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Chapter 1 

 

Solid State Drive (SSD): a Non-

Volatile Storage System 

Over the last 15 years, NAND Flash memories have changed our lives: Flash cards 

(mainly in the SD – Secure Digital - form factor) have almost completely replaced 

photographic films, and USB-keys have driven floppy disks to extinction. Lately, thanks to 

a great trade-off between cost and performance (i.e. write/read speed), NAND Flash 

technology has begun fighting against Hard Disk Drives (HDDs) in the form of Solid State 

Drives (SSDs).  

In a nutshell, HDDs [1] can be seen as electro-mechanical devices because the 

information is stored on a spinning disk, covered with ferromagnetic material. A motor 

drives the spinning disk while a moving actuator arm has to tightly control the position of 

the magnetic head in charge of writing and reading to/from the storage media. The simple 

fact that there is a rotating disk implies that random access is limited by the mechanical 

movement of the disk; reaching a different area of the spinning plate in less than a 

millisecond is definitely tough. Modern applications like financial transactions, data mining, 

machine learning, and cloud computing need very fast access to stored data and HDDs 

aren’t the best fit for them. Moreover, the mechanical parts pose a major constraint on 

reducing the HDD form factor and they also represent a major source of power 

consumption.   

Smartphones and tablets have played a key role in looking for something different from 

HDDs because portable applications absolutely need less power-hungry and lighter storage 

devices. But this is not the only reason. Historically, if we focus only on access speed to 

stored data, DRAMs have greatly outpaced HDDs, thus creating a big gap in the so-called 

memory hierarchy, which is shown in Figure 1.1. It was exactly this gap that opened the 

door to new comers in the storage infrastructure, which, in the old days, was an exclusive 

domain of HDDs (and tapes). The abovementioned gap in read and write performances is 
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now so big that even NAND Flash memories cannot fill it entirely. The gap between 

DRAM and NAND is supposed to be covered by a new class of memories called SCMs, 

which stands for Storage Class Memories. Both industry and academia are placing a lot of 

effort in identifying and developing these new memories. MRAM (Magnetic RAM), 

ReRAM (Resistive RAM), Carbon Nanotubes, and 3D XPoint are some of the leading SCM 

candidates.   

1.1 Flash technology 

Let’s now take a closer look at NAND technology [2]. Flash memories are solid-state 

devices; in other words, they are “simple” pieces of silicon without any moving mechanical 

parts. Just because of that, there is no need for a motor, which greatly improves access 

speed to stored data by itself. As a rule of thumb, a NAND memory can be read in less than 

100 μs. More importantly, there is no difference between sequential and random access as 

there is no sensing head that needs to move across the silicon die. Being much faster than 

HDDs, SSDs have moved the speed bottleneck from the storage side to the Host side. 

Legacy storage interfaces like SATA (Serial ATA) and SAS (Serial Attached SCSI) are 

now running out of steam and this is why faster “computing” interfaces like PCI Express 

(PCIe) are gaining momentum in the storage market.  

In terms of capacity, a single NAND die can now store up to 512 Gbit and a single 

package can contain up to 16 dies in a 12 mm x 18 mm footprint. At this point, SSDs can 

really challenge HDDs in most of the applications. This massive storage density 

improvement has been enabled by two main technologies: 

- 3D (vertical) integration (Figure 1.2) [3]. NAND memory cells can be vertically 

stacked to form multiple memory layers within the same silicon die. The most recent 

devices have 64 layers but memories with more than 100 layers are expected to 

come in the near future. 3D Flash memories are reviewed in more details in Chapter 

3. 

- Multi-level storage (Figure 1.3). Flash storage is built around the ability of trapping 

and de-trapping electrons inside a MOS transistor. In practice, the population of 

trapped electrons acts as an electrostatic shield and it ends up modifying the 

transistor’s threshold voltage. By carefully modulating the number of electrons, 

multiple threshold voltages can be generated and translated into the digital domain. 
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For instance, 8 voltage values will result in 3 bits of digital information. Based on 

the number of voltage levels, NAND memories can be classified as follows: 

SLC: 2 threshold voltages, 1 bit per memory cell 

MLC: 4 threshold voltages, 2 bits per memory cell 

TLC: 8 threshold voltages, 3 bits per memory cell 

QLC: 16 threshold voltages, 4 bits per memory cell 

 

Figure 1.1 Memory hierarchy 

 

Figure 1.2 3D NAND Flash Memory Array: NAND strings go from planar (left) to 

vertical (right) 
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The abovementioned 512 Gbit devices are based on TLC storage but QLC devices are 

under development and they are expected to reach the market in the coming few years. 

 

 

Figure 1.3 NAND classification based on how many bits are stored per physical 

memory cell 

1.2 SSD’s block diagram 

When we open the case of an SSD, we find a complete system inside; human eyes can 

just see part of it, the hardware (HW) one, but the firmware (FW) part is as important. Let’s 

start from what we can immediately see. A simplified block diagram of a typical SSD’s HW 

is shown in Figure 1.4. Of course, there are plenty of NAND Flash memories, but the 

Microcontroller is definitely the brain of the system. It is also common to find other 

components like: 

- DC-DC converters to derive all the necessary internal power supplies; 

- quartz crystals for high precision clocks; 

- filter capacitors for filtering power supplies; 

- a network of temperature sensors for power management (for instance, if the 

temperature becomes too high, performances can be throttled not to exceed SSD’s 

power budget). 
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- fast DRAM components are used for data caching: when the System Host issues a 

write operation to the drive, data are actually first cached to reduce the transfer time 

seen by the Host, and then copied to the Flash sub-system.  

 

Figure 1.4 Solid State Drive – Block Diagram 

At a very high level, the SSD’s microcontroller (or simply Flash Controller) needs to 

take care of the following tasks [4]:  

• communication to/from the System Host; 

• communication to/from the Flash sub-system by using the selected electrical 

interface and protocol (e.g. ONFI or Toggle); 

• communication to/from DRAM sub-system; 

• read/write performances;  

• data integrity during all data transfers, and retention of the stored non-volatile 

information (which is very sensitive to temperature). 

Generally speaking, activities of Flash controllers can be grouped into six modules, 

which can be implemented either in hardware or in firmware, depending on design choices 

and target performances (Figure 1.5).  
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The first module connects the drive to the Host System (Host Interface in the block 

diagram of Figure 1.5). In other words, it enables the physical connection between Host and 

SSD based on the selected protocol (e.g. PCIe, SAS, SATA, etc.), thus ensuring both logical 

and electrical interoperability. Usually, this block is made of HW (e.g. buffers, drivers, etc.) 

and FW (e.g. one of the Cores is used to decode the command sent by the Host). When Host 

commands are decoded, the second module, the Flash Interface, kicks in. In essence, this 

second module translates all the decoded commands into low-level instructions for the 

NAND sub-system. Again, the controller needs to guarantee the electrical interoperability 

with NAND devices.  

The two most popular commercial NAND protocols are called ONFI and Toggle, and 

they are capable of transferring data in DDR mode up to 800 MB/s (1 GB/s and beyond 

might be possible in future generations). Another electrical interface (the third module, 

DRAM Interface) that needs to be handled by the Flash controller is the one towards DRAM 

components which is mainly used for data caching and for storing the mapping tables 

required by the FTL (see below). 

The fourth module is the Flash File System (FFS) [5]; the main goal here is to make an 

SSD look like a standard HDD to the Host, main reason being the possibility of re-using all 

the existing applications, not necessarily developed having in mind the specific properties 

of the solid-state storage. Typical FFS implementation is FW based, as sketched in Figure 

1.5. There are four main FW layers: Flash Translation Layer (FTL), Wear leveling, 

Garbage Collection, and Bad Block Management.  

In order to understand why there is a need for such a complex FW infrastructure, we first 

need to dig a little bit deeper in how Flash memories store data. Flash arrays start from the 

so-called “erased” state where all bits are set to “1”. Write (a.k.a. Program) operations can 

change the state of each single bit to “0”; in other words, writing is selective at the bit level. 

Unfortunately, we can’t state the same for the “erase” operation, i.e. the operation that 

brings the digital value back from “0” to “1”: erase can only act on group of cells called 

“blocks”. The whole Flash memory array is split in thousands of blocks, and each of them is 

made by hundreds (or thousand) of pages. Nowadays, each page is 16 kB long: read and 

write operations work on pages, in the sense that the user read and write data patters of 16 

kB in parallel.  

Because of this very unique storage functionality, a “simple” page update is actually not 

that simple. In fact, a page update implies changing some of the bits from “0” to “1” and 

this operation, in Flash terms, means erasing. The point is that a single erase operation 
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involves multiple pages and it can take several milliseconds to complete. Because it would 

take too long, what actually happens is that the updated page gets written to a different 

memory location and the original page (i.e. the page that needed to be updated) gets 

invalidated. As a consequence, there is a mismatch between physical and logical page 

addresses. This misalignment can be fixed by using tables to store the logical-to-physical 

mapping, and this is the so-called Flash Translation Layer or FTL. The number of tables 

can be huge and it can have a significant impact on the effective SSD’s storage capacity, if 

it is not carefully designed. 

Operation after operation (especially write and erase operations), NAND Flash memories 

wear out in the sense that it becomes more and more difficult to precisely control the 

number of electrons trapped inside memory cells; in other words, it becomes harder to 

generate the number of threshold voltages required for multi-level storage (MLC, TLC or 

QLC). Therefore, it is critical to spread operations across the memory array as much as 

possible. Wear Leveling algorithms are designed to accomplish this goal by leveraging the 

above-described concept of logical-to-physical translation.  

When the System Host wants to update a specific page within a specific block, the Flash 

controller dynamically maps the new content to a different block. Wear leveling algorithms 

are in charge of deciding which of the available blocks to pick. There are two possible 

strategies. Dynamic wear leveling looks for the block with the lowest erase count, while 

Static wear leveling choses among blocks whose erase count deviates from the average, 

even if they have been recently erased. Wear leveling needs a pool of “free” (i.e. erased) 

blocks. When the population of this pool goes below a threshold, a FW layer called 

Garbage Collection takes over.  

This algorithm selects the block that needs to be erased based on a pre-defined cost 

function; it copies the entire content to a different block, and then it triggers the erase 

operation such that the block can be moved to the list of available blocks. Usually, Garbage 

collection is a background operation to avoid any performance (throughput and latency) hit; 

in other words, write and especially read operations have higher priorities compared to erase 

operations, which take a much longer time to complete. Of course, given the same SSD’s 

workload, the bigger the memory capacity, the lower the number of operations that each cell 

has to experience.   

The fourth FW layer, the Bad Block Management (BBM) takes care of the so-called Bad 

Blocks (BB): these blocks contain unreliable cells and, therefore, can’t be used to store data. 

NAND Flash devices contain BBs when they are shipped from the factory, but new bad 
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blocks can pop up during SSD’s lifetime as a result of failures during either programming 

or erasing. BBM keeps track of BBs in a dedicated list, which has to be non-volatile. In fact, 

this list has to be retrieved at every boot of the drive (power-up) to avoid storing user data 

inside unreliable memory cells.  

Let’s now go back to Figure 1.4. The fifth module inside the Flash controller is the one 

performing the error recovery, i.e. the Error Correction Code (ECC) [6]. Historically, BCH 

(Bose-Chaudhuri-Hocquenghem) code has been the code used to enhance NAND 

reliability, mainly because its HW implementation is relatively simple. Most recently, 

LDPC (Low density Parity Check) codes [7] have caught a lot of attention because they can 

get much closer to the Shannon limit.  

With Flash technology moving to high 3D stacks and QLC coming in few years, the 

possibility of correcting more errors becomes very attractive. LDPC codes leverage 

complex algorithms, require more logic gates and, therefore, consume more power. 

Therefore, there is a big research activity in this space trying to find the right trade-off 

between correction performances and HW cost. 

 

 

Figure 1.5 Functional view of a Flash controller 

Last but not least, in Figure 1.4 we have the Media Management module. By media we 

mean either NAND Flash or any other emerging non-volatile memories (e.g. ReRAM, 

MRAM, etc.). Given the fact that LDPC codes are approaching the Shannon limit, there is 

not so much space left for improving the SSD’s lifetime by “simply” increasing the number 

of errors that the Flash controller can recover. As a result, there is the need for reducing the 
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BER growth rate such that the ECC maximum correction capability is reached at a higher 

count of Program/Erase cycles, as sketched in Figure 1.6.  

When looking at Flash technology, all the techniques used to mitigate the NAND raw 

BER fall under the term Flash Signal Processing (FSP) [8]: data randomization and read 

oversampling (a.k.a Read Retry) are popular examples of these techniques. Therefore, the 

Media Management module is in charge of executing FSP.  

 

Figure 1.6 Flash Signal Processing is used to mitigate NAND BER growth 

1.3 Hybrid SSDs 

Most recently, both industry and academia have increased their research effort in the hybrid 

memory management space, developing a wide variety of systems. Actually, “hybrid” is a 

generic term because it can have different meanings depending on the context. For instance, 

at the system level, storage can be hybrid because it combines HDDs and SSDs together. A 

single SSD can be hybrid because of two reasons: 

• it embeds different types of NAND memories: SLC and TLC, SLC and QLC, etc.;  

• it combines different non-volatile memories like NAND and ReRAM, MRAM, 

PCM, etc.   

Of course, the combination of different memories in the same system boosts the complexity 

to a completely different level, both in terms of firmware and data management. Indeed, in 

order to exploit all the benefits of the different memories, applications running on the 

System Host side have to carefully decide where it is more convenient to store a particular 
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set of data. This opens the box to the concept of “data temperature”: data are defined as 

“hot”, “warm”, and “cold” depending on how frequently they are updated and accessed.  

