6.2.1. A set of composite choices K that covers the
query epidemic is

K = {k1, K2}
k1 = {(C1, {X/david}, 1), (Cy,0,1)}
ko = {(Cy,{X/robert}, 1), (C2,0,1)}

Two composite choices k1 and ko are incompatible if their union is inconsistent.
For Example r; = {(C;,6;,1)} and ko = {(C;,0;,0)} are incompatible. A set K of
composite choices is pairwise incompatible if for all kK1 € K, kg € K, k1 # Ko implies
k1 and k9 are incompatible.

The probability of a pairwise incompatible set of composite choices K is defined as

follows:
=Y P(k) (6.5)

reK

Two set of composite choices Ky and Ky are equivalent if they identify the same set of
worlds, i.e., if wg, = wg,. Given a query () and its covering set of composite choices
K, then K identifies a set of worlds wx = {w,|c € S Aw, = Q}. Then we have that

P(Q)=) P(w,)=Pwk)=P(K) (6.6)

We EWK

If K is pairwise incompatible

P@Q) = > P(w,) = Plug) = =" P(x) (6.7)

We EWEK reEK

Example 6.2.4

Consider the LPAD of Example 6.2.1. In FExample 6.2.3 we found a covering set of
explanations for the query () = epidemic., but those explanation are not pairwise
imcompatible therefore we cannot compute the probability of the query with those expla-
nations by using Equation (6.7). In fact

P(r1) + P(ks) = 0.6 -0.7+ 0.6 - 0.7 = 0.84 # 0.588 = P(Q)

where P(Q) was computed in Example 6.2.2.
Suppose now that we have the following covering set of explanations K' for the query
() = epidemic.

= {lillv’i/Q}
k) = {(Cy,{X/david}, 1), (Cy, {X/robert},0), (Cy, 0, 1)}
kg = {(Cy,{X/robert}, 1), (Cy,0,1)}

The explanations are pairwise incompatible, then we can use Equation (6.7) to compute
the probability of K', which is equal to P(Q). In fact

P(K')=06-0.4-0.740.6-0.7=0.588 = P(Q)

ProbLog 39

To compute the conditional probability P(Q|E) of a query @ given evidence F,
we can use the definition of conditional probability, P(Q|E) = P(Q, E)/P(E), and
compute first the probability of @), £/ (the sum of probabilities of worlds where both @
and FE are true) and the probability of £ and then divide the two.

If an LPAD contains function symbols, a more complex definition of the semantics
is necessary: since the number of groundings is infinite, a world would be obtained
by making an infinite number of choices and so its probability, the product of infinite
numbers all smaller than one and bounded away from one, would be 0. In this case we
have to work with sets of worlds and use Kolmogorov’s definition of probability space,

see [50].

6.3 ProbLog

ProbLog [45, 30| assigns probabilities to facts, so it is possible to define a joint distri-
bution over facts, which, according to [1], we are able to extend to a joint distribution
over the set of possible logic programs.

6.3.1 ProbLog Syntax

A ProbLog program 7 is composed of a normal logic program C and a set of proba-
bilistic facts F. Each probabilistic fact is of the form

Di FZ

where F; € F is an atom and p; is a probability, i.e. p; € [0,1]. This means that
every grounding F;0; of F; is a Boolean random variable that assumes true value with
probability p; and false with probability 1 — p;. The set of all the groundings of the
probabilistic facts in F is denoted as F¢.

A world w obtained from a ProbLog program is the union of the normal logic
program C and a subset F¢ that contains a selection of ground probabilistic facts
chosen within the set of all the groundings of the probabilistic facts F¢ (FS¢ c F¢).

The probability of a world is computed by multiplying p; for each probabilistic fact
F; included in the world and 1 — p; for each probabilistic fact F; not included in the
world. The probability of a query @ is computed by marginalization as for LPADs.

Example 6.3.1
Let us consider the ProbLog program corresponding to the LPAD of Example 6.2.1.

epidemic :- flu(X), epid(X), cold.
pandemic :- flu(X),\+ epid(X), pand(X), cold.

flu(david).

flu(robert).
F,=0.7 :: cold.
F,=0.6 :: epid(X).

F;=0.3 :: pand(X).

40 Probabilistic Logic Programming Languages

where \+ is the negation as failure not. This program models the fact that if somebody
has the flu and the weather is cold there is the possibility that an epidemic or a pandemic
arises. We are uncertain about whether the climate is cold, but we know for sure that
David and Robert have the flu. The facts epid(X) and pand(X) can be considered as
"probabilistic activators” of the effects in the head given that the causes (flu(X) and
cold) are present.

Fact Fy has only one grounding, while facts Fy and Fs have two groundings obtained
by assigning to X the value david or robert. From F, we obtain epid(david) and
epid(robert), while from F3 we obtain pand(david) and pand(robert). 7 has 5
different ground probabilistic facts and thus 32 worlds. The query epidemic is true
in 12 of them and its probability is P(epidemic) = 0.588. For the sake of brevity, we
do not report here the formula with the probability of all the worlds where the query is
true, but we show two examples of possible worlds. One world where the query is true
is (note that we show only the probabilistic facts):

{cold,epid(david), epid(robert), pand(david), pand(robert)}

whose probability is 0.7 - 0.6 - 0.6 - 0.3 - 0.3 = 0.02268.
Another different world in which the query is true is:

{cold, epid(david),pand(robert)}

whose probability 1s 0.7 - 0.6 - 0.3 = 0.126.

6.4 Conclusions

In this chapter we illustrated two of the most famous Probabilistic Logic Program-
ming languages based on distribution semantics: LPADs (Section 6.2) and ProbLog
(Section 6.3). In particular, LPADs are th probabilistic logical formalism used by the
inference system cplint, discussed in Chapter 12, and by the distributed structure
learning algorithm SEMPRE, presented in Chapter 17.

The languages following the distribution semantics differ in the way they define the
distribution over logic programs. However, each language can be translated into the
others using transformation algorithms which have linear complexity [51].

The next chapter introduces description logics, a different family of logical formal-
ism for knowledge representation, and OWL, a logical language for the Semantic Web
based on description logics.

Chapter 7

Description Logics and OWL

In this chapter we discuss Description Logics (DLs) and the Web Ontology Language
(OWL). DLs are a family of knowledge representation formalisms and OWL is a lan-
guage for the Semantic Web that provide several concrete syntaxes for Description
Logics.

The chapter is organized as follows. Sections 7.1 provides an introduction. Sec-
tion 7.2 illustrate the abstract syntax, the naming scheme and the semantics of de-
scription logics. Section 7.5 shows the relationship between description logics and
First-Order Logic. Section 7.6 provide a brief overview of OWL and the Semantic
Web. Finally Section 7.7 concludes the chapter.

7.1 Introduction

Description Logics (DLs) are a family of knowledge representation (KR) formalisms
based on KL-ONE [52]. They are drawing an increasing interest thanks to their use in
the Semantic Web. Therefore extending DLs with probability could be very useful
to represent uncertain information in the Semantic Web.

During the 1970s several approaches to knowledge representation were proposed and
they are sometimes divided in two main categories: logic-based and non-logic-based
formalisms. The former evolved out of the intuition that predicate calculus could be
used unambiguously to capture facts about the world [52], they were more formal
and hence more general-purpose. The latter, like frames and semantic network, were
often developed by building on cognitive notions [52] and therefore they were more
human-understandable, but they usually lacked a formal logic-based semantics!. To
overcome this deficiency, some knowledge representation systems were proposed, these
systems were initially called terminological systems, then concept languages and finally
description logics. The main reason for using DLs rather than predicate logic is
that DLs are carefully tailored such that they combine interesting language constructs
with decidability of the reasoning problems [53|. In effect, FOL is undecidable, whereas
description logics are usually decidable fragments of FOL. However, they use a different

Indeed in the non-logical approaches, knowledge is represented by means of some ad hoc data
structures, and reasoning is accomplished by similarly ad hoc procedures that manipulate the struc-
tures

41

42 Description Logics and OWL

terminology from FOL. They use the terms concepts, roles and individuals for unary
predicates, binary predicates and constants.

In this chapter we provide a brief overview of description logics, the theory be-
hind them. Moreover we illustrate the Web Ontology Language (OWL), a family of
languages that implements various description logics, i.e. OWL provides concrete syn-
taxes for DLs. For more details about description logics we refer to [52, 53, 54]. Instead
for further information about Semantic Web and OWL syntax we refer to the W3C
World Wide Web Consortium online site [55, 56].

7.2 Description Logics

An ontology is a formal and explicit description of a domain of interest. The use of
ontologies solves term ambiguity and clarifies domain peculiarities, e.g. the word leg
could mean a part of human body (if we are in a medical context) or it could mean a
part of a table (if we are in the context of carpentry).

An ontology describes the concepts of the domain of interest and their relations
with a formalism such that it is possible for a computing machine to use that ontology
through specific programs, called reasoners.

Descriptions logics provide a logical formalism for knowledge representation. In DLs
information is stored in knowledge bases (KB). They are usually divided into two parts:
the intensional knowledge, or ontology, and the extensional knowledge. The former in-
troduces the terminology by relating concepts and roles and it provides a vocabulary for
the domain of interest. The latter contains assertions or specific information regarding
concept and role membership of individuals.

DLs are useful in all the domains where it is necessary to represent information
and to perform inference on it, such as software engineering, medical diagnosis, digital
libraries, databases and Web based informative systems. They possess nice computa-
tional properties such as decidability and (for some DLs) low complexity.

7.3 Syntax
The basic syntactic building blocks are the following fiur disjoint sets:

e individuals, that correspond to all names used to denote individual entities (be
they persons, objects or anything else) in the domain, like mary, boston, italy;
they are equivalent to FOL constants;

e atomic concepts, which denote types, categories, or classes of entities, usu-
ally characterized by common properties, e.g., Cat, Country, Doctor; they are
equivalent to FOL unary predicates;

e atomic roles a.k.a. abstract roles, which denote binary relationships between
individuals of a domain, e.g., hasParent, loves, locatedIn; they are equivalent to
FOL binary predicates;

Syntax 43

e datatype roles, which denote binary relationship between individuals and data
values such as strings and numbers, i.e. assign data values to individuals, e.g.
hasAge, hasName; they are equivalent to FOL binary predicates.

In the following sections, we will use C' and D to denote arbitrary concepts, R and S to
denote arbitrary roles, A to denote an atomic concept, and n to denote a non-negative
integer.

7.3.1 Concept and Role Constructors

Each DL language has its own expressiveness determined by which constructors and
axioms are allowed.

7.3.2 Concept Constructors

For concepts, the most used constructors are union (L), intersection (1) and nega-
tion (—). For negation, we must distinguish between atomic concept negation and
complex concept negation. A complex concept is an atomic concept or a concept de-
fined by a set of concepts (atomic or not) combined by constructors. In addition, many
DLs define two specific concepts, the universal concept top (T), which is equivalent
to AU —A, and the inconsistent concept bottom (L), which represent the empty
concept and it is equivalent to A M —A. T represent the set of all the individuals,
whereas L is the empty set to which no individuals belong.

Other common constructors are the quantification constructors. These constructors
can be classified into unqualified and qualified. We can have existential role restric-
tions (3R and JR.C unqualified and qualified respectively, where C' is a (complex)
concept) and universal role restrictions (VR and VR.C). The qualified existential
restriction dR.C indicates all those individuals that have at least a relation R with
an individual belonging to C'. In the above expression, the individuals belonging to C
are called role fillers. The qualified universal role restriction VR.C, instead, indicates
all those individuals that, if they have a relation R, it is only with individuals belong-
ing to C. The unqualified constructors can be seen as a particular case of qualified
constructors with the fillers belong to T, i.e. AR and VR are equivalent to dR.T and
VR.T respectively. Some DLs also support cardinality restriction, that can be qualified
or unqualified, that place cardinality restrictions on the roles relating instances of a
concept to instances of some other concept. Cardinality restrictions bound the number
of individuals

In some DL languages there is also the possibility to define concepts by enumeration
of individuals

Let I, A, Ra, Rp be the sets of individuals, atomic concepts, abstract roles and
datatype roles respectively. All these sets are pairwise disjoint. Moreover, let C' and D
be concepts and R € R then the following are concepts as well:

e T, top concept, contains everything;

e |, bottom concept, contains nothing;

e Ac A,

44

Description Logics and OWL

for every finite set {ay,...,a,} € I of individuals names, {ay, ..., a,} is a concept
called nominal,

C M D, the intersection of two concepts;

C U B, the union of two concepts;

=(', the negation of a concept;

JR and JR.C', the unqualified and qualified existential restriction on a role;
VR and VR.C', the unqualified and qualified universal restriction on a role;

> nR, <nR and = nR for an integer n > 0, unqualified number restriction on a
role;

>nR.C, <nR.C'and = nR.C for an integer n > 0, qualified number restriction
on a role.

If P is an n-ary datatype predicate and T" € Rp, then:

JT'.P, the datatype existential restriction on a role;

VT.P, the datatype universal restriction on a role.

7.3.3 Role constructors

Role constructors take role and/or concept descriptions and transform them into more
complex role description. Let R be the set of all roles and R and S be two roles, then
the following are roles

U, universal role;

R e R;

RS, the intersection of two roles;

RS, the union of two roles;

=R, the negation of a role;

R o S, the composition of two roles, used to define chain of roles;
R~ the inverse of role R,

R*, the transitive closure of role R;

R*, the reflexive-transitive closure of role R;

R|c, the role restriction of R, which defines a subrole of R whose range is re-
stricted to the individuals belonging to the concept C.

Syntax 45

7.3.4 Knowledge Base

A KB based on a Description Logic contains two kinds of information, intensional
knowledge and extensional knowledge.

The former contains the Terminological Box (TBox) and the Role Box (RBox) and
models general information about the domain, normally contains immutable informa-
tion and statements which describe the main properties of concepts and relationships.

The latter, composed by the Assertional Boxr (ABox), contains information that is
specific to the problem, that may change over time and that is related to the individuals
of the domain.

7.3.4.1 TBox

The TBox contains axioms related to concepts. Let C' and D be concepts. A TBox T
is a finite set of concept inclusion and concept equivalence axioms.

Concept inclusion axioms a.k.a. concept subsumption axioms, introduce a hier-
archy among concepts. These axioms specify a is-a relationship between two
different concepts. For example, we can state that a man is a person as

Man C Person

the axiom above must be read as: “Person subsumes Man” or equivalently “Man
is subsumed by Person®

Concept equivalence axioms assert equality between two concepts. Definitions are
often used to associate a symbolic name to complex concepts. In these cases a
single definition for a symbolic name is admitted in the TBox. For example, we
can define the concepts Parent as the union between the concepts Mother and
Father as

Parent = Mother U Father

Concept equivalence axioms can be expressed with subsumptions as C' = D is
equivalent to C C D and D C C.

7.3.4.2 RBox

The RBox is a set of axioms concerning the roles contained in the KB. We use R~
to denote the set of all inverses of roles in R4.

Role inclusion axioms are of the form R C S, where R, S € Ra URA™ or R, S €
Rp.

Role equivalence axioms are of the form R = .5, which is an abbreviation for R C S
and S C R.

Role chain axioms are of the form R; o Ry C Rs3, where Ry, Ry, R3 € RAo URA .
For example, to model the fact the father of the father of an individual is a
grandparent the following axiom can be used:

fatherOf o fatherOf C grandParentOf

46 Description Logics and OWL

Transitivity axioms are of the form Trans(R), where R € Ra or R € Rp. They
mean that if x is related to y and y is related to z with role R, then x is R-
related to z. For example, if the role brotherOf is transitive and the axioms
brotherOf(luca, andrea) and brotherOf(andrea,giovanni) are given, then we can con-
clude that brotherOf(luca,giovanni) is also true. They are equivalent to Ro R C R

Functional axioms are of the form Funct(R). They mean that, for each object z,
there can be only one object y in relation with x through R. There cannot
be two distinct y; and yp such that we have R(z,y;) and R(x,y,). For exam-
ple, consider the relation childOfFather, and consider the kid luca. If we have
childOfFather(luca, f;) and childOfFather(luca, f), then we can conclude:

1. f1 and f5 are the same person, i.e. the father of luca

2. if f1 # fo is also stated, then the KB is inconsistent?

An RBox R consists of a finite set of role inclusion axioms, roles chain axioms, plus
axioms that define the characteristics of roles such as transitivity axioms and functional
artoms. Which axioms may be present in an RBox depends on the expressive power of
the Description Logic, in some cases the KB does not contain the RBox, in ALC KBs.

7.3.4.3 ABox

An ABox (Assertional Box) contains information about the individuals of the problem
domain. It defines which classes each individual belongs to and how the individuals
are related to each other.

Let a,b be individuals and v be a data value, an ABox A is a finite set of con-
cept membership axioms, role membership axioms, datatype role membership axioms,
equality axioms and inequality azioms.

Concept membership axioms are of the form a : C', where C' is a concept. They
state that a belongs to the concept C.

Role membership axioms are of the form (a,b) : R, where R € Ra. They state
that b is R-related to or is a filler of the role R for a.

Datatype role membership axioms are of the form (a,v) : T, where T" € Rp.
They state that v is T-related to a.

Equality axioms are of the form a = 0. They state that a and b define the same
individual.

Inequality axioms are of the form a # b. They state that a and b are different
individuals. This axiom is extremely important in order to make the Unique
Name Assumption (see Definition 7.6).

2We are considering a biological father.

Syntax 47

7.3.5 Nomenclature

As mentioned before, DLs are a family of FOL-based KR languages. Many varieties
have evolved during the years, which differ in terms of expressive power and syntactic
structures. There is a well-established naming scheme that associates particular syn-
tactic constructors to letter for composing the name of the DL. The naming schema
can be summarized as follows:

(AL [CH FLIEL|S) H]|SR) (O [Z] [FETUIN Q[T [T [(D)]

In this scheme, the round brackets form a group (except for (D)), the square brackets
indicate optional symbols that cannot appear on their own and the ’|” represents alter-
natives. It is worth noting that the naming schema below it is not an official standard,
but a standard de facto.

The symbols used in the nomenclature of DLs are defined as follows

e AL is the abbreviation of attributive language. It is often considered as the base
language and allows atomic negation (= A), union (L) and intersection (1) as well
as universal (VR.C') and unqualified existential (3R.T) quantification.

e ALC is the abbreviation of attributive language with complements. C extends AL
by allowing negation of complex concept (=C').

e FL is the contraction of frame based description language. It allows concept
intersections, universal restrictions, unqualified existential quantifications and
role restrictions. FL has two sublanguages: FL ™, obtained by disallowing the
use of role restrictions, and FLg, that is a sublanguage of FL~ obtained by
forbidding unqualified existential quantifications, the bottom (L) and top (T)
concepts. FL™ is equivalent to AL without atomic negation.

e £L allows the use of existential quantifiers, concept intersections and the T (top)
concept. It disallows unions, complements, universal quantifiers and axioms re-
garding roles such as role subsumptions. ££7 is an extension which allows the
use of role inclusion axioms. ££77 is an alias for ELRO.

e S extends the logic ALC by allowing the definition of transitive roles.
e H extends ALC and S by role hierarchies, thus it allows role inclusion axioms.

e SR extends S by allowing the definition of complex role inclusions, i.e. hierarchies
between complex roles, e.g. Ry o Ry C .S means that R, o Ry is subrole of S.

e O allows the use of enumerations in the definition of concepts, i.e. the use of
nominals in the definition of concepts, for example the definition of MontyPython
can be {graham, john, terry, eric, terry, michael}.

e 7 enables the definition of inverse roles, e.g. R~ is the inverse role of R: (a,b) : R
iff (b,a) : R~ .

e F allows to define that a role R is functional, i.e. has at most one filler, which is
equivalent to the axiom T C 1R.

48 Description Logics and OWL

e &£ means that the DL features qualified existential role restrictions.
e U allows union between concepts.

e N means that the definition of unqualified number role restrictions is allowed,
ie, <nR, >nR and = nR.

e O means that qualified number role restrictions can be defined, i.e., < nR.C,

>nR.C and =nR.C.

e T allows to define transitive closures of roles, e.g. R* is the transitive closure of

R.

*

e * allows to define reflexive-transitive closures of roles, e.g. R* is the transitive
closure of R

e (D) allows datatype properties, such as numbers of strings.

Table 7.1 shows some of the cited DL constructors, for each constructor is reported its
DL language that allows to express it. Transitive and reflexive—transitive closure are
the only constructors that cannot be expressed in FOL.

Syntax

49

Table 7.1: Some DL constructors with their associated DL language symbols.

Constructor Syntax Languages
Intersection cnbD EL| AL | FL,
Qualified universal role restriction VR.C AL | FLy
Top T EL|AL| FL™
Bottom 1 AL | FL~
Unqualified existential role restriction 3R (i.e. IR.T) AL | FL™
Role restriction R |c FL
Qualified existential role restriction JR.C EL|AL|E
Union cubD AL | U
Atomic negation -A AL
Negation -C' C
>nR
Unqualified number restriction <nR N
=nR
>nR.C
Qualified number restriction <nR.C Q
=nR.C
Inverse role R~ 7z
Nominal {z,y,z2} O
Transitive closure R* n
Reflexive-transitive closure R x

50 Description Logics and OWL

7.4 Semantics

Usually the semantics of a DL knowledge base K is assigned in a set-theoretic way,
where every concept is interpreted as a set of individuals and every role as a set of
pairs of individuals. We give now some definitions regarding the semantics.

Definition 7.1 Interpretation Z for DLs without datatypes (D)
An interpretations Z = (A%, %) consists of

e a non-empty set AL, called the domain of Z, which contains all the individuals
of the domain;

e an interpretation function -Z, that assigns an element a € A” to each a € 1,
a subset CT of AT to each C' € A and a subset RT of AT x AT to each R € R,
where I, A and R are respectively the set of individuals, atomic concepts and
atomic roles.

[]

If the DL allows the use of datatypes, then the definition of interpretation given
above must be extended to take into account also a datatype theory which is asso-
ciated to Z. First of all we provide a definition of datatype theory.

Definition 7.2 Datatype theory of a DL
A datatype theory D = (AP, .P) is defined by

e a non-empty datatype domain AP,

e a mapping function -? which assigns to each data value an element of AP, to each
elementary datatype a subset of AP, and to each datatype predicate® of arity n
a relation over AP of arity n.

O

Definition 7.3 Interpretation Z for DLs with datatypes (D)

Let I, A, Ra and Rp be respectively the set of individuals, atomic concepts, abstract
roles and datatype roles, which are pairwise disjoint. An interpretation Z = (A%, %)
relative to a datatype theory D = (AP, .P) is composed of a non-empty domain AZ
that is disjoint from AP, and an interpretation function -Z which maps each a € I to an
element of AZ, each C' € A to a subset of AZ, each R € Ry to a subset of AT x AT, each
T € Rp to a subset of AT x AP, and every data value, datatype, datatype predicate
to the same value assigned by -P. O

The mapping £ for DL constructors is reported in Tables 7.2-7.4, where R%(z) =
{y | (z,y) € R*}, R%(2,C) = {y | (z,y) € R,y € C?}), #X denotes the cardinality
of the set X, T%(x) = {y | y € AP (x,y) € TT}, (R)? = {(x,z) | * € AT} and
(RT)"1 = (RT)" o RT . Table 7.2 reports the semantics of the most common concept
and individual constructors. Table 7.3 shows the semantics of the most common role
constructors. Table 7.4, instead, illustrates the semantics of the most common datatype
and data value constructors.

The satisfaction of an axiom E in an interpretation Z, denoted by Z |= F, is defined
as follows

3In |52] they are called concrete predicates.

Semantics

o1

Table 7.2: Syntax and semantics of common concept and individual constructors.

Constructor Syntax Semantics

Top T AT

Bottom 1 0

Atomic concept A AT C AT

Intersection cnbD (CnDf=cCctnD?

Union cubD (CuD)yf=c*tuD*

Negation -C (-C)E = AT\ C*

ﬁ:ﬁ;&iinumversal role VR.C (VR.C)t = {z € AT | R*(z) C C*}

1%:3;?&2ﬂex1stent1al role RO (AR.CYE = {z € AT | RE(x) N CZ + ()
>nR (>nR) = {z € AT | #R%(z) > n}

Unql‘lalniﬁed number < nR (< nR)E = {& € AT | #R%(z) < n)

restriction
=nR (=nR) = {x € AT | #R*(z) = n}
>nR.C (>nRC)r={reAT|#R(z,C)>n}

Qualified number restriction <nR.C (< nR.C)t ={x € AT | #R%(2,C) <n}
=nR.C (=nR. C) ={z € AT | #R*(z,C) =n}

Nominal {a,b,¢} {a,b,c}t = {at, b*, L}

Table 7.3: Syntax and semantics of common role constructors.

Constructor Syntax Semantics

Universal role U Ur = AT x AT

Atomic role/abstract role R RT C AT x A

Intersection RNS (RNS)Y=RINS*

Union RUS (RuS)Y=RruSs?

Negation -R (~R) = AT x AT\ R?

Inverse role R~ (R ={(y,2) | (z,y) € R*}

Composition RoS gﬁo b;) y) € {(gf%) € AT AT Fe(r2) €

Role restriction R|c (R|lc)F = {(z,y) € ATxAT | RE(z) C C*}

Transitive closure R* (R = U, (RT)"

Reflexive-transitive closure — R* (R*)" = U,»o(RY)"

52

Description Logics and OWL

Table 7.4: Syntax and semantics of common datatype and data value constructors

Constructor Syntax Semantics

Datatype D DP = DI C AP

Datatype role T T C AT x AP

Negation -D (=D)P = (=D)t = AP\ DP

Data value v vf =P

Data enumeration {uv,w,0} {u,w,v}* = {uf, wh v}

Qualified universal 7 e, D
T.D : = -

datatype role restriction v (VT.D) lre AT (@) € D7}

Qualified existential T D (3T.D)F = {a € AT | T%(z) N DP # }

datatype role restriction

Definition 7.4 Axiom satisfaction

e A concept inclusion axiom Z |= C' C D is satisfied by Z iff C* C DZ.

e A concept assertion axiom Z |= a : C is satisfied by Z iff aZ € C7T.

T iff (a*,vP) € TZ.