Solid State Drives are changing the way people store and process data, but SSDs are very 

complex systems to build because they require a sophisticated mix of hardware, software, 

and firmware. On top of that, non-volatile memories can be of different types, involving 

totally different storage mechanisms, each of them with its own reliability challenges. All of 

the above considerations imply tens of billions of dollars spent in R&D worldwide each 

year, with engineers from all over the places scratching their heads to solve very complex 

problems: mathematics, physics, circuit design, process technology, manufacturing, 

lithography, signal processing, and testing techniques are all called to give their contribution 

to drive the evolution of SSDs even further. 

 

In the next chapter we’ll address the topic of how to design high performance SSDs, as this 

an area where a lot of innovation is required. 
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Chapter 2

Memory-driven design

methodologies for high

performance SSDs

Solid State Drives (SSDs) are one of the electronic systems with the higher devel-

opment rate in the last decade: they are widely used in hyperscale systems such as

cloud computing and big data servers where performance is a constraint, as well as

in consumer electronics as a replacement for traditional hard-disk drives (HDDs) [1].

SSDs’ design, in the last 5 years, faced an extraordinary evolution caused by the

continuous development of NAND Flash memories which are used as the storage

medium [2]. Indeed, as shown in Fig. 2.1, NAND Flash memories have completely

transformed the way information is processed and stored. Starting as film and tape

replacement for cameras and voice recorders, NAND Flash memories rapidly surpassed

traditional magnetic storage supports and now they represent an obliged choice for

high-performance storage solutions. The availability of NAND Flash-based SSDs

also materialized as an astonishing proliferation of global-scaled corporations whose

commercial strength is tightly coupled to the availability of SSDs engineered for big

data centers and cloud computing. The previous developing strategy of SSDs, in fact,

was based on a full compatibility with HDDs and therefore the SSDs’ performance

optimization was focused on that of the Flash Translation Layer (FTL), the firmware

managing the basic memory operations [3, 4, 5]. As mentioned in Chapter 1, FTL

is responsible for a plug-and-play connection between the host system, where the
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Figure 2.1: Evolution of NAND Flash-based systems: from tape, film

and floppy disk replacement to the explosive SSDs applications for cloud

computing and big data centers

application is running, and the SSD. It must also be considered that in the last 4

decades user applications have been designed to work with traditional magnetic HDDs,

which are conceptually different from SSDs. Therefore, rather than redesigning the

whole architecture of the application, it is more convenient to leverage a command

translation layer.

The development of SSDs was made possible by the use of sufficiently reliable

Single Level Cells (SLC) NAND Flash memories [6], storing a single bit per cell in the

traditional 0/1 digital paradigm with a low read error probability, thus requiring the

design of simple engines for Error Correction Codes (ECC) [7]. The SATA protocol

[8] sitting between the memory system and the host was sufficient to guarantee the

requested Quality of Service (QoS), that is the ability of keeping a sustained perfor-

mance over time within a defined threshold [9, 10]. As a whole, the SSD architecture

optimization and the development of dedicated CAD tools for the exploration of the

SSD design space were FTL-oriented, in a top-down approach.

In the last few years, the need for SSDs with higher storage capacities and per-

formance combined with the availability of high density NAND Flash memories able

to store 2, 3 or even 4 bits in a single cell [11], moved the design paradigm from

a Top-Down to a Bottom-Up approach, where the performance and the reliability
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of the storage medium dictate the design constraints [12]. The reliability of NAND

Flash memories with scaled technologies, in fact, suffers from several physical mecha-

nisms. Reliability’s key metrics are: i) Endurance, that is the maximum number of

Program/Erase (P/E) operations that the memory can withstand before leading to a

failure; ii) Data Retention, i.e. the ability of a memory to keep a stored information

over time without power supply; iii) the immunity to Read Disturbs, which represents

the stress suffered by a memory cell when neighbor cells are read [13, 14, 15].

In NAND Flash memories, the stored information is associated to the amount of

charge present in the storage layer. P/E (Program/Erase) operations rely on charge

transport through a thin oxide via Fowler-Nordheim (FN) tunneling into/from the

storage layer [16]. Electron tunneling is responsible for a slow but continuous oxide

wear out, thus causing undesired charge flowing into/from the storage layer. As the

number of P/E cycles increases, this effect strongly impacts the writing operation. To

deal with endurance effects, sophisticated (but slow and power hungry) algorithms

are adopted to tightly control the amount of charge transferred into/from the storage

layer [17]. However, the relentless oxide degradation strongly affects the ability of

keeping unaltered the charge content into the storage layer for long times, a manda-

tory requirement to fulfill the nonvolatile paradigm. These reliability issues become

more and more significant in Multi-Level Cells (MLC) [18], Triple-Level Cells (TLC)

[19] and Quadruple-Level Cells (QLC) [20] storing 2, 3, and 4 bits per cell, respec-

tively, where the undesired transfer of few electrons into/from the storage layer may

significantly alter the memory information content. Hereafter, MLC, TLC, and QLC

architectures will be generically denoted as multilevel cells.

The key metric describing the NAND Flash memory reliability is the Raw Bit

Error Rate (RBER), which represents the fraction of erroneous bits retrieved during

a read operation [15]. The RBER value increases with: technology scaling, the number

of bits that a cell can store, the number of P/E operations, the time elapsed between

two successive read operations, and the number of repeated read operations on the

same memory location. As a matter of fact, RBER is the new driver for architectural

and software design of present SSDs [21].

Multilevel NAND Flash memories require the availability of an ECC able to cor-

rect the errors detected when reading the memory. The choice of the ECC code

together with its hardware design represent the key point for present SSDs design
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since they must be carefully calibrated with respect to the figures of merit of the

selected nonvolatile memories. Indeed, a too simple ECC scheme may not be able to

guarantee a suitable reliability, whereas a too complex one may reduce severely the

read bandwidth because of the time required for error correction, with a consequent

impact on the system power consumption [22]. On the basis of the selected ECC

code and of the designed ECC engine, an optimal error reduction algorithm for the

memory read operation can be identified. The selection of the appropriate NAND

Flash memories and the identification of the adequate ECC scheme represent the key

point to guarantee a high QoS for the SSD to be designed.

Once the ECC scheme has been designed, the Bottom-Up design flow rises to the

memory controller, representing the interface towards the ECC engine and the mem-

ory storage system. The bandwidth provided by the ECC block must be guaranteed

by the controller, to avoid that the design efforts devoted to optimize the ECC scheme

vanish. With this respect, the SSD controller must be designed in order to manage a

sufficient amount of commands to fully exploit the bandwidth of the underlying stor-

age system. Similarly, also the interface towards the host must be able to guarantee

the expected bandwidth. For this reason, SATA protocol is no longer able to deal

with the performance made available by the other blocks in the SSD architecture [23]

so that SAS [24] and PCI-Express [25] are adopted for enterprise environments.

If this new bottom-up approach in the SSDs design flow is the way to go, then

CAD tools for SSD design must change accordingly, thus reducing the effort previously

spent on FTL design [26].

In this chapter, starting from a review of the basic reliability issues in multilevel

NAND Flash memories, several aspects related to the design of an SSD architecture

will be presented. Emphasis will be given to the choice of the appropriate ECC code,

the design constraints of the ECC engine able to guarantee the optimal trade-off

between performance and reliability [27], the controller design, and the selection of

the host interface protocol able to sustain the bandwidth provided by the storage

system. We will explain why the SSD performance rapidly decreases with use and

time and why a different design approach allows fully exploiting the NAND Flash

features, thus extending the SSD’s lifetime.

This chapter is organized as follows: in Section 2.1 multilevel NAND Flash op-

erations and reliability are analyzed with emphasis on how oxide ageing impacts on
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endurance, data retention, and read disturb. Section 2.2 is devoted to ECC and the

impact of the decoding time on data read throughput. Section 2.3 deals with the ad-

vantages introduced by dedicated command queueing strategies, and by the adoption

of DRAM-caching [28]. In Section 2.4, the criteria for the optimal host interface se-

lection are addressed, focusing on the trade-off between cost and perfomances, on the

relationship between queue depth and bandwidth, and on the host payload co-design

for optimal performance exploitation. Finally, in Section 2.5, the chapter speculates

on future research opportunities made possible by high-performance SSDs with multi-

core Flash controllers, such as software defined storage systems [29].

2.1 NAND Flash memory cells: basic operations

and reliability

The most common Flash memory cell is a metal-oxide-semiconductor device with an

electrically isolated floating gate (FG). The insulation is achieved by a tunnel oxide

and an interpoly oxide (see Fig. 2.2) [30]. The former oxide plays a basic role for the

control of the device threshold voltage VT whose value represents, from a physical point

of view, the stored information. In quiescent conditions, thanks to the two oxides, the

charge stored into the FG does not leak away, thus granting the nonvolatile paradigm

fulfillment.

Figure 2.2: Standard floating gate memory cell used in NAND architec-

tures

By referring, for the sake of simplicity, to a SLC architecture, programming is per-

formed by injecting electrons within the FG, whereas erasing is performed by removing
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Figure 2.3: Threshold voltage distributions in SLC cells. VTPminx and VTPmax

represent the minimum and the maximum target VT for a programmed cell,

respectively. VTEmax represents the maximum VT for an erased cell while

VR denotes the read voltage.

that charge from the FG [31]. The charge within the FG modifies substantially the

cell’s threshold voltage VT and, consequently, the voltage to be applied to the Control

Gate (CG) to switch the cell ON, as well as the current flowing through the device

when a fixed voltage VCG is applied to the CG [32]. Cell writing occurs thanks to the

FN tunneling [16]: by applying high electric field to the tunnel oxide, it is possible to

transfer charge to/from the FG. This operation requires an accurate control of both

VCG and the pulse duration tp, since VT must be placed in a well defined interval

[VTPmin, VTPmax] (see Fig. 2.3, where the VT distributions of a cell array are shown).

Using VT < VTPmin would reduce the read margin, whereas VT > VTPmax could pro-

voke read errors in other cells of the array due to the over-programming phenomenon

[33, 34].

During a cell programming, the charge injected within the FG reduces the electric

field applied to the oxide. Therefore, to avoid a reduction of the program efficiency,

this operation is accomplished by applying to the CG a sequence of pulses with dura-

tion tp and increasing amplitude. Each pulse is followed by a verify operation [35] that

ends the program operation when the target VT interval has been reached, thus real-

izing the so-called Incremental Step Pulse Programming (ISPP) algorithm [17, 36]. It

can be demonstrated that the amplitude increment ∆VCG almost coincides with the

threshold shift ∆VT produced by the pulse itself [37]. The choice of the two parame-

ters, ∆VCG and tp, allows controlling the overall programming time and the accuracy
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Figure 2.4: Threshold voltage distributions in MLC and TLC cells. For

the MLC case the 3 reference voltages VR1, VR2, and VR3 are shown, whereas

for the TLC case only 2 out of 7 reference voltages are shown.

of the placement of the cell VT within the target interval. Long pulses and/or high

∆VCG reduce the programming time but it becomes more difficult to control the cell’s

final VT , whereas short pulses and/or reduced ∆VCG increase the programming time

but allow a tighter control of the number of electrons transferred to the FG [37, 38].

Read operation is performed by evaluating the current flowing through the cell

when a fixed reference voltage VR is applied to CG (see Fig. 2.3) [30, 39]. In a

programmed cell (high VT ) the current is ”low” and the read circuitry outputs a bit

equal to ”0”, whereas in an erased cell (negative VT ) the current is higher and it is

interpreted as a ”1”.

With the introduction of multilevel architectures (MLC, TLC, QLC), program-

ming and reading operations become much more complex [18, 19, 20]. Since VTPmax

cannot be increased because of reliability constrains [40], 3, 7 or even 15 different

threshold intervals must be allocated within the same voltage range, each one cor-

responding to a different set of 2, 3 or 4 bits stored within the cell (see Fig. 2.4).
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The amplitude reduction of each interval calls for a very tight control of the charge

injected within the FG. Since the relationship ∆VCG ≃ ∆VT is still valid [37], the ∆VT

reduction forces the overall program time to increase with the number of bits stored

in a cell. In a similar way, a read operation requires longer times since successive read

procedures with different threshold voltage references must be considered [19, 18]. In

addition, the reduced distance between adjacent intervals may trigger read errors.

The erase operation brings the cells back to the logic ”1” state and it acts simulta-

neously on all the cells belonging to the same ”block”. Cells sharing the same Source

line belong to the same memory block [41, 42].

The operations of Flash memory cells described so far refer to an ideal case. In the

real world, tunnel oxides face a continuous wear-out, thus reducing the FN efficiency

and triggering long-term reliability effects; the charge stored in the FG is not stable

but leaks away producing read errors; cell’s dimensions are so scaled that cell-to-cell

variability must be taken into account too [43]; the number of electrons injected in

the FG is so small that statistical effects during programming may produce errors.

Finally, even an ideal cell is embedded in a complex array architecture so that write

and read operations performed on neighbor cells may alter its stored content.

Damages in the tunnel oxide represent the main reason for reliability degradation

in Flash memories. Because of the continuous charge transport through the insulator,

traps can be created at the SiO2 interfaces or within the oxide, thus modifying the FN

tunneling dynamics [13, 40, 44]. The ability of tightly controlling threshold voltage

distributions decreases with the number of Program/Erase (P/E) operations, and this

fact impacts memory endurance [14, 15]. Fig. 2.5a sketches the effects of a reduced

ability in producing tight distributions as the number of P/E cycles increases. The

Program & Verify approach stops the program operation of a cell when the target

threshold interval has been reached [35]. However, because of the tunnel oxide wear-

out, some cells can be slightly over-programmed and their thresholds could end in

an adjacent interval [33, 40]. As a consequence of this distribution broadening, read

errors are produced. Fig. 2.6 shows the RBER measured in a TLC NAND Flash

manufactured in the 1x-nm planar technology node as a function of the number of

P/E cycles, evidencing a reliability reduction induced by successive write operations.

Oxide ageing and traps creation also reduce the data retention feature, that is the

ability of keeping unaltered the charge within the FG when the cell is in a quiescent
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Figure 2.5: Shifts of the threshold voltage distributions in TLC cells caused

by oxide ageing (dashed line: virgin samples; full line: ageing effects).

Shifts towards higher intervals are caused by endurance effects (a), since

the correct placement of the threshold voltage in a given interval becomes

more difficult, whereas shifts towards lower intervals are due to electrons

escaping from the FG causing a reduced data retention (b).

Figure 2.6: RBER measured in a 128 Gb TLC NAND Flash die manufac-

tured in the 1x-nm planar technology node as a function of the number of

P/E cycles, up to twice the rated endurance (900 P/E cycles).
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state. Electrons may escape from the FG because of trap-assisted tunneling or Stress-

Induced-Leakage-Current (SILC) effects [45, 46, 47, 48, 49, 50]. Fig. 2.5b shows the

threshold distribution shifts during retention. The risk that the threshold of a cell

shifts to an adjacent interval increases significantly with the number of bits stored in

a single cell. It is worth pointing out that in a MLC or TLC architecture the number

of electrons differentiating two adjacent intervals is in order of few tens, whereas in

QLC cells it is sufficient that one or two electrons escape from the FG to produce a

read error [51].

Besides the degradation mechanisms related to oxide wear-out described so far,

other effects may worsen the ability of controlling the correct number of electrons to be

transferred in the FG during a single programming pulse. Among them, the Random

Telegraph Noise (RTN) related to filling/empting of tunnel oxide traps affects the

VT distributions stability few microseconds after the application of the programming

pulse, creating distribution tails below the target verification level [52, 53, 54, 55].

Additionally, positive trapped charge in the tunnel oxide during cycling results in a

modified FN tunnel dynamics that may trigger erratic effects [33, 56, 57, 58]. These

sporadic mechanisms, that may potentially affect any cell in the array, have a random

and transient nature; they can occur during any programming pulse and they may

produce threshold shifts larger than expected, with the risk of programming some cells

with a threshold voltage larger than the desired one. The limited number of electrons

discriminating between adjacent intervals makes the programming operation discrete

[38, 59, 60].

Fig. 2.7 shows the schematic of a typical memory array. Cells are organized in

strings, which are the minimum read unit. Read and program operations are per-

formed page-wise, by reading/programming simultaneously 8 kB or 16 kB cells be-

longing to the same word line [32].

Architectural solutions for memory operations may also affect the overall reliabil-

ity, by producing errors and even cell failures. The most common effects are the so

called disturbs, that can be interpreted as the influence of an operation performed

on a cell (Read or Write) on the charge content of a different cell. Read disturbs

are the most frequent source of disturbs in NAND architectures [32, 61, 62]. This

kind of disturb may occur when reading many times the same cells without any erase

operation of the entire block they belong to. All the cells belonging to the same string
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Figure 2.7: Schematic organization of a NAND flash array. Each cell string

is connects to a Bit line and a Source line through two select transistors

(BLS and SLS, respectively).

of the cell to be read must be driven in an ON state, independently of their stored

charge (see Fig. 2.8). The relatively high VPASS > VTPmax applied to the CG of the

unselected cells to turn on their conduction and the sequence of pulses applied during

successive read operations may induce a charge gain due to SILC effects [61] or hot

carrier effects [62]. These cells suffer a threshold voltage shift that may lead to read

errors, when addressed. The probability of suffering from read disturb increases with

the P/E number (i.e., towards the end of the memory useful lifetime) and it is higher

in damaged cells. Read disturbs do not provoke permanent oxide damages: if erased

and then reprogrammed, the correct charge content will be present within the FG.

The NAND Flash technology scaling has introduced additional disturbance mech-

anisms affecting the array reliability: the cell-to-cell interference [63, 64, 65, 66] and

the Gate Induced Drain Leakage (GIDL) [67, 68]. The former issue is mainly caused

by the FG coupling due to parasitic capacitances between cells, thus it is greatly af-
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Figure 2.8: Representation of read disturb in a NAND Flash array when

reading cells in the WLi word line. All cells sharing the same strings

(marked in gray) are potentially affected by the read disturb.

fected by cell scaling, and is well known to widen the VT distributions by producing

read errors. The latter effect is due to the usage of the self-boosting technique to

inhibit unselected cells during programming [69]. An electron-hole pair generation

mechanism triggered by high electric fields during the program operation leads to the

generation of charge in the region between the Source Line Selector (SLS) and the

W L0 that can be injected as hot electrons in the floating gate of cells belonging to

W L0 [67]. To avoid this effect, dummy word-lines need to be integrated in the array.

2.2 The impact of ECC on SSD’s performances

As summarized in the previous section, because of endurance problems, poor data

retention or read disturbs, the actual threshold voltage read in a cell may be different

from the programmed one [15]. Therefore, when a page is read, some cells may

return a wrong value, thus producing read errors. To overcome these problems, data
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encoding guaranteeing a reconstruction of the correct read page data is mandatory in

electronic systems using NAND Flash memories.

The correction capability of the code to be adopted is strictly related to the error

probability. For a given technology node, since physical degrading mechanisms are

the same independently of the different storage paradigms (SLC, · · · , QLC), the error

probability increases with the number of bits stored in a single cell since the smaller

the number of electrons associated to each data pattern, the higher the probability of

having a VT different from the expected one.

In the first SLC memories, thanks to the large VT gap between the two threshold

voltage distributions, the error probability was very low, so that Bose-Chaudhuri-

Hocquengham (BCH) codes able to correct few tens of bits in a 1 kB or 2kB page

were sufficient. With limited number of errors to be corrected, the correction time

was not an issue and the read bandwidth and latency were marginally affected by the

use of ECCs [70]. Read bandwidth is the number of read operations sustained in a

given time, whereas latency is the time elapsed between a read command submission

and its completion. Fig. 2.9a shows the typical blocks for ECC engines based on BCH

codes: a high-speed encoder is connected to each one of the Nc SSD channels (that is a

bus used to communicate with an array of Nd memory dies), whereas a reconfigurable

parallel decoder (i.e. a multi-engine decoder) is shared among the channels [71].

The structure of the decoder is represented in Fig. 2.9b, where the Syndrome block

determines whether an error is present, the Berlekamp-Massey block calculates the

coefficients of the error locator polynomial, and the Chien machine locate the errors

[70].

In multilevel architectures the number of errors to be corrected increases by an

order of magnitude for any further bit stored in a single cell. Although ECC engines

based on BCH codes are still used thanks to their simple hardware implementation,

high numbers of bits to be corrected may impact significantly on the overall read

time. As a consequence, the correction time may become the bottleneck of the entire

read procedure [21]. In addition, because of the high number of errors, the probabil-

ity of having uncorrectable pages (that are pages read with a number of wrong bits

higher than the ECC correction capabilities) increases [72]. When a page is marked

as uncorrectable, the read operation fails and the page content is irremediably lost.

The adoption of parallel decoding architectures can reduce the bandwidth and latency
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Figure 2.9: a): schematic representation of an ECC architecture based

on BCH codes. A high-speed encoder is connected to each SSD chan-

nel whereas a a reconfigurable parallel decoder is shared among the Nc

channels. b): schematic representation of the BCH decoder.

degradation (at the expenses, however, of both area occupation and power consump-

tion) but it cannot solve the problems caused by uncorrectable pages.

To deal with the presence of uncorrectable pages, two alternatives exist: i) keep

BCH codes and their ease of implementation while defining sophisticated read al-

gorithms in order to reduce the number of errors [73, 74]; ii) develop ECC solutions

based on different coding concepts, like Low Density Parity Check (LDPC) codes [75].

In the former case, the basic idea in the presence of uncorrectable pages consists in

re-read the page with different read reference voltages, in the attempt of tracking the

shift of the threshold voltage distributions. Such a solution led to the development of

different read algorithms, generally defined as read retry [73]: they are automatically
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Figure 2.10: Schematic representation of an ECC architecture based on

LDPC codes. The decoding path is composed by two main blocks: the

hard decoding, whose architecture is similar to that designed for BCH

engines and the soft-level decoding.

managed by the ECC engine and they call for (at least) a page re-reading with the

unavoidable degradation of the read bandwidth. The latter solution adopts LDPC

codes that, differently from BCH codes, present a much higher correction capability

[75]. Fig. 2.10 shows the typical blocks for ECC engines based on LDPC codes: the

decoding engine is composed by two main blocks: the Hard Decoding (HD) and the

Soft Decoding (SD).

From an operative point of view, LDPC decoding works as follows. As shown in

Fig. 2.4, multilvel NAND Flash memories are read page-wise by using a set of read

reference voltages, hereafter denoted as HD0 (see Fig. 2.11a showing the read reference

discriminating between two adjacent threshold voltage distributions). Cells are read

as 1 or 0 depending on their threshold voltage VT with respect to HD0. If during the

ECC decoding phase the page is evaluated as uncorrectable, the LDPC decoding al-

gorithm can be retried with the SD. To accomplish this second step, more information

about the actual position of the NAND Flash threshold voltage distributions must be

collected. Basically, the algorithm moves sequentially the internal read references to

SD10 and SD11 (Fig. 2.11b) thus reading the page twice. Data are transferred to the

LDPC decoder and then they are bit-wise combined with those previously read with
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Figure 2.11: NAND Flash read references used in the two levels LDPC

sensing scheme to discriminate between two adjacent threshold voltage

distributions. A memory page is read by setting the read voltage at HD0

and determining, for each bit, whether VT < HD0 or VT > HD0 (a). If the

ECC engine is not able to correct possible read errors, the soft decision

algorithm starts and the page is read twice by moving the read references

around HD0, to SD10 and SD11 (b). If the page is still marked as uncor-

rectable, the page is read again with the SD20 and SD21 references (c).

Reprinted with permission from [76].

HD0. This step is possible because during the whole SD process the data read with

the HD0 reference are stored in a dedicated buffer inside the SSD controller and used

as a reference.

Thanks to this multiple read operation it is possible to calculate the information

needed by the SD: the Log-Likelihood Ratios (LLRs) [7]. The calculated numbers are

used as input for the soft decoder and are defined as follows:

LLR(yi) = ln
P (x = 0|yi)

P (x = 1|yi)
= ln

P (yi|x = 0)

P (yi|x = 1)
(2.1)

where P is the probability, whereas x and yi represent the transmitted (i.e., the

programmed value) and the received (i.e., the read bit) symbols, respectively [77].

As a matter of fact, when a set of read reference voltages is used (SD10 and SD11),

Eq. (2.1) defines that the LLRs can be viewed as the probability of reading a 0 or

a 1 given the value of a specific programmed bit [7]. In other words, the higher the

absolute value of the LLR is, the higher the confidence that the read bit is correct.

[78].

An example of the result of the SD process is sketched in Fig. 2.12. As it can be
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Figure 2.12: Voltage threshold partitioning performed during a one Soft

Decoding (SD). Four regions (A1, A2, A3, and A4) are marked by HD0,

SD10, and SD11.

seen, the bit-wise combination of the data read from the NAND flash memory defines

four different regions of the threshold voltage distributions. These represent de facto

a probability density function of the programmed cells: the probability that a bit

belongs to one of the areas (Ai with i = 1, ..., 4 in the example of Fig. 2.12) identified

by the hard and the soft references is defined as follows:

P (X ∈ Ai) =

∫
Ai

pX(x)dx (2.2)

where X represents the programmed bit, and pX(x) is the actual threshold voltage

distribution. At this point, it is clear that to extrapolate the LLRs expressed in Eq.

(2.1) it is sufficient to calculate a bounded logarithmic ratio between the number of

cells read as 0 and those read as 1.

Once the LLRs are calculated for all the regions, instead of using the raw bits

coming from the NAND flash memory (HD decoding sketched in Fig. 2.13a), the SD

decoder translates the bit-wise combination of the data read with HD0, SD10, and

SD11 with the corresponding LLR values, and it starts the decoding procedure (see

Fig. 2.13b). At this point, a purely probabilistic decoding process is triggered.
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(a)

(b)

Figure 2.13: Difference between the HD and the SD decoding phase. When

HD is considered, raw bits coming from the NAND flash memory are used

as input of the decoder. In this example after the decoding step one bit

is still in error, therefore SD is required. When SD is considered, LLRs

computed by the bit-wise combination of data read with HD0, SD10, and

SD11 are used as input (see Fig. 2.12).

If the decoding process still fails, a second iteration is performed by moving the

read references to SD20 and SD21 (Fig. 2.11c) and comparing the new read data
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Table 2.1: LDPC and BCH features benchmark (data from [82]).

BCH LDPC

Decoding Algorithm Algebraic-based Probability-based

Guaranteed correction Yes No

Soft Bit Decoding Hard (Read Retry) Easy

Hard Decoding Performance Code dependent Similar to BCH

Soft Decoding Performance - 2X-3X

Decoding complexity Low High

Power consumption Medium High

Cost Low High

with those previously analyzed and stored in the dedicated buffer. In this case the

number of regions defined by the read voltage references switch from 4 to 6, therefore

the LLRs values must be computed again by the decoder. The algorithm continues

this process until the page is correctly read or the maximum number of soft-levels

is reached and the page is marked as uncorrectable [22]. Finally, since LDPC codes

provide a probabilistic correction, they are not immune from errors like false-decoding

that occurs when the ECC performs erroneous correction while declaring successful

decoding [79]. The presence of false-decoding errors is strictly related to the LDPCs

mathematical characteristics and, therefore, it is essential to identify a priori the

algorithm minimizing these errors [70].