A role assertion axiom Z = (a,b) : R is satisfied by Z iff (a*, %) € RZ.
An equality axiom Z = a = b is satisfied by Z iff a* = b*.

A inequality axiom Z |= a # b is satisfied by Z iff a # bZ.

A transitivity axiom Z = Trans(R) is satisfied by Z iff R is transitive.
A role inclusion axiom Z = R C S is satisfied by Z iff RT C S7,

A datatype role assertion axiom Z = (a,v) : T for a data value v is satisfied by

]

An interpretation Z is a model of an axiom FE if 7 satisfies F, i.e. if E is true with
respect to Z. T satisfies a set of axioms &, denoted by Z = €, iff Z = E for all E € £.

Definition 7.5 Model of a DL KB K

An interpretation Z satisfies a knowledge base K, denoted Z |= K, iff Z satisfies all the
boxes contained in K, i.e. if K = (T,.A), then Z = K iff Z satisfies T and A, while if
K= (T,R,A), then Z have also to satisfy R. In this case we say that Z is a model of

K.

]

A knowledge base K is satisfiable iff there exists an interpretation Z that satisfies K.
An axiom FE is entailed by K, denoted K |= E, iff every interpretation that satisfies K

also satisfies E.

We provide now the definition of the Unique Name Assumption.

Semantics 53

Definition 7.6 Unique Name Assumption (UNA)
The Unique Name Assumption states that individuals with different names have to be
interpreted as different individuals, i.e., that a # b with a,b € N; implies a # b*. [

In more recent DLs, the UNA is not made but can be explicitly stated by adding
a # b to the ABox for every couple of distinct individuals in the KB. OWL provides
the construct AllDifferent to ease the definition of different individuals.

An example of DL KB is shown in Example 7.4.1.

Example 7.4.1
The following is inspired by [57]. For simplicity we make the UNA.

Swallow C Bird (7.1)
MigrantBird C Bird (7.2)
NonMigrantBird C Bird (7.3)
EuropeanSwallow C Swallow I MigrantBird (7.4)
AfricanSwallow C Swallow M NonMigrantBird (7.5)
Jtrasported. Thing = Coconut (7.6)
T C Vtrasported.Bird (7.7)
TransportableCoconut = dtransported.AfricanSwallow LI

> 2transported.EuropeanSwallow (7.8)
TransportableCoconut C Coconut (7.9)
CoconutlInEurope C Coconut (7.10)
CoconutlnEurope => 2transported.EuropeanSwallow (7.11)
fedor : Coconut (7.12)
transported(fedor, ivan) (7.13)
transported (fedor, aleksej) (7.14)
dmitrij : AfricanSwallow (7.15)
ivan : EuropeanSwallow (7.16)
aleksej : EuropeanSwallow (7.17)

The TBoz is composed by terminological axioms 7.1-7.11. The subclass axioms 7.1-
7.5 state that swallows are birds, that we can have migrant and non-migrant birds and
that European swallows are migrant birds, whereas the African ones are non-migrant.
The two terminological axioms 7.6-7.7 define that the role transported has Coconut as
domain (7.6) and Bird as range (7.7). The axioms affirm that a coconut is transportable
if is carried by at least an African swallow or at least two European swallows and that
if a coconut is transported by at least two European swallows, then the coconut belongs
to the class of coconuts in Europe.

The ABoz is composed by assertional azioms 7.12-7.17, which state that Fedor is
a coconut, Dmitrij is an African swallow, Ivan and Aleksej, instead, are Furopean
swallows and that Fedor The Coconut was transported by Ivan and Aleksej.

The fact that Fedor is a coconut in Furope is not explicit, but can be inferred by
means of a reasoner (see Chapter 8).

54 Description Logics and OWL

7.4.1 Decidability of Description Logics

Each DL is decidable if the problem of checking the satisfiability of a KB is decidable.

Allowing arbitrary roles in cardinality restriction concepts is known to lead to un-
decidability [58].

In particular, a DL is decidable iff there are no cardinality restrictions on transitive
roles and on roles that have transitive subroles [59, 60].

Role chains introduce some issues too:

e Arbitrary role chain axioms lead to undecidability. For ensuring decidability the
following restrictions must be imposed:

— there must be a strict linear order < on roles

— the set of role chain axioms must be regular, i.e., the set has to contain only
role chain axioms of the following forms:

RoRCR

STCR
Si080...05, C R
RoSji0S550..05,CR
S10850..05,0RC R

where S; < R foralli =1,2,... n.

o In SHZQ (and SHOZQ), the combination of role chain axioms with cardinal-
ity constraints may lead to undecidability. For ensuring decidability, qualified
number restrictions has to be restricted to certain roles that were called simple
roles [59]. In this context, a role is called simple if it is neither transitive nor has
transitive sub-roles.

SROIQ(D) was introduced by Horrocks et al. in [61] and it is of particular
importance because it is semantically equivalent to OWL 2 DL (see Section 7.6).
This DL allows to define qualified cardinality role restrictions, transitive roles and
complex role inclusion axioms. In the context of SROZQ(D), the definition of
simple role has to be slightly modified, and simple roles must appear not only in
qualified number restrictions, but in several other constructs as well. Intuitively,
non-simple roles are those that are implied, directly or indirectly, by a role chain.

Definition 7.7 Simple role in SROZQ(D) [61]

Given a role R, its simplicity is inductively defined as follows:
— R is simple if it does not occur on the right hand side of a role inclusion
axiom in R, i.e. there is no role chain axiom of the form: S;0S50---0S5, C R;
— an inverse role R~ is simple if R is, and

— if R occurs on the right hand side of a role inclusion axiom in R, then R is
simple if, for each S C R, S is a simple role.

O

Description Logics and First-Order Logic 55

Example 7.4.2
Consider the following KB K :

QoPLCR RoPCR
RLCS PCR
QCS

P and Q) are simple, whereas R and S are non-simple.

It is well known that the complexity of SROZQ is N2ExpTime [62].

7.5 Description Logics and First-Order Logic

In this section we discuss the relationship between DLs and First-Order Logic (FOL).
In particular we discuss the relationship of SROZQ with FOL. For a more detailed
analysis see [63] and Chapter 4 of [52].

Many DLs can be seen as fragments of First-Order Logic (possibly with equal-
ity or counting quantifiers) and therefore DLs like SROZQ are less expressive than
FOL [63]. However, the expressiveness of DLs that include the transitive closure goes
beyond first-order logic, indeed transitive closure cannot be expressed in FOL due to
the Compactness Theorem. When representing knowledge bases, the main reason for
using DLs rather than FOL is that most DLs are actually decidable.

Following the definitions provided by Borgida in [63]

Definition 7.8 Semantic equivalence of a transformation
A concept C and its translation 7(C)(x) are said to be equivalent if and only if, for all
interpretations? Z = (A%,) and all a € AZ, we have

acCt e TIEnrC)a) (7.18)
[

Definition 7.9 Expressiveness of a language £

A language L is as expressive as language L, if there is a translation 7 from £; to
L such that for every sentence L in Ly, w(L) is equivalent to L. Two languages are
equally expressive if each is as expressive as the other. O

Let £* be the set of FOL formulas that have only unary and binary predicates and
that can be expressed using at most k variables®. We can extend the languages £* with
counting quantifiers 35", 32", for every positive integer n, obtaining the languages C*,
i.e. FOL over unary and binary predicates with counting quantifiers. We define £% -
as a restricted subset of C¥ where in any subformula 35".¢) or 32".4), ¥ has no more
than two free variables.

4We view interpretations both as DL and FOL interpretations.
5LF is a fragment of FOL.

56 Description Logics and OWL

Theorem 7.1 [63]
L 1s equally expressive as any DL without the transitive closure.

SROZQ does not allow to express transitive closures and therefore SROZQ KBs
can be translated into FOL theories.

Following we provide a translation of SROZQ DL into FOL (to be precise, into
L3 r) extending the translations provided in [64, 52]. The translation of concepts is
given by two mapping functions 7, and m,. The translation is recursively defined as
follows

7 (A) = A(x)
7 (—C) = —m,.(C)
7,(C'1 D) = m,(C) Amy(D)
7. (CUD) =m,(C) V(D)
m:(3R.C') = Jy.R(x,y) A m,(C)
1, (3R™.C) = Jy.R(y, z) A my(C)
1 (VR.C) =Vy.R(z,y) = m,(C)
7,(VR™.C) =Vy.R(y,z) — 7, (C)
m({a}) = (z = a)
7.(> nR.C) = 37"y R(z,y) A m,(C)
(> nR™.C) = F"y.R(y,z) A1, (C)
(< nR.C) = 3"y R(z,y) A m,(C)
(< nR™.C) = 3¥"y.R(y, z) A 7, (C)
(= nR.C) =3"y.R(x,y) A1, (C)
T.(=nR™.C) =37"y.R(y,z) N m,(C)

where

i#] i
Iy R(z,y) =Vy1, -yt \wi # v = \ Rz, 0)
1#£] i

and 3="y.R(z,y) is defined as a conjunction the previous two m, is obtained from =,
by replacing x with y and vice-versa.
The translation of the most common DL axioms is shown in Table 7.5.

The OWL Ontology Language 57

Table 7.5: Correspondence between DL axioms and their translation into FOL. Func-
tions 7, and m, are exploited to translate the concepts contained in the axioms.

Axiom Translation

cCcD Vr.m,(C) — m.(D)

a:C C(a)

(a,b) : R R(a,b)

a=>b a=>b

a#b a#b

RCS Va,y.R(x,y) — S(z,y)

Rio..oR,CS Vz;,0<i<m.Ri(xg,x1) N ... N Rpy(Tp—1, Tr) = S(T0, Trm)
Trans(R) Va,y,z.R(x,2) N R(z,y) = R(z,vy)

7.6 The OWL Ontology Language

The Semantic Web is an evolution of World Wide Web (some people talk about Web
3.0). It encourages the inclusion of information and data, called semantic content,
inside web pages and other published documents, using a suitable format so that it
can be extracted and used in automatic reasoning. The W3C provides this definition

of Semantic Web [65]:

The Semantic Web provides a common framework that allows data to
be shared and reused across application, enterprise, and community bound-
aries.

Its final purpose is to permit a more coherent and organized usage of the available
information. It allows to build more advanced search engines that base their search
also on semantics rather than only on syntax.

The Web Ontology Language (OWL) is a family of knowledge representation lan-
guages for authoring ontologies or knowledge bases. The OWL family contains many
species, serializations, syntaxes and specifications with similar names. The most im-
portant specifications are OWL and OWL 26

The OWL Web Ontology Language was published in 2004 and now is known as
OWL 1 [66]. OWL 2 [55] is an extension and revision of OWL 1. The OWL 2 speci-
fication is managed by the World Wide Web Consortium (W3C) and since December
2012 it became a W3C recommendation. It keeps a full backward compatibility with
OWL 1.

The development of this language is motivated by the Semantic Web activity, indeed
OWL is part of the Semantic Web Stack (Figure 7.1) that illustrates the architecture
of the Semantic Web [66]:

e XML provides a surface syntax for structured documents, but imposes no seman-
tic constraints on the meaning of these documents.

SThere also exists an intermediate specification called OWL 1.1

o8

Description Logics and OWL

User interface and applications

Trust

| Proof

Unifying logic
Querying:

SPARQL

Taxonomies: RDFS

uonesya)
AydeabordAi)

Data interchange: |
RDF

Syntax: XML+XML Schema

Identifiers: URI/IRI Character set: UNICODE

Figure 7.1: The Semantic Web Stack.

XML Schema is a language for providing and restricting the structure and content
of elements within XML documents and also extends XML with datatypes.

RDF is a data model for objects ("resources") and relations between them and
provides a simple semantics for this data model. It can be represented with an
XML syntax.

RDF Schema extends RDF and is a vocabulary for describing properties and
classes of RDF-based resources, with semantics for hierarchies of such properties
and classes.

OWL adds more vocabulary for describing properties and classes: among oth-
ers, relations between classes, cardinality, equality, richer typing of properties,
characteristics of properties (e.g. symmetry), and enumerated classes.

SPARQL is a protocol and query language for querying semantic web data
sources.

RIF is the W3C Rule Interchange Format. It’s an XML language for representing
Web rules which computers can execute.

OWL allows the user to write ontologies that describe the knowledge of a domain of
interest by means of classes, roles and individuals. Such formalized knowledge can be
automatically handled by a computer by means of an automatic reasoner.

OWL 2 DL is semantically equivalent to SROZQ(D) [54]. OWL 2 significantly

extends the set of built-in datatypes of OWL 1 [67]: OWL 2 now supports owl: boolean,
owl:string, xsd:integer, xsd:dateTime, xsd:hexBinary, and a number of datatypes
derived from these by placing various restrictions on them. OWL 2 also provides a
datatype restriction construct, which allows new datatypes to be defined by restricting
the built-in datatypes in various ways. For example, the following expression defines a

The OWL Ontology Language 59

Table 7.6: Terminology comparison of FOL, DL, and OWL.

FOL DL OWL

Unary predicate Atomic concept Class name

5;);21;111: with one free Concept Class

Binary predicate Atomic role Property name
5;);;1}13111:8 with two free Role Property

Constant Individual Individual

Sentence Axiom Axiom

Signature Vocabulary or signature Vocabulary or signature
Theory Knowledge base Ontology

new datatype by specifying a lower bound of 18 on the datatype xsd:integer
DatatypeRestriction(xsd:integer xsd:minInclusive 18)

The datatype restriction construct can be seen as a unary datatype predicate and
it seems that OWL 2 does not support n-ary datatype predicates with n > 1 [68§].

FOL, DLs, and OWL are strictly related, but each of them uses a different termi-
nology. DL concepts correspond to FOL unary predicates and OWL classes, DL roles
to FOL binary predicates and OWL properties, DL individuals to FOL constants and
OWL individuals. Table 7.6 shows the terminology comparison of FOL, DL, and OWL.
It is worth noting that in DL terminology the term ontology indicates the intensional
knowledge, i.e. the union of TBox and RBox, whereas in OWL terminology it indicates
the whole knowledge base.

7.6.1 OWL Syntax

There are many different types of syntaxes of OWL [55]

e RDF/XML syntax [69], as the name suggests, is based on XML. It allows writing
down an RDF graph, and thus an OWL ontology. This syntax is the only one
that a tool is obligated to support in order to be OWL 2 compliant.

e Turtle syntax |70] allows writing down an RDF graph, and thus an OWL ontology,
in a compact textual form.

e Manchester syntax |71, 72| is an OWL syntax that is designed to be human
readable and easily understandable even for non-logicians.

e Functional-Style syntax 73] is designed for specification purposes and to provide
a foundation for the implementation of OWL 2 tools such as APIs and reasoners.

60 Description Logics and OWL

e OWL XML syntax |74] is another syntax based on XML. An OWL ontology
written with this syntax can be easily processed by a machine due to XML, but
it is not very human readable.

Table 7.7 shows an example of an axiom expressed in these syntaxes.

Table 7.7: DL Axiom Woman C Person in different OWL 2 syntaxes.

Syntax Axiom

DL syntax Woman T Person

<owl:Class rdf:about="Woman">
RDF /XML syntax <rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>

Manchester syntax Woman SubClassOf: Person

Turtle syntax :Woman rdfs:subClassOf :Person .

Functional-Style syntax SubClassOf(:Woman :Person)
<SubClassO0f>
<Class IRI="Woman"/>
<Class IRI="Person"/>
</SubClass0f>

OWL XML syntax

The set of the most common expressions supported by OWL, in DL and Manchester
OWL syntax, is summarized in Table 7.8.

Table 7.9 shows some OWL axioms and how they can be mapped to DL and Manch-
ester OWL syntax.

7.6.2 OWL sublanguages

The first version of OWL defined three different sublanguages of increasing complexity
and expressiveness:

OWL Lite is based on SHZF (D) DL and supports classification hierarchies and sim-
ple constraints. Superclasses in concept inclusion axioms cannot be arbitrary
class expressions but only named classes, i.e. simple concepts. Moreover, it ad-
mits cardinality restrictions with cardinality values of 0 or 1 only. Its main goal
is to represent thesauri and taxonomies.

OWL DL extends OWL Lite. It allows all the constructors and the axioms permitted
by the SHOZN (D) DL language. OWL DL is a language meant for users that
want the maximum expressiveness of OWL 1 while maintaining computational
completeness and decidability.

OWL Full has a highly expressive semantics that extends OWL DL. OWL Full con-
tains all the OWL language constructs and provides free, unconstrained use of
RDF constructs. For example, classes can be seen as both collections of individ-
uals and single individuals. OWL Full is not decidable and the presence of tools
able to support complete reasoning is implausible.

The OWL Ontology Language

Table 7.8: Most common OWL expressions in DL and Manchester OWL syntax.

OWL expression DL syntax Manchester syntax
Thing T Thing

Nothing 1 Nothing
intersectionOf ¢in---nC, Cyand... and C,
unionOf ciu---u¢C, Cior...orC,
complementOf =C' not C

oneOf {z1,...,z,} A{x1, ..., z,}
allvaluesFrom VR.C Ronly C
someValuesFrom JR.C R some C
hasValue AR {x} R value {z}
minCardinality (> nR) R min n
maxCardinality (< nR) R max n

inverse R~ inverse R

Table 7.9: Most common OWL axioms in DL. and Manchester OWL syntax.

Axiom DL syntax Manchester syntax

subClassOf cCD C SubClassO0f: D
equivalentClass C=D C EquivalentTo: D
disjointWith CC-D C DisjointWith: D

sameAs {z} ={y} x SameAs: y

differentFrom {z} C ~{y} « DifferentFrom: y
subProperty0f RCS R SubProperty0f: S
equivalentProperty R=S R EquivalentTo: S

domain VRTLCC R domain C

range TCEVR.C Rrange(C

inverseOf S=R" S inverseOf: R
TransitiveProperty RoRLC R R Characteristics: Transitive
FunctionalProperty T LC (g 1R) R Characteristics: Functional
SimmetricProperty R=R~ R Characteristics: Symmetric

62 Description Logics and OWL

Figure 7.2 show the organization of the three OWL 1 sublanguages.

Figure 7.2: OWL 1 sublanguages.

In 2008 the W3C OWL Working Group published the specifications of the successor
of OWL, called OWL 2. OWL 2 is also equipped with five different sublanguages:

OWL 2 EL corresponds to ££7". In this language, reasoning can be performed in
a time that is polynomial in the size of the ontology. OWL 2 EL was expressly
defined for applications with a very large number of classes and/or properties.
This sublanguage was defined in order to represent large medical and biochemical
ontologies, such as Gene Ontology” or SNOMED-CT® where there are thousands
of classes.

OWL 2 QL is asublanguage the offers a simplified support to queries on large amounts
of instance data. It allows to keep data in relational databases and reasoning can
be performed by means of query languages. It allows to express role inclusion
axioms and inverse properties but disallows, for instance, the use of universal
quantifiers.

OWL 2 RL allows to handle rules, such as if-then-else constructs. It makes use of
standard rule languages. In this way queries can be answered by means of rule-
based reasoning engines.

OWL 2 DL based on SROZQ(D) [54], includes all the three previous sublanguages.
It is more expressive OWL DL by allowing qualified cardinal restrictions and
complex role inclusion axioms, on the other hand reasoning is more complex.

"http://geneontology.org/
8http://www.ihtsdo.org/snomed-ct

Conclusions 63

OWL 2 Full like OWL Full, contains all the OWL 2 language constructs and provides
free, unconstrained use of RDF constructs. It includes OWL 2 DL. Like its
previous version, it is not decidable and the support to complete reasoning is
unlikely.

The first 3 sublanguages are independent of each other and are named profiles [75].
Figure 7.3 illustrate the relationships between the OWL 2 sublanguages.

OWL 2 DL

Figure 7.3: OWL 2 sublanguages.

7.6.3 Tools for OWL

The continuous increase in range and sophistication of tools and infrastructure for
OWL enabled the use of the OWL technology not only in the field of Semantic Web,
but also as a language for ontology development in several other fields: biology, geology,
military defence, government and medical science. Examples of these tools are:

e Editors and development environments: Protégé [76], Swoop [77].
e Automatic Reasoners: Hermit [78, 79|, Fact-++ [80, 81], Pellet[82].”

e APIs: OWL API [83, 84|, Jena [85] (Both for Java).

7.7 Conclusions

In this chapter we provided a review of Description Logics (DLs) and OWL. FOL is
not decidable, hence the interest in identifying decidable fragments (DLs) to be used

9A complete list of available reasoners for OWL can be found at http://owl.cs.manchester.ac.
uk/tools/list-of-reasoners/.

64 Description Logics and OWL

to representing ontologies. Since Many DLs are fragments of FOL, it is possible to
map a DL expression into a FOL formula without losing the original “meaning”. OWL
is a logic language for the Semantic Web based on description logics. In particular
OWL 2 DL is based on SROZQ(D), which is decidable. For a deeper introduction
to description logics we refer to [52, 53, 54|. Instead for further information about
Semantic Web and OWL syntax we refer to the W3C World Wide Web Consortium
online site [55].
The next chapter will discuss how to reason over description logics.

Chapter 8

Reasoning in Description Logics

This chapter illustrates the reasoning problems in Description Logics and techniques
for solving them. The reasoning methods here discussed will come in handy when we
present the approaches to exact probabilistic inference (Chapter 11).

After an introduction to reasoning problems in Section 8.1. Section 8.2 illustrates
some techniques for standard and non-standard reasoning in DLs, in particular it de-
scribes Pellet’s tableau algorithm and approaches to obtain, given a query, all the
explanations and the pinpointing formula. Section 8.3 draws conclusions.

8.1 Reasoning Problems

As mentioned before, a knowledge base is used to store information about the appli-
cation domain, but the purpose of a knowledge representation system goes beyond
storing concept definitions and assertions. Besides the explicit knowledge contained in
the KB, we want to extract implicit knowledge, for example, if we have the two axioms:
jerry : Person and Person = —Dinosaur, one can conclude that jerry doesn’t belongs to
the class Dinosaur, even though this knowledge is not explicitly stated as an assertion.
Inference algorithms have the objective of extracting such implicit knowledge. Let
K =(T,R,A) be a DL knowledge base, where T is the TBox, R is the RBox and A
the ABox. The standard reasoning tasks are:

Concept satisfiability A concept C' is satisfiable with respect to IC iff there exists a
model Z of K such that C # (). In this case we say that K = C.

Concept subsumption A concept C is subsumed by a concept D with respect to K
iff C* C D* for every model Z of K. In this case we say that K = C C D.

Concept equivalence Two concepts C' and D are equivalent if CZ = D? for every
model Z. In this case we write C =D or Z |=C = D.

Concept disjointness Two concepts C' and D are disjoint if CF N D? = () for every
model Z.

Instance checking Finding out whether a given individual a belongs to a given con-
cept C, i.e. a € C? for every model Z of K.

65

66 Reasoning in Description Logics

Instance retrieval Find all instances of a given concept.

Knowledge base consistency A knowledge base I is consistent iff it has a model
7 such that Z = K (see Definition 7.5), i.e. it is satisfiable.

Classification To compute the subsumption relation between each pair of concepts
in I in order to create the complete concept hierarchy.

Realization To find the most specific concept to which an individuals belongs. The
most specific concepts of an individuals are the lowest concepts in the hierarchy
to which an individual belongs (i.e. the direct types of an individual). Thus
realization is performed after classification.

All of the above reasoning problems can be reduced to KB (in)consistency.

Proposition 8.1 Reduction to KB Inconsistency
Let K be a DLL KB and x a new individual not appearing in K.

Concept satisfiability IC = C' iff it is not the case that L U {z : C'} is inconsistent,
i.e. it is unsatisfiable.

Concept subsumption K = C C D iff LU {z : (C M —D}) is inconsistent.

Concept equivalence C =C=Diff C=CCDand C=DLCC.

Concept disjointness K =CNDC Liff CU{z:(CMND)} is inconsistent.

Instance check K = a: C iff LU {a: =C} is inconsistent.

Instance retrieval We have to check for every individual ¢ in K if L Ea: C.

Classification for every pair of concepts C' and D in K check whether £ = C C D.
0

Other reasoning tasks, called non-standard, have a somewhat different goal:

Induction Inductive approaches usually take a part of intensional knowledge and try
to generalize them by generating hypotheses expressed as axioms or complex
concepts.

Abduction Abductive reasoning services is useful in ontology engineering when a
desired consequence (say F) is not a consequence of the knowledge base K and

the ontology engineer wants to determine what information X’ is missing, such
that CUK' = E.

Explanation finding The goal is to give an explanation of why some axiom is entailed
by the knowledge base. Formally, a justification for the entailment is a knowledge
base K’ C K such that K’ = E. There might be more than one justification for
an entailment. This reasoning task is also called axiom pinpointing.

Reasoning Techniques 67

Pinpointing formula extraction Given a query) and a KB IC, the pinpointing
formula is a monotone Boolean formula ¢ built using boolean variables associated
to each axiom in K and only the conjunction and disjunction connectives!'. Every
valuation of 1) must correspond to a knowledge base ICy, C K such that Iy = Q.

8.1.1 Closed vs Open World Assumption

Description Logics do not adopt the Closed World Assumption (CWA), but like FOL,
make the Open World Assumption (OWA). Missing information is treated as unknown.

Example 8.1.1
Let us consider the following example:

Father = Male M JhasChild. T
{markus, anna} : hasChild
markus : Father

anna : Female

stephan : Male

The query is: is stephan son of markus (markus,stephan) : hasChild ¢
o In DLs due to the OWA the answer is: don’t know.

e In databases and in logic programming we usually have the closed world assump-
tion (see Section 4.4). Missing information is assumed to be false. Hence, in
these contexts with the CWA, the answer is: no.

8.2 Reasoning Techniques

To solve the reasoning problems introduced in Section 8.1, several reasoning techniques
have been proposed. These includes automata based approaches [86], resolution based
approaches [87, 88| and structural approaches [89]. The most widely used technique,
however, is the tableau approach. Indeed the vast majority of state-of-the-art OWL
reasoners, such as Pellet (82|, FaCT++ [81, 80| and Hermit [78, 79], use a tableau
algorithm.

In the next subsections we describe the tableau algorithm and, in particular, the
rules used by the Pellet reasoner. The aim of this chapter is to illustrate how to perform
two non-standard reasoning tasks:

e explanation finding, also known as axiom pinpointing; and
e pinpointing formula extraction.