LDPC codes, although presenting much higher correction capabilities with respect

to BCH, can still fail the correction process in presence of pages with large numbers of

errors. Also in these cases there exist re-reading algorithms (for instance the multiple

soft decision) that can correct pages initially marked as uncorrectable at the expense

of the overall reading time [80, 81, 76]. Table 2.1 summarizes the features of LDPC

and BCH described in this section.

To evaluate the optimal ECC engine design in terms of HD and SD implementa-

tion, the knowledge of the actual memory RBER is mandatory. With this respect, it

is usual to leverage a worst-case design methodology where the correction strength

figure of the HD is compared with the maximum percentage of uncorrectable pages

measured at the end of the memory’s lifetime. Fig. 2.14 shows this process when a

33



Figure 2.14: Correction strength of both HD and SD when a LDPC able

to correct up to 100 Bits in a 4320 Bytes codeword is considered for a

128-Gbits TLC NAND Flash memory manufactured in a planar 1x-nm

technology node. Points A and B represent the maximum measured per-

centage of uncorrectable pages at the end of the memory lifetime, when

HD and SD are used, respectively.

LDPC able to correct up to 100 bits in a 4320 Bytes codeword is considered for a

TLC NAND Flash memory manufactured in a planar 1x-nm technology node. Point

A marks the maximum percentage of uncorrectable pages measured at the end of the

memory’s lifetime. As it can be seen, in this case switching from the HD to a one bit

SD is sufficient to correct all the errors (point B). Other correction strategies like a

two bits SD, become an over-design.

The above considerations are mandatory when it is required to design the optimum

LDPC architecture (both in terms of correction strength and correction bandwidth)

for the target SSD. In fact, since the SD directly impacts the drive’s bandwidth,

once the correction strategy is defined (a one bit SD rather then a two bits SD) and

the decoder’s bandwidth is fixed, it is important to find the right balance between

the number of HD and SD decoders. Fig. 2.15 shows the read bandwidth obtained,

for different HD implementations, in a 2 TB SSD featuring 16 channels each one
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Figure 2.15: Read bandwidth evolution as a function of the number of

P/E cycles in a 2 TB SSD featuring a PCI-Express GEN3x4 host interface

and 16 channels each connected to eight 128-Gb TLC NAND Flash dies

manufactured in a planar 1x-nm technology node with a rated endurance

of 900 P/E cycles. The ECC engine is composed by a variable pool of

HD decoders and a single SD decoder. Each hard decoder has a decoding

bandwidth of about 1.2 GB/s.

connected to eight 128-Gbits TLC NAND Flash dies manufactured in a planar 1x-nm

technology node, as a function of the number of P/E cycles. The correction strategy

used in this example is the same sketched in Fig. 2.14, therefore, a 1 Bit SD has been

used. All results have been obtained by using the SSDExplorer simulator [26]. Since

each hard decoder has a bandwidth of 1.2 GB/s and the SSD host interface is a PCI-

Express GEN3x4 [25] with a maximum bandwidth of 4 GB/s, it is clear that a coarse

design choice (that neglects the actual RBER evolution) requires 4 HD decoders and

any higher number would result in a cost ineffective overdesign.

However, since RBER increases with the number of P/E cycles (see Fig. 2.6),

the percentage of uncorrectable pages detected by the HD increases as well. As

a consequence SD is triggered and the read bandwidth rapidly decreases when the

memory rated endurance (P/E = 900) is approached. To guarantee the expected

performance and to extend the SSD working window, it is necessary to increase the

number of HD decoders (see Fig. 2.15) as well as that of SD decoders. Fig. 2.16a shows
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(a) (b)

Figure 2.16: Read bandwidth degradation with respect to the beginning of

life at P/E = 1200 and P/E = 1800 (i.e. at twice the rated endurance) con-

sidering different SD levels. 8 and 16 HD decoders have been considered

in Fig. a) and b), respectively.

the calculated read bandwidth degradation with respect to the beginning of life at

P/E = 1200 and P/E = 1800 (i.e., at twice the rated endurance) by implementing

8 HD decoders and different numbers of SD decoders. As it can be seen, to reduce

the read bandwidth degradation at twice the rated endurance, 2 SD decoders can be

used, while any larger number of decoders would result in an overdesign. Fig. 2.16b

shows the results obtained by using 16 HD decoders and different numbers of SD

decoders, showing a significant performance improvement thanks to a much higher

hardware cost. From a designer point of view, an accurate trade-off evaluation between

performance (i.e. read bandwidth reduction) and hardware cost must be based on

the actual knowledge of the memory RBER evolution.

By summarizing the previous reasonings, in multilevel Flash memories the use of

sophisticated ECC architecture is mandatory in order to efficiently correct a number

of errors that increases with the memory endurance and with the time elapsed be-

tween two successive read operations of the same page. These ECC engines, however,

strongly impact on the read bandwidth and latency. This holds true, in particular,

when uncorrectable pages are detected, since advanced read algorithms are required.

Therefore, the choice of the ECC code to be implemented and of its correction capa-
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bility, the design of the ECC engine architecture, and the identification of the most

effective re-reading algorithm depend on the memory reliability and, in particular, on

the BER whose value grows with the memory wear-out.

The optimal design of the reading path for a delay insensitive SSD must be based

on the accurate knowledge of the performance and reliability of the selected memories

and, therefore, on a careful pre-characterization of the memories themselves in order

to estimate their BER [83].

2.3 SSD controller design

The main block diagram of an SSD controller is shown in Fig. 2.17. Once the SSD’s

specifications have been fixed, and hence the maximum device bandwidth has been

defined, the SSD controller design follows a simple rule of thumb to calculate Nc and

Nd needed to meet the requirements. Basically, to calculate the actual controller

bandwidth Bcont, it is sufficient to sum the bandwidth contributions Bch of each

channel:

Bcont =

Nc∑
i=1

Bchi
. (2.3)

The maximum channel bandwitdth Bmax
chi

is obtained under the assumption that all

the memory dies connected to channel i are addressed at the same time. By defining

Bd as the bandwidth of each memory die, the theoretical controller bandwidth Bth
cont

is given by:

Bth
cont =

Nc∑
i=1

Bmax
chi

=

Nc∑
i=1

NdiBd . (2.4)

Eq. (2.4) represents, however, the theoretical condition under the hypothesis that

all single dies can communicate simultaneously with the controller and, therefore, it

represents the maximum achievable value. Unfortunately, for several reasons (e.g.,

access request to the same die, die’s response time slowed down by a read retry

operation, die busy for a program operation whose latency is much higher with respect

to read latency, etc.), the probability that all dies can communicate simultaneously

with the controller is generally < 1. Taking into account that a number n of dies in

a channel cannot serve new requests since they are processing other commands, the
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Figure 2.17: Schematic representation of the SSD controller, considering

Nc channels and Nd memory dies connected to each channel.

actual controller bandwidth is given by:

Bcont =

Nc∑
i=1

(Ndi − ni)Bd ≤ Bth
cont . (2.5)

The above equation calculates the controller bandwidth in a fresh condition (i.e.,

at the beginning of the drive’s lifetime). However, as previously shown in Section 2.2,

the actual performance of the SSD is strongly affected by the reliability phenomena

associated with the storage layer. As a consequence, to take into account these effects,

Eq. 2.5 can be modified as follows:

Bcont(P/E, T, RD, W AF ) =

=
Nc∑
i=1

(Ndi − ni(P/E, T, RD, W AF ))Bd ≤ Bth
cont

(2.6)

where P/E, T , RD and W AF are the current Program/Erase cycle number of the

drive, the working Temperature, the Read Disturb level of the memories, and the

Write Amplification Factor, respectively. The W AF factor is defined as

W AF =
data written to the NAND flash

data written by the host
≥ 1 ; (2.7)
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it has been accurately described in [84] and it depends on several factors ascribed to

the FTL implementation including Wear Leveling, Garbage Collection, and Bad Block

management algorithms. Along with WAF, P/E, T , and RD introduce hard-to-model

effects that complicate the description of the controller’s bandwidth in a closed form.

Therefore, to help SSD designers to calculate the actual performance and latency of

a target SSD over time and use, the adoption of sophisticated simulation tools like

SSDExplorer is mandatory [26].

Overall, what ultimately stands out from both Eq. (2.5) and Eq. (2.6) is that, to

approach as much as possible the ideal controller bandwidth, it is necessary to:

• reduce the probability that a command addresses a busy die (i.e., a die already

scheduled by another operation);

• maximize the number of dies that can process a new command.

This can be accomplished: i) by increasing the number Nd of dies connected to

each channel, which however impacts on the SSD cost; ii) with an effective command

management performed by the FTL; iii) by using a DRAM as a data buffer.

2.3.1 Efficient command management

In nowadays SSDs, to efficiently manage the commands issued by the host, it is

possible to leverage the Command Queue (CQ) concept [85]. This resource is usually

implemented as a software routine shared between the host interface, which pushes

host commands inside the CQ, and the SSD controller which manages the requested

operations and pulls out the commands from the CQ.

Fig. 2.18 shows the queuing hierarchy usually implemented in traditional SSD

controllers [86]. Besides the external host CQ, it is common to have a dedicated small

command queue for each NAND Flash memory die: the Target Command Queue

(TCQ). Basically, thanks to the TCQ, the host can continue to issue commands even

when it tries to read or program a die which is in the busy state. In fact, when

this condition is verified, the command is simply queued in the TCQ and the SSD

controller can continue to fetch other commands from the host CQ. This technique

allows maximizing Bcont since TCQs keep always busy all the NAND Flash dies. It

is thus clear that the main parameters controlling Bcont are the parallelism (i.e., Nc
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Figure 2.18: Queueing hierarchy implemented inside the SSD controller

for a generic channel

and Nd) and the queue depth (QD), that is the number of commands that the host

interface can store.

The attempt of approaching the ideal performance in terms of bandwidth by in-

creasing QD presents an unavoidable disadvantage: the increase of the service time

(i.e. the time elapsed between the issue and the execution of a command) and, conse-

quently, of the SSD latency. Therefore QD has a severe impact on QoS, that basically

defines the maximum acceptable latency of the drive and it is calculated as the 99.99-

th percentile of the SSD latencies cumulative distribution. To this extent, QoS is

used to quantify how the SSD behaves in the worst-case conditions [9]. By using this

metric it is possible to understand if the target SSD architecture is suitable for a spe-

cific application, such as real-time and safety-critical systems [87]. Fig. 2.19 shows an

example of how Bcont and QoS scale with the host QD. As expected, both Bcont and

QoS increase with QD. This behavior, however, is in contrast with the requirements

of high performance SSDs, which ask for achieving the target bandwidth with the

lowest QoS. In fact, state-of-the-art user applications such as financial transactions

or cloud platforms [88, 89] are designed to work with storage devices which have to
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serve an I/O operation within a specific time-frame which is usually upper-bounded

by the QoS requirement.

To deal with this requirement it is possible to use the Head-of-Line (HoL) blocking

concept, whose effect is to limit the number of outstanding commands inside the SSD,

thus partially solving the latency issue [90]. The HoL blocking is managed by the

controller firmware implementing a FIFO stack whose dimensions can be dynamically

defined. When the number of commands queued in a TCQ exceeds a predefined

threshold, it is possible to trigger a blocking state inside the SSD controller which

stops the submission of a new command from the host CQ. In such a way, depending

on the HoL threshold value, it is possible to avoid long command queues inside the

TCQs and, hence, the device QoS can be limited within a defined window.

Figure 2.20 shows the effectiveness of the HoL blocking for the case analyzed in

Fig. 2.19. As soon as the target performance of 300 kIOPS is reached (QD = 64), the

HoL blocking effect starts keeping the QoS below the target requirements even when

long QDs, such as QD = 128 and QD = 256, are considered.

The fine-grained QoS calibration made available by the HoL blocking, however,

does not come for free. If, besides Bcont and QoS, the average SSD latency is taken

into account, it is clear that the HoL blocking effect has to be wisely used (see Fig.

2.21). When the HoL blocking is triggered, it trades the QoS reduction with an

increase of the average latency. Moreover, this behavior becomes more pronounced

when high QDs are used, i.e. when a higher QoS reduction is required.

Summing up, it becomes clear that the performance optimization process that has

to be followed by SSD designers must involve the optimization of the bandwidth, the

average and the maximum latency, the length of the command queue, the command

management policy, the head of line blocking, all considered at the same time.

2.3.2 DRAM data caching

To increase the controller bandwidth and to approach as much as possible the theo-

retical bandwidth Bth
cont, it is possible to use a DRAM as data cache buffer [28]. As

shown in Fig. 2.17, this block is located between the host interface and the channel

controller. Standard data caching algorithms can be adopted, such as Least Recently

Used (LRU) or Least Frequently Used (LFU) [91], to decrease the number of accesses

to the Flash memories. Since data are addressed in a much faster memory, the access
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Figure 2.19: Bcont and QoS as a function of the host Queue Depth. The full

line and the dashed-dotted line represent the target Bcont and the target

QoS, respectively. Simulations refer to an SSD featuring Nc = 8 and Nd = 8

TLC NAND Flash manufactured in a planar 1x technology node. Average

read time is 86 µs and workload is 100% 4 kB random read.

Figure 2.20: SSD bandwidth and QoS for the same case of Fig 2.19 as a

function of the host queue depth when HoL blocking is used. The full line

and the dashed-dotted line represent the target Bcont and the target QoS,

respectively.
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Figure 2.21: Average SSD latency evaluated as a function of the host queue

depth, for the same case of Fig 2.19, with and without the HoL blocking.

time can be reduced with respect to a standard NAND Flash read/program opera-

tion. In addition, since part of the data to be read/written are stored in the DRAM

buffer, the number of accesses to the NAND Flash dies are reduced, thus limiting the

number of busy dies.

These effects positively impact the SSD bandwidth and the average latency. More-

over, the reduction of the number of accesses to the NAND Flash dies increases their

reliability. This point is strictly related to the smaller number of write operations,

thus limiting endurance effects and, possibly, leading to a reduced read disturb issue

(see Section 2.1).

Table 2.2 shows the cache hit probability, the read bandwidth, the average latency,

and the QoS calculated for the “no cache” case (i.e., a case where the DRAM data

cache buffer is not present, assumed as reference) and for different ratios between the

total NAND and the DRAM sizes. The number of cache hits (i.e. the percentage

of memory accesses to the DRAM buffer with respect to the total number of data

accesses) depends on the probability of addressing any single nonvolatile memory page.

All data have been collected considering a uniformly distributed Logical Block Address

(LBA) space of the SSD and a LRU eviction policy is used as caching algorithm.

As it can be seen, the perfomance metrics of the simulated drive are not signifi-

cantly influenced by the DRAM size. This is due to the fact that the LBA space is
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Table 2.2: NAND/DRAM size ratio and SSD performance for the same

configuration of Fig. 2.19 considering an uniformly distributed LBA space.

NAND/DRAM size ratio No cache 256 50 15

Cache hit probability [%] 0 0.6 2.7 8.2

Read Bandwidth [kIOPS] 301 312 318 337

Average latency [µs] 206 204 200 189

QoS [ms] 1.07 1.19 1.13 1.03

uniformly distributed across all the SSD pages, therefore all data locations have the

same probability to be addressed.

An uniformly distributed LBA space, however, represents the worst-case condition

for the assessment of the benefits materialized by a caching algorithm. In general real

user workloads tend to follow different LBA distributions which are more similar to a

Gaussian or a Log-Normal with a mode around a specific address. As a consequence,

if the I/O address profile of the target application is known, it is possible to optimize

the DRAM cache size depending on the statistical parameters presented by the LBA

profile itself.

Fig. 2.22 shows three examples of Gaussian workloads spanning across the whole

LBA space of the drive. By considering a ±σ deviation around the average of the

total SSD LBA address space, it is possible to design the proper DRAM size ratio in

two different ways:

• reducing the DRAM capacity while keeping the same cache hit probability and

drive performance;

• increasing the DRAM capacity maximizing the number of cache hits and, there-

fore, boosting the drive performance.

Table 2.3 shows, for the three cases of Fig. 2.22, the NAND/DRAM size ratio, the

cache hit probability, the read bandwidth, the average latency, and the QoS of the

target SSD architecture. As it can be seen, the performance metrics are almost similar

with a significant reduction of the DRAM size for the tightest workload distribution

of Fig. 2.22.
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Figure 2.22: Examples of three gaussian distributions of the I/O addressing

space. The median of the distributions is placed at the the 50% of the SSD

LBA addressing space in all cases.

Table 2.4 shows, for case b) shown in Fig. 2.22, the NAND/DRAM size ratio, the

cache hit probability, and the performance metrics of the target SSD architecture.

With respect to case b) of Table 2.3 the NAND/DRAM size ratio has been reduced

from 50 to 15. As it can be seen, it is possible to almost triplicate the cache hit

probability thus increasing the read bandwidth while reducing the average latency. It

is worth to highlight that this performance improvement marginally impacts the QoS,

since it is related to the worst case (usually a read operation performed on a NAND

Flash die.)

Summing up, the use of a DRAM cache offers advantages in terms of bandwidth,

latency, and reliability. The design of an application specific SSD, in addition, can

be optimized if the LBA space distribution is known, in order to reduce the DRAM

size. Therefore, the drive design must be done concurrently with the application for

which it represents the storage element. This concept, leading to the development of

Software Defined Flash (SDF, [29]), will be extensively treated in Section 2.5.
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Table 2.3: NAND/DRAM size ratio and SSD performance for the same

configuration of Fig. 2.19 as a function of the LBA space distributions of

Fig. 2.22.

Case a) b) c)

NAND/DRAM size ratio 256 50 15

Cache hit probability [%] 15.3 15.3 15.3

Read Bandwidth [kIOPS] 367 364 365

Average latency [µs] 173 175 175

QoS [ms] 0.98 1.27 1.29

Table 2.4: NAND/DRAM size ratio and SSD performance for the same

configuration of Fig. 2.19 as a function of the LBA space distribution of

the case b) of Fig. 2.22.

NAND/DRAM size ratio 50 15

Cache hit probability [%] 15.3 42.1

Read Bandwidth [kIOPS] 364 536

Average latency [µs] 175 118

QoS [ms] 1.27 1.19

2.4 Criteria for optimal host interface selection

The host interface represents the link between the SSD controller and the host where

the application is running. Differently from the SSD controller that is fully cus-

tomized, the physical structure of the communication interface follows consolidated

standards. At the moment, the used interfaces are SATA [8] (mainly for consumer

applications), SAS [24], and PCIe [25] (for enterprise environments).

The correct choice of the host interface represents a crucial aspect along the drive

design phase since it allows guaranteeing that the SSD controller is used in optimal

conditions. In a traditional design approach for general purpose SSDs, where both

controller and host interface are chosen separately without any knowledge of the final

application, the constraint of selecting a host interface able to guarantee a bandwidth
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Bhi ≥ Bcont (where Bhi is the maximum bandwidth of the host interface) at the lowest

cost represents the standard approach, whereas a host interface whose Bhi < Bcont

would act as a bottleneck limiting the SSD performance. A detailed analysis of the

impact of the host interface on the SSD’s performance has been presented in [26].

If the application to be run on the host is known, a different approach can be

adopted. It must be taken into account that the design of a fully customized SSD

controller is much more expensive with respect to that of the host interface, which

follows well defined standards [86]. By considering this economic aspect, it is con-

venient to design an SSD controller with top performance (rather than a family of

controllers with different quality metrics) and to operate at the host interface level

to satisfy the application requirements. As an example, if the controller has been

designed to sustain a certain Bth
cont and the application requires a lower bandwidth

Bapp, an interface satisfying the condition

Bapp ≤ Bhi ≤ Bth
cont (2.8)

can be selected, confirming that the ideal host interface must be chosen on the basis

of the application and, therefore, on the drive use. In such a way, with a single

SSD controller design, different application requirements can be satisfied by using

different host interfaces. Such methodology allows reducing the controller bandwidth

to match that of the application and lowering the design cost of the SSD controller.

In addition, it allows also reducing the drive power consumption since, operating at a

lower throughput, a lower number of NAND Flash dies are activated simultaneously.

An evolution of this design methodology, envisaging a single controller associated

to different interfaces as a function of the application, considers an unique combina-

tion of SSD controller and host interface. In this case, each block is able to provide

the maximum theoretical performance. The effective performance, however, can be

tuned dynamically at software level by acting on the SSD’s firmware and especially on

the command queue depths, which can be modified during the normal execution. An

example of this methodology can be found in [92, 93] where the SSD controller is able

to automatically limit the performance of the drive depending on the allowed power

consumption or on the thermal dissipation level. Such an approach, that calls for the

design of a single block embedding the SSD controller and the host interface, how-

ever, implies a higher design cost for the development of a controller whose hardware

resources can be programmed by the user.
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2.5 Research scenario opened by hardware-software

co-design

In the last 40 years all software applications and Operating Systems (OS) which make

use of persistent storage architectures have been designed to work with HDDs [1].

However, SSDs are physically and architecturally different from HDDs so that they

need to execute the FTL algorithm to translate host commands [3, 4, 5]. Basically,

the main role of FTL is to mimic the behavior of a traditional HDD and to enable the

usage of SSDs in any electronic system without acting on the software stack. Besides

this translation operation, SSD controllers have to run garbage collection, command

scheduling algorithms, data placement schemes, wear-leveling, and errors correction.

All these routines, even if on the one hand allow a ”plug and play” connection of

the SSD with traditional hardware and software, on the other hand they limit actual

SSD performance. The main drawback of FTL is the Garbage Collection (GC), that

is performed when valid pages belonging to a block to be erased are read and written

in a different block. Such an operation, that is time and power consuming, reduces

both drive bandwidth and NAND Flash reliability [84]. In the enterprise market and

hyperscale data centers, performance and reliability losses induced by GC are not

tolerable.

To deal with the above mentioned challenges, software developers of hyperscale

data centers have shown, in the past few years, a growing interest for Software-Defined

Flash (SDF) [29]. In this kind of environments the driving forces in the design of

computational nodes are reliability and high performance: therefore, even the I/O

management has to be re-architected. SDF leverages a new SSD design approach

called Host-Based FTL (HB-FTL) which allows the host system to:

• optimize the host payload, i.e., the amount of data read/written with a single

command and hence relieve the SSD from any host command translation or

manipulation;

• remove the GC related to FTL execution;

• execute the FTL directly on top of its computational node (Open-Channel ar-

chitecture [94]).
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2.5.1 HB-FTL operations

HB-FTL considers the migration of all FTL routines from the SSD to a more powerful

processor located outside the SSD. To this purpose, the processor must be able to

issue commands to be interpreted directly by the NAND Flash dies, such as read,

program and, especially, erase [95]. In this context, a new protocol called Light

NVME (LNVME) [96] allows a native communication between NAND memories and

the external processor. Thanks to this protocol, the FTL can be implemented and

executed by the external processor such as the host where the application is running.

A first advantage provided by this approach concerns the optimization of the host

payload. With this respect, since ECC coding/decoding operate on an entire mem-

ory page, read/write operations on a NAND Flash page must follow the constrains

imposed by the ECC itself. As an example, consider a NAND Flash memory whose

page size is 4 kB and a host reading/writing data on a 512 B basis.

Write operations are performed on the NAND memories only when eight 512

B data chunks have been transferred by the host. However, the host considers as

accomplished a write operation when the SSD has acknowledged the data acquisition.

If a power fail occurs between the data load and the effective storage in the nonvolatile

layer, data are considered as lost. To avoid this occurrence, dedicated solutions such

as super-capacitors [97] or the introduction of emerging nonvolatile technologies, such

as MRAM [98], replacing DRAM buffers can be adopted [99, 100]. On the contrary,

a NAND memory page is read every time the host requires even a single chunk.

Therefore, even if only 512 B are requested by the host, the entire 4 kB page is read

and decoded by the ECC. It is clear that, in this case, the SSD is operating at 1/8 of

its theoretical read bandwidth.

To improve the SSD performance and to better exploit its internal resources, it is

convenient to co-design the application payload with the ECC engine. The optimal

solution is achieved by data chuncks that are an integer multiple of the actual ECC

codeword.

A more powerful approach takes into account that in HB-FTL-based SDF both

the application and the FTL are processed in the same software environment [101].

Therefore, they can be co-designed in order to optimize the access pattern to the

nonvolatile memory. As an example, the application can be designed to perform only

sequential accesses to the storage medium, respecting the physical in-order-program
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of NAND Flash memories [102]. By following this approach, the actual access to the

NAND Flash dies is block-based rather than page-based which is typical of random

write accesses. By moving the write granularity from pages to blocks, GC is no longer

necessary. In addition, by serializing the write traffic to the NAND Flash memories,

the write bandwidth is maximized.

2.5.2 The Open-Channel architecture

The Open-Channel architecture [94, 101] allows implementing the management of

HB-FTL-based SDF.

Fig. 2.23 sketches a template architecture that can be modeled by Open-Channel.

Basically, thanks to the PCI-Express interconnection and the LNVME protocol, a

bunch of NAND Flash cards can establish a peer-to-peer communication with the host

processor without requesting any specific management to the SSD controller [103]. In

Figure 2.23: Reference architecture modeled by the Open-Channel storage

layer when the host processor is used for HB-FTL execution. More than

one NAND Flash card are connected to the PCI-Express bus. Different

FTL modules are executed by the host processor.
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Figure 2.24: Schematic of a NAND Flash card used in the Open-Channel

storage system.

Table 2.5: HGST SN150 Utrastar configuration.

Parameter Configuration

Channels 16

Dies per channel 16

SSD Capacity 3.2 TB

NAND Flash die 128 Gb Toshiba A19 eMLC

Host interface PCI-Express GEN3x4

this architecture ”NAND Flash cards” are not standard SSDs because, besides a

simple I/O processor, a channel controller for NAND addressing and an ECC engine,

they do not embody any complex processor, DRAM or even FTL (see Fig. 2.24). As

a consequence, data read/write from/to these cards have to be considered as the raw

output/input of NAND memories without any further manipulation.

Fig. 2.25 shows the effectiveness of HB-FTL with respect to a standard FTL

in increasing the SSD performance. To this purpose the HGST SN150 Ultrastar

SSD [104], whose configuration is reported in Table 2.5, has been compared with a

simulated drive feauturing a HB-FTL approach and the same SSD configuration.

The comparison has been performed for different mixed workloads, from a 100% 4

kB random read, 0 % random write to a 0 % random read, 100 % 4kB random write.

All results show that in a standard FTL-based SSD performance decreases with the
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(a)

(b)

Figure 2.25: Throughput (expressed in kIOPS) of HGST SN150 Ultrastar

SSD architecture compared to that of a simulated HB-FTL-based drive

with the same configuration: (a) read intensive and (b) write intensive

workloads. A queue depth of 32 commands is used. Simulations have been

performed with SSDExplorer [26].
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write percentage, whereas in a HB-FTL-based SSD performance is mostly independent

from the write percentage. This result is due to the absence of the GC algorithm that

strongly affects standard FTL-based SSDs.