The approaches described below are based on [90, 91, 92].

Tn monotone Boolean formulas the not connective is not used.

68 Reasoning in Description Logics

8.2.1 Pellet

Pellet is a complete OWL 2 reasoner, that covers all the OWL 2 DL constructs in-
cluding inverse and transitive properties, cardinality restrictions, datatype reasoning
for an extensive set of built-ins as well as user defined simple XML schema datatypes,
enumerated classes (nominals) and instance assertions.

This practical OWL reasoner provides the “standard” set of DL inference services,
namely consistency checking of a KB, concept satisfiability, classification, realization.
Pellet reduces them all to KB consistency checking. These services can be accessed by
querying the reasoner. Pellet also supports some less standard services such as aziom
pinpointing / explanation finding.

The core of the system is the tableau reasoner, which has only one functionality:
checking the consistency /satisfiability of a KB. According to the DL model-theoretic
semantics, a KB is consistent if there is an interpretation that satisfies all the facts
and axioms in the KB i.e., a model of the KB. The tableau reasoner searches for such
a model.

Pellet is written in Java. It is used in a number of projects, from pure research to
industrial ones. Until version 2.3.0 Pellet was an open source project, but the later
versions are closed source. However there are several open source forks of the original
project, one of them is Openllet?.

8.2.2 Tableau Algorithm

In the following we describe the tableau algorithm used by Pellet, shown in Algo-
rithm 8.1.

The idea behind the algorithm is essentially to try to construct a model of a knowl-
edge base K = (T, R,.A) . If we find a model, then K is obviously satisfiable, otherwise
it is inconsistent. It does this in an organized way by starting from the concrete sit-
uation described in A, and explicating additional constraints on the model that are
implied by the axioms in K.

The algorithm works on data structures called tableaux, which are completion
graphs. Formally, a completion graph is a tuple G = (V, E, £, #) in which (V, E) is
a directed graph. Each node a € V is labelled with a set of concepts L(a) , and each
edge (a, b) is labelled with a set of role names £({(a, b)). The binary predicate # is used
to specify the inequalities between nodes. A tableau can also be seen as an ABox A,
where the nodes are individuals annotated with the concepts they belong to and the
edges are annotated with the roles that relate the connected individuals.

Function TABLEAU in Algorithm 5 takes as input a query axiom () and a KB K. In
line 5 () is negated for unsatisfiability, i.e. it is converted into an assertional axiom to
be used for KB inconsistency checking, as explained in Proposition 8.1. For instance,
if our query is @) = a : C then it is transformed into g = a : =C. aq is called the
assertional negation of (). The algorithm keeps a set T' of completion graphs. T is
initialized with a single completion graph G, that contains a node for each individual
a in the knowledge base, labeled with the nominal {a} plus all concept C' such that
a:CeAfe Lla)={C|a:Ce A} U{{a}}), and an edge (a,b) labeled with R for

2GitHub repository: https://github.com/Galigator/openllet.

Reasoning Techniques 69

Algorithm 8.1 Tableau algorithm executed by Pellet.

1: function TABLEAU(Q, K)
2: Input: @ (the query axiom)

3: Input: K (the knowledge base)

4: Output: S (a set of axioms) or null

5: ag = UNsAT(Q) > UNSAT(Q) converts () into an assertional axiom to be tested for
inconsistency

6 K=KU{ag}

7 Let Gy be an initial completion graph from K

9: repeat

10: Select a rule r applicable to a clash-free graph G from T

11: T« T\{G}

12: Let G = {GY, ..., G} be the result of applying r to G

13: T+TuUug

14: until All graphs in 7" have a clash or no rule is applicable
15: if All graphs in T have a clash then

16: S+ 0

17: for all G € T do

18: let s the result of 7 for the clash of G
19: S+ SUsqg

20: end for

21: S S\ {ag}

22: return S

23: else

24: return null

25: end if

26: end function

each assertion (a,b) : R € A (i.e. L({a,b)) ={R|(a,b): R € A}).

The algorithm then applies, at each step, a so-called expansion rule to a com-
pletition graph G € T: G is removed from T, the rule is applied and the results are
inserted back in 7. The some of the rules used by Pellet for SROZQ(D) DL are shown
in Figure 8.1. For example, if C; M Cy € L(a), and either Cy ¢ L(a) or Cy ¢ L(a),
then the rule — M adds both C} and Cy to L(a), because the individual @ must be an
instance of both C and C,.
Rules can be deterministic or non-deterministic. The first replace G with a single graph
while the latter replace G with a set of graphs. For example, if the disjunction C; LICy
is present in the label of a node and neither C) € L(a) nor Cy € L(a), the rule — U
generates two graphs, one in which C is added to £(a) and another in which Cs is
added to L(a).

An event during the execution of the algorithm can be:

e Add(C,a), the addition of a concept C' to L(a).
e Add(R,(a,b)), the addition of a role R to L({a,b)).

e Merge(a,b), the merging of the nodes a, b. When one node b is merged into
another node a, £(b) is added into L(a), all the edges leading to b are “moved”
so that they lead to a, and all the edges leading from b to nominal nodes are
“moved” so that they lead from a to the same nominal nodes; then b and the

70 Reasoning in Description Logics

Deterministic rules:
— unfold (%): if A € L(a), A atomic and (A C D) € K, then
if D ¢ L(a), then
Add(D,a), 7(D,a) := (1(A,a) U{A C D})
— CFE (x): if (C C D) € K, with C not atomic, a not blocked, then
if (-CUD)¢ L(a), then
Add((-C U D),a), 7((-CUD),a):={CC D}
— M (%) if (C1MNC%) € L(a), a is not indirectly blocked, then
if {Cl,CQ} Z £(a), then
Add({Cl, CQ}, a), T(CZ‘, a) = T((Cl M CQ), a)
— 3 (x): if 3S5.C € L(a), a is not blocked, then
if a has no S-neighbor b with C' € L(b), then
create new node b, Add(S, (a, b)), Add(C,b)
7(C,b) :==7((35.C),a), 7(S, {(a,b)) := 7((35.C), a)
—V (x): if V(S.C) € L(a), a is not indirectly blocked and
there is an S-neighbor b of a, then
if O ¢ £(b), then
Add(C,b), 7(C,b) := 7((VS.C),a) UT(S, (a,b))
— vt (x): if V(S.C) € L(a), a is not indirectly blocked and
there is an R-neighbor b of a, Trans(R) and R C S, then
if VR.C ¢ L(b), then
Add(¥R.C,b),
7((VR.C),b) := 7((VS.C),a) UT(R,{a,b)) U{Trans(R)} U{R C S}
—> (%): if (> nS) € L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., b, of a with b; # b;, then
create n new nodes by, ..., bn, Add(S, (a, b;)); #(bs, b;)
7(S, @, b)) = (> n8), a), 7((bi, b)) = 7((> nS), a)
— O (x): if, {0} € E() N L(b) and not a#b, then Merge(a,b)
T(Merge(a, b)) := 7({o},a) UT({o},b)
For each concept C; in L(a) then
7(Ci,b) :=7(Ci,a) UT(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in £(b))

Non-deterministic rules:
— U (x): if (C1UC%) € L(a), a is not indirectly blocked, then
if {C1,C2} N L(a) =0, then
Generate graphs G; := G for each i € {1,2}
Add(C,a), 7(Cs,a) :=7((ChL UC2),a) in G; for each 7 € {1,2}
—< (%): if (< nS) € L(a), a is not indirectly blocked,
and there are m S-neighbors b1, ..., by, of a with m > n, then
For each possible pair b;,b;, 1 <14,5 < m;i # j then
Generate a graph G’
T(Merge(bs, b;)) = 7((< nS),a) UT(S,{a,b1))... UT(S, (a,bm))
if b; is a nominal node, then Merge(b;,b;) in G',
else if b; is a nominal node or ancestor of b;, then Merge(b;,b;)
else Merge(b;,b;) in G’
if b; is merged into b;, then for each concept C; in L(b;),
T(CZ', b]) = T(Ci, bz) U T(Merge(bi, b]))
(similarly for roles merged, and correspondingly for concepts in b;
if merged into b;)
— NN : if (< nS.C) € L(a), a nominal node, b blockable S-predecessor of a and
there isno m s.t. 1 <m < n, (<mS.C) € L(a) and
there exist m nominal S-neighbors z1,..., 2z, of a s.t.
C € L(z;) and z; # z; for all 1 < i < j < m, then
For each k, 1 < k < n, then
Generate a graph Gi
Add(< kS.Cya), T((€ kS.C),a) := 7((£ nS.C),a) UT(S, (b,a
create b1, ..., by, Add b; #bj for 1 <i<j <k, 7(# (bl,b)
Add(S, (a,bi)), Add({o:},b;), where o; are new nominals,
7(5,{a,b;)) := 7((£ nS.C),a) UT(S, (b,a)), T({0:},b:) := 7((< nS.C),a) UT(S, (b, a))

,a))
) :=71((nS.C),a) UT(S,(b,a)),

Figure 8.1: Some Pellet tableau expansion rules for SROZQ(D); the subset of rules
marked by (k) are relevant for SHZ Q.

Reasoning Techniques 71

blockable sub-trees below b are pruned, i.e. removed, from the tableau. Merge
and prune operations are described in detail in [93, 61].

e # (a,b), the addition of the inequality a # b to the relation #.
e Report(g), the detection of a clash g.

We use £ to denote the set of events recorded during the execution of the algorithm.
A clash is either:

e a couple (C,a) where both C' and —~C' are present in the label of a node (there is
an inconsistency), i.e. {C,-C} C L(a);

e a couple (Merge(a,b),# (a,b)), where the events Merge(a,b) and # (a, b) belong
to &.

The algorithm stops applying rules to G if it encounters a clash. In this case, the
completion graph G contains an inconsistency, and thus does not represent a model.
If no more expansion rules can be applied to the completion graph G and there are no
clashes, then GG represent a model. Once every completion graph in T contains a clash
or no more expansion rules can be applied to it, then the algorithm terminates. If all
the completion graphs in the final set 7" contain a clash, then the algorithm returns “C
is unsatisfiable”, i.e. no model can be found. Otherwise, all the clash-free completion
graphs in 7" represents a model for I and the algorithm returns “/C is consistent”. The
tableau algorithm is known to be sound and complete.

For ensuring the termination of the algorithm, a special condition known as blocking
[90] is used. In a tableau a node x can be a nominal node if its label £(z) contains
a nominal or a blockable node?. If there is an edge e = (z,y) then y is a successor of
x and x is a predecessor of y. Descendant is the transitive closure of successor while
ancestor is the transitive closure of predecessor. A node y is called an R-successor of a
node z if, for some R’ with R' & R, R’ € L((z,y)), where & is the transitive-reflexive
closure of C on R U {Inv(R) C Inv(S) | RC S € R} and Inv(R) is a function that
returns the inverse of a role R. x is called an R-predecessor of y if y is an Inv(R)-
successor of . A node y is called a neighbour (R-neighbour) of a node z if y is either
a successor (R-successor) or a predecessor (R-predecessor) of x.

For a role S and a node x, we define the set of 2’s S-neighbours with C in their
label, S(z, ('), as

S(z,C) :={y | y is an S-neighbour of x and C' € L(y)}.
An R-neighbor y of x is safe if
e 1 is blockable, or
e 1 is a nominal node and ¥ is not blocked

Finally, a node x is blocked if it has ancestors xg, y and ¥ such that all the following
conditions are true:

3Note that, when a new node is added by an expansion rules, this node is blockable.

72 Reasoning in Description Logics

1. x is a successor of xg and y is a successor of ¥,
2. y, x and all nodes on the path from y to x are blockable,
3. L(x) = L(y) and L(x0) = L(yo),

4. L({xg,x)) = L((Yo,V))-

In this case, we say that y blocks x. A node is blocked also if it is blockable and all
its predecessors are blocked; if the predecessor of a safe node x is blocked, then we say
that x is indirectly blocked.

8.2.3 Explanation finding

Here we discuss the problem of finding covering set of explanations for a given query.
This non-standard reasoning service is useful for tracing derivations and debugging
ontologies and has been investigated by various authors [94, 90, 95, 96, 97]. Schlobach
and Cornet [97] named it axiom pinpointing. In particular, the authors of [97] define
minimal axiom sets or MinAs for short.

Definition 8.1 MinA

Let K be a knowledge base and @) an axiom that follows from it, i.e., K = Q. We call
aset M C K a minimal axiom set or MinA for Q in K if M = @ and it is minimal
w.r.t. set inclusion. A MinA corresponds to an explanation for the query Q. n

The problem of enumerating all MinAs is called MIN-A-ENUM in [97]. ALL-MINAS(Q, K)
is the set of all MinAs for query () in the knowledge base K. We can formally define
the MIN-A-ENUM problem as follows

Definition 8.2 MIN-A-ENUM problem
Input: A knowledge base K, and an axiom @) such that K E Q.
Output: The set ALL-MINAS(Q, K) of all MinAs for @) in K. O

The algorithm for computing a single MinA is shown in Algorithm 8.2. It takes ad-
vantage of function TABLEAU (line 5) and of function BLACKBOXPRUNING (line 9).
TABLEAU exploits the tableau algorithm presented in Subsection 8.2.2: given a KB I
if our query is () = a : C, the tableau algorithm works by refutation and it tries to
prove the inconsistency of I U {ag}, where ag = a : =C. If no model can be build
then K |= @, see Proposition 8.1.

Function TABLEAU

Every time a rule is applied, Pellet update a so-named tracing function T [94, 90, 98|,
which associates sets of axioms with events in the derivation.

The tracing function 7 maps each event ¢ € £ to a fragment of K. For exam-
ple, 7(Add(C,a)) is the set of axioms needed to explain the event Add(C,a) while
T7(Add(R, (a,b))) explains the event Add(R,(a,b)). For the sake of brevity we de-
fine 7 for couples (concept, individual) and (role, couple of individuals) as 7(C,a) =
7(Add(C,a)) and 7(R, (a,b)) = 7(Add(R, {(a,b))) respectively. The function 7 is ini-
tialized as the empty set for all the elements of its domain except for 7(C,a) and

Reasoning Techniques 73

Algorithm 8.2 SINGLEMINA algorithm.

1: function SINGLEMINA (Q, K)
2: Input: @ (the query axiom)
Input: K (the knowledge base)
Output: S (a MinA for the Q) or null
S +TABLEAU(Q, K)
if S = null then
return null
else
9: return BLACKBOXPRUNING(Q, S)
10: end if
11: end function

7(R, (a,b)) to which the values {a : C'} and {(a,b) : R} are assigned if a : C' and
(a,b) : R are in the ABox respectively. The expansion rules (Figure 8.1) add axioms
to values of 7.

For a clash of the form (C,a), 7(Report(g)) = 7(Add(C,a)) U 7(Add(—=C,a)). In-
stead, for a clash of the form (Merge(a,b),# (a,b)), T(Report(g)) = 7(Merge(a,b)) U
7(# (a,0)).

If g1, ..., g, are the clashes, one for each of the elements of the final set of tableaux
and 7(Report(g;)) = s,,, the output of the algorithm TABLEAU is S = U;cqy .y S0 \
{ag} where oy is the assertional negation of our initial query). However, this set
may be redundant because additional axioms may also be included in 7, e.g., during
the —< rule, where axioms responsible for each of the successor edges are considered.

Function BLACKBOXPRUNING

The set S, returned by Function TABLEAU is pruned using a black-box approach [90]
called BLACKBOXPRUNING and shown in Algorithm 8.3. Given a query axiom @), this
algorithm executes a loop on S: in each iteration it removes an axiom FE from S and
checks whether S | @ by means of TABLEAU. If the query @ is not entailed, the
axiom F' is reinserted into S as F is responsible for the entailment of the query Q.
Vice-versa, if the query still remains entailed, the removed axiom F is irrelevant and
is not reinserted in S. Once all axioms in S have been tested the process terminates
and returns S. Thus the algorithm for computing a single MinA SINGLEMINA, shown
in Algorithm 8.2, first executes TABLEAU and then BLACKBOXPRUNING.

The output S of SINGLEMINA is guaranteed to be a MinA, as established by
Theorem 8.1, where ALL-MINAS(Q, K) stands for the set of all MinAs for Q.

Theorem 8.1 [90]
Let QQ be a query and let S be the output of the algorithm SINGLEMINA with input ()
and K, then S € ALL-MINAS(Q, K).

Hitting Set Algorithm

SINGLEMINA returns a single MinA. To compute all MinAs, Pellet uses Reiter’s hitting

set algorithm [99]. In [99], Reiter developed a general theory of diagnosis where a system
to be diagnosed is a pair (SD, COM P) where SD is a set of first-order sentences which

74 Reasoning in Description Logics

Algorithm 8.3 Black-Box pruning algorithm.

1: function BLACKBOXPRUNING(C, S)

2: Input: @ (the query axiom)

3: Input: S (the set of axioms to be pruned)
4: Output: S (the pruned set of axioms)

5: for all axiom FE € S do

6: S« S—{E}

7 if TABLEAU(Q, S) = null then

8: S+ SU{E}

9: end if

10: end for

11: return S

12: end function

describe the system and COMP is a finite set of components. A set of observation
OBS is then associated with the system. An observation is finite set of first-order
sentences which describe the behavior of the system. In a system there can be some
components that are abnormal, i.e. components whose behavior is not correct. Reiter
defined a diagnosis for a system as a minimal set A C COM P such that

SDUOBSU{AB(c)|lc € A} U{=AB(c)|(c) e COMP — A}

is consistent, where AB is a predicate that indicates whether a component is abnormal.
This means that a diagnosis is the minimal set of faulty components which combined
with the other components, which are normal, make the system consistent. A diagnosis
can be defined in terms of conflict sets, that are sets {cy,...c,} C COMP s.t.

SDUOBS U{=AB(c,),...,~AB(c,)}

is inconsistent. A conflict set is minimal iff no proper subset of it is a conflict set
for the observed system. In this characterization, a diagnosis A is a minimal set s.t.
COMP — A is not a conflict set for the system.

Let us consider a universal set U and a set of conflict sets C'S C P(U), where P
denotes the powerset operator. The set HS C U is a hitting set for C'S if each S; € C'S
contains at least one element of HS, i.e. if S;NHS # () for all 1 < i < n (in other
words, HS ‘hits’ or intersects each set in C'S). HS is a minimal hitting set for C'S' if
HS is a hitting set for C'S and no HS’ C HS is a hitting set for C'S.

The hitting set problem with input C'S, U is to compute all the minimal hitting sets
for C'S. The set of all minimal conflict sets, which correspond to the explanations for
inconsistency, can be found by exploiting an algorithm that generates minimal hitting
sets [90, 95].

Reiter’s algorithm [99] constructs a labeled tree called hitting set tree (HST) as
follows.

In an HST, a node v is labeled with OK, or with a set L(v) € C'S and an edge e is
labeled with an element of U. The label of a node v (edge e) is denoted as L(v) (L(e)).
Let T" be an HST.

e If v is the root of T, if C'S is empty, it is labeled with OK, i.e. L(v) + OK.
Otherwise, it is labeled with a set S € CS (L(v) < 5).

Reasoning Techniques 75

e If v is a node of T', we define H(v) as the set of edge labels on the path from the
root of T to node v. If v is labeled with OK, it is a leaf. Otherwise, v is labeled
with aset S € CS (L(v) < S5) and, for each element £ € L(v), v has a successor
w connected to v by an edge with F in its label. The label for w is a set S € C'S
such that SN H(w) = 0 if S exists, otherwise w is labeled with OK.

Reiter showed that
e if L(v) = OK, then H(v) is a hitting set for C'S;
e cach minimal hitting set for C'S is H(v) for some node v with label OK.

Example 8.2.1
(From [99]) Let us consider the following set of conflict sets

CS ={{2,4,5},{1,2,3},{1,3,5},{2,4,6},{2,4},{2,3,5},{1,6}}

Figure 8.2 shows an HST for C'S.

We can notice that in the HST in Figure 8.2 we could have pruned several paths. For
instance H(ng) = H(ng). This means that the subtrees rooted at ng and ng could be
identically generated, i.e. the subtree rooted at ng is redundant. In addition, H(n3) =
{1,2} is a minimal hitting set for C'S. Therefore, it is not possible that any other node
v of the tree such that H(nz) C H(v) can define a smaller hitting set than H(ns).
Moreover if S € C'S and S’ € CS with S C &', then C'S \ 5’ has the same minimal
hitting sets as C'S, in Figure 8.2 we have that L£(nyo) = {2,4} C {2,4,5} = L(ny).
From these observations Reiter defined three rules for HST pruning.

Proposition 8.2 HST pruning
An HST can be pruned by following these rules without losing any minimal hitting set.

1. If anode v is labeled with OK and the current node w is such that H(v) C H(w),
then close the node w by labeling it with an X and make it a leaf: £(w) < X.
In fact once a hitting set path is found any superset of that path is guaranteed
to be a hitting set as well.

2. If there exists a node v such that H(v) = H(w), where w is the current node,
then label w with X.

3. If there exist two nodes v and w such that £(w) C L(v), then for each FE €
L(v)\ L(w) mark as redundant the edge from node v labeled by E. A redundant
edge, together with the subtree beneath it, may be removed from the HST while
preserving the property that the resulting pruned HST will yield all minimal
hitting sets for C'S.

O

In our case, the universal set U corresponds to the set of all axioms in the KB, and
an explanation (for a particular KB inconsistency) corresponds to a single conflict set
S € CS [90, 95|. While the main aim of Reiter’s approach was to find all minimal

Reasoning in Description Logics

76

No
{2,3,4}
2 4 5
ny U
{1,3,5} {2,3,5} {2,4,6}
5 5
1/3 3 2 4 6
2
N3 N4 ns Ng ny ng
OK {16} {16} {1,3,5) {1,6} {1,2,3) (1.6} {1,6} {1,2,3)
6 6 5 6 3 6 6 3
1 1 1/3 1 1/2 1 1 1 2
nge OK OK OK OK {1,6} {1,6} OK OK OK {1,6} {1,6} OK OK OK {1,2,3} nw OK {2,4}
: /\ /\ m)
6 6 6 6 3 4
2
1 1 1 1 1 4 2
2
OK OK OK OK OK OK OK OK OK OK OK OK OK

OK OK

Figure 8.2: An HST for CS = {{2,4,5},{1,2,3},{1,3,5},{2,4,6},{2,4},{2,3,5},{1,6}}

Reasoning Techniques 7

hitting sets of a set of conflict sets C'S, due to the duality of the algorithm, it can also
be used to find all conflict sets, which are the explanations in our case.

The algorithm for HST construction is shown in Algorithm 8.4, which is based on
the algorithms proposed in [90, 95]. Given a query axiom @, the algorithm starts by
generating the MinA S by invoking SINGLEMINA with inputs the query axiom @) and
the KB K. If S # null, i.e. K = @ (line 16), then S represent a new explanation for
Q. If v is null, which means that we are creating the root node, it initializes an HST
T = (V, E, L) (line 14). Then it labels v with S and, for each axiom E € S, a new node
w and a new edge (v, w) labeled with the axiom FE are added in the tree, removes E from
IC, generating a new knowledge base K' = K — {E}, and function HITTINGSETTREE
is recursively invoked for the newly generated node w. When K [~ Q* (line 25), the
algorithm labels the node v with OK and makes it a leaf.

Lines 8-10 are used to satisfy the first and the second pruning rule of Proposition 8.2:
if the path of the current node is a superset of an previously found hitting set or the path
of the current node is a path of a previously generated node, then the algorithm labels
the current node with a X and makes it a leaf. We don’t need to take into account
the third rule of Proposition 8.2. In fact, thanks to function BLACKBOXPRUNING
(Algorithm 8.3) that assures that the found explanation is minimal, it can never happen
that there exist two nodes v and w such that £(w) C L(v).

When the HST is fully built, all leaves of the tree are labeled with OK or X. The
set ALL-MINAS(Q, K) for the query @ is represented by all distinct non leaf nodes of
the tree.

Example 8.2.2

(From [90]) In order to describe the algorithm, let us consider a knowledge base K with
ten axioms and a query Q). For the purpose of the example, we denote the azxioms in
K with natural numbers. Suppose ALL-MINAS(Q, K) is

ALL-MINAS(Q, K) = {{1,2,3},{1,5},{2,3,4},{4,7},{3,5,6},{2,7}}

Figure 8.3 (taken from [3]) shows the HST that is generated by the algorithm. It starts
by computing a single explanation that returns S = {2,3,4}. In the next step, it
inttializes an HST in which the root node is labeled with S. Then, the algorithm selects
an arbitrary axiom in S, say 2, generates a new node w and a new edge (v, w) with
azxiom 2 as its label. The algorithm tests whether KK — {2} = Q . If Q is entailed, as in
our case, we obtain a new explanation for Q w.r.t. KK — {2}, say {1,5}. We add this
set to C'S and also assign it to the label of the new node w.

The algorithm repeats this process, i.e. adding a node, removing an azxiom and

checking entailment, until the entailment test turns negative, in which case we mark
the new node with OK.

The correctness of this approach relies on the following key observations:

1. If a node is not a leaf of HST, then its label is an element of the set ALL-
MINAS(Q, K)

“Le. KU {ag} is consistent, where aq is the assertional negation of Q

Reasoning in Description Logics

78

{2,3,4}
/ 3| 4
{1, 5} {477} \ {3,5,6}
T N s N
{4,7} {4,7} {1,5} {2,7} X/{2,7} {1,5}
4 [7 ! |5 2 |7 2/ 1| X
OK OK 4 " OK OK {1,5} {1,5} X 7 {2,7} {2,7}
-l AEN 2] N 2] N
{356} {3,5,6} X/ X X\X {123} OK OK X {1,2,3}

/ E 3| N\ 1 2] 3 [/ﬁ |3
O X OK OK X OK OK OK X O X X

Figure 8.3: Representation of the execution of the hitting set algorithm for finding ALL-MINAS(Q, K). In the graph, boxed nodes
are the set of distinct nodes representing a set in ALL-MINAS(Q, K).

Reasoning Techniques 79

Algorithm 8.4 Hitting Set Tree Algorithm.

1: procedure HITTINGSETTREE(Q, K,CS, HS, w, E, p)
2: Input: @ (the query axiom)

3: Input: K (the knowledge base)

4: Input/Output: CS (a set of explanations, initially empty)

5: Input/Output: HS (a set of Hitting Sets, initially empty)

6: Input: v (the last node added to the Hitting Set Tree, initially null)

T: Input: p (the current edge path, initially empty)

8: if there exists a set h € HS s.t. h C p or there exists a node n s.t. H(n) = p then

9: L(v) X

10: return

11: else

12: S «-SINGLEMINA (Q, K) > it checks whether K = @
13: if v = null then

14: initialization

15: end if

16: if S # null then >ie. KEQ
17: CS + CSu{S}

18: set L(v) < S

19: loop for each axiom E € L(v)
20: create a new node w and an edge e = (v,w) with L(e) = FE
21: p <+ pUL(e) >ie. H(w) <+ H(v)UL(e)
22: K'+~ K- {E}
23: HITTINGSETTREE(Q, K',CS, HS, w, p)
24: end loop
25: else >ie KEQ
26: L(v) + OK
27: HS+ HSUp
28: end if
29: end if

30: end procedure

2. If one takes the union of the labels of the edges in any path from the root of
HST to a leaf node marked with OK, then a hitting set for ALL-MINAS(Q, K)
w.r.t. K is obtained. In fact, all the minimal hitting sets for ALL-MINAS(Q, K)
are obtained when all the paths from the root to a leaf in HST are considered.

Formally, the correctness and completeness of the hitting set algorithm is given by the
following theorem.

Theorem 8.2 [90]

Let Q) be a query and K be a DL KB and let EXxpPHST(Q, K) be the set of explanations
returned by the hitting set tree algorithm, then EXPHST(Q, K) is equal to the set of all
explanations of the query @, so

ExXPHST(Q, K) = ALL-MINAS(Q, K)

Reiter’s HST algorithm can be optimized by using the technique of explanation
reuse’ [95]: let v be a newly generated node, if H(v) does not intersect with a pre-
viously found explanation, then that explanation can be reused to label v. This is

5The authors of [95] called this optimization technique justification reuse.

80 Reasoning in Description Logics

because H (v) represents the set of axioms removed from the ontology, and if none of
these removed axioms are present in a particular explanation, then that explanation
could still be inferred from the ontology. However, we have already obtained that ex-
planation, therefore there is no need to perform inference again. Explanation reuse
helps to reduce the number of calls to SINGLEMINAS (Algorithm 8.2).

From the point of view of the implementation, OWLAPI, a famous Java library used
to handle OWL ontologies, already provides the class HSTExplanationGenerator that
implements the hitting set algorithm as described in Algorithm 8.4 and proposed by
Kalyanpur in [90]. Moreover it also implements the explanation reuse optimization [95].
This class uses a class that implements function SINGLEMINA. BUNDLE, presented
in Chapter 13, exploits HSTExplanationGenerator to obtain the set of explanations.

8.2.4 Pinpointing formula

Instead of finding ALL-MINAS(Q, K) for queries, in [100, 101] Baader and Penaloza
proposed the problem of finding a pinpointing formula which is a compact representa-
tion of the set of all MinAs. To build a pinpointing formula, first we have to associate
a unique propositional variable to every axiom E of the KB K, indicated with var(E).
Let var(K) be the set of all the propositional variables associated with axioms in I,
then the pinpointing formula is a monotone Boolean formula built using some or all of
the variables in var(K) and the conjunction and disjunction connectives. A valuation

v of a set of variables var(KC) is the set of propositional variables that are true, i.e.,
v Cvar(K). For a valuation v C var(K), let £, := {E € Klvar(E) € v}.

Definition 8.3 Pinpointing formula
Given a query) and a KB KC, a monotone Boolean formula ¢ over var(K) is called
a pinpointing formula for @ if, for every valuation v C var(K), K, = @ iff v satisfies

o. O

In [101] the authors also discuss the correspondence between the pinpointing for-
mula and explanations for a query). Let us call the set of explanations for @)
ALL-MINAS(K, Q) = {K,|v is a minimal valuation satisfying ¢}. ALL-MINAS(K, Q)
can be obtained by transforming the pinpointing formula into Disjunctive Normal Form
(DNF) and removing disjuncts implying other disjuncts. However, it is well-known that
this can cause an exponential blowup. The correspondence holds also in the other di-
rection: the formula \/ . c s viwase,0) /\per, var(E) is a pinpointing formula, where
Ex is an explanation.

The example below illustrates the difference between ALL-MINAS(Q,) and the
pinpointing formula.

Example 8.2.3 Pinpointing formula

6Recall that SROTQ DLs are N2ExpTime complex and every call to SINGLEMINA means that we
have to perform inference.

Reasoning Techniques 81

The following KB is inspired by the ontology people+pets [102]:

FE; = FhasAnimal.Pet C NaturelLover
Ey = fluffy : Cat

FE3; = tom : Cat

E, = Cat C Pet

Es5 = (kevin, fluffy) : hasAnimal

Es = (kevin, tom) : hasAnimal

The KB indicates that the indiwiduals that own an animal which is a pet belong to the
class NatureLovers and that kevin owns the animals fluffy and tom. fluffy and tom are
cats and all the cats are pets. We associated each axiom in the KB with a Boolean
variable E;. Let () = kevin:NatureLover be our query, then

ALL-MINAS(Q,K) = {{Fs, E4, Fg, E1 },{Es, Es, Eg, E1 }}

while the pinpointing formula is ((Ex A E4) V (E3 A\ E5)) A Eg A Ey. 1t is easy to see that
the pinpointing formula is equivalent to ((Eo AN Ex N\ Eg A E1) V (Es AN Es A\ Eg A\ EY))
that corresponds to ALL-MINAS(Q, K).

One interesting feature of the pinpointing formula is that an exponential number
of explanations can be represented with a much smaller pinpointing formula.

Example 8.2.4
Given an integer n > 1, consider the following KB containing the following azioms for
1< <n

(Cy;) B T PNQ; (Cq) P C B, (C3;) Q: C B;

The query QQ = By C B,, has 2" explanations, even if the KB has a size that is linear
mn. Forn =2 for ezample, we have 4 different explanations, namely

{{Ol,la 02,17 CV1,2> 02,2}7 {Cl,la 0371, 01727 02,2}7 {01,17 02,17 C’1,27 CS,Q}a {CLla 03717 01,27 03,2}}

The corresponding pinpointing formula is C11 A (Ca1V C51) ACia A (CaoV Cs) which
18 linear in n.

8.2.4.1 The Tableau Algorithm for the Pinpointing Formula

As already said, one of the most common approaches for performing inference in DL
is the tableau algorithm. However we have to extend the standard tableau in order to
obtain the pinpointing formula.

In particular every assertion &« = n : C' (o = (n,m) : R) with C € L(n) (R €
L((n,m))) is associated with a label lab(a) that is a monotone Boolean formula over
var(K). In the initial tableau, every assertion a € K is labeled with variable var(«),
and the assertional negation o (i.e. =Q) is added with label T.

The tableau is then expanded with expansion rules. A rule is of the form (By, S) —
{Bjy, ..., B} where the B;s are finite sets of assertions and S is a finite set of axioms.

82 Reasoning in Description Logics

Rules can be divided into two sets: deterministic and non-deterministic. In the first
type, m = 1 and all the assertions in B; are inserted in the tableau to which the rule
is applied, while in the second type m > 1 meaning that it creates m new tableaux,
one for each B;, and adds to the ¢-th tableau the assertions in B;.

In order to explain the conditions that allow the application of a rule we need first
some definitions.

Definition 8.4 v¥»—insertability

Let A be a set of labeled assertions and 1 a monotone Boolean formula, the assertion
a is p—insertable into A if either o ¢ A, or a € A but ¢ ¥ lab(«). Given a set B of
assertions and a set A of labeled assertions, the set of ¥ —insertable elements of B into
A is defined as insy (B, A) := {§ € B | Bis yp—insertable into A}.

The operation of 1y—insertion of B into A is the set of labeled assertions A W, B
containing assertions in A and those specified in ins, (B, A) opportunely labeled, i.e.,
the label of assertions in A\ insy,(B, A) remain unchanged, assertions in ins, (B, A)\ A
get label ¢ and the remaining b;s get the label ¥ V lab(b;). O

We also need the concept of substitution. A substitution is a mapping p : V. — D,
where V' is a finite set of logical variables and D is a countably infinite set of all the
individuals in the KB and all the anonymous individuals created by the application
of the rules. Variables are seen as placeholders for individuals in the assertions. For
example, an assertion can be x : C' or (z,y) : R where C is a concept, R is a role and
x and y are variables. Let x : C' be an assertion with variable x and p = {x — a} a
substitution, then (x : C')p denotes the assertion obtained by replacing variable x with
its p—image, i.e. (x:C)p=a:C.

Definition 8.5 Rule Applicability

Given a tableau T, a rule (By,S) — {B, ..., By} is applicable with a substitution p
on the variable occurring in By if S C K, and Byp C A, where A is the set of assertions
of the tableau. O

To explain the motivations behind the definition of rule applicability (Definition 8.5),
let us consider the following example.

Example 8.2.5
Let us assume A be the current set of labeled assertions A = {(a : 3R.C), ((a,b) : R)}.
Consider the rule for existential role restrictions:

if (e 3ROV} {}) = H{((z,9) - R), (y: O)}}

The variables x, y are place holders for individuals. To apply the rule to a set of
assertions, we must first replace the variables by appropriate individuals. However y
occurs only on the right-hand side of the rule, such a variable is called fresh variable.
Fresh variables must be replaced by fresh individuals, i.e. new individuals not appearing
in A. If we apply the substitution p = {x — a,y — c} that replaces x by a and y by
the new anonymous individual c. Since (x : IR.C') € A we can apply the above rule
with substitution p obtaining the set of assertions A" = AU {((a,c) : R),(c : C)}.
Of course, we do not want to apply the same rule to A’. If we do not impose any
rule applicability condition, nothing would prevent us from applying the rule to A" with

Reasoning Techniques 83

another new constant, say ¢, and so on ad infinitum. For this reason, the applicability
rule condition needs to check whether the assertions obtained from the right-hand side by
substituting the fresh variables with existing individuals are assertions already present
i the current set of labeled assertions.

Given a forest of tableaux F and a tableau T € F representing the set of assertions
A to which a rule is applicable with substitution p, the application of the rule leads to
the new forest 7' = F\ T U, 7., where each T;¥ contains the assertions in A Wy Bio.
The substitution o extends substitution p to map variables to possibly fresh individuals.

After the full expansion of the forest of tableaux, i.e., when no more rules are
applicable to any tableau of the forest, the pinpointing formula is built from all the
clashes in the tableaux. As mentioned before, a clash is represented by two assertions
a and -« present in the tableau.

The pinpointing formula is built by first conjoining, for each clash, the labels of the
two clashing assertions, by disjoining the formulas for every clash in a tableau and by
conjoining the formulas for each tableau.

In order to ensure termination of the algorithm, blocking must be used.

Definition 8.6 Blocking

Given a node N of a tableau, N is blocked iff either N is a new node generated by a
rule, it has a predecessor N’ which contains the same assertions of N and the labels of
these assertions are equal, or its parent is blocked. O

Then, a new definition of applicability must be given.

Definition 8.7 Rule Applicability with Blocking

A rule is applicable if it is so in the sense of Definition 8.5. Moreover, if the rule adds
a new node to the tableau, the node N annotated with the assertion to which the rule
is applied must be not blocked. O

Theorem 8.3 Correctness (Th. 6.10 [101])

Given a KB K and a query Q, for every chain of rule applications resulting in a fully
expanded forest F,, the formula built as indicated above is a pinpointing formula for
the query Q.

This approach is correct and terminating for the SHZ DL, which extends ALC with
transitive and inverse roles and allows the definition of hierarchies of roles. Number
restrictions and nominal concepts cannot be handled by this definition of the tableau
algorithm because the definition of rule and rule application must be extended. In fact
tableau expansion rules for DL with these constructs may merge some nodes, operation
that is not allowed by the approach presented above. The authors of [101]| conjecture
that the approach can be extended to deal with such constructs but, to the best of our
knowledge, this conjecture has not been proved yet.

The expansion rules for the tableau algorithm extended with pinpointing formula
are shown in Figure 8.4.

84 Reasoning in Description Logics

Deterministic rules:
— unfold: ({(x: C)},{(C E D)}) = {{(z: D)}}
if C € L(z),and (C C D) € K, then ¢ :=lab(x : C) Avar((C E D))
if D ¢ L(x), then add(D, x), lab(x : D) :=
else if ¢ [~ lab(x : D), then lab(x : D) := lab(x : D) V ¢
s CF: ({1,{(CC D)} > {{(z (-CLD)}}
if (C C D)€ K, with C not atomic, then
if (-CUD)¢ L(x), then add((—~C U D), z), lab(x : (-C U D)) :=var((C C D))
S (@ (TGN = (@ O, (2 Gl
if (C1MNCs) € L(x), then ¢ := lab(z : (C1 1 Cy))
if C; ¢ L(x), then add(C;,x), lab(x : C;) ==
else if ¢ = lab(x : C;), then lab(z : C;) = lab(z : C;) V
53 ({(:IROAD = () : B). (5)1
if 3S.C € L(x), x not blocked, then
if z has no S-neighbour y with C € L(y), then create new node y, add(S, (z,y)),
add(C,y), lab(y : C) :=lab(x : (35.C)), lab((x,y) : S) := lab(x : (35.C))
SV: ({2 VSO () - 9))) — (L= O1)
if VS.C € L(x) and there is an S-neighbour y of x, then
¥ :=1ab((VS.C),x) Alab((x,y) : S)
if C ¢ L(y), then add(C,y), lab(y : C) :=
else if ¢ [~ lab(y : C), then lab(y : C) :=lab(y : C) V¢
S (@ YSOM {((my) : B), (RE S)}) = {{(y - YR.C)}}
if Vv(S.C) € L(x), there is an R-neighbour y of a, Trans(R) and R C S, then
Y :=lab(z : (VS.C)) ANlab((z,y) : R) ANvar(RE S)
if VR.C ¢ L(y), then add((VR.C),y), lab(y : (VR.C)) := ¢
else if ¢ }£ lab(y : (VR.C)), then lab(y : (VR.C)) :=lab(y : (VR.C)) V ¢
Non-deterministic rules:
— U ({(z: (C1uC)) 1 {}) = {{(z: OO} A{(z: C2)}}
if (C1UCy) € L(z), then
if {C1,Cs} N L(a) =0, then generate graphs 7; := T for each i € {1,2},
add(Cy, x) in T; for each i € {1,2}, lab(z : C;) := lab(x : (C1 U Cy))

Figure 8.4: Tableau expansion rules for building a pinpointing formula. Function
add(X,Y) adds X to L(Y).

8.3 Conclusions

All standard reasoning problems can be reduced to a consistency check of the knowl-
edge base. In this chapter we presented the tableau algorithm which tries to construct
models of a given knowledge base by applying tableau expansion rules. If it succeeds,
the knowledge base is consistent and hence satisfiable, otherwise, if it fails, the knowl-
edge base is inconsistent and hence unsatisfiable. We also showed a method for finding
explanations based on the hitting set tree algorithm, and one to obtain the pinpointing
formula. Both leverage the tableau algorithm, the former can be used for SROZQ(D)
knowledge bases whereas the latter is limited to SHZ knowledge bases.

In the next chapter we discuss a semantics for probabilistic description logics that
tries to combine DLs with probability theory.

Chapter 9

Probabilistic Description Logics

This chapter introduces DISPONTE, a semantics for Probabilistic Description Logics.
After a brief introduction to the topics in Section 9.1, Section 9.2 presents DISPONTE.
Section 9.3 discusses related works and Section 9.4 concludes the chapter.

9.1 Introduction

The goal of this part of the thesis is to introduce probabilistic logical formalisms for
representing uncertainty. Chapter 5 described the distribution semantics and in Chap-
ter 6 we saw that a probabilistic logic program following the distribution semantics [1]
defines a probability distribution over normal logic programs called worlds. The prob-
ability of a query is obtained by marginalizing the joint distribution of the query and
the worlds.

DISPONTE |2], for “Dlstribution Semantics for Probabilistic ONTologiEs”, borrows
the work done in Probabilistic Logic Programming (PLP) and adapts the distribution
semantics to description logics.

9.2 The Distribution Semantics for Description Log-
ics: DISPONTE

The basic idea of DISPONTE is to annotate axioms with a probability and each axiom
is assumed to be independent of the others. Here we show its syntax and semantics of
DISPONTE.

9.2.1 Syntax

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms or prob-
abilistic axioms. Certain axioms take the form of regular DL axioms. Probabilistic
axioms take the form

pu B

where p € [0,1] and E is a DL axiom.

85

86 Probabilistic Description Logics

The probabilistic knowledge that can be expressed with the DISPONTE seman-
tics is epistemic by nature, it represents degrees of belief in the axioms rather than
statistical information. For example, a probabilistic concept assertion axiom

pra:C

means that we have degree of belief p in a : C'. The statement that Tweety flies with
probability 0.9 can be expressed as

0.9 :: tweety : Flies
A probabilistic concept subsumption axiom of the form
p:CLCD (9.1)

represent the fact that we believe that the axiom C' C D is true with probability p.
For example
0.9 :: Bird C Flies

means that birds fly with a 90% probability. This is different from statistical proba-
bility [103| that express the degree of overlap of C' and D. Axiom (9.1) does not mean
that a fraction p of individuals from C belongs to D.

9.2.2 Semantics

DISPONTE follows the approach of the distribution semantics for probabilistic logic
programs. The idea is to associate independent Boolean random variables to the DL
axioms. The set of axioms that have the random variable assigned to 1 constitutes a
world.

The definitions of atomic choice, composite choice, selection, etc. for Probabilistic
Description Logics (PDLs) that follow DISPONTE are slightly different from those
given for PLP (see Chapter 6). We give here some redefinitions used for PDLs that
follow DISPONTE.

Definition 9.1 Atomic choice

An atomic choice is a couple (E;, k) where E; is the ith probabilistic axiom and k €
{0,1}. The variable k indicates whether E; is chosen to be included in a world (k = 1)
or not (k= 0). O

Note that the definition of atomic choice for PDLs given in Definition 9.1 is very
similar to the definition of atomic choice for LPADs in Definition 6.1. The only dif-
ference is that atomic choices for PDLs do not have a substitution, as we include or
exclude axioms as a whole instead of their instantiations.

Definition 9.2 Composite choice
A composite choice k is a consistent set of atomic choices, i.e., (E;, k) € k, (E;,m) €
k implies & = m (only one decision is taken for each formula). The probability of

composite choice k is
P)= 1] » [O-m)

(Ei,].)EK, (EZ‘70)EK,
where p; is the probability associated with axiom FEj;, because the random variables
associated with axioms are independent. O

The Distribution Semantics for Description Logics: DISPONTE 87

Definition 9.3 Selection

A selection o is a total composite choice, i.e., it contains an atomic choice (FE;, k) for
every probabilistic axiom of the theory. A selection o identifies a theory w, called a
world: wy, = CU{E;|(E;, 1) € o}, where C is the set of certain axioms. O

The probability of a world w, is analogous to Equation (6.3):

P(wy) = P(o) = H Di H (1—pi) (9-2)

(Eil)eo (B 0)eo

As for PLP, P(w,) is a probability distribution over worlds. Let us indicate with S
and W the set of all selection and the set of all worlds, respectively. The probability
of Q is (equal to Equation (6.4)):

Example 9.2.1
Consider another example inspired by the people+pets ontology proposed in [102]

E, = 0.5 :: JhasAnimal.Pet C NatureLover
FEy = 0.6 :: Cat C Pet

(kevin, fluffy) : hasAnimal

(kevin, tom) : hasAnimal

fluffy : Cat

tom : Cat

The KB indicates that the individuals that own an animal which is a pet are nature
lovers with a 50% probability and that Kevin has the animals fluffy and tom. Fluffy
and tom are cats and cats are pets with probability 60%. The KB has four possible
worlds:

01 = {(Eb 1)7 (E27 1)}
oy = {(E1,1), (E2,0)}
o3 = {(E2,0), (Ez, 1)}
04 = {(E270)7 (E270)}
The query axiom (Q = kevin : NatureLover is true only in one of them: oy. The

probability of the query is
P(Q)=0.5-0.6=0.3

88 Probabilistic Description Logics

Example 9.2.2
Let us consider the same knowledge base of Example 9.2.1 but with different probabilistic
values:

JhasAnimal.Pet C NaturelLover
E, = 0.6 :: Cat C Pet
(kevin, fluffy) : hasAnimal
(kevin, tom) : hasAnimal
Es = 0.4 :: fluffy : Cat
E; = 0.3 :: tom: Cat

This KB indicates that the individuals that own an animal which is a pet are surely
nature lovers and we know for sure that kevin has the animals fluffy and tom, but we
are not sure that fluffy and tom are cats and that cats are pets, thus we belicve in this
information is probabilistic.

This KB has eight worlds' and the query aziom) = kevin : NatureLover is true in
three of them, corresponding to the following selections:

01 = {(Eh 1)7 <E27 1)7 (E?n 0>}
oy = {(E1,1),(E2,0),(E;,1)}
03 = {<E1> 1)7 (EQv 1)7 (E37 1)}

so the probability is
P(Q)=04-0.7-06+06-0.3-0.6+04-0.3-0.6=0.348.

In Section 6.2 we said that often is not possible to find all the worlds where the
query is true, so an approach for performing inference is to find the explanations for
the query and then compute the probability of the query from them.

Definition 9.4 Explanation (for PDLs)
A composite choice k identifies a set of worlds w, = {w,|0c € Sk,0 2 K}, if Q is
entailed by every world of wy, then x is called explanation. O]

A set of composite choices K is covering () if every world w, € VW in which @ is
entailed is such that w, € UHe ¢ Wk In other words a covering set K identifies all the
worlds in which @) succeeds.

Two composite choices k1 and ko are incompatible if their union is inconsistent. For
Example k1 = {(E;, 1)} and k3 = {(E;,0)} are incompatible. A set K of composite
choices is pairwise incompatible if for all Ky € K, ko € K, k1 # kg implies that k,
and ko are incompatible. The probability of a pairwise incompatible set of composite
choices K is defined in Equation (6.5).

Given a query () and a covering set of pairwise incompatible composite choices K,
the probability of @ is defined in Equation (6.7).

IThe number of words is obtained with 2" where n is the number of probabilistic axioms.

The Distribution Semantics for Description Logics: DISPONTE 89

Example 9.2.3
Consider the DL KB in Example 9.2.2 and the same query (Q = kevin : NaturelLover.
The set of covering explanations is

K = {k1, K2}
k1= {(E1,1), (2, 1)}
Ko = {(Elv 1>7 (E37 1)}

These explanations are not pairwise incompatible, therefore we cannot compute the
probability with Equation (6.7). In fact

P(k1) + P(r3) = 0.6-0.4+0.6-0.3 = 0.42 # 0.348 = P(Q)

where P(Q) was computed in Example 9.2.2. If we knew to obtain the following mutu-
ally exclusive explanations

K' = {K}, r3}
’1/1 = {(Eh 1)> (E27 1)7 (E37 O)}
’%/2 = {(Eb 1)? (E?n 1)}

we would have

P(K') = P(K)) + P(x}) =0.6-0.4- 0.7+ 0.6 - 0.3 = 0.348 = P(Q)

DISPONTE, like the distribution semantics, defines a distribution over worlds.
Hence, it is worth noticing that, if the regular DL KB obtained by removing the proba-
bilistic annotations is inconsistent, then there will also be worlds that are inconsistent.
An inconsistent DISPONTE KB should not be used to derive consequences, just as a
regular inconsistent DL KB should not.

In order to specify requirements for managing uncertain information in the World
Wide Web, W3C, in 2007, founded the Uncertainty Reasoning for the World Wide Web
Incubator Group (URW3-XG). The final report produced by this group in 2008 [104]
discusses the challenges of reasoning with uncertain information on the World Wide
Web and presents several use cases illustrating conditions under which uncertainty
reasoning is important:

e combining knowledge from multiple, untrusted sources;

e recommending items or services to users in the presence of uncertain information
on the requirements;

e using services in the presence of uncertain information on the service descriptions;
e cxtracting and annotating information from the web;

e automatically performing tasks for users such as making an appointment, and
handling health-care and life sciences information and knowledge.

90 Probabilistic Description Logics

DISPONTE is a candidate formalism for tackling these problems since it introduces
probability in form of simple axiom annotations for very expressive Description Log-
ics such as SROZQ(D) that, as mentioned previously in Chapter 7, is semantically
equivalent to OWL 2 DL. Moreover DISPONTE can handle information coming from
different untrusted sources, as shown in the following example.

Example 9.2.4 [92]
Consider a KB similar to the one of Example 9.2.1. Suppose the user has the certain
knowledge

JhasAnimal.Pet T NaturelLover
(kevin,fluffy) : hasAnimal
Cat C Pet

In this example there are two sources of information with different reliability. The two
sources represent independent evidence on fluffy being a cat. One source state that fluffy
1s a cat with a degree of belief of 0.4, whereas on the other source we have a degree of
belief of 0.3. The user can add the following statements to his KB and reason on the
new knowledge :

Ey=04: fluf fy: Cat
Ey =03 fluf fy: Cat

The query axiom () = kevin : NatureLover is true in three out of the four worlds, those
corresponding to the selections:

So
P(Q)=04-03+04-0.740.6-0.3=0.58

This is reasonable if the two sources can be considered as independent. In fact, If we
assoctate with E; and Eo two Boolean random variables X1 and Xo with probabilities
respectively 0.4 and 0.3, we obtain:

P(Q) = P(X1VXy)
= P(X)) + P(X5) — P(X; A Xy)
= P(X))+ P(X5) — P(X,)P(Xy)
= 044+03-04-0.3

0.58

9.2.3 Assumption of Independence

The assumption of the independence of the axioms may seem restrictive. However, any
probabilistic relationship between assertions that can be represented with a Bayesian
network can be modeled in this way. For example, suppose you want to model a general

The Distribution Semantics for Description Logics: DISPONTE 91

Prob. Table 1: Prob. Table 2:
@ P(A(i)) P(B(i)|A(4))
Al
AG) s~ ° | !
@ 0 1—p 0 [1-p[1-ps
1 D1 1 D2 P3

Figure 9.1: Bayesian Network representing the dependency between A(i) and B(37).

dependency between the assertions A(i) and B(i) relating classes A and B to individual
t. This dependency can be represented with the Bayesian network of Figure 9.1.