Another architecture that can fully exploit the Open-Channel concept and the

LNVME protocol relies on the usage of a dedicated accelerator in the form of a Multi-

Purpose Processing Array (MPPA) [105, 106], as shown in Fig. 2.26. This solution

allows the reduction of the host I/O command submission/completion timings.

These delays are strictly related to the host’s processing capabilities and they

represent the time spent by the host to execute the LNVME driver and the OS

file system for each submitted/completed I/O. It has been demonstrated that the

performance of nowadays SSDs is heavily affected by the I/O submission/completions

timings [107]. Moreover, in most recent architectures like the one based on the 3D

Xpoint technology [108], these delays can even represent the actual bottleneck of

the whole storage layer, whose IOPS are limited by the host system itself. As a

consequence, reducing these timings is the key for designing ultra-high performance

storage systems.

A possible solution to this problem is to switch the LNVME protocol from an

interrupt-driven I/O completion mechanism to a polling-driven approach. Basically,

in standard SSDs, when an I/O is completed, the Flash controller sends an interrupt

to the host notifying that the transaction is ready to be transferred/processed. After

that, the host can submit another command to the drive because the submission of an

I/O is driven by a completion event. In theory this approach requires that the host

takes action only when I/Os are submitted/completed, but in practice it introduces

long processing delays because of the OS interrupt service routines [107]. Polling the

I/O completion events, on the contrary, can minimize the above mentioned processing

timings. It requires, however, that the host system monitors continuously the I/Os,

thus wasting part of its processing capabilities. In light of all these considerations,

moving the whole submission/completion process to a dedicated MPPA represents a

good solution which can offload the host system and, at the same time, exploit the

full performance of the NAND Flash cards.

Fig. 2.27 shows the bandwidth comparison among the HGST SN150 Ultrastar SSD

[104] and two simulated drives with the same architectural configuration, the former

executing the FTL on the host (HB-FTL), the latter on a dedicated MPPA (HB-
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Figure 2.26: Reference architecture modeled by the Open-Channel storage

layer when a MPPA is used for HB-FTL execution. Besides the NAND

Flash cards, the PCI-Express bus is connected to a MPPA accelerator

executing different FTL modules.

FTL-MPPA). Five different MPPA acceleration levels have been considered, ranging

from a 0% speed-up of the host up to the 95%. The maximum I/O acceleration was

imposed by the hardware limitations introduced by the PCI-Express bus.

As it can be seen the HB-FTL-MPPA is able to heavily improve performance in

all the tested conditions, but it is extremely effective when write intensive workloads

are considered. This phenomenon is related to the fact that program operations on

NAND flash cards still follow a Write-Through (WT) [109] caching policy; therefore,

once the data payload is transferred to the target card, a completion packet goes

immediately back to the MPPA. At this point it is clear that, since the access time of

WT buffers is in the order of a few µs, the reduction of the I/O submission/completion

timings impacts the overall transfer time of the payload. This is also true for read

operations, but because of the pipelining and queuing effects of the NAND flash cards,

the overall improvement is not so evident.

These considerations push towards a new SSD design methodology: a complete

virtualization of the storage backbone. In fact, both HB-FTL and Open-Channel
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Figure 2.27: Throughput (expressed in kIOPS) of HGST SN150 Ultra-

star SSD compared with the simulated HB-FTL or HB-FTL-MPPA for

different percentages of host I/O submission/completion timings acceler-

ations. Command queue depth is 32. Simulations have been performed

with SSDExplorer [26].

allow to virtually separating the internal resources of the SSD (like channels and

targets), providing a clear and straight path to OS data partitioning.

To sum up, an SSD design aimed at optimizing performances must follow a

Bottom-Up approach; indeed, most of the design constraints are strongly related

to the performance and reliability of the nonvolatile storage medium. A detailed

knowledge of the memory behavior (i.e. endurance, data retention and read disturb)

is mandatory to efficiently design the whole SSD architecture. RBER represents the

main figure of merit driving designer’s choices. The knowledge of RBER and, in

particular, of its dependency from time and workload, allows selecting the most effec-

tive architecture to extend the memory’s lifetime as much as possible. Since RBER

increases with technology scaling, the use of LDPC codes represents the solution of

choice for the most advanced ECC engines. Once the NAND Flash memories (to-

gether with the knowledge of their RBER) and the most appropriate ECC algorithm

(together with either read retry techniques or LDPC soft decisions) have been selected,

the design of the SSD controller must be based on multiple aspects:
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• the ECC architecture, as a trade-off between performance (bandwidth, latency,

power consumption) and area occupation;

• the number of memory channels, as a trade-off again between performance and

area occupation;

• the number of memory dies per channel, that is generally a power of 2;

• the appropriate command management, maximizing the number of active dies

and hence the SSD bandwidth, whereas limiting as much as possible the maxi-

mum latency (i.e. the QoS) by leveraging the head of line blocking concept;

• the introduction of a DRAM data cache buffer able to reduce the number of

access operations to the NAND Flash memories, thus increasing SSD bandwidth

while reducing NAND Flash degradation effects;

• the choice of the most suitable host interface able to guarantee the performance

requested by the host applications.

To further improve the performance of next generation SSDs to be used in hyper-

scaled environments it is possible to leverage new approaches, like SDF, exploiting

hardware/software co-design of the SSD controller architecture and of the host appli-

cations.
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SiO2 Films,” in Proc. Int. Rel. Phys. Symp., Apr. 1987, pp. 66 – 71.
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Chapter 4

Machine Learning applied to NAND

Flash memories

NAND Flash memories are an ubiquitous storage media found in many applications like

portable devices, smart-phones, and Solid State Drives (SSDs). Recently, as we have seen

in the previous chapter, the scaling path of the NAND Flash technology evolved from a

planar integration concept towards a three dimensional process (i.e., 3D NAND), in the

attempt of breaking the 1Tb/in2 storage density barrier [1] [2].

However, such a paradigm shift introduced substantial issues in the characterization

activities of the memory reliability. The typical characterization flow of NAND Flash

products must follow strict guidelines in order to measure the reliability metrics as a function

of the memory lifetime [3]. Such experimental activity allows developing proper error

correction and management solutions to cope with the many physical mechanisms that

impacts the reliability [4,5]. Nevertheless, there is the need of a thorough exploration of all

the possible operative parameters (e.g., programming voltages, timings, etc.) of a NAND

Flash chip to identify the optimal set of parameters that minimizes the RBER. The number

of parameter combinations that needs to be explored in different scenarios (i.e., cycling

and temperature range) going from planar to 3D devices increased to a point that it is now

almost impossible to find the best working conditions by simply using a ”judge-by-eye”

approach. Moreover, the variety of Error Correction Codes (ECCs) strategies that can be

adopted [6], together with the number of secondary correction mechanisms like the Read

Retry or the VT shift [7] further enlarged the problem space. To complete the picture, in

dense architectures, like Triple Level Cell (TLC) NAND Flash, there is a large variability

105



of the reliability figures within the same memory, which makes a single solution that fits all

very hard to find.

In this context, the data clustering algorithms typical of the machine learning discipline

could help. Previous works dealt with machine learning for NAND Flash architectures

[8–10]. The goal of those works was to provide a predictive solution for memory reliability

rather than considering memory optimization.

In this chapter we exploit a data clustering algorithm to find homogeneous areas in

terms of endurance reliability within a TLC 3D NAND Flash product. By analyzing a

large dataset, obtained by an extensive characterization campaign of different devices under

different working conditions, we found that the clustering helps in identifying, through a

semi-supervised learning approach, peculiar behaviors of different memory regions. The

results of the learning process are exploited in the optimization of the ECC strategies to be

adopted by the system in order to find the optimal code rate for a Low-Density Parity-Check

(LDPC) code that balances memory reliability and implementation cost.

4.1 Data collection

The electrical characterization of 3D NAND Flash memory devices has been performed

with the test equipment shown in Fig. 4.1. The system is an advanced version of that

already presented in [11] and is composed by a state-of-the-art ASIC PCIe Gen3 NVMe

memory controller used for SSDs [12] dealing with NAND Flash commands for accessing

the devices, a DRAM buffer for temporary data storage, and a set of SO-DIMM sockets for

3D-NAND Flash interfacing. The board hosts up to 8 SO-DIMMs each one populated with

8 3D-NAND Flash chip. A single chip contains 8 memory dies. The supply voltages are

provided by an external regulated power supply. The characterization system communicates

through a PCIe interface with an x86-PC where the data are collected for post-processing

with machine learning algorithms.

The data clustering process requires a large amount of data. Since the goal is to find

a general clustering rule for 3D NAND Flash under different endurance experiments, we

tested multiple memory devices mounted on different SO-DIMMs each one with a proper

testing sequence (i.e., different temperature, cycling time, etc.). The memories under test

are TLC 3D-NAND Flash whose structure is depicted in Fig. 4.2. A single memory block

is composed by an arrangement of wordlines, bitlines, and layers.
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Figure 4.1: Test equipment used in the characterization of 3D NAND Flash memory

devices.

The data analysis is performed on all the WL wordlines within a block considering

lower, center, and upper page types. The size of a page is 16 kB divided to 4kB chunks,

which are the minimum unit read during tests by the characterization system. Data clustering

was performed on more than 800 different memory blocks belonging to different devices

coming from multiple lots in order to improve the consistency of the classification algorithms

that are presented in the next section. The overall data collection took several months to

complete. The characterization data are produced by repeatedly writing and erasing (i.e.,

P/E cycle) the memory blocks with a random pattern and then reading out their contents

to verify the number of erroneous bits. From the characterization standpoint, this activity

is very important since it allows understanding the lifetime features of a memory while

providing a starting point for the design of ECC strategies through the calculation of the Bit

Error Rate (BER). In particular, since the system designers mostly tailor the ECC correction

capability on the worst reliability case for the memory, we have evaluated the BER at the

end of each endurance experiment, namely after 3k P/E cycles.
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Figure 4.2: Architecture of a 3D NAND Flash memory showing the different

topological elements (i.e., wordlines and bitlines on different layers) and TLC cell

structure with its storage paradigm.

4.2 Data clustering results

The characterization data have been used as inputs to the well-known k-means data clustering

algorithm [13]. The goal of the k-means is to partition the input data set (i.e., the BER of

the different TLC pages in a 3D NAND Flash block) in k different clusters. The algorithm

repeatedly computes the centroid of spherical clusters until each of the data points are

assigned to a cluster. The number of clusters is specified a priori and depends on different

factors like the complexity of the algorithm execution and the computational capabilities

of the system. Fig. 4.3 shows an example of the k-means application on the input data

set when k is equal to 5. As it can be seen from the figure, the clusters are not clearly

separated, although the algorithm seems to identify specific regions of the Flash block that

behave similarly in terms of BER. To ease the data analysis process we have separated

lower, center, and upper TLC pages as their behavior is known to be different in terms of

endurance reliability.

For a system designer, it becomes difficult to leverage the results of Fig. 4.3 because

there is not a simple correlation between clusters and physical wordlines. As such, we have

modified the k-means algorithm by applying a constrained clustering rule; this approach

is also known as ”semi-supervised learning”. The rule is that all the ECC chunks (or
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Figure 4.3: Data clustering performed through k − means algorithm. The cluster

centroids are indicated in the plot.

codewords) of a TLC page must belong to the same cluster. In addition to that, we require

that the TLC pages are as contiguous as possible (in terms of logical address) and, in

order to ease the firmware implementation, that lower, center, and upper pages share the

same clusters. By analyzing the output of the constrained clustering (see Fig. 4.4) it is

possible to appreciate that the clusters are more separated and easier to understand. The

algorithm clustered the pages on the WL of a 3D NAND Flash in 6 different clusters,

where a single cluster includes the three TLC page types. This result can be translated into

6 different reliability constraints for the 6 specific areas of a block; these constraints can be

leveraged by both ECC design and advanced NAND Flash data management algorithms.

We evaluated the consistency of clusters over different endurance testing conditions and

we always found clusters similar to those represented in Fig. 4.4. Such a validation allows

speculating that the cluster identification can be performed only once, at the end of the

memory characterization.
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Figure 4.4: Constrained clustering results on 3D-NAND Flash. Six different clusters

have been identified in the data-set.

Table 4.1: Worst case BER and associated LDPC Code Rate after data clustering

Worst BER L CR L Worst BER C CR C Worst BER U CR U

Cluster 1 2.8e-3 0.935 3.8e-4 0.97 6.7e-4 0.97

Cluster 2 1.5e-2 0.75 2.5e-3 0.935 1.3e-3 0.935

Cluster 3 1.2e-2 0.79 1.4e-3 0.935 9.9e-4 0.97

Cluster 4 7.8e-3 0.8475 8.7e-4 0.97 5.2e-4 0.97

Cluster 5 9.7e-3 0.81 1.5e-3 0.935 6.7e-4 0.97

Cluster 6 4.8e-3 0.9 5.8e-4 0.97 3.5e-4 0.97

4.3 LDPC Code Rate optimization results

LDPC codes are known as capacity approaching codes, in other words they are a category

of codes that are able to reach a Frame Error Rate (FER) value close to the Shannon limit

(for an infinite lenght of the ECC codeword) [14]. The FER is defined as the NAND Flash

110



Figure 4.5: Correction capabilities of a generic LDPC code [14] using different code

rates measured as a function of the sustainable BER at FER = 1e-4.

error rate after the application of the ECC; therefore, this metric quantifies the performance

of a code.

LDPC are block linear codes defined with a very sparse parity check matrix H . To

be a good candidate for 3D NAND Flash memories, LDPC codes must not only achieve

excellent decoding performance, but they also need to be suitable for high-speed VLSI

implementation with minimal silicon and energy cost. Among all the available options, it

has been shown that quasi-cyclic (QC) LDPC codes are the most HW friendly. In a nutshell,

the H matrix of a QC-LDPC code is an array of circulants. A circulant is a matrix in which

each row is the cyclic shift of the row above it, and the first row is the cyclic shift of the last

row. The parity check matrix H of a QC-LDPC code can be written as:

H =




H1,1 H1,2 · · · H1,n

H2,1 H2,2 · · · H2,n

...
...

. . .
...

Hm,1 Hm,2 · · · Hm,n




(4.1)

where each sub-matrix Hi,j is a binary circulant. The LDPC encoder exploits the regular

structure of the H matrix, so that it can be implemented in a modular way. For the same

reason, the decoding (through belief propagation or an approximation of it) can be made in
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a layered way exploiting the modularity of the circulants [14].

Data storage systems such as Flash memories and hard disk drives typically demand

very high code rates (e.g., 0.89 and higher). The code rate is the ratio between the user

data and the total stored codeword (user data plus parity bits). A high code rate means a

small overhead in terms of parity bits but less correction capability, while a low code rate

means good correction capability but large overhead in terms of parity bits and, therefore, a

higher waste of memory user capacity, which translates into higher costs of the system (see

Fig. 4.5). The LDPC modular structure described above makes LDPC ideal for adaptive

code rate implementations [15]. In particular, for 3D NAND Flash where BER changes

during the device lifetime are strongly affected by the TLC page topology, it is key to

have an ECC that has the ability to change the code rate without changing all the hardware

underneath.

The LDPC code rate optimization in 3D NAND Flash can be performed by evaluating

the worst case BER for each identified cluster along with specific ECC design considerations.

In NAND Flash system design, it is important to guarantee that the ECC will be able to

sustain a defined FER at the specified endurance conditions. Table 4.1 shows the measured

worst case BER after 3k P/E per identified cluster and the correspondent LDPC code rate

requested to sustain at least a FER = 1e-4 [16].

The code rate chosen by the designer, when no data clustering is performed and no

diversification of lower, center, and upper page is present, should consider the worst BER

of the whole device. In our experiments, this value is equal to 0.75. Such a code rate is

extremely conservative and forces user space waste for parity purpose in locations where

the reliability is higher. By splitting the three different TLC pages we gain in terms of

code rate since the lower pages will be associated with the lowest code rate, while center

and upper pages can be associated with 0.935, respectively. By calculating the equivalent

code rate as the average of the page associated rates we obtain 0.87. This materializes in a

16% gain of memory space that can be allocated for user data. However, the best code rate

optimization is achieved in combination with data clustering is used. When the TLC page

types are split and grouped in clusters, the equivalent code rate can be computed as follows:

∑
i∈[L,C,U ]

∑
6

j=1
nj ∗ CRi,j

3 ∗WL
(4.2)

where nj is the dimension of the j − th cluster (i.e., the number of pages it contains), and

CRi,j is the associated code rate for the i− th page type of the j − th cluster. In this case
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we obtained an equivalent code rate equal to 0.93, that allows a 24% gain on the memory

user addressable space.

In this chapter we have demonstrated the benefits of machine learning in 3D NAND

Flash characterization through the application of data clustering algorithms. The characterization

data set has been obtained by an extensive testing campaign of 3D-NAND Flash devices

under different operating conditions. By developing a semi-supervised learning methodology

we have been able to optimize the LDPC code rate dedicated to ECC, resulting in a 24%

gain of the memory space addressable by the user. Such activity paves the way for further

applications in the memory characterization context.
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Chapter 5

Impact of power-supply on the reliability

of TLC NAND Flash memories

NAND Flash memories are now an ubiquitous storage medium commonly integrated in

mobile, embedded and solid-state disks (SSDs) solutions [1]. The storage density scaling

requires a continuous effort because of the reliability degradation induced by several phys-

ical effects (Chapter 2 and Chapter 3) [2–7]. Data management algorithms and strong error

correction codes try to mitigate those effects [8–10], whereas little or no importance is given

to other sources of reliability-loss and this is what we address in the following. A NAND

Flash is composed by several macro blocks: the memory array, the data path circuitry that

controls the input/output towards the external world, the decoders which select individual

groups of cells in the array, and the high-voltage (HV) circuitry for read/write/erase opera-

tions. This latter sub-system plays an important role on the reliability since its design affects

sensitive analog circuits that control the behavior of the memory cells during read and write

operations. This is achieved by using a large set of voltages provided to the memory with

a defined precision, timing and granularity. On top of that, many voltages have a value

greater than the NAND power supply, asking for an on-chip charge pump. Fig. 5.1 shows

the main circuits inside the HV domain of a NAND Flash: the charge pump, the oscillator,

the voltage regulators, and the wordline (WL) switch. All these circuits share the same

power supply source, namely VCC , which Flash vendors advice in a working range usually

between 2.7 V and 3.6 V [11]. However, even if VCC is in such a safe operative region,

a different behavior of the memory reliability during its entire lifetime can be observed

depending on the chosen power supply.
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Figure 5.1: Typical architecture of the HV circuitry in a NAND Flash memory.

In this work we evaluate the impact of the supply voltage on the number of errors pro-

duced in write operations during endurance stress [12] performed on mid-1X Triple-Level

Cell (TLC) NAND Flash samples. The experimental characterization of this technology,

with a dedicated test environment, is benchmarked with SPICE simulations of the NAND

Flash HV circuitry and of the memory cells to expose the culprits of the different relia-

bility figures produced during endurance tests. This work will help system designers to

understand how much they can leverage on the power supply to reduce the Flash power

consumption while trading this feature with reliability.

5.1 Data collection

The analyses have been performed by means of a dedicated NAND Flash memory char-

acterization system which collects the number of errors per page retrieved after a readout

operation on an entire memory block. Fig. 5.2 shows the test equipment at a glance. It

is composed by a programmable FPGA, a DRAM buffer for temporary data storage, an

interface with a x86-PC, and a dedicated socket for NAND Flash memory interfacing. The

power supply can be changed externally through a regulated power-supply unit. In this

work we have considered two typical values used in NAND Flash design for SSD applica-

tions: 2.7 V, which is close to specification boundaries provided by the memory vendor, and

an intermediate value like 3 V. The former value is generally used for power consumption

lowering and to enable performance/reliability trade-offs [13].
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Figure 5.2: Test equipment used in NAND Flash characterization

Each tested device was a mid-1X TLC NAND Flash that has been stressed with random

data patterns to emulate real memory cycling. The tests followed the guidelines provided

in [12]. All TLC page types (i.e., lower, middle, and upper pages) have been considered

in the analysis to help the data interpretation. The page size of the tested NAND Flash

memories is 16 KB.

In TLC NAND Flash it is possible to store three different bits on a single cell by control-

ling the placement of the cells threshold voltage with the Three Steps Programming (TSP)

algorithm [14], that results into a separation of the cells in 8 different voltage distributions,

each representing three stored bits being the lower, middle, or upper page content during

reading (see Fig. 5.3). The total width of the threshold voltage distributions ∆V can be

approximately expressed as:

∆V ≈ ∆VPGM + RCCC + N (5.1)

where ∆VPGM is the used step size increment in the staircase programming phases of the

TSP [15], RCCC is the residual cell-to-cell coupling [16], and N is the contribution of the

noise sources during programming [14]. To reduce the number of bit errors it is required

a tight control of ∆V , which is achieved by an accurate voltage control exerted by the HV
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Figure 5.3: Phases of the TSP algorithm: binary program, coarse program, and fine

program.

circuitry on the program step ∆VPGM , being this latter factor the dominant term in eq.(5.1).

By monitoring different pages of a NAND Flash block during the memory endurance,

measured in terms of sustained Program/Erase (P/E) cycles, it is possible to observe that the

number of errors increases with endurance stress as expected. Fig. 5.4 shows the cumulative

bit errors distribution for a lower page, exhibiting a clear trend in the median distribution

value. Similar results are obtained for middle and upper pages except for the bit errors

magnitude.

However, by investigating the number of errors measured at each readout cycle of the

endurance test it is observed a strong dependence from the power supply voltage. Fig. 5.5

shows that using lower VCC values generally yields to a higher number of errors and to

a higher page-to-page variability. Moreover, it is observed that lower pages are usually

more affected by the power supply dependence with respect to middle and upper pages.

Errors page-to-page variability is analyzed through the σ parameter and the coefficient of

variation of the Gaussian fitting applied to the errors distributions in lower, middle, and

upper pages. Although at the memory rated endurance (usually from 300 to 500 P/E cycles

in TLC NAND Flash) the variability is barely perceivable, as soon as the lifetime increases

beyond this limit there is a maximum difference in the σ coefficient for the lower pages’
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Figure 5.4: Evolution of the cumulative bit errors distributions at each readout cycle

during endurance stress. The data are shown for lower pages with VCC = 2.7 V.

errors up to 5.2 (see Fig. 5.6) by operating the memory either with a VCC equal to 2.7 V or

3 V. Similar considerations can be derived by analyzing the coefficient of dispersion. These

results indicates that the HV circuitry becomes less effective in controlling the threshold

voltage distributions, especially for lower pages, both as a function of P/E cycles and VCC .

5.2 Simulations of high voltage circuits

The previous experimental results call for an investigation of the power supply dependence

of RBER in NAND Flash technology. To understand this phenomenon we have initially

simulated the circuits in the HV blocks responsible for the sole generation and the control

of the programming voltage VPGM [1, 17]: the charge pumps in the pump stages and the

voltage regulators to achieve a defined ∆VPGM (see Fig. 5.7). All the simulations have

been performed using SPICE with a HV technology process library typical for NAND

Flash applications (i.e., gate length equal to 0.35 µm) for the transistors and the capacitors

in the HV domain.

In the NAND Flash HV environment, one of the most used type of charge pumps in

the pumping stages is the voltage doubler [18]. The basic circuit is shown in Fig. 5.8.
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Figure 5.5: Errors retrieved during the endurance stress performed on lower pages

(top) and middle/upper pages (bottom) in a block of a mid-1X TLC NAND Flash.

It is a feedback system that can boost the input voltage and, essentially, it is made up

by two n-channel transistors (MN1, MN2), two p-channel transistors (MP1, MP2) and

two capacitors (C1, C2) of the same size. Since NAND Flash requires, during the TSP

algorithm, a range of voltages spanning from 12 V up to 23 V, multiple pumping stages
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Figure 5.6: Variability (σ) and coefficient of dispersion of the errors distribution ex-

tracted at each readout cycle as a function of the page type and of the power-supply

voltage.

driven by complementary clocks are required [19]. The output voltage VPP of a N stages

charge pump module can be expressed as:
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Figure 5.7: Simulated circuits in the HV blocks of a mid-1X TLC NAND Flash.

Figure 5.8: Voltage doubler circuit used in the charge pump unit stage of a mid-1X

TLC NAND Flash.
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VPP = (N + 1)Vg −
NIOUT

f(C + Cs)
(5.2)

where Vg is the maximum gain voltage per stage, IOUT is the output current provided by

the charge pump, f is the driving clock frequency, C is the equivalent stage capacitance,

and Cs is the parasitic capacitance per stage, respectively. The output of the charge pump

must be regulated to avoid disturbs and spurious glitches due to the parasitic capacitances

through a high voltage regulator (HiREG). According to the schematics in Fig. 5.7:

VPP = VREF

(
1 +

RX

RHiREG

)
(5.3)

where VREF is a reference low voltage used for the comparator, Rx is a programmable

resistor to vary the output of the charge pump during the TSP algorithm, and RHiREG is a

constant resistor. The choice of a programmable resistor in the HiREG stage is mandatory in

mid-1X TLC NAND Flash to reduce the power consumption of the programming algorithm

while ensuring a good reliability of the HV transistors in this block that could prematurely

enter into a breakdown condition. The linear low-dropout regulator (REG) generates the

program voltage VPGM to be applied to the memory cells selected for programming. The

staircase program voltage required in the TSP phases is obtained by increasing the resis-

tance RY (i.e., the value assumed at the first programming step) by a fixed amount of a

programmable resistance ∆RY . The determined voltage step ∆VPGM is equal to:

∆VPGM = VREF

∆RY

RREG

(5.4)

where RREG is a constant resistance used for the voltage divider in the feedback path.

To ensure high reliability it is requested a high linearity of the VPGM characteristics as

a function of time, yielding to a constant ∆VPGM during all the algorithm steps. SPICE

simulations have been performed by considering the entire VPGM range used in the TSP

algorithm with a desired ∆VPGM = 200 mV. The results evidenced in Fig. 5.9 show that

by lowering the VCC from 3 V to 2.7 V leads to a broadening of the ∆VPGM distribution.

This will reflect on a broadening of the cells threshold voltage distributions exposing the

memory to a higher count of bit errors. The failure in complying with the staircase linearity

for lower VCC values can be explained as a sum of two problems occurring in the HiREG

and REG blocks in the HV circuitry [20]: i) the regulators output voltage overshoots the

target VPGM due to a significant RC delay on the differential amplifier sensing path that
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Figure 5.9: Linearity check of the VPGM (insight) at different supply voltages (left)

and ∆VPGM distribution during the simulation of a TSP (right).

yields to a high output ripple; ii) the VPGM changes with the supply voltage due to the

power supply sensitivity of the trip point of the differential amplifiers in the regulators.

To accurately account for all the possible sources of reliability-loss induced by the HV

circuitry, all the phases of a programming pulse in the TSP algorithm must be simulated. A

single programming step is constituted by three phases: the self-boosting phase to inhibit

the unselected cells from actual programming; the programming pulse at VPGM for the

selected cells to program; the read verify to check whether or not a selected cell is correctly

programmed [15]. The switching from one phase to another must be timed accurately.