The joint probability distribution P(A(i), B(i)) over the two Boolean random vari-
ables A(i) and B(i) is

P0,0) = (I=p1)-(1—-p2)

P0,1) = (1—-p1)-(p2)

P(1,0) = pi-(1—ps)

P(1,1) = pi-p3

This dependence can be modeled with the following DISPONTE KB:

ppon it A (9.3)
ps = NACB (9.4)
ps = ALCB (9.5)

We can associate the Boolean random variables X; with (9.3), X, with (9.4) and X3
with (9.5), where X;, X, and X3 are mutually independent. These three random
variables generate 8 worlds. —A(i) A ~B(7) is true in the worlds

wy = {}, wa = {(95)}
Let us call P’ the probability distribution defined by the above KB. Then the proba-
bilities of w; and wy are

P(w) = (1—=p1)-(1—pa)-(1—p3)
P'(wy) = (1—p1)-(1—p2)-ps

50 P/(=A(1), ~B(0) = (1= p1) - (1= pa) - (1= p) + (1= p1) - (1 — po) - ps = P(0,0). We
can prove similarly that the distributions P and P’ coincide for all joint states of A(7)
and B(i).

Modeling the dependency between A(i) and B(i) with the KB above is equivalent
to represent the Bayesian network of Figure 9.1 with the Bayesian network of Figure
9.2.

It can be easily checked that the distributions P and P” of the two networks agree
on the variables A(7) and B(7), i.e., that P(A(i), B(i)) = P"(A(i), B(i)) for any value of
A(7) and B(i). From Figure 9.2 is also clear that X7, X5 and X3 are mutually uncondi-
tionally independent, thus showing that it is possible to represent any dependence with

independent random variables. Therefore we can model general dependencies among
assertions with DISPONTE.

92 Probabilistic Description Logics

Prob. Table 3: Prob. Table 4:
P”(Xl) PH(XQ)
X1 X2
0 1—p1 0 1—po
D1 1 D2
Prob. Table 5: Prob. Table 6:
P"(A(i)| X1) P"(X3)
X
! 0 1
X3
0 0 1—ps
1 0 1 1 D3

Prob. Table 7:
P"(B(i)| X1, X2, X3)

X1, X2, X3
4 0,001 00,1]01,0]01,1]1,00/[1,01|1,1,0]1,1,1
B(i)
0 1 1 0 0 1 0 1 0
1 0 0 0 0

Figure 9.2: Bayesian Network modeling the distribution over A(7), B(i), Xi, Xa, X3.

9.3 Related Work

Bacchus [105] and Halpern [103] proposed a classification between different types of
probabilistic first-order logics. They defined two types of probability:

Statistical This type of probability? allows to express statistical information. It puts
probability on entities of the domain and permits the definition of statement such
as “The probability that a randomly chosen bird will fly is 0.9”. It means that

90% of the birds in a population can fly.

Epistemic This type of probability® allows to express epistemic information which
defines a degree of belief. It puts probability on possible world such that we can
assert statement such as “The probability that Tweety flies is .9”. This sentence
mean that in 90% of possible worlds we have that Tweety can fly.

Assertional axiom can only be epistemic, whereas the intensional axioms (i.e. ax-
ioms in TBox and RBox) can be both statistical and epistemic.

DISPONTE allows to express only epistemic information since the probability as-
sociated with an axiom represent the degree of belief that the whole axiom is true.

2In [103] the author used the term Type I.
3In [103] the author used the term Type 2.

Related Work 93

During the years, several frameworks emerged in order to conjugate DLs with prob-
ability theory. Here we provide a summary of the possible PDLs. A more detailed and
complete overview about probabilistic DLs can be found in [3], in Chapter 15 of [91]
and in Chapter 13 of [92].

Halpern in [103| proposed a probabilistic extension of OWL for combining the two
types of probabilities. In this extension is possible to define statements such as “The
probability that Tweety flies is greater than the probability that a randomly chosen
bird flies”.

Prob-ALC [106] derives directly from Halpern’s work and considers only epistemic
statements. It follows a possible world semantics and allows the definition of concept
expressions of the form P-,,C which express the set of individuals that belong to C' with
probability greater than n, and 3P, R.C’ which models set of individuals a connected
to at least another individual b of C' by role R such that the probability of R(a,b) is
greater than n. Prob-ALC allows also expressions of the form P, C(a) and P>, R(a,b)
directly expressing degrees of belief, as well as P>, A where A is an ABox. Prob-ALC is
complementary to DISPONTE ALC as it allows new concept and assertion expressions
whereas DISPONTE allows probabilistic axioms. However DISPONTE is not limited
to ALC, but it can be applied to the highly expressive SROZQ(D) language.

Heinsohn [107] extended the DL ALC in order to allow the definition of statistical
information of the form P(C|D) = [p,q] called probabilistic terminological axioms,
where C, D are concept descriptions and 0 < p < ¢ < 1 are real numbers. It states
that the conditional probability for an object belonging to D of belonging also to C' is
in the interval [p, ¢]. The formal semantics of the extended language is defined in terms
of probability measures on the set of all concept descriptions. A finite interpretation
7 satisfies P(C|D) = [p, q| iff

(€1 D)

D7 = [p, q|

A knowledge base K consists of probabilistic terminological axioms. Given IC, the main
inference task is to find an interval [p, ¢|, with p maximal and ¢ minimal. Heinsohn
introduced local inference rules for deriving bounds but its approach is not complete,
hence the rules are not sufficient to derive optimal bounds. Furthermore, Heinsohn
semantics does not allow probabilistic assertional axioms. This limit was overcome by
Jaeger in [108]. Unlike DISPONTE, both the approaches in [107] and [108] do not
allow epistemic terminological statements.

A different approach to the combination of DLs with probability is taken in [109,
110], which introduces PR-OWL, a probabilistic extension for OWL. In order to rep-
resent uncertainty in ontologies it allows the use of the first-order probabilistic logic
MEBN [111]. DISPONTE differs from [109, 110] because it does not resort to a full-
fledged first-order probabilistic language, allowing the reuse of inference technology
from DLs.

In [112, 113, 114] the authors presented P-SHZQ(D). P-SHZQ(D) allows both ter-
minological and assertional probabilistic axioms. Terminological probabilistic knowl-
edge is expressed using conditional constraints of the form (D|C)[l,u] as in [107] and
of the form (IR.{a}|C)[l,u] that states that an arbitrary instance of a concept C
is R-related to the individual a with probability in the interval [I,u]. Assertional
probabilistic knowledge is expressed using constraints of the form (C|{a})[l,u] and

94 Probabilistic Description Logics

(FR.{b}|{a})[l, u], which represent respectively that the individual a belongs to C' and
a is R-related to b with a probability in the interval [[,u]. As in [108], the terminologi-
cal knowledge is interpreted statistically while the assertional knowledge is interpreted
in an epistemic way.

A different approach is given by the combination between DLs and logic programs.
In [115], ontologies are integrated with rules and a tightly coupled approach to (prob-
abilistic) disjunctive description logic programs is used. Under this semantics, a de-
scription logic program as a pair (L, P), where L is a DL KB and P is a disjunctive
logic program which contains rules on concepts and roles of L.

Other approaches try to convert probabilistic description logics into graphical mod-
els. In [116] the authors proposed a probabilistic extension of OWL that can be trans-
lated into Bayesian networks. The semantics defines a probability distribution P(a)
over individuals and assigns a probability to a class C' as P(C) = Y .. P(a). DIS-
PONTE differs from [116] because it specifies a distribution over worlds rather than
individuals.

Koeller et al. [117] presented a probabilistic description logic based on Bayesian
networks that deals with statistical terminological knowledge. They specify a unique
probability distribution on the set of all concept descriptions.

In [118] the authors presented another extension of ALC named CRALC. It adopts
a semantics based on interpretations and, differently form DISPONTE, allows the
expression of both statistical and epistemic probability types. Statistical axioms are of
the form P(C|D) = p which means that for any element of the domain, the probability
that an individual is in C' given that it is in D is p, and of the form P(R) = p, which
means that for each pair of elements of the domain, the probability that they are linked
by the role R is p. A CRALC KB K can be represented as a directed acyclic graph.

Other approaches are the ones proposed in [119] and [120]. The latter combines
Datalog+ with Markov networks, the former, instead, combines DL-Lite with Bayesian
networks. In both cases, an ontology is composed of a set of annotated axioms and a
graphical model and the annotations are sets of assignments of random variables from
the graphical model. The semantics is assigned by considering the possible worlds of
the graphical model and by stating that an axiom holds in a possible world if the
assignments in its annotation hold. The probability of a query is then the sum of the
probabilities of the possible worlds where the query holds.

9.4 Conclusions

In this chapter we illustrated a semantics for probabilistic description logics named
DISPONTE, which allows to express epistemic probabilistic axioms.

There are different approaches to represent probabilistic axioms in description log-
ics. DISPONTE is, in our opinion, an interesting semantics because it allows to define
epistemic probabilities on both assertional and terminological axioms. In addition, It
allows the reuse of inference technologies already developed for Description Logics.

This chapter concludes the part of the thesis concerning the techniques of knowledge
representation by probabilistic logics. The next part introduces algorithms and systems
to make inferences on this types of logics.

Part 111

Inference in Probabilistic Logics

95

Chapter 10

Decision Diagrams

At this point the reader may be eager to know how to perform inference on probabilistic
logics. However, before discussing inference, we need to introduce Decision Diagrams.
After a brief introduction (Section 10.1), we present Multivalued Decision Diagrams
(Section 10.2) and Binary Decision Diagrams (Section 10.3), finally in Section 10.4 we
conclude the chapter.

10.1 Introduction

Decision Diagrams are graphical structures widely used in many areas of computer
science, such as software and hardware verification. They are used for representing and
manipulating propositional logic formulas. They also find application in probabilistic
inference systems, in fact they are exploited by ProbLog [30] and PITA [121, 122].

10.2 Multivalued Decision Diagrams

Multivalued Decision Diagrams (MDDs) were introduced by Thayse in [123|. They
are rooted directed acyclic graphs which represent a Boolean-valued function f(X)
having B = {0, 1} as range and X, a set of multivalued variables, as domain.

An MDD has the following characteristics

e There is one level for each multivalued variable.
e Fach node is associated with a multivalued variable.

e Each node has one outgoing arc for every possible value of the multivalued vari-

able.
e Two leaves, i.e. terminal nodes, that store either 0 (false) or 1 (true).

If we have the values of all the variables X, the value of f(X) can be computed by
traversing the graph starting from the root until a leaf is reached. The value stored in
the reached leaf is the value of f(X).

An MDD can be built by combining multiple MDDs exploiting Boolean operators.
Moreover, in order to reduce the number of node and have a more compact graphical

97

98 Decision Diagrams

representation, it is possible to apply simplification operations like deletion and merging
that reduce the original MDD. Deletion is performed when all arcs from a node point to
the same node, Merging, instead, is performed when the diagram contains two identical
sub-diagrams.

Multivalued Decision Diagrams are really useful because they perform a general-
ization of Shannon’s expansion of the Boolean-valued formula f(X). Let X; be the
variable associated with the root level of a (sub-)MDD, the formula f(X) is expanded
as follows

fX) =X =D A AT X) Ve V(X =n) A fETX)

where fXi=*(X) is the function associated with the k-child of the root node X; and it
is equivalent to f(X) with X; set to k, i.e. f5=*(X) = f(..., X; 1, Xi =k, Xi1,...).
The expansion can be applied recursively to the functions fX=*(X). The disjuncts are
now pairwise incompatible due to the presence of X; = k. The paths in an MDD are
split on the basis of a multivalued variable and the branches are mutually disjoint.

Unfortunately there is a lack of libraries that can manipulate MDDs, most libraries
are limited to work on BDDs. However it is possible to covert an MDD into a BDD
and thus use packages for BDD manipulation.

10.3 Binary Decision Diagrams

Binary decision Diagrams were introduced by Akers [124] and Bryant [125, 126]. A
BDD is a rooted directed acyclic graph that can represent any Boolean formula f :
B" — B, with the following characteristics

e There is one level for each Boolean variable.

e Each node is labeled with a Boolean variable. We denote with var(n) to indicate
the variable name associated with node n.

e Each node has two possible children. One high child named child;(n) when
var(n) has value 1, and one low child, childy(n), when var(n) has value 0.

e Two leaves, i.e. terminal nodes, that store either 0 (false) or 1 (true).

Boolean functions are a special case of Boolean-valued functions where all the X's in the
domain are Boolean variables. In fact BDDs can be seen as a special case of MDDs in
which every variable in the domain can have only two values (0 and 1). As for MDDs,
to compute the value of f(X), given all values of X, the graph must be traversed from
the root and the returned value is the value associated with the reached leaf.

In literature, in most cases, the term BDD refers to Reduced Ordered Binary De-
cision Diagrams (ROBDD)!.

Definition 10.1 Ordered BDD: OBDD
Given a total order X; < Xy < --- < X,,, A BDD is ordered (OBDD) if the variables
are encountered through all paths respecting the given total order. O

In the next chapters we also adopt this convention.

Binary Decision Diagrams 99

Definition 10.2 Reduced BDD: RBDD
A BDD is reduced (RBDD) we have the following conditions

e (uniqueness) There are no two distinct nodes u and v such that var(u) = var(v),
childy(u) = childy(v) and child,(u) = child;(v), in other words there are no two
distinct nodes that are associated with the same variable and that have the same
low child and the same high child.

e (no-redundancy) There is no variable node n such that the low child and the high
child are the same node, i.e. child,(n) = childy(n).

]

The order of variables affects the size of the (RO)BDD. In order to obtain a compact
BDD representable in memory, state-of-the-art BDD packages employ heuristics and
optimization techniques to reorder the variables; finding an optimal order is an NP-
complete problem [127]. Some of the libraries for BDD handling are:

e CUDD [128|, a BDD package written in C. The main characteristic of this li-
brary is that it represent the BDDs without the 0-leaf and uses complement arcs
(see [128]).

e CAL [129], a BDD package written in C.
e BuDDy [130], a BDD package written in C.

e JDD [131], a pure Java implementation for BDD manipulation based on the C
library BuDDy.

e JavaBDD [132], it includes a pure Java implementation. Moreover, it can also
be used as an interface for the JDD library, or, by exploiting JNI, for the three
aforementioned BDD libraries written in C: BuDDy, CAL and CUDD.

BDDs like MDDs perform Shannon’s expansion of the Boolean function f(X). Let
X; be the variable associated with the root level of a (sub-)BDD, the function f(X) is
expanded as follows

fX) =X A fHX) V=X A (X

where f(X) (f%/(X)) is the function obtained by f(X) by setting X; to 1 (0), i.e.
fX’(X> = f(.. ,Xl',l, 1, Xi+17 ..) (1e f_‘X’<X) = f(.. ,Xl',l, O, XZ'+1, Ce)) Now the
two disjuncts X; A f%(X) and =X; A f7%(X) are mutually exclusive. The expansion
can be applied recursively to the functions f*i(X) and f%i(X) .

Example 10.3.1
Consider the following Disjunctive Normal Form (DNF) Boolean formula

f(X):Xl/\Xg\/XQ/\Xg

and a total order of the variables X; < Xy < X3. The disjuncts of f(X) are not
mutually exclusive, for instance, the model {X; = 1, Xy = 1, X3 = 1} makes both the
disjunct true.

100 Decision Diagrams

The corresponding OBDD is

This is equivalent to the following Shannon expansions of f(X). For X

FX) = XA XYV XA X
— X; A X5V Xy A Xy A X5V Xy A Xy A Xy

then for X,

F(X) = Xo A f2(X) V=X A f72(X)
=XiANXoANXsVXIAXoNX3V XA XA X3

Shannon expansion for X3 does not change the DNF' formula.
We can notice that the BDD is not reduced, indeed the no-redundancy condition is
violated in nly. Removing the redundant node generates the following ROBDD

10.4 Conclusions

In this chapter we illustrated the Decision Diagrams, which are directed acyclic graphs.
In particular the Binary Decision Diagrams are of particular importance because they
make mutually exclusive the disjuncts of a DNF propositional formula. For this reason
they are used to perform probabilistic (exact) inference by systems such as ProbLog [30]
and PITA [121, 122].

The next chapter presents the fundamentals ideas for probabilistic (exact) logical
inference.

Chapter 11

Fundamentals of Exact Probabilistic
Logical Inference

In this chapter we discuss methods for probabilistic logical inference and in particular
approaches for exact inference. A brief overview of existing approaches for probabilistic
logical inference is given in Section 11.1. Section 11.2 explains, in general terms, how
to perform exact probabilistic logical inference and the theory behind it. In order to
compute the probability of a query, it is necessary to make the explanations pairwise
incompatible. Here we discuss two approaches to do that: the splitting algorithm,
illustrated in Section 11.3 and approaches based on Binary Decision Diagrams (BDDs),
discussed in Section 11.5. Section 11.6 draws conclusions.

11.1 Inference Approaches

The probabilistic logical inference problem can be divided into two categories: exact
inference and approzximate inference.

Exact Inference
The aim is to compute the exact probabilistic value of a query. There are several
approach, this chapter illustrates some of them.

Lifted inference is an important subcategory of exact inference and a research
field of growing interest. Lifted approaches perform exact probabilistic logical inference
at the lifted, i.e. non-ground, level, this means that we treat individual as a whole and
the inference is realized without grounding the model. Example 11.1.1 helps to clarify
the usefulness of lifted inference.

Example 11.1.1
Consider the following ProbLog program

p :: drinks(X).
alcoholic(X) :- friends(X,Y),drinks(Y).

The probability of barney being an alcoholic is P(alcoholic(barney)) =1—(1—p)™,
where m is number of friends of barney, the more friends barney has the higher the

101

102 Fundamentals of Exact Probabilistic Logical Inference

probability. This means it suffices to know how many friends barney has to compute
the probability that barney is an alcoholic. It is not necessary to know the identities
of these friends, and thus there is no need to ground the clauses.

During the last decade, various approaches for PLP lifted inference have been pro-
posed. For instance Poole in [133] presented a lifted version of variable elimination,
which is a standard method for graphical models to compute probabilistic inference.
In [134] the authors modified the Prolog Factor Language [41| by adding two new op-
erators and applied Lifted Variable Elimination [133]. Van den Broeck et al. in [135,
136, 137| proposed a different approach in which a program is transformed in a general-
ization of a d-DNNF and then weighted model counting is performed. Recent surveys
on lifted inference can be found in [138] and [139].

Approximate Inference

This type of inference is used when one wants to reduce the cost of the inference process
by computing an approximation of the value of probability. One approach is to take a
sample of normal programs from the probabilistic program! and then count the normal
programs where the query is valid. The probability is the ratio of the programs where
the query succeeds to the size of the sample [49]. Another approach is to compute the
lower and upper bounds of the probability [140, 141].

11.2 Exact Probabilistic Logical Inference

In this section we discuss some techniques for exact inference. In Chapters 6 and 9
we showed the equations for computing the exact probability of a query, for PLP and
PDLs that follow DISPONTE respectively. We said that it can be done by summing
the probabilities of the worlds where the query succeeds. However, we also mentioned
that calculating the probability of a query by generating all possible worlds is infeasible,
for this reason explanations are used (see Definition 6.5 for PLP and Definition 9.4 for
PDLs that follow DISPONTE). We also said that, given a query @, if a covering set of
composite choices K is pairwise incompatible, then the probability of () is equal to the
sum of the probabilities of the composite choices (see Equation (6.7)). Now, the set
of all the explanations of Q) is a covering set. Unfortunately, in general, explanations
are not mutually exclusive, i.e. pairwise incompatible. However, the following results
obtained by Poole in [142] could help us.

Definition 11.1 Split of a set of composite choices [142]

Let g = {(C,0,1),...,(C,0,n)} the set of the possible atomic choices for the clause
C' given the grounding substitution 6, where n is the number of heads (including,
possibly, the null head); and let k be a composite choice and C' be a clause such
that k N ay = 0, the split of k on C0 is the set of composite choices S, cp = {Kk U
{(C,0,0)},k U{(C,6,1)},...,ks U{(C,0,n)}}. Tt is important to notice that x and

Sk,ce 1dentify the same set of possible worlds, i.e., that w, = wg, .,- O

'Tf you remember, the distribution semantics defines a distribution over normal logic programs,
called worlds (Chapter 5).

Exact Probabilistic Logical Inference 103

If we are working with PDLs under DISPONTE an atomic choice is a couple of
the form (Cj, k), where C; is an axiom and k € {0,1}. Atomic choices for PDLs
do not have a substitution, as we include or exclude axioms as a whole instead of
their instantiations. To perform the split operation in PDLs, we just have to ignore
substitutions.

The following theorem is extremely important in order to compute the probability
of a query.

Theorem 11.1 Splitting [142]
Given a finite set K of finite composite choices, there exists a finite set K' of pairwise
incompatible finite composite choices such that K and K' are equivalent.

Proof. Given a finite set of finite composite choices K, in order to form a new set K’
of composite choices equivalent to K, two possibilities are given:

1. removing dominated elements: if k1, ky € K and k1 C Ko, let K/ = K\ {k2}.

2. splitting elements: if ki, ky € K are compatible and neither is a superset of
the other, there is a (C,0,k) € k1 \ k2. We replace kg by the split of k3 on cf.
Let K/ = K \ {FLQ} @) S@,CQ.

In both cases wx = wgs. Since K is a finite set of finite composite choices, these two
operations can be repeatedly executed until no one can be applied. The resulting set
K’ is pairwise incompatible and is equivalent to the original set. O

Thanks to Theorem 11.1, if we are able to obtain an equivalent set of pairwise
incompatible explanations K’ from the set of covering explanations K for the query @,
then we can use Equation 6.7 to calculate the probability of the query.

The proof of Theorem 11.1, is the basis of an algorithm, called splitting algo-
rithm, presented in Section 11.3, which it is known to terminate.

Theorem 11.2 Probability of two equivalent pairwise incompatible sets of
composite choices [143, 142]

If Ky and Ky are both pairwise incompatible finite sets of finite composite choices such
that they are equivalent then P(K;) = P(K,).

Another important result is given by the following theorem

Theorem 11.3 Probability of two pairwise incompatible sets of composite
choices [3]

Given two finite sets of finite composite choices K; and Ko, if K1 C Ky, then P(K;) <
P(K,).

Theorem 11.3 is really interesting because it tells us that, even if we find a set of
explanations K that does not cover a query @), P(K) represents a lower bound of the
exact probability of the query P(Q).

The problem of calculating the probability of a query is therefore re-
duced to that of obtaining a covering set of explanations and then making
it pairwise incompatible.

104 Fundamentals of Exact Probabilistic Logical Inference

We can use different techniques to obtain the explanations for queries. One method
is by means of (a possibly modified version of) SLDNF-resolution, This technique is
used for ICL and LPADs by the PITA and cplint systems |27, 144] and by ProbLog] [45,
140]. Another one is to use the HST algorithm with the tableau algorithm. Once a cov-
ering set K of explanations for a query () have been obtained, to make them mutually
incompatible, two approaches are usually exploited:

1. Splitting algorithm.

2. We can associate Boolean variables with axioms and define a DNF Boolean for-
mula fx(X), in which every disjunct represents an explanation. Then translate
the formula to a target language that makes the disjuncts mutually exclusive.

The splitting algorithm is illustrated in detail in Section 11.3. For the latter approach,
do we know a language that makes the disjuncts of a DNF formula mutually exclusive?
Yes, Decision Diagrams! This language was found to give good performances and it is
discussed in detail in Section 11.5.

Alternatively to explanation finding approaches, we can use algorithms that com-
pute the pinpointing formula.

11.3 Splitting Algorithm

From the proof of Theorem 11.1, the splitting algorithm, shown in Algorithm 11.1
can be built by looping the two operations.

Algorithm 11.1 Splitting Algorithm.
1: procedure SPLIT(K)

2: Input: set of composite choices K

3 Output: pairwise incompatible set of composite choices equivalent to K
4 loop

5 if dk1, k2 € K and k1 C ko then

6 K+ K\ {ka}

7 else

8: if dk1, ko € K compatible then

9: choose (C,0,k) € k1 \ ko

10: Let Sy,.co be the split of k3 on C0
11: K(—K\{HQ}US,@,_,,CQ

12: else

13: exit and return K

14: end if

15: end if

16: end loop
17: end procedure

The lines 5-6 correspond to the first operation of the proof, whereas the second
operation correspond to the pseudo-code in lines 8-11. If no operation can be applied
the algorithm exits (line 13). AlLog2 [145] is a system based on the splitting algorithm
which can perform probabilistic logic reasoning on Independent Choice Logic (ICL).

The following example shows a case where it is possible to use the splitting algorithm
for an LPAD.

Splitting Algorithm 105

Example 11.3.1 Splitting algorithm for LPADs
Consider the following LPAD “Crime and Punishment”

nihilist(X) :- killed(X,Y).
Cy = nihilist(X) : 0.3 :- student(X).
Cy = great_man(X) : 0.2 :- nihilist(X).
C3 = killed(ras,aly) : 0.6.
C4y = killed(ras,liz) : 0.5.
student(ras).

This program states that if you killed someone then you are a nihilist, the students are
nthilist with probability 0.3, whoever is a nihilist is a “great man” with probability 0.2
and Raskolnikov (ras) killed Alyona (aly) and Lizaveta (1iz) with probability 0.6 and
0.5 respectively.

A covering set of explanations for the query (Q = great_man(ras) is

K = {k1, K2, K3}
k1 = {(Cy,{X/ras},1),(Cy,{X/ras}, 1)}
= {(C5,0,1),(Cy,{X/ras}, 1)}
k3 = {(Cy,0,1),(Cy,{X/ras}, 1)}
The explanations k1 and ko are compatible so we can apply the second operation of
splitting algorithm (Algorithm 11.1) (lines 8-11), obtaining
Ky = {k1, Ky, Ky, K3}
/{1 = {(C1,{X/ras},1),(Cy,{X/ras}, 1)}
= {(C5,0,1), (Cy,{X/ras},1),(Cy,{X/ras},0)}
={(C3,0,1), (Cy, {X/ras}, 1), (C1, {X/ras}, 1)}
k3 = {(C4,0,1), (C2, {X/ras}, 1)}

Now k1 C K, i.e. k1 dominates K} therefore we can apply the first operation of the
splitting algorithm (lines 5-6) and remove K}, obtaining

K2 — {Hla K‘/27 I{?)}

The explanations k1 and k3 are compatible so we apply again the second operation of
splitting algorithm, obtaining

Kg {K1, KY, Ky, Ky
={(C1,{X/ras},1),(Cy,{X/ras}, 1)}

/@2 ={(Cs5,0,1),(Cs,{X/ras}, 1),(Cy,{X/ras},0)}
={(C4,0,1),(Cs,{X/ras}, 1), (C1,{X/ras},0)}
={(C4,0,1),(Cq,{X/ras}, 1), (Cy,{X/ras}, 1)}

We can remove K;g because s dominated by ky

Ky = {’%17 ’{/27 ’%g’)}

106 Fundamentals of Exact Probabilistic Logical Inference

Now we have that the explanations k% and k% are compatible so we apply again the
second operation, obtaining

n "
K5 = {k1, Kb, Ky, Ky

k1 = {(Cy,{X/ras},1),(Cy, {X/ras}, 1)}

Ky = {(C5,0,1),(Cy,{X/ras}, 1), (C1,{X/ras},0)}

Ky ={(C4,0,1),(Cy,{X/ras}, 1), (Cy,{X/ras},0),(Cs,0,0)}
’”’— (Cy,0,1),(Cq,{X/ras}, 1), (Cy,{X/ras},0),(Cs,0,1)}

We can remove k3" because is dominated by K}
/ n
Ko = {K1, Ky, Ky

Our covering set of explanations is now pairwise incompatible, we can finally compute
the probability of the query

P(Q) = P(Kg) = P(r1)+P(kh)+P(xY) = 0.3:0.240.6-0.2:0.740.5-0.2-0.7-0.4 = 0.172

In the next example we have a knowledge base under DISPONTE and we show
another example of application of the splitting algorithm.

Example 11.3.2 Splitting algorithm for Probabilistic Description Logics
Consider another example inspired by the people+pets ontology proposed in [102]

DogOwner = PetOwner
CatOwner C PetOwner

E1 = 0.6 :: kevin : DogOwner

E5 = 0.6 :: kevin : CatOwner

E3 = 0.7 :: PetOwner C Ecologist

The KB indicates that the individual kevin owns a dog with probability 0.6, the same
dividual owns a cat with probability 0.6 and pet owners are ecologists with probability
0.7.

A covering set of explanations for the query () = kevin : Ecologist is

K = {k1,ka}
k1 = {(Ex 1), (E5, 1)}
Ro = {(Eh 1)7 <E37 1)}

The explanations are compatible so we can apply the second operation of splitting
algorithm (Algorithm 11.1) (lines 8-11), obtaining

Ky = {k1, Ky, 15

k1 ={(E2, 1), (E5,1)}

ry = {(E1, 1), (B3, 1), (E2,0)}
ky = {(E1,1), (E3,1), (B, 1)}

Inference with Multi-valued Decision Diagrams 107

Now k1 C K}, i.e. k1 dominates kY, therefore we can apply the first operation of
the splitting algorithm (lines 5-6). The resulting pairwise incompatible set of composite
choices that covers Q) are

Ky = {r1, K3}
Therefore the probability of Q) is

P(Q) = P(Ky) = P(k1) + P(k}) = 0.6-0.7- 0.4+ 0.6 - 0.7 = 0.588

11.4 Inference with Multi-valued Decision Diagrams

Let C; be the clauses/axioms of a knowledge base, we can define the following associ-
ations:

C;0; <+ multivalued random variable X;;
(C;,0;, k) < assignment X;; =k, ke {1,...,n;}

In this way, given a set of covering explanations K, we obtain the following DNF
formula fg

fr(X) = \/ /\ Xij=k (11.1)

rEK (Ci,gj,k)EIi

The disjuncts in the formula are not necessarily mutually exclusive, the probability of
the query can not be computed by a summation as in Equation (6.7). The problem
of computing the probability of a Boolean formula in DNF, known as disjoint sum, is
#P-complete [146].

We can apply knowledge compilation [147] to the Boolean formula fx(X) in order
to translate it into a “target language” that allows the computation of its probability
in polynomial time. We can use decision diagrams as a target language. Since the
random variables appearing in the Boolean formula that are associated with atomic
choices can take on multiple values, we need to use Multivalued Decision Diagrams
(MDDs) [123].

As mentioned in Chapter 10 an MDD splits its paths on the basis of the values of a
variable, the branches are mutually exclusive and a dynamic programming algorithm
can be applied for computing the probability [45].

Example 11.4.1 MDD of a query
Consider the same LPAD of Example 6.2.1

Ci = epidemic : 0.6; pandemic : 0.3 :- flu(X),cold.
Cy=cold : 0.7.

flu(david).

flu(robert).

Clause Cy has two groundings: C16; with §; = {X/david} and C105 with 65 =
{X/robert}. Clause Csy, instead, has only one grounding C5{).

108 Fundamentals of Exact Probabilistic Logical Inference

We can make the following associations:

0101 < X11

0162 <~ X12

Col) = Xy
X171 and X195 can take three values since C has three possible heads: epidemic, pandemic
and null, with indices 1, 2 and 3 respectively, whereas Xo1 can take only two values

since Cy has only two heads: cold, null, with indices 1 and 2 respectively. A possible
set of covering explanations for the query (Q = epidemic. is (from Ezample 6.2.3)

K = {k1, K2}
k1 = {(C1,{X/david}, 1), (Cy,0,1)}
ko = {(C1, {X/robert}, 1), (Cs,0,1)}

Fach atomic choice can be associated with the propositional equation X;; = k. Using
Equation (11.1), the query is true if the following DNF formula is true:

fK(X) = (Xgl =1A XH = 1) V (Xgl =1A X12 = 1) (112)
Figure 11.1 shows the MDD corresponding to Equation (11.2).

Figure 11.1: MDD corresponding to Equation (11.2).

Unfortunately, most packages for the manipulation of decision diagrams are re-
stricted to work on BDDs. These packages offer Boolean operators among BDDs and
apply simplification rules to the results of operations in order to reduce as much as
possible the size of the binary decision diagram, obtaining a reduced BDD?.

11.5 Inference with Binary Decision Diagrams

To work on MDDs with a BDD package we must represent multi-valued variables by
means of binary variables. The following encoding, used in [148|, gives good perfor-
mance. For a multi-valued variable X;;, corresponding to a ground clause C;0;, having

2In Chapter 10 we showed that the order of the variables affect the size of the BDD. Therefore, it
is important to have BDD packages that have a good heuristics to order the variables.

Inference with Binary Decision Diagrams 109

n; values, we use n; — 1 Boolean variables Xjji, ..., Xj;n,—1 and we represent the equa-
tion X;; = k for k = 1,...n; — 1 by means of the conjunction X;;; A... A Xjj—1 A Xiji,
and the equation X;; = n; by means of the conjunction X;;; A...A X;jn,—1. Binary De-
cision Diagrams obtained in this way can be used as well for computing the probability
of queries by associating a parameter 7;; with each Boolean variable X, representing
P(Xjr = 1). The parameters are obtained from those of multi-valued variables in this
way:

i1 = Hih

ey

I
ok
T, (1 — ;)

Tk =

up to k = n; — 1, where Il;; is the probabilistic value assigned to the k-th head atom
of the i-th clause.

Using the above transformation, we can now translate the DNF formula fx of Equa-
tion (11.1) into a BDD. The problem of compiling a Boolean formula into the smallest
BDD is NP-hard [149]. However, Riguzzi in [27] experimentally showed that inference
approaches based on BDDs are faster than those based on the splitting algorithms?.

As mentioned in Section 10.3 BDDs make the disjuncts, and hence the explanations,
pairwise incompatible. Once we have obtained the BDD from the DNF Boolean formula
fx, to compute the probability of the query, we can use function PROB [3, 92, 91] shown
in Algorithm 11.2. This algorithm traverses the diagram from the leaves to the root
and computes the probability of a formula encoded as a BDD.

When a node is visited, its value is stored in a table so that, when the same node
is visited again, its probability can be retrieved from the table. This optimization
is necessary to reach linear cost in the number of nodes. Without it the cost of the
function PROB would be proportional to 2" where n is the number of Boolean variables.

If instead of solving the MIN-A-ENUM problem our reasoner computes the pinpoint-
ing formula, we can’t use the splitting algorithm directly. In order to obtain a covering
set of composite choices, we have to convert the pinpointing formula into a DNF for-
mula and removing disjuncts implying other disjuncts. However, it is well-known that
this can cause an exponential blowup. It makes more sense to directly use BDDs.

The following are some inference examples by means of BDDs.

Example 11.5.1 BDD of the query epidemic. (Example 11.4.1 cont.)

We consider the covering set of explanations obtained in Example 11.4.1 for the query
Q) = epidemic. We convert each of the 3-valued variables X11 and X159 into two Boolean
variables, X111 and Xi12 for Xq1, and X121 and X199 for Xi15. Xo1 is a 2-valued variable
and 1s converted into the Boolean variable Xo11. Equation 11.2 can be converted into
the equivalent function

fie(X) = (X A Xan) V (Xaa1 A Xon) (11.3)
The equivalent BDD with order X111 < Xi21 < Xo11 s shown in Figure 11.2.

3In [27], the author compared a system called PICL, based on BDDs, with AlLog2 which uses the
splitting algorithm.

110 Fundamentals of Exact Probabilistic Logical Inference

Algorithm 11.2 Function PROB

1: function PROB(node, nodesT ab)
2: Input: a BDD node node

3 Input: a table containing the probability of already visited nodes nodesT ab
4 Output: the probability of the Boolean function associated with the node
5 if node is a terminal then
6: return value(node) > value(node) is 0 or 1
7 else
8: scan nodesT ab looking for node
9: if found then
10: let P(node) be the probability of node in nodesT ab
11: return P(node)
12: else
13: let X be v(node) > v(node) is the variable associated with node
14: Py «PROB(child; (node)
15: Py <—PRrOB(childy(node))
16: P(node) < P(X)-P1+(1—P(X)) - Py
17: add the pair (node,P(node)) to nodesTab
18: return P(node)
19: end if
20: end if

21: end function

Figure 11.2: BDD for Example 11.5.1 equivalent to the MDD in Figure 11.1.

If we apply function PROB in Algorithm 11.2

PROB(n3) = 0.7-1+0.3-0=0.7
PROB(ny) = 0.6-0.7+0.4-0=0.42
P(Q) = PROB(n;) = 0.6-0.7+0.4-0.42 = 0.588

Example 11.5.2
Consider the LPAD in Example 11.5.1 and the covering set of explanations K for the
query (Q = great_man(ras) obtained in the same example.

All the probabilistic clauses have only one grounding: C101, Cy0y, C30 and C40,
with 91 = 92 = {X/ras}.

Inference with Binary Decision Diagrams 111

We can make the following associations:

C10, < X1
505 < X9y
Cs) <+ X1
C4® <> X41

If we set that the null head has index k = 2 in all the triples (C;,0;,k). Using
FEquation (11.1), the query Q is true if the following DNF formula is true:

We convert each of the 2-valued variables X1, Xo1, X31 and X4 into the Boolean
variables, X111, Xo11, X311 and X411. fx can be converted into the equivalent following
formula with Boolean variables

fr(X) = (X111 A Xonn) V (Xs11 A Xonn) V (X A Xon) (11.4)

Figure 11.3 shows the BDD corresponding to Equation (11.4) with variable order
X311 < Xon1 < Xy < X1

X311

X211

Figure 11.3: BDD for Example 11.5.2.

By applying function PROB in Algorithm 11.2, we obtain

(n5) = 0.3-140.7-0=0.3

(ng) = 05-1405-0.3=0.65
PROB(ns) = 0.2-0.65+0.8-0=0.13

(ny) = 02-1408-0=0.2

(n1) = 0.6-0.2+0.4-0.13 =0.172

This result is equivalent to the one obtained in Fxample 11.3.1.

If we are using PDLs under DISPONTE we can use BDDs directly.

112 Fundamentals of Exact Probabilistic Logical Inference

Example 11.5.3

Let us consider the same KB in Fxample 11.3.2, instead of using the splitting algorithm,

we can use a BDD to compute the probability of the query) = kevin : Ecologist.
Given the following covering set of explanations

K = {k1, K2}
k1 = {(E, 1), (E5,1)}
ko = {(Ey, 1), (E5,1)}

If we associate the Boolean random variables X, to Ei, X5 to Ey and X3 to Es3, we
obtain the following DNF Boolean formula

fK(X) - (X1 /\ Xg) \/ (X2 /\ Xg)

The equivalent BDD with order X; < Xo < X3 is shown in Figure 11.4

Figure 11.4: BDD for Example 11.5.3.

By applying function PROB in Algorithm 11.2, we obtain

PROB(n3) = 0.7-1+0.3-0=0.7
PROB(ny) = 0.6-0.7+0.4-0 = 0.42
P(Q) = PROB(n;) = 0.6-0.7+0.4-0.42 = 0.588

The result is equal to the one obtained in Fxample 11.3.2

Example 11.5.4
Consider a slightly different knowledge base [3, 92]:

C; = JhasAnimal.Pet C NaturelLover
Cy = (kevin,fluffy) : hasAnimal

Cs5 = (kevin,tom) : hasAnimal

Ey = 0.4 :: fluffy : Dog
Ey=0.3::tom: Cat

E5 =0.6 :: Cat C Pet

Ey=0.5: Dog C Pet

Inference with Binary Decision Diagrams 113

A covering set of explanations for the query axziom Q = kevin : NatureLover is
K= {/<L1, K/Q}
R1 = {(Ela 1)7 (E4a 1)}
Ko = {(E2, 1), (E3,1)}

If we associate the random variables X; to Eq, X5 to Ey, and so on, we obtain the
following DNF' Boolean formula

fe(X) = (X1 A Xy) VvV (Xe A X3)

If we chose the order X1 < X5 < X3 < Xy the BDD associated with the set K of
explanations is shown in Figure 11.5.

\

\
|
|

/

/

N
/
()
\
/
()
|
|
|
|

/

o]

Figure 11.5: BDD for Example 11.5.4 with order X; < Xy, < X3 < Xj.

N
~

By applying the function PROB in Algorithm 11.2 we get

PROB(ny) = 05-1+405-0=05
PROB(n3) = 0.6-1+04-05=0.38
PROB(ny) = 0.3-0.8+0.7-0.5=0.59
PROB(n)) = 0.6-1+04-0=0.6
PROB(n)) = 0.3-0.6-+0.7-0=0.18
PROB(ny) = 0.4-0.59+0.6-0.18 = 0.344

so P(Q)) = PROB(n;) = 0.344.

The order of the variables for the BDD is not optimal, if we had chosen the order
X1 < Xy < Xy < X3 we would have had the BDD in Figure 11.6 which is more compact
than the BDD in Figure 11.5.

The size of the BDD affects the number of operations of the function PROB in
Algorithm 11.2, indeed if we apply PROB to the BDD in Figure 11.6, we obtain

PROB(ng) = 0.6-1+04-0=0.6
(ns) = 0.3-0.6+0.7-0=0.18
PROB(ny) = 0.5-1+0.5-0.18 = 0.59
(n1) = 0.4-059+0.6-0.18 =0.344

114 Fundamentals of Exact Probabilistic Logical Inference

Figure 11.6: BDD for Example 11.5.4 with order X; < X, < X5 < Xj.

so P(Q) = PROB(ny) = 0.344.

11.6 Conclusions

In this chapter we discussed how to perform exact probabilistic logical inference. The
problem of calculating the probability of a query consists of obtaining a covering set of
explanations and then make them pairwise incompatible. We examined two approaches
to make the explanations pairwise incompatible: the splitting algorithm and BDDs.
Approaches based on BDDs are usually faster than approaches based on the splitting
algorithm [27]. For this reason the systems for exact probabilistic inference presented
in the next chapters are based on BDDs.

The next two chapters present several inference systems for PLP (Chapter 12) and
for PDLs that follow DISPONTE (Chapter 13).

Chapter 12

Inference in Probabilistic Logic
Programming

In this chapter we present the latest advances of the cplint system and its web interface
cplint on SWISH. The chapter is organized as follows. After a brief introduction in
Section 12.1, the cplint system and its main modules for (conditional) inference are
presented in Section 12.2. Section 12.3 and Section 12.4 discuss causal reasoning and
how to perform inference on hybrid probabilistic logic programs, i.e. probabilistic logic
programs where some of the random variables are continuous, with cplint. cplint’s
web interface, named cplint on SWISH, is described in Subsection 12.5.2. Section 12.6
illustrates related work. Finally Section 12.7 concludes the chapter.

12.1 Introduction

In Chapter 6 we introduced Probabilistic Logic Programming (PLP), this field of re-
search aims to combine logic with probability theory, moreover we provided the the-
oretical foundations for the calculation of the probability of a query. In Chapter 11,
instead, we presented two techniques for the calculation of the exact probability of
a query. One based on splitting algorithm and one based on the use of BDDs. All
the approaches seen so far are only theoretical, no real system that implements these
approaches has been presented.

In [144] Riguzzi and Swift proposed a system called PITA that allows to perform
exact inference. Later Riguzzi in [49] developed MCINTYRE a system for executing
approximate inference by sampling. These two systems were gathered together into
cplint.

The first part of this thesis tackled the problem of representing uncertain infor-
mation by combining logic with probability. This part, instead, concerns reasoning
over uncertain data. In this chapter we deal with reasoning in PLP. In particular, we
present the latest features that we have developed for the cplint system and its web
interface called cplint of SWISH.

115

116 Inference in Probabilistic Logic Programming

12.2 cplint

cplint is a suite of programs for reasoning with LPADs. cplint contains modules for
both inference and learning'. For inference we have two modules:

e the PITA module for exact inference [144], and
e the MCINTYRE module for approximate inference by sampling [49].

Below we illustrate these modules and how to use them.

12.2.1 Exact Inference: the PITA module

PITA [144] computes the probability of a query from a probabilistic program in the
form of an LPAD by knowledge compilation [147]. PITA computes explanations for the
query and encodes them using Binary Decision Diagrams (BDDs). Each explanation
is a conjunction of equations of the form Var = value, where Var is a random variable
associated with a ground clause and value is a possible value (the index of one of the
atoms in the head). We can see that Var is multivalued, we could have used MDDs
to make the explanations pairwise incompatible, but, as said before, many decision
diagram packages only support BDDs.

PITA computes BDDs for explanations by transforming an LPAD into a normal
program containing calls for manipulating BDDs. The idea is to add an extra argument
to each subgoal to store a BDD encoding the explanations for the answers of the
subgoal. The values of the extra argument of the subgoals are combined using a set of
library functions:

e init, end: initialize and terminate the data structures for manipulating BDDs;
e zero(-D), one(-D): return BDD D representing the Boolean constant 0 and 1;

e and(+D1,+D2,-D0), or(+D1,+D2,-D0), not(+D1,-D0): Boolean operations be-
tween BDDs;

e get_var_n(+R,+S,+Probs, -Var): returns the multi-valued random variable as-
sociated with rule R with grounding substitution S and list of probabilities Probs;

e equality(+Var,+Value, -D): D is the BDD representing Var=Value, i.e. that the
multivalued random variable Var is assigned Value;

e ret_prob(+D, -P): returns the probability P of the BDD D.

In order to manage and manipulate BDDs we exploit the CUDD? (Colorado University
Decision Diagram) library. The above functions are implemented in C as an interface
to the CUDD library. A BDD is represented in Prolog as an integer that is a pointer
in memory to the root node of the BDD.

The PITA transformation applies to atoms, literals, conjunctions of literals and
clauses. The transformation for an atom h and a variable D, PITA(h,D), is h with the

'For the learning modules see Chapter 15.
Zhttp://vlsi.colorado.edu/~fabio/CUDD/

cplint 117

variable D added as the last argument. For the sake of simplicity, we consider here only
positive literals, but the transformation can be applied also to negative literals (see
[144]).

The transformation for a conjunction of literals by, ..., b,, is

PITA(by,...,b,,,D)=0ne(DDy),
PITA(bl,Dl),and(DDo,Dl,DDl),...,
PITA(b,,,D,,),and(DD,,_1,D,,,D).

The disjunctive clause C, = hy:1Iy;...;h,:II, :- by,...,b,,. where the parame-
ters sum to 1, is transformed into the set of clauses PITA(C,):

PITA(C,,i) = PITA(h;,D) :- PITA(by,...,b,,,DD,,),
get_var_n(r,S, [II;,...,II,],Var),
equality(var,i,DD),and(DD,,,DD,D).

for i=1,...,n, where S is a list containing all the variables appearing in C,. If the
parameters do not sum up to 1, the body is empty or the clause is non-disjunctive (a
single head with probability 1), the transformation can be optimised.

We assume programs to be range restricted (see Definition 4.17). If the program
is range restricted, when the goal get_var_n(r,S,[Il;,...,II,],Var) is called, all
the variables of the original clause, listed in S, are instantiated so get_var_n/4 can
associate a random variable with the instantiation of clause C,.

The PITA transformation applied to clause C; of Example 6.2.1 yields

PITA(C;,1) = epidemic(D) :-
one(DDy), flu(X,Dy),and(DDy,Dy,DD;),
cold(Dy),and(DD;,D5,DD5),
get_var_n(1,[X],[0.6,0.3,0.1],Var),
equality(var,1,DD),and(DD,,DD,D).

PITA(Cy,2) = pandemic(D) :-
one(DDO),flu(X,Dl),and(DDO,Dl,DDl),
cold(Dy),and(DD;,Dy,DD5),
get_var_n(1,[X],[0.6,0.3,0.1],Var),
equality(Vvar,2,DD),and(DD,,DD,D).

PITA is available for XSB Prolog [150], YAP Prolog [151] and SWI-Prolog [152].

The XSB version, the initial one, uses tabling, a logic programming technique that
reduces computation time and ensures termination for a large class of programs [150].
The idea of tabling is simple: keep a store of the subgoals encountered in a derivation
together with answers to these subgoals. If one of the subgoals is encountered again,
the answers are retrieved from the store rather than recomputing them. Besides saving
time, tabling ensures termination for programs without function symbols under the
well-founded semantics [24].

PITA also uses a feature of XSB tabling called answer subsumption [150] that, when
a new answer for a tabled subgoal is found, combines old answers with the new one
according to a partial order or lattice. This feature is used to combine the BDDs that
are built for different explanations of a goal, using or/3 as the join operation of the
lattice and zero/1 as the predicate returning the bottom element of the lattice. For
example, a unary predicate p/1 must be declared as tabled by means of the declaration

118 Inference in Probabilistic Logic Programming

table p(_,or/3-zero/1). If an answer p(a,dl) was found and a new answer p(a,d2)
is derived, the answer p(a,dl) is replaced by p(a,d3), where d3 is obtained by calling
or(dl,d2,d3).

To compute the probability of a ground atom A, PITA uses predicate prob/2 whose
definition is

prob(A,Prob) :-
add_bdd_arg(A,D,Al),
call(Al),
ret_prob(D,Prob).

where add_bdd_arg(A,D,Al) performs the PITA transformation PITA(A,D) for a lit-
eral A and a variable D, and Al contains the transformed literal. Since YAP and SWI-
Prolog do not have answer subsumption in their tabling implementation, the collection
of the various explanations for the goal is performed explicitly with this definition of
prob/2:

prob(A,Prob) :-
add_bdd_arg(A,D,Al),
findall(D,Al1,L),
zero(Zero),
foldl(or,L,Zero,DD),
ret_prob(DD,Prob).

where foldl/4 implements the higher order functional programming fold function and
is available in the apply library of YAP and SWI-Prolog.
12.2.1.1 Conditional Exact Inference

To compute the probability of a conjunction of ground goals G given another conjunc-
tion of ground goals E, two clauses are added to the knowledge base:

$goal(D) :- PITA(G,D).

$ev(D) :- PITA(E,D).

and the queries $goal(DG) and $ev(DE) are asked. DG will contain the BDD representing
the explanations for the goal and DE the BDD representing the explanations for the
evidence. Then the conjunction of DG and DE is computed obtaining DGE. The prob-
ability to be returned is the fraction of the probability of DGE over the probability of
DE, as shown in Algorithm 12.1.

12.2.2 Approximate Inference: the MCINTYRE module

MCINTYRE [49] performs approximate inference by sampling. It first transforms the
program and then queries the transformed program. The disjunctive clause

C = hi:llin; .o shin Iy, o= by oo, by,

where the parameters sum to 1, is transformed into the set of clauses MC(C;):

cplint 119

Algorithm 12.1 Algorithm for computing the conditional probabilities.

function PROB(K B, G, E) > Program KB, goal G, evidence E
: Add $goal(D) : - PITA(G,D). to KB

1:

2

3 Add $ev(D) :- PITA(E,D). to KB

4: Ask the queries $goal(DG) and $ev(DE)
5: DGE < bdd_and (DG, DE)

6 PGE <— ret_prob(DGE)

7 PE < ret_prob(DE)

8 return PGE/PE

9: end function

MC(Cl,l) b hil :'bill"'lbimil
sample_head(ParList,i,S,NH),NH=1.

Mc(clrnz) = hlnz Lo bilr---rbimir

sample_head(ParList,i,S,NH),NH=n,.
where S is a list containing each variable appearing in C; and ParListis [1L;;, ..., 1L, 1.

If the parameters do not sum up to 1, the last clause (the one for null) is omitted.
Basically, we create a clause for each head and we sample a head index at the end
of the body with sample_head/4. If this index coincides with the head index, the
derivation succeeds, otherwise it fails. Thus failure can occur either because one of the
body literals fails or because the current clause is not part of the sample.

For example, clause C; of Example 6.2.1 becomes

MC(Cy,1) = epidemic :- flu(X),cold,
sample_head([0.6,0.3,0.1],1, [X],NH),NH=1.

MC(C;,2) = pandemic :- flu(X),cold,
sample_head([0.6,0.3,0.1],1, [X],NH),NH=2.

The predicate sample_head/4 samples an index from the head of a clause and uses
the built-in Prolog predicates recorded/3 and recorda/3 for respectively retrieving
or adding an entry to the internal database. Since sample_head/4 is at the end of
the body and since we assume the program to be range restricted, at that point all
the variables of the clause have been grounded. If the rule instantiation had already
been sampled, sample_head/4 retrieves the head index with recorded/3, otherwise it
samples a head index with sample/2:

sample_head(_ParList,R,VC,NH): -
recorded(exp, (R,VC,N),_),!,
NH=N.

sample_head(ParList,R,VC,N): -
sample(ParList,NH),
recorda(exp, (R,VC,NH),_),
N=NH.

sample(ParList, HeadId) :-

120 Inference in Probabilistic Logic Programming

random(Prob),
sample(ParList, 0, 0, Prob, HeadId).
sample([HeadProb|Tail], Index, Prev, Prob, HeadId) :-
Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->
HeadId = Index
sample(Tail, Succ, Next, Prob, HeadId)
).

Tabling can be effectively used to speed up the computation. Before executing a
new goal the previous tables obtained by sampling and the previous samples must be
removed. To sample a truth value for a ground atom Goal from the program we use
the following predicate

sample(Goal) :-
abolish_all_tables,
erase_samples,
call(Goal).

To compute the probability of a query, a number N of samples is taken and the prob-
ability is given by S/N where S is the number of times that sample/1 succeeds.

12.2.2.1 Conditional Approximate Inference

Similarly to PITA, to compute the probability of a conjunction of ground goals G given
another conjunction of ground goals E, two clauses are added to the knowledge base:

$goal :- G.

$ev :- E.

Conditional inference in MCINTYRE can be performed by means of rejection sampling
or by Metropolis-Hastings Markov Chain Monte Carlo (MCMC) [7].

Rejection Sampling
In rejection sampling [153], you take a sample by first querying the evidence (with
sample($ev)) and, if the query is successful, query the goal in the same sample (with
sample($goal)), otherwise the sample is discarded. Rejection sampling is the easiest
approach to realize, but it is also very slow.

To submit a conditional query using rejection sampling, you can use the predicate

mc_rejection_sample(:Query:atom, :Evidence:atom,+Samples:int,
-Probability:float)

or

mc_rejection_sample(:Query:atom, :Evidence:atom,+Samples:int,
-Successes:int, -Failures:int, -Probability:float).

Causal Inference with cplint 121

Metropolis-Hastings MCMC
In Metropolis-Hastings MCMC [154], a Markov chain is built by taking an initial
sample and by generating successor samples. A sample corresponds to a composite
choice, which in turn corresponds to a set of worlds (see Chapter 6). The initial
sample kg is built with a meta-interpreter that randomly samples the choices so that
the evidence is true. A successor sample k is obtained by deleting a fixed number of
sampled probabilistic choices, i.e. k9 D k. Then the evidence is queried by taking a
sample k' starting with the undeleted choices with x C «’. If the query succeeds, the
goal is queried by taking a sample " with k' C k", otherwise «’ is discarded. The
sample is accepted with a probability of min{1, |L"f,“} where |k| is the number of choices
(i.e. atomic choices) sampled in the previous sample and |£”| is the number of choices
sampled in the current sample. Then the number of successes of the query is increased
by 1 if the query succeeded in the last accepted sample. The final probability is given
by the number of successes over the number of samples.

To perform a conditional query using Metropolis-Hastings MCMC, the available
predicate is

mc_mh_sample(:Query:atom, :Evidence:atom,+Samples:int,+Lag:int,
-Successes:int,-Failures:int, -Probability:float).

or

mc_mh_sample(:Query:atom, :Evidence:atom,+Samples:int,+Lag:int,
-Successes:int,-Failures:int, -Probability:float).

12.3 Causal Inference with cplint

The study of causation was connected to graphical models by Pearl [155], even if dia-
grams were already used to represent causal models as early as the 1920’s [156|. Graph-
ical models are used to describe domains characterized by a set of random variables.
Bayesian networks, in particular, are directed acyclic graphs where the variables are
nodes and probabilistic dependences are represented as arcs: an arc from a node A to a
node B means that A probabilistically influences B. An example of a Bayesian network
is shown in Figure 12.1: it describes the domain of a medical study investigating the
effects of a new drug on patients. The domain is described by three Boolean variables:
Gender (F), Drug (C') and Recovery (E). Gender indicates the gender of the patient,
Drug takes value 1 if the drug is administered to the patient under examination and
value 0 if a placebo is administered, and Recovery whether the patient recovered from
his illness. Gender influences Drug because the decision to administer or not the drug
is taken on the basis of the sex of the patient. Gender and Drug influence Recovery
because the outcome of the particular illness under examination depends on the sex of
the patient and, hopefully, on the treatment.

Pearl [155] introduced causal Bayesian networks: these are Bayesian networks where
an arc from a node A to a node B means that A directly causally influences B. Causal
Bayesian networks can be used to perform causal reasoning, such as for example com-
puting the effect of an action.

122 Inference in Probabilistic Logic Programming

Recovery E

Figure 12.1: Bayesian network for a drug study domain.

Recovery E

i

Figure 12.2: Mutilated version of the Bayesian network of Figure 12.1 for computing
the effect of a drug.

An action or intervention in this context means setting a variable, say A, to a
particular value, say a. The Bayesian network of Figure 12.1 is causal as we assume
that the decision to administer or not the drug is taken on the basis of the sex of the
patient. Moreover, the treatment and sex cause the patient to recover or not, as we
assume that the illness depends on the gender.

In such a network one could for example ask what is the probability of recovery
if we make the action of administering the drug, in other words what is the effect of
the drug on recovery, the main aim of medical studies. This corresponds to computing
the probability of £ = 1 when setting C' to 1. For answering such queries, Pearl
shows that regular probabilistic reasoning cannot be used. So in this case computing
P(E = 1|C = 1) does not answer the question of what is the effect of the drug.

Pearl introduces a different calculus, called do calculus, to infer the effect of actions.
In such a calculus, the action of setting a variable to a value is distinguished from the
observation of that value for the variable. Actions appear inside a special do operator
in the condition part of probabilistic queries. So to compute the effect of the drug on
recovery, the query to answer is P(F = 1|do(C = 1)).

The do calculus reduces a query involving actions to a regular probabilistic query
over a mutilated Bayesian network obtained by removing all incoming arcs from vari-
ables involved in actions. Then the query with actions as observations must be asked
from the mutilated network. For example, to answer P(E = 1|do(C = 1)), the arc
from Gender to Drug must be removed from the network of Figure 12.1 obtaining the
network of Figure 12.2. Then the query P(E = 1|C = 1) must be asked from the
mutilated network. Note that there is no need to specify the conditional probability
table (CPT) of the action variables (C' in this case) in the mutilated network as the
action variables are observed so the CPT does not influence the computation.

Equivalently, we can ask an unconditional query from the mutilated network where

Causal Inference with cplint 123

the CPTs for the actions are set so that all the probability mass is assigned to the
values set by the actions. For the example above, the conditional probability table
of C' would be given by P(C' = 1) = 1 and P(C' = 0) = 0 and the query would be
P(E=1).

It is very important not to confound P(FE|do(C')) with P(E|C) because the results
may be very different, as shown by the famous Simpson’s paradoz.

Example 12.3.1 Simpson’s Paradox
From [155]:

Simpson’s paradox |...| refers to the phenomenon whereby an event C in-
creases the probability of E in a given population p and, at the same time,
decreases the probability of E in every subpopulation of p. In other words, if
F and —F are two complementary properties describing two subpopulations,
we might well encounter the inequalities

P(E|C) > P(E|-C)

P(E|C,F) < P(E|-C,F)
P(E|C,—F) < P(E|-C,—-F)
[...] For example, if we associate C' (connoting cause) with taking a certain
drug, E (connoting effect) with recovery, and F with being a female, then

[...] the drug seems to be harmful to both males and females yet beneficial
to the population as a whole.

Consider the situation exemplified by the following tables from [155]:
Combined E -FE RecoveryRate

Drug(C) 20 20 40 50%
Nodrug(—=C) 16 24 40 40%

36 44 80
Females E -FE RecoveryRate
Drug(C) 2 8 10 20%
Nodrug(—=C) 9 21 30 30%

11 29 40
Males E -KE RecoveryRate

Drug(C) 18 12 30 60%
Nodrug(=C) 7 3 10 70%
25 15 40

As you can see taking the drug seems to be beneficial overall even if it is not for females
and males.

The paradox derives because we must distinguish seeing from doing: we must distin-
guish observing that the drug was administered from the intervention of administering

124 Inference in Probabilistic Logic Programming

the drug. The conditioning operator in probability calculus stands for “given that we
see”, whereas the do operator means “given that we do”. So the do operator must be used
to infer the effect of actions. If the model of the domain is the network from Figure
12.1, to compute P(E = 1|do(C = 1)) and P(FE = 1|do(C = 0)) we must compute
P(E = 1|C = 1) and P(E = 1|C = 0) from the network of Figure 12.2 by using
classical Bayesian inference. For these queries we get respectively 0.4 and 0.5, showing
that the drug is not beneficial in the whole population exactly as it s not in the two

subpopulations.

Pearl’s do calculus also deals with causal Bayesian networks where some of the
variables are unknown, in the sense that we know that they exert an influence but they
are not measurable so it is not possible to quantify this influence, i.e., we don’t know
how many they are and the CPTs where they are involved, we just know that some
exist. When models contain such unknown variables, computing the effect of actions is
not always possible, because we can’t sum out the contribution of such variables since
we don’t know their number and CPTs. The do calculus provides rules for determining
whether it is possible to compute the effect of an action even in the presence of unknown
variables and to actually perform the computation. In cplint we consider only the do
calculus for models with no unknown variables.

12.3.1 Causal Inference in Probabilistic Logic Programming

CP-logic [48] is a PLP language for causal reasoning whose semantics is based on
probability trees that represent possible courses of events. The authors proved that
their semantics is suitable for representing causation and the effects of causal laws. In
particular, they highlighted that the inductive definitions of logic programming and
the well-founded semantics of negation [24] produce models respecting most properties
of causation, provided the program respects some weak constraints. The semantics
of legal CP-logic programs coincides with that of LPADs, but there are LPADs that
are not legal CP-theories, i.e., they cannot be assigned a causal semantics. However,
these are corner cases in which the stratification level of a couple of atoms in a world is
switched in a different world, so that it is not possible to establish a general stratification
coherent with temporal precedence in all worlds.

The authors in [48] showed that the effect of actions in do calculus style can be
computed from CP-theories when there are no unknown variables. In fact, clauses in
CP-theories represent causal laws so in order to know the result of intervening on a
single causal law, that law should be removed from the theory (and possibly replaced
by a different law). For example, to compute the effects of an intervention that prevents
a causal law C, that law must be removed from the theory. In case the intervention
establishes a new causal law C’, that law must be added to the theory. The modularity
of CP-logic allows this.

Example 12.3.2
The computation of the effects of interventions is illustrated in [48] with a medical
example:

A tumor in a patient’s kidney might cause kidney failure, which might cause

Causal Inference with cplint 125

the death of the patient; however, to make matters even worse, the tumor
can also metastasize to the brain, which might also, independently, kill the
patient. We can represent this as:

kidneyFailure : 0.1 :- kidneyTumor.
brainTumor : 0.1 :- kidneyTumor.
death : 0.5 :- brainTumor.

death : 0.9 :- kidneyFailure.

If we want to know what is the effect of putting the patient on a dialysis machine, which
allows him to survive kidney failure, we can remove the last law and use the resulting
theory for inference.

Starting from the results in [48] we modified the inference in cplint to allow the
computation of the effect of actions of the form do(A) and do(\+A) where A is a ground
literal. do(A) means that the action A was performed i.e., the action makes A true,
whereas do(\+A) means that the action makes the atom A false.

12.3.2 Causal Exact Inference with cplint

When performing causal inference, evidence E may contain ground literals of the form
do(A), meaning that ground literal A is an action rather than an observation.

In this case, evidence E is partitioned into two conjunctions, EO containing only the
observation atoms and EA containing all the literals A for which E contains do(A). Let
remove_do be the function taking as input a conjunction of do literals and returning
remove_do(EA) = {A|do(A) € EA}.

The knowledge base is extended with

$goal(D) : - PITA(G,D).
as for non causal inference, plus
$ev(D) :- PITA(EO,D).

Then Algorithm 12.2 is used to obtain a new program on which conditional infer-
ence as in PITA is performed. The algorithm considers every action of the form
do(A) € EA with A = p(t;,...,t,) or A = \+p(t,,...,t,) and, for each clause
with p(uy,...,u,,D) in the head, it adds to the body the conjunction of constraints
dif(uy,ty),...,dif(u,,t,). Then the clause

p(ty,...,t,,D) :- one(D).

is added to the program for every action of the form do(p(t;,...,t,)) (positive
actions).

dif/2 is a coroutine predicate that expresses disequality of terms. The actual test
is delayed until the terms are sufficiently instantiated to be found different, or have
become identical. The predicate is available in most Prolog systems and is usually
implemented by means of attributed variables [157].

126 Inference in Probabilistic Logic Programming

By using dif/2, the body of the clause fails as soon as a disequality is violated. If
we had used the disunification predicate \=/2, we should have inserted the disequality
constraints at the end of the body, just before the call to get_var_n/4, because at
the beginning of the body some variables may not be instantiated. This would have
resulted in a waste of computation, as failure would be obtained only after having
resolved all the literals in the body. With dif/2 failure may be obtained earlier.

The result is correct as shown by Theorem 12.1.

Algorithm 12.2 Algorithm for preparing the knowledge base for exact causal infer-

ence.
1: function PREPAREPITAKB(K B,EA) > Program K B, set of literals appearing

as do actions in the evidence EA

2: for all do(A) € EA with A=p(t,,...,t,) or A=\+p(t;,...,t,) do

3: for all clauses C=p(u;,...,u,,D) :- Bdo

4: Remove C from KB

5: Add p(uy,...,u,,D) :-dif(uy,ty),...,dif(u,,t,),Bto KB
6: end for

7 end for

8: for all do(A) atom in EA with A=p(t,,...,t,) do

9: Add p(ty,...,t,,D) :- one(D). to KB

10: end for

11: return KB
12: end function

Theorem 12.1
Given a a goal G and an evidence E, the probability for G to be true given that E holds
P(G|E) on program KB has the same value as

PROB(PREPAREPITAKB(K B, EA),G, EO).

Proof. By including the dif/2 constraints in the body, we effectively make sure that,
when evaluating the body of the clauses (causal laws), all groundings of the clauses
whose head matches with one of the action atoms produce failure, resulting in the same
effect as removing the ground causal law from the theory.

The addition of clauses

p(ty,...,t,,D) :- one(D).

for every positive action do(p(t;,...,t,)) then ensures that p(t,,...,t,) is forced to

true, and the absence of any clause for p(t;, ..., t,) for negative actions do(\+p(t,, ...

ensures that p(t,,...,t,) is forced to false.
In this way we adopt the strategy of [48]| for representing interventions in CP-
logic. [

12.3.3 Causal Approximate Inference with cplint

As for PITA, the evidence E is partitioned into the conjunctions EO of observation
atoms and EA of action atoms. Then the knowledge base is extended with

$goal : - G.

Causal Inference with cplint 127

as for non causal inference, plus
$ev :- EO.

Then Algorithm 12.3, MCINTYRE’s version of Algorithm 12.2; is used to preprocess
the program before using MCINTYRE algorithms for conditional inference. You can
notice that in Alg. 12.3 the variable D is missing (see predicates in Alg. 12.2), this is
because variable D in exact inference is used to contain the BDD, but in approximate
inference we just use sampling without building any BDDs. It is easy to see that

Algorithm 12.3 Algorithm for preparing the knowledge base for approximate causal
inference.
1: procedure PREPAREMCKB(K B,EA) > Program K B, set of literals appearing

as do actions in the evidence EA

2: for all do(A) € EA with A=p(t,,...,t,) or A=\+p(t,,...,t,) do

3 for all clauses C=p(u;,...,u,) :- Bdo

4: Remove C from KB

5: Add p(uy,...,u,) :- dif(u;,t;),...,dif(u,,t,),Bto KB
6: end for

7 end for

8: for all do(A) atom in EA with A=p(t,,...,t,) do

9: Add A to KB

10: end for
11: end procedure

Theorem 12.1 holds also for MCINTYRE. Figure 12.3 shows the architecture of the
cplint system with their module and algorithms used for causal inference.

12.3.4 Notable Examples

In this section we illustrate the implementation in cplint of two famous problems: the
Simpson’s paradox and the viral marketing problem.

12.3.5 Simpson’s Paradox
The medicine study of Example 12.3.1 can be represented with the following LPAD?3.

:- use_module(library(pita)).

1- pita.

:- begin_1pad.

:- action drug/o0.

female:0.5.

recovery:0.6:- drug,\+ female.
recovery:0.7:- \+ drug,\+ female.
recovery:0.2:- drug, female.
recovery:0.3:- \+ drug, female.

drug:30/40:- \+ female.

3Also available at http://http://cplint.ml.unife.it/example/inference/simpson.swinb.

128 Inference in Probabilistic Logic Programming

LPAD
program

N\ cplint
/ //. A\ A

" PITA Yy 7 \b MCINTYRE®
module module

[Algorithm 2] [Algorithm 3)
modified modified
LPAD LPAD

PITA MCINTYRE
inference inference
SWI-Prolog
N //

Figure 12.3: Architecture of cplint for causal inference.

drug:10/40: -female.

:-end_1pad.
Here, : - action drug/0. means that drug/0 is a predicate that can be used to spec-
ify actions. We need the :- action p/n directive because the predicate p should

be declared as dynamic in order to perform retract/1 (execution of line 4 in Algo-
rithm 12.2). In PITA the directive : - action p/n makes the predicate p/n+2 dynamic.
In MCINTYRE, instead, it has the effect to make p/n dynamic.

We query the conditional probabilities of recovery given treatment on the whole
population and on the two subpopulations with:

?- prob(recovery,drug,P).

?- prob(recovery,\+ drug,P).

?- prob(recovery, (drug, female),P).

?- prob(recovery, (\+ drug, female),P).

?7- prob(recovery, (drug,\+ female),P).

?- prob(recovery, (\+ drug,\+ female),P).

The results of these queries are those in the tables of Example 12.3.1.
If instead we want to know the probability of recovery given the action treatment
(taking a drug), we must ask

?7- prob(recovery,do(drug),P).
?7- prob(recovery,do(\+ drug),P).
?- prob(recovery, (do(drug), female),P).

Causal Inference with cplint 129

?7- prob(recovery, (do(\+ drug),female),P).
?7- prob(recovery, (do(drug),\+ female),P).
?- prob(recovery, (do(\+ drug),\+ female),P).

The results of the last four queries are the same as the last four conditional queries, so
the probability of recovery in the two subpopulations is the same as that for the case
of seeing rather than doing, as the observation of sex makes the arc from sex to drug
irrelevant.

The results of the first two do queries instead differ from the conditional ones:
they are respectively 0.4 and 0.5, showing that the drug is not beneficial and that the
probability of recovery on the whole population is now in accordance with that in the
subpopulations, in particular it is the weighted average of the probability of recovery
in the subpopulations.

12.3.6 Viral Marketing

Let us now consider a viral marketing scenario inspired by [158]. A firm is interested
in marketing a new product to its customers. These are connected in a social network
that is known to the firm: the network represents the trust relationships between
customers. The firm has decided to adopt a marketing strategy that involves giving
the product for free to a number of its customers, in the hope that these influence the
other customers and entice them to buy the product. The firm wants to choose the
customers to which marketing is applied so that its return is maximised. This involves
computing the probability that the non-marketed customers will acquire the product
given the action to the marketed customers.

We can model this domain with an LPAD where the predicate trust/2 encodes
the links between customers in the social network and the predicate has/1 is true for
customers that possess the product, either received as a gift or bought. Predicate
trust/2 is defined by a number of certain facts, while predicate has/1 is defined by
two rules, one expressing the prior probability of a customer to buy the product and
one expressing the fact that if a trusted customer has the product, then there is a
certain probability that the trusting customer buys the product. The complete LPAD
is shown in Figure 12.4*. The social network encoded by the program is represented
in Figure 12.5. If the firm wants to estimate the effect of giving the product for free to
customer 3 on the probability of customer 2 buying the product, the query to ask is

?- prob(has(2),do(has(3)),P).
This query on the program above returns 0.136. If instead we query
?- prob(has(2),has(3),P).

we get 0.407, showing that not distinguishing seeing from doing leads to an overly
optimistic estimate.

12.3.7 Experiments

In this section we aim to evaluate the performance of causal reasoning with cplint
while comparing exact inference, performed with PITA, with approximate inference,

4Also available at http://cplint.ml.unife.it/example/inference/viral.swinb.

130 Inference in Probabilistic Logic Programming

:- use_module(library(pita)).
:- pita.

:- begin_1pad.

:- action has/1.

has(_) : 0.1.

has(P) : 0.4 :- trusts(P, Q), has(Q).
trusts(2,1)

trusts(3,1)

trusts(3,2).

trusts(4,1).

trusts(4,3)

:- end_lpad.

Figure 12.4: LPAD for viral marketing.

Figure 12.5: Social network for the viral marketing example.

performed with Metropolis-Hastings of MCINTYRE. Given the different focus of P-log,
a comparison with this system would be unfair. Therefore we compare the performance
of causal reasoning in cplint with regular probabilistic reasoning. All the experiments
here presented were executed on a Linux machine equipped with a Intel Xeon E5-2630
v3 @ 2.40 GHz CPU with 8 GB of main memory.

In particular, we considered the viral marketing domain. We generated random
social networks of increasing size and we evaluated random probabilistic and causal
queries with an increasing number of evidence literals. The random social networks
were generated as scale-free graphs according to the Barabasi-Albert model [159]. We
used the sample_pa® function of the igraph R library to generate the graphs with
parameter m set to 2 (the number of edges to be added at each time step is 2). We
considered a number of nodes from 10 to 100 in steps of 10 and, for each number of
nodes, we generated 10 graphs (for a total of 100 different generated graphs). For
each number of nodes, we generated conjunctions of literals of the form has(n) where
n is a node sampled uniformly at random from the set of nodes. For each number
of literals from 2 to 8 in steps of 2 we generated 10 random conjunctions with that
number of literals. For each conjunction C; with [literals, we sampled uniformly a node
m and we prepared the queries P, = P(has(m)|C;) and @; = P(has(m)|do(C;)), where
do(C;) = {do(A)|A € C;}.

Then we posed the queries P, and); to each of the 10 graphs for each number of
nodes and we measured the execution time. The computed time was averaged over

Shttp://igraph.org/r/doc/sample_pa.html

Causal Inference with cplint 131

the 10 graphs with the same number of nodes and the 10 conjunctions with the same
number of literals. Hence we have 100 queries for each number of nodes. We set a
timeout of 600 seconds for each query and we set to 1000 the number of samples for
MCINTYRE.

The average runtime for conditional and causal queries are then plotted in Figures
12.6-12.9 as a function of the number of nodes. Tables 12.1-12.4 show the average
timings with their 95% confidence intervals.

In particular, Figure 12.7 shows that with 4 evidence literals and a graph size larger
than 60 nodes at least one conditional query with exact inference has encountered the
timeout. Whereas causal queries (both with exact and approximate inference) and
conditional queries with approximate inference are still feasible. Figures 12.8 and
12.9 show that at least one conditional query with exact inference has encountered the
timeout for graphs with more than 10 nodes and queries with 6 evidence literals or more.
In all the figures we can see that the running time of conditional inference increases
with the size of the graphs, while the runtime of causal inference is roughly constant. In
these experiments the average running time for causal approximate inference is below
130 milliseconds for every graph size, whereas causal exact inference is surprisingly
faster than the approximate one and the average running time is below 4 milliseconds
for every graph size. The causal exact inference is faster than the approximate one
because, in our example, there is a small number of explanations for each causal query,
therefore it takes less time to compute all the explanations than it does to sample the
probabilistic logic program 1000 times. Table 12.5 reports the mean squared error of
approximate causal inference (caus mcint). We can notice that the errors are less than
4-1073, proving that the proposed approximate approach gives results close enough to
the exact ones.

103 T T T T T T T T T
2L
10 A,__A—-—-Ar"‘A‘*A-—"A’_—A___A__A——Zg&
7
/
S
@ 0 ;
E | e e . 4
o %]
E g0t/
[I
—&— cond exact
107 —-8-—caus exact 3
cond mcintyre
— A& —caus mcintyre

10 -2 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of nodes

Figure 12.6: Average time for conditional and causal queries with 2 evidence literals.

132

Inference in Probabilistic Logic Programming

Table 12.1: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 2 evidence literals. The size of the datasets is expressed
in number of nodes of the graph.

Inference method

Size of the dataset

10 20 30 40 50
cond exact 0.32 +0.09 0.89 +0.63 3.01 +1.59 2.73 +1.40 2.19 +1.52
caus exact 3.15+0.55 2.92 +0.05 2.97 £ 0.05 2.98 +0.07 2.93 + 0.06
cond mcint 168.62 + 8.04 185.28 + 6.15 197.05 + 8.32 201.6 +5.91 204.22 £ 6.77
caus mcint 46.11 £ 3.19 57.42+2.5 64.94 + 4.08 73.96 4.2 63.57 + 3.44
Inference method Size of the dataset

60 70 80 90 100
cond exact 11.41 +£4.96 13.91 £ 7.31 13.91 £ 5.65 20.24 + 8.34 37.29 4+ 28.30
caus exact 3.03 +£0.08 3.01 +£0.10 3.00 +0.06 2.98 +0.09 3.36 £ 0.46
cond mcint 225.34 £+ 8.68 227.66 £8.91 | 232.134+10.47 | 237.46 +9.24 252.91 £ 12.9
caus mcint 74.27 + 4.36 78.98 + 6.6 77.81 +5.32 77.06 +6.77 81.26 + 7.9

Table 12.2: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 4 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method

Size of the dataset

10 20 | 30 | 40 50
811.73 £ 936.18 +

cond exact 443 £1.27 66.98 4 29.64 446.72 626.14 854.23 £682.3
caus exact 2.84 +0.07 2.95+0.05 2.95+0.07 3.04 £+ 0.06 2.9 +0.06
cond mcint 236.18 £8.89 | 289.33+11.77 | 350.97+£20.46 | 381.16+25.24 | 364.114+21.96
caus mcint 41.91 + 3.25 56.88 +4.14 65.93 + 4.48 79.38 4+ 4.48 63.48 + 3.38
Inference method Size of the dataset

60 70 80 90 100
cond exact 237211 £ - - - —

1291.21

caus exact 3.04 +0.08 3.06 +0.08 3.03 +£0.07 3.07 £+ 0.06 3.37+0.38
cond mcint 438.48 +36.96 | 453.89434.03 464.05 £+ 35.7 482.93+32.17 | 522.624+39.74
caus mcint 71.89 + 5.27 82.19 £6.04 78.64 £ 5.98 94.64 £ 7.01 103.734+10.01

Causal Inference with cplint

133

Time (ms)

10"

100 ¢

- - - - -8 — 8- —a-—

—<o—cond exact
—-8-—caus exact
—&— cond mcintyre
— A —caus mcintyre

1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Number of nodes

100

Figure 12.7: Average time for conditional and causal queries with 4 evidence literals.

Time (ms)

—<o—cond exact
—-8--caus exact
—&— cond mcintyre
— A —caus mcintyre

1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Number of nodes

100

Figure 12.8: Average time for conditional and causal queries with 6 evidence literals.

134

Inference in Probabilistic Logic Programming

Table 12.3: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 6 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method

Size of the dataset

10 | 20 | 30 | 40 | 50
cond exact 158.37+38.36 - - - -
caus exact 2.81 +0.08 2.95 4+ 0.06 2.91 +0.06 3.13+£0.08 2.97 +£0.07
cond mcint 331 4+ 14.59 506.29+40.93 | 558.82+68.84 | 686.51 +=91.9 7?;'2534i
caus mcint 445+ 1.4 51.95+ 4.5 66.74 + 5.25 92.36 + 7.05 72.96 + 4.31
Inference method Size of the dataset

60 70 80 90 100
cond exact — - - — -
caus exact 3.12+0.08 3.1 £0.08 3.1 £0.07 3.09 £ 0.07 3.51 £0.54
cond meint 939.05 + 1075.76 + 1015.65 + 1260.15 + 1240.61 +

248.19 149.54 160.3 199.99 208.2
caus mcint 86.13 £ 6.21 99.42+ 7.7 83.02 £ 7.53 96.71 £+ 8.15 109.954+12.87
10 4 T T T T T T T T T
103 ¢ E
2L A —AE—- A A4
@ 0 Ao b — A A
£ N
N
()
E qo1}/ 3
[o /]
S p— B——f— B ——B-—— O — g — B —-— 5 -—-—H
. —<— cond exact |
0L 4
10 i/ —-B-—caus exact]
cond mcintyre
— A& —caus mcintyre
10 -1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of nodes

Figure 12.9: Average time for conditional and causal queries with 8 evidence literals.

Causal Inference with cplint

135

Table 12.4: Execution time (in milliseconds) and 95% confidence intervals for condi-
tional and causal queries with 8 evidence literals. The dash means that the timeout
was reached. The size of the datasets is expressed in number of nodes of the graph.

Inference method

Size of the dataset

10 | 20 | 30 | 40 | 50
cond exact 1784.48 & - - - -
451.27
caus exact 2.89 +0.07 3.04 £+ 0.06 2.99 £+ 0.07 3.17 £+ 0.08 3.06 + 0.07
. 1043.48 + 1952.12 + 1954.56 +
cond mcint 471.56+34.17 255.12 1366.8 +232.7 382.1 336.25
caus mcint 37.71 £ 2.28 54.86 & 3.42 71.15 £ 4.29 80.67 £ 8.1 83.86 + 5.85
Inference method Size of the dataset
60 70 80 90 100
cond exact - - - - -
caus exact 3.19 £ 0.08 3.2+ 0.08 3.26 + 0.09 3.07 &+ 0.06 3.23 £ 0.09
cond mcint 4306.83 + 4679.31 + 3227.32 + 4265.53 + 6576.63 +
1759.19 1304.03 1234.65 1375.54 2313.33
caus mcint 94.28 + 7.36 116.85 + 9.25 101.36 + 9.51 100.42 + 7.34 115.94 +9.33

Table 12.5: Mean Squared Error for approximate causal inference (caus mcintyre). All
the values must be multiplied by 1073. The size of the datasets is expressed in number

of nodes of the graph.

Evidence literals

Size of the dataset

10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

0 O = N

2.5
0.9
1.2
0.9

1712412
1812412
141253
221153

4116 123(23]30
711612612622
91712712323
2123123(1311]20

20| 2.6
27129
21| 23
25| 2.0

136 Inference in Probabilistic Logic Programming

12.4 Hybrid Probabilistic Logic Programs with cplint

Up to now we have considered only discrete random variables and discrete probabil-
ity distributions. How can we consider continuous random variables and probability
density functions, for example real variables following a Gaussian distribution?

cplint allows the specification of density functions over arguments of atoms in the
head of rules. To specify a probability density on an argument Var of an atom A you
can use rules of the form

A : Density :- Body.

where Density is a special atom identifying a probability density on variable Var
and Body (optional) is a regular clause body. Allowed Density atoms are:

e uniform(Var,L,U): Var is uniformly distributed in [L, U].

e gaussian(Var,Mean,Variance): Var follows a Gaussian distribution with mean
Mean and variance Variance.

e dirichlet(Var,Par): Var is a list of real numbers following a Dirichlet distri-
bution with parameters « specified by the list Par.

e gamma(Var,Shape,Scale): Var follows a gamma distribution with shape param-
eter Shape and scale parameter Scale.

e beta(Var,Alpha,Beta): Var follows a beta distribution with parameters Alpha
and Beta.

This syntax can be used to describe also discrete distribution, with either a finite or
countably infinite support:

e discrete(Var,D) or finite(Var,D): A is an atom containing variable Var and
D is a list of couples Value:Prob assigning probability Prob to Value

e uniform(Var,D): A is an atom containing variable Var and D is a list of values
cach taking the same probability (1 over the length of D).

e poisson(Var,Lambda): Var follows a Poisson distribution with parameter Lambda.
This type of clauses are called Distributional Clauses [160].

Example 12.4.1
Consider the following LPAD rule

g(X,Y) : gaussian(Y,0,1) :- object(X).

X takes terms while Y takes real numbers as values. The clause states that, for each X
such that object (X) is true, the values of Y such that g(X,Y) is true follow a Gaussian
distribution with mean 0 and variance 1. You can think of an atom such as g(a,Y) as
an encoding of a continuous random variable associated with term g(a).

Hybrid Probabilistic Logic Programs with cplint 137

This kind of probabilistic logic programs where some of the random variables are
continuous are called Hybrid Probabilistic Logic Programs.

If an atom encodes a continuous random variable (such as g(X,Y) in Example 12.4.1),
asking the probability that a ground instantiation, such as g(a,0.3), is true is not
meaningful, as the probability that a continuous random variables takes a specific
value is always 0. In this case you are more interested in computing the distribution
of Y of a goal g(a,Y), possibly after having observed some evidence. If the evidence is
on an atom defining another continuous random variable, the definition of conditional
probability cannot be applied, as the probability of the evidence would be 0 and so the
fraction would be undefined. This problem is resolved in [161] by providing a definition
using limits.

12.4.1 Sampling the Arguments of Unconditional Queries over
Hybrid Programs

If the query is unconditional, we can use approximate inference with Monte Carlo
sampling as described in the Subsection 12.2.2. When we have continuous random
variables, we are interested in sampling arguments of goals representing continuous
random variables. In this way we can build a probability density of the sampled
argument. To do that it is possible to use the predicate

mc_sample_arg(:Query:atom,+Samples:int,?Arg:var, -Values:list).

that returns in Values a list of couples L-N where L is the list of values of Arg for
which Query succeeds in a world sampled at random and N is the number of samples
returning that list of values.

Example 12.4.2 Gaussian mixture
As example, let us consider the following program that models the mizture of two Gaus-
sians.

heads : 0.6; tails :
g(X) : gaussian(X,0
h(X) : gaussian(X,5,
9(
h (X

0.4.
1)
2).
mix(X) :- heads, g(X).
mix(X) :- tails,).

A biased coin is thrown, if it lands heads, X in miz(X) is sampled from a Gaussian
with mean 0 and variance 1. If it lands tails, X is sampled from a Gaussian with mean
5 and variance 2.

We can now perform the query
mc_sample_arg(mix(X),1000,X,Values).

Values will contain a list of couples L-N where L is the list of values of X for which
query succeeds in a world sampled at random and N is the number of samples returning
L. Notice that, in every couple L-N, L will contain just one element and N will be always
1. This is because the random wvariable X is continuous and mix(X) always succeeds
exactly once, therefore the predicate mc_sample_arg/4 will sample 1000 different worlds
and every world will have a different value for X.

138 Inference in Probabilistic Logic Programming

12.4.2 Conditional Queries over Hybrid Logic Programs

As in the previous subsection we are interested in sampling arguments of goals repre-
senting continuous random variables (CRVs), but this time we have also some atoms
as evidence.

To perform this kind of query we must distinguish three cases depending on what
type of evidence we have:

e The evidence does not contain atoms with CRVs (the probability of evidence is
not 0).

e The evidence contains non-ground atoms with CRVs, (the probability of evidence
is not 0).

e The evidence contains groundings of atoms with CRVs (its probability is 0).

For the first two cases you can use rejection sampling or Metropolis-Hastings. However,
when evidence on ground atoms have continuous values as arguments, we cannot use
rejection sampling or Metropolis-Hastings, as the probability of the evidence is 0, but
we can use likelihood weighting [161] or particle filtering [162, 163] to obtain
samples of the continuous arguments of a goal (see Subsubsection 12.4.2.3).

12.4.2.1 Case 1: evidence on atoms without CRVs

To sample the arguments of the queries with rejection sampling and Metropolis-Hastings
MCMC, we can use the following predicates
mc_rejection_sample_arg(:Query:atom, :Evidence:atom, +Samples:int,
?Arg:var,-Values:list).
mc_mh_sample_arg(:Query:atom, :Evidence:atom, +Samples:int,
+Lag:int,?Arg:var, -Values:list).
Example 12.4.3
Let us consider the same program of Example 12.4.2. We want to take 1000 samples
of X in mix(X) given that heads was true using rejection sampling and Metropolis-
Hastings MCMC. We can do it with the following predicates
?7- mc_rejection_sample_arg(mix(X),bheads, 1000, X,Values).
?7- mc_mh_sample_arg(mix(X),h heads,1000,2,X,Values).

12.4.2.2 Case 2: evidence on non-ground atoms with CRVs

We discuss this case by means of the example below.

Example 12.4.4

Let us consider the same program of Example 12.4.2. We want to take 1000 samples
of X in mix(X) given that X > 2 was true using rejection sampling and Metropolis-
Hastings MCMC. We can do that with the following queries

?7- mc_rejection_sample_arg(mix(X), (mix(Y),Y>2),1000,X,Values).
?- mc_mh_sample_arg(mix(X), (mix(Y),Y>2),1000,2,X,Values).

Hybrid Probabilistic Logic Programs with cplint 139

12.4.2.3 Case 3: evidence on groundings of atoms with CRVs

When we have evidence on ground atoms that have continuous values as arguments,
we need to use likelihood weighting [161] or particle filtering [162, 163] to obtain
samples of the continuous arguments of a goal.

Likelihood Weighting For each sample to be taken, likelihood weighting uses a
meta-interpreter to find a sample where the goal is true, randomizing the choice of
clauses when more than one resolves with the goal, in order to obtain an unbiased
sample. This meta-interpreter is similar to the one used to generate the first sample
in Metropolis-Hastings.

Then a different meta-interpreter is used to evaluate the weight of the sample. This
meta-interpreter starts with the evidence as the query and a weight of 1. Each time the
meta-interpreter encounters a probabilistic choice over a continuous variable, it first
checks whether a value has already been sampled. If so, it computes the probability
density of the sampled value and multiplies the weight by it. If the value had not been
sampled, it takes a sample and records it, leaving the weight unchanged. In this way,
each sample in the result has a weight that is 1 for the prior distribution and that may
be different from the posterior distribution, reflecting the influence of evidence.

The predicate

mc_lw_sample_arg(:Query:atom, :Evidence:atom,+N:int,?Arg:var,
-ValList:list).

returns in VallList a list of couples V-W where V is a value of Arg for which Query
succeeds and W is the weight computed by likelihood weighting according to Evidence
(a conjunction of atoms is allowed here).

Example 12.4.5 Bayesian estimation
Consider the following LPADC based on a problem proposed on the Anglican [164] web
site” .
value(I,X) :-
mean (M),
value(I,M,X).
mean(M): gaussian(M,1.0,5.0).
value(_,M,X): gaussian(X,M,2.0).

We are trying to estimate the true value of a Gaussian distributed random variable,
given some observed data. The variance is known to be 2 and we suppose that the mean
has a Gaussian distribution with mean 1 and variance 5.

Suppose we have taken different measurement (e.g. at different times), indezed
with an integer. Given that we observe 9 and 8 at indexes 1 and 2, we can ask how the
distribution of the random variable (value at index 0) changes, with the query

?- mc_lw_sample_arg(value(0,X), (value(1,9),value(2,8)),10000,X,V).

Shttp://cplint.ml.unife.it/example/inference/gauss_mean_est.pl
"http://www.robots.ox.ac.uk/~fwood/anglican/examples/viewer/?worksheet=
gaussian-posteriors

140 Inference in Probabilistic Logic Programming

This query takes 10,000 samples of the argument X of value(0,X) before and after
the observation of value(1,9),value(2,8).

Example 12.4.6 Kalman filter
The following LPAD® (adapted from [15]]) encodes a Kalman filter, i.e., a Hidden
Markov model with a real value as state and a real value as output.

kf(N,0,T) :- init(S), kf_part(O,N,S,0,T).
kf_part(I,N,S,[V|RO],T) :-
I < N, NextI is I+1,
trans(S,I,NextS),emit(NextS,I,V),
kf_part(NextI,N,NextS,R0,T).
kf_part(N,N,S,[],S).
trans(S,I,NextS) :-
{NextS =:= E+S},
trans_err(I,E).
emit(NextS,I,V) :-
{V =:= NextS+X},
obs_err(I,X).
init(S) : gaussian(S,0,1).
trans_err(_,E) : gaussian(E,0,2).
obs_err(_,E) : gaussian(E,0,1).

The next state is given by the current state plus Gaussian noise (with mean 0 and
variance 2 in this example) and the output is given by the current state plus Gaussian
noise (with mean 0 and variance 1 in this example). A Kalman filter can be considered
as modeling a random walk of a single continuous state variable with noisy observations.

Continuous random variables are involved in arithmetic expressions (in the pred-
icates trans/3 and emit/3). It is often convenient, as in this case, to use CLP(R)
constraints so that the same clauses can be used both to sample and to evaluate the
weight of the sample on the basis of the evidence, otherwise different clauses have to be
written.

Given that at time 0 the value 2.5 was observed, what is the distribution of the
state at time 1 (filtering problem)? Likelihood weighting can be used to condition the
distribution on evidence on a continuous random variable (evidence with probability 0).
CLP(R) constraints allow both sampling and weighting samples with the same program:
when sampling, the constraint {V=:=NextS+X} is used to compute V from X and NextS.
When weighting, the constraint is used to compute X from V and NextS. The above
query can be expressed in cplint, e.g. with 10000, as follows

?- mc_lw_sample_arg(kf(1,_02,T),kf(1,[2.5],_T),10000,T,L).

Particle filtering When you have a dynamic model and observations on continuous
variables for a number of time points, or your evidence is represented by many atoms,
likelihood weighting has numerical stability problems, as samples’ weight goes rapidly

8http://cplint.ml.unife.it/example/inference/kalman_filter.pl

cplint on SWISH: a Web interface for cplint 141

to 0. In this case, particle filtering can be useful, because it periodically resamples the
individual samples/particles so that their weight is reset to 1.

In particle filtering, the evidence is a list of atoms. Each sample is weighted by the
likelihood of an element of the evidence and constitutes a particle. After weighting,
particles are resampled and the next element of the evidence is considered.

The predicate

mc_particle_sample_arg(:Query:atom, +Evidence:term, +Samples:int,
?Arg:var, -Values:list).

samples the argument Arg of Query using particle filtering given that Evidence is true.
Evidence is a list of goals and Query can be either a single goal or a list of goals.

When Query is a single goal, the predicate returns in Values a list of couples
V-W where V is a value of Arg for which Query succeeds in a particle in the last set
of particles, and W is the weight of the particle. For each element of Evidence, the
particles are obtained by sampling Query in each current particle and weighting the
particle by the likelihood of the evidence element.

When Query is a list of goals, Arg is a list of variables, one for each query of Query;
in this case Arg and Query must have the same length as Evidence. Values is then
a list of the same length as Evidence and each of its elements is a list of couples V-W
where V is a value of the corresponding element of Arg for which the corresponding
element of Query succeeds in a particle, and W is the weight of the particle. For each
element of Evidence, the particles are obtained by sampling the corresponding element
of Query in each current particle and weighting the particle by the likelihood of the
evidence element.

Example 12.4.7
Consider the LPAD and the conditional query in Example 12.4.5. We can ask the same
thing by using particle filtering, with the query

?7- mc_particle_sample_arg(value(0,X),[value(1l,9),value(2,8)],
100000,X,V) .

12.5 cplint on SWISH: a Web interface for cplint

cplint on SWISH is a web application that allows users to perform reasoning tasks on
probabilistic logic programs. It uses the reasoning algorithms included in the cplint
suite, including exact and approximate inference and parameter and structure learning.

12.5.1 SWISH

SWISH? is a web application that allows the user to write Prolog programs and ask
queries through the browser. SWISH was originally written by Torbjorn Lager and later
extended by Jan Wielemaker. SWISH is based on SWI-Prolog and uses its Pengines
library [165], which allows to create Prolog engines from an ordinary Prolog thread,
from another Pengine, or from JavaScript running in a web client.

http://swish.swi-prolog.org/

142 Inference in Probabilistic Logic Programming

The SWISH page is divided into three panes, one with a program editor (on the
left), one with a query editor (on the bottom right) and one that shows the query
results (on the top right). When the user hits return after writing a query, a runner is
created that collects the text in the program editor (if any) and the query and sends
them to the server, which creates a Pengine (Prolog Engine). The Pengine compiles
the program into a temporary private module. The Pengine assesses whether executing
the query can compromise the system. If this fails, an error is displayed. If the query
is considered safe, it executes the query and communicates with the runner about the
results using JSON messages.

A Pengine is composed of a Prolog thread, a dynamic clause database (private to
the Pengine), a message queue for incoming requests and a message queue for outgoing
responses.

Pengines follow a master/slave architecture in which the master creates a Pengine
on the slave and posts a query to it. The conversations between the master and the
slave follow a communication protocol called the Prolog Transport Protocol (PLTP)
that is layered on top of HTTP.

We now show an example from [165]: we use pengine_create/1 to create a slave
Pengine in a remote Pengine server.

:- use_module(library(pengines)).
main :-
pengine_create([
server('http://pengines.org’),
src_text("
a(Xx) :- p(X).
p(a). p(b). p(c).
")
1),
pengine_event_loop(handle, []).

handle(create(ID, _)) :-
pengine_ask(ID, q(X), [1).

handle(success(ID, [X], false)) :-
writeln(X).

handle(success(ID, [X], true)) :-
writeln(X),
pengine_next (ID, [1).

The option src_text is used to send the program to be queried in textual form to the
Pengine. pengine_event_loop/2 is used to start an event loop that listens for event
terms and calls handle/1 on them. If the event term is create(ID,_), it means that
the Pengine with id ID has been created and the event handler uses pengine_ask/3 to
ask the query. Predicate pengine_ask/3 is deterministic, the results of the query will
be returned in the form of event terms. If the event term is of the form success(ID,
Query, More), ID is the Pengine’s id that succeeded in solving the query, Query holds
an instantiation of the query and More is either true or false, indicating whether we
can expect the Pengine to be able to return more solutions or not. If More is true,
handle/1 calls pengine_next/2 to get the following solution. Thus running main/@

cplint on SWISH: a Web interface for cplint 143

will write the terms q(a), q(b) and q(c) to standard output.

Code sent to Pengines is executed in a “sandboxed” environment that ensures that
only predicates that do not have side effects, such as accessing the file system, loading
foreign extensions, defining other predicates outside the sandbox environment, etc., are
called. Goals’ safety is validated using a call to safe_goal/1l of library(sandbox)
prior to execution.

SWI-Prolog also offers a JavaScript library pengine.js that allows the creation of
Pengine JavaScript objects. These, in turn, create Pengine objects on the server that
can be queried from JavaScript.

The SWISH web server is implemented by the SWI-Prolog HTTP package, a series
of libraries for serving data on HTTP [166].

SWISH exploits TogetherJS! in order to make the development of the code collab-
orative. TogetherJS is an open source JavaScript library built and hosted by Mozilla.
This library permits a real time interaction between users and offers different built-in
features:

Audio and Text Chat The collaborators can chat by talking or texting to each
other.

User Focus The collaborators see each other’s mouse cursors and clicks.

Co-browsing The collaborators can follow each other to different pages on the same
domain.

Real time content sync The content is synchronized between all the collaborators.

It is possible to start collaborating on SWISH by clicking the item “File” in the menu
bar and then clicking on “Collaborate..”. The TogetherJS dock will appear and you

can invite another user by sharing the generated link.

12.5.2 cplint on SWISH

In order to implement cplint on SWISH, we had to modify the foreign language C
library that PITA uses as interface to CUDD so that different threads can use it at
the same time. In fact, the library makes use of static global variables that hold
data structures including the BDD manager and the association between the random
variables and CUDD variables. If two different threads use the library, there would be
a conflict on these variables. Therefore, we added an extra argument Environment,
shortened Env, to all the library predicates defined in Subsection 12.2.1. This argument
holds data structures regarding an individual query, including the BDD manager, and
allows multiple threads to compute the probability of different queries, one thread per
query.

So init(-Env), when called, returns a pointer to a data structure storing the
environment that must be given as input to all the other predicates:

e zero(+Env,-D), one(+Env, -D)

Ohttps://togetherjs.com/

144 Inference in Probabilistic Logic Programming

e and(+Env,+D1,+D2,-D0), or(+Env,+D1,+D2,-D0),
not (+Env,+D1, -DO)

e equality(+Env,+Var,+Value, -D)
e ret_prob(+Env,+D, -P)

e end(+Env)

As a consequence, the PITA transformation of the LPAD must receive the variable Env
that stores the environment.

Note that the init/1 predicate, which initializes the BDD manager, is called for
each query, thus each query, and so each Binary Decision Diagram, is handled by a
different BDD manager. In this way if a thread crashes, the other ones will not be
affected, the client will be notified of the failure and a new query can be immediately
started.

To allow Pengines to execute the PITA library predicates, these must be declared
safe by the code:

:- multifile sandbox:safe_primitive/1.

sandbox:safe_primitive(pita:init).
sandbox:safe_primitive(pita:ret_prob(_,_)).

in the pita module file.

The PITA library was also modified with respect to the application of the transfor-
mation of the program. While PITA uses a predicate load/1 that loads the program
file and applies the transformation to it, we decided to use term expansion through
the predicate term_expansion/2, a de-facto standard in Prolog for source-to-source
transformations. When compiling a module, SWI-Prolog will consider each term T
in the program one by one and apply term_expansion(T,NewT), then it will compile
NewT instead of T. So if the user provides clauses for the term_expansion/2 predicate,
the system will compile a modified version of the input.

After loading pita with use_module(library(pita)), the PITA predicate set/2
must be used to set the PITA flag compiling to on. All the clauses for term_expansion/2
check this flag before performing the transformation. If it is not set to on, the trans-
formation is not applied. After setting compiling to on, a file containing an LPAD is
consulted to be translated into Prolog and loaded in memory.

Similarly, if a file containing an LPAD includes the directives
:-use_module(library(pita)). and :-set(compiling,on). atthe beginning, when
it is consulted from the top level it is transformed and loaded in memory.

cplint on SWISH has the interface shown in Figure 12.10.

It allows the user to write an LPAD in the left pane and write a query in the
bottom right pane. When the user presses enter at the end of the query or presses the
Run! button, a Pengine is created with the program. This is done by the runner.js
JavaScript file that creates a new Pengine object. The creation of the object was
modified by adding to the program source some directives for loading the pita library,
for disabling the check for discontiguous clauses and for enabling compilation. This is
done by the following snippet of runner.js:

cplint on SWISH: a Web interface for cplint 145

@cplint on SWISH Fie- Editv Examples Help~ & Search a A-

6 users online

@ New tab +

(@ RN Program Notebook JUE

based on
Empty | PITA. MCINTYRE | SLIPCOVER LEMUR ALEPH Student CLP

profile

Open source file containing

Search sources Q
Start of line | Start of word | Anywhere

? Your query goes here ...

Examplesa = Historya = Solutionsa () table results

Figure 12.10: cplint on SWISH interface.

data.prolog = new Pengine({

src: ":-use_module(library(pita)).
:-style_check(-discontiguous).
:-set(compiling,on). "
+ query.source,

oncreate: handleCreate,
3
that stores a new Pengine object in the runner’s data.prolog attribute. query.source
holds the program text.
The handleCreate function is performed at the creation of the Pengine and was
modified to allow the computation of the probability. The query given by the user is

sent to the Pengine with the ask method in a transformed form, i.e. the query atom
without the full stop is inserted into a call to s/2 in this way:

function handleCreate() {
var elem = this.pengine.options.runner;
var data = elem.data(’'prologRunner’);
this.pengine.ask("s(" +
termNoFullStop(data.query.query)
+",Prob)");

146 Inference in Probabilistic Logic Programming

elem.prologRunner(’setState’, "running");

}

Here data.query.query is a string containing the query. The top right pane will then
show the value of the Pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>