The circuit block that manages all these operations is the wordline (WL) switch, that is

constituted by several high voltage switches connected as show in Fig. 5.10. The WL

switch is an analog multiplexer that takes as input several voltages generated by different

charge pumps and regulators (i.e., the one for the inhibit voltage, the one for VPGM , etc.)

and outputs one voltage (VWL) on the memory cells in a wordline.

The goal of the high voltage switches inside the WL switch is to transfer the voltages

generated from the charge pumps and regulated by the HiREG and REG blocks whenever

required, ensuring the minimal voltage degradation during the transfer. The circuit used in
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Figure 5.10: Simplified structure of a WL switch.

simulations is similar to the voltage doubler element used in the charge pump unit stages [1].

Several SPICE simulations have been performed by considering consecutive program-

ming pulses at a ∆VPGM distance. The inhibit voltage for the self-boosting phase has been

assumed equal to 9 V. Typical pulse durations have been considered in the simulations [1].

For the sake of simulation speed the read verify operation is here not considered. When VCC

is lowered there are visible glitches during the transitions between the stages (see Fig. 5.11).

This could cause additional disturbs in the programming due to a sub-optimal inhibit oper-

ation resulting again in distribution broadening. A ∆Vpulse difference in the generated VWL

between the two VCC values due to the WL switch sensitivity to the power supply can be

appreciated.

Finally, even if the supply voltage is considerably into the boundaries of the safe op-

erating region, there could be some external AC and DC noise sources coupling with the

NAND Flash power supply. Page buffers switching activity and high frequency signals on

the data path of the NAND Flash system can be sources of disturb. To understand this

issue SPICE simulations of the HV circuitry were performed by using either a stable VCC

or a VCC with a superimposed sinusoidal AC noise at two different frequencies (i.e. 40

KHz and 100 KHz). To remain in the safe operating region a 3 V value was considered for

the VCC with a maximum noise of 100 mV peak-to-peak. The simulations demonstrates

(see Fig. 5.12) the impact of different AC noise frequencies on the broadening of ∆VPGM
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Figure 5.11: Output of the WL switch (self-boosting + programming) for two consec-

utive VPGM pulses at a ∆VPGM distance in a stage of a TSP algorithm.

Figure 5.12: Linearity check of the VPGM (insight) at VCC = 3 V when AC noise is

present (left) and VPGM distribution during the TSP (right).

distribution and therefore on the cells threshold voltage distributions.

In this chapter we have analyzed the impact of the power supply voltage on the relia-

bility of a TLC mid-1X NAND Flash memory. Through an experimental characterization
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performed during endurance stress it was observed that the number of errors and the page-

to-page errors variability strongly depend on the power supply. By simulating the different

blocks of the high voltage circuitry in the NAND Flash system through a SPICE model we

identified some of the possible culprits of this dependence, namely the regulators control-

ling the generation of the program voltage in the TSP algorithm and the wordline switch.

Finally, we have also investigated the possible side effects of the coupled noise sources

with the high voltage NAND Flash subsystem, evidencing that even if the power supply is

chosen in a safe operating region, it is not immune from errors.
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Chapter 6

Uniform and concentrated Read Disturb

effects in TLC NAND Flash memories

Triple Level Cell (TLC) NAND Flash memories are largely exploited in enterprise Solid

State Drives (SSD) thanks to their high storage density and low cost per bit [1]. However,

these storage architectures are suitable mostly for read-intensive applications since their

endurance in terms of sustainable program/erase (P/E) cycles is quite low compared to

other NAND Flash storage paradigms. Such a usage constraint exacerbates a reliability

issue that was almost negligible for previous NAND Flash generations, namely the read

disturb. The typical read disturb configuration is the one described in Fig. 6.1. All the

cells belonging to the same string of the cell to be read in a wordline must be driven with

a Vread, independently of their stored charge. The relatively high Vpass bias applied to

the control gate of neighbor cells may trigger several effects due to hot carrier degradation,

stress-induced leakage currents, and charge loss that result in a perturbation of the threshold

voltage distributions of a programmed block (see Fig. 6.2), yielding in turn to read errors

[2,3]. These errors are corrected by dedicated Error Correction Code (ECC) modules in the

SSD or by secondary correction mechanisms on the NAND Flash like the read retry. Several

techniques, either at device or at system level, have been proposed to reduce the occurrence

of the disturb for a given application, although no clear indications were provided on the

read access model of the memory leading to its insurgence [4, 5]. Some concerns about

the application-specific read usage models in Flash memories were debated in [6], although

never targeting neither NAND Flash nor SSD.

In this chapter we will show, through an extensive read disturb characterization on mid-
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Figure 6.1: Bias configuration for a read operation applied on a NAND Flash block.

The cells in gray are those suffering the read disturb.

1X TLC NAND Flash memories, that different read usage models of NAND Flash blocks

(i.e., uniform versus concentrated) in an SSD lead to different constraints and guard band

strategies against the disturb. The variability of the disturb entity among different pages

and wordlines of a block are presented and related to specific properties. This work is

particularly useful to SSD controller designers that need developing firmware strategies to

counteract the read disturb for a given workload profile.

6.1 Data collection and analyses

The read disturb characterization of several NAND Flash memory devices has been per-

formed with the test equipment shown in Fig. 6.3. The system is an advanced version of

that already presented in [7] and is composed by a state-of-the-art ASIC PCIe Gen3 NVMe

memory controller used for SSDs [8] dealing with NAND Flash commands for accessing

the devices, a DRAM buffer for temporary data storage, and a set of SO-DIMM sockets
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Figure 6.2: Threshold voltage distribution and TLC page coding. Red dashed lines

indicate the effect of the read disturb on the distributions.

for mid-1X TLC NAND Flash interfacing. The board hosts up to 8 SO-DIMMs each one

populated with 8 NAND Flash chip. A single chip contains 8 memory dies. The supply

voltages are provided by an external regulated power supply. The characterization system

communicates through a PCIe interface with an x86-PC where the data are collected for

post-processing purpose.

In TLC NAND Flash the state-of-the-art read disturb testing is performed by cycling

all the pages within the memory blocks up to a given P/E for lower, center, and upper

pages and then consecutively reading the content of that block following the programming

sequence [9]. The cycling has been performed up to 3k P/E with minimal dwell time.

Both cycling and read disturb were performed at room temperature. Fig. 6.4 shows that

the maximum number of errors retrieved for all the wordlines in a block and for different

page types increases with the number of block reads by following a power law. The disturb

growth error rate heavily depends on the P/E cycle count (see Fig. 6.5). By breaking down

the wordline contribution to the read disturb (see Fig. 6.6) for each page type it is possible

to appreciate a reproducible signature: the wordlines close to the drain selector are those

heavily affected by the disturb in center and upper pages, whereas in lower pages the trend

is inverted toward the source selector. This is related both to the different electric fields

near the Dummy wordlines and to the effective number of experienced Vpass.
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Figure 6.3: Threshold voltage distribution and TLC page coding. Red dashed lines

indicate the effect of the read disturb on the distributions.

As said, the read disturb testing is performed with a sequential read access usage model

(i.e., from the first to the last word-line) up to 3300 block reads. Considering a block com-

posed by 128 wordlines (i.e., 384 pages), the total page read count is 384*3300=1267200

per block. The page read count is the number tracked by many algorithms in the SSD

firmware coping with read disturb to understand its criticality for the disk reliability. With

a uniform read access of the NAND Flash blocks every page gets the same amount of ac-

cesses. However, there are some read-intensive applications where the number of reads

applied to the pages is concentrated in some regions of the block (see Fig. 6.7) [10].

Taking the analysis to extreme conditions we show the impact of concentrating all the

page reads on a single page of a block, therefore we applied 1267200 page reads after 3k

P/E either on a page in the center or in the last wordline of the block. As shown in Fig. 6.8,

when the reads are concentrated on a single page, the errors profile on the wordlines is the

same as for the uniformly distributed read disturb except for the two neighbor wordlines

to the continuously read one. In fact, these two wordlines suffer from hot carrier degra-

dation effects that heavily change their threshold voltage distribution. The worst case for

concentrated read disturb is found to be in the penultimate wordline where the error count,

especially for center pages, is the highest. Spreading the 1267200 reads on two pages in
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Figure 6.4: Maximum errors number retrieved in all the wordlines of a specific NAND

Flash page type at different P/E cycles. Data are interpolated through the power-law

indicated in figure.

the same block reduces the number of errors, but in this case four wordlines (i.e., 12 pages)

become corrupted.

6.2 Implications on enterprise SSDs

The read disturb handling strategies in enterprise SSD use the ECC engine to understand

whether the disturb effect is becoming critical for the reliability. When the number of errors

in a page due to read disturb reaches a threshold that is defined by the SSD firmware, the

entire block where the page belongs is relocated on another available in the SSD, and then

erased to reset the disturb effect. The relocation is a critical operation since it triggers an

additional P/E cycle for the block and therefore must be carefully handled to avoid lifetime

limitation of the disk. Fig.6.9 shows the achievable page reads count on a block before its

relocation after 3k P/E cycles by considering a 220b/4320B ECC. Different error thresholds

(i.e., the 80% and the 90% of the error correction capacity) were considered as well as

lifetime enhancement strategies like the read retry technique that lower the errors number
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Figure 6.5: Dependency of the disturb growth rate (fitting coefficient b of the power-

law) on the P/E cycles.

Figure 6.6: Wordline contribution breakdown on the read disturb errors. The region

with higher error count is evidenced.

by shifting the VRi read reference voltages indicated in Fig.6.2 [11].

Results prove that for the worst case access mode (i.e., concentrated page reads on the
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Figure 6.7: Example of a read-intensive workload profile (websearch [9]) retrieved for

100k page reads.

penultimate wordline of the block) there is up to a 22% loss in sustainable read operations

on the same block. It is worth to mention that this is an extreme operating condition,

therefore we expect that less aggressive read disturb usage models will be applied to the

memory, thus leading to a reduction of that factor. However, even if that value would be

reduced there will still be an impact on the disk lifetime.

To better assess the impact of the previous considerations on enterprise SSD we have

considered different read-intensive applications by extracting the number of requested page

reads on a block per day [10]. The applications indicated in Table 6.1 are: a high perfor-

mance computing facility, an online web search service, an OnLine Transaction Processing

(OLTP) system, and a proxy web server. Fig.6.10 shows the number of relocations per day

spent to counter the read disturb. A block relocation is triggered whenever the block read

count exceeds the achievable page read counts according to the ECC strategy adopted with

or without the read retry feature. Such a number impacts the write amplification factor of

the disk since internal data movement is required at the expense of reducing the P/E amount

that the disk can sustain. The higher is the value, the higher is the impact on the reliability,
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Figure 6.8: Concentrated read disturb effect when different disturb configurations

are applied (i.e., one page in worst location, one page in best location, two pages).

Table 6.1: Read-intensive applications for enterprise SSD

Trace Source Daily block read count

cello99 (HPC) HP Labs 51879

websearch UMass 87405

financial (OLTP) UMass 247004

prxy (Server) Microsoft Research 421456

on the lifetime of the disk, and on the overall power consumption overhead caused by the

additionally needed SSD operations. Applications like OLTP or web servers triggers in the

worst concentrated read disturb case up to 1.9 block relocations per day, therefore particular

care must be taken both in data storage phase and on the data access policies.

In this chapter we have investigated the differences between uniform and concentrated

read disturb effects in mid-1X TLC NAND Flash memories. The characterization showed

that a uniform read access of NAND Flash blocks yields to a reproducible signature of the
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Figure 6.9: Achievable page reads count on a mid-1X TLC NAND Flash block as a

function of the read disturb model (i.e., uniform versus concentrated) for different

SSD disturb handling strategies.

Figure 6.10: Calculated number of block relocations per day as a function of the work-

load supplied to the SSD.
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disturb. The wordlines close to the drain selector are those heavily affected by the phe-

nomenon. By characterizing the concentrated read access mode, better mimicking the real

workloads that a memory will sustain throughout its lifetime, it is appreciable that the er-

rors profile on the wordlines is similar to the uniform case except for the two neighbors

closer to the one where the read accesses are concentrated. The implications on the en-

terprise SSD are evident: when a concentrated read access is performed there is up to a

22% achievable page reads count by a block before requesting the intervention of the ECC

or other data management policies (e.g., scrubbing). For server and OLTP application this

could represent a limitation in terms of reliability, endurance, and power consumption of

the drive.
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Chapter 8 

 

MRAM-based NVRAM cards 

 

Non-Volatile RAM (NVRAM) cards address the need of persistency for small, frequent 

and/or transient data. For example, they can be used as a very fast and secure synchronous 

write buffer, which can quickly acknowledge synchronous writes, without compromising 

data integrity/persistency. Another typical use case for NVRAM cards is the storage of 

critical system data and user data in case of Power Failure: amongst the others, File System 

Metadata, Transaction Logs, and Cache Index Tables. 

The most common architecture of existing NVRAM cards is shown in Fig. 8.1a [1]. The 

card is connected to the Host via a PCIe interface and it contains DRAM and NAND Flash 

memories [2], together with a controller and a super capacitor. DRAM is used as a primary 

storage, in the sense that it is directly exposed to the Host via PCIe.  

On the contrary, NAND Flash memories are hidden to the Host and they are activated 

only in case of abrupt power down. When this happens, the on-board controller copies the 

entire DRAM content into the Flash array, thus making data non-volatile. Given the fact 

that the external power supply has been shut down, the energy required for reading from the 

DRAM and writing to the NAND is supplied by a super capacitor. As a matter of fact, 

NAND Flash devices, most part of the controller, and the super capacitor are there only 

because DRAMs are volatile, and all these additional components have an impact on cost, 

power and reliability. Therefore, there is a continuous research for a non-volatile technology 

that can simplify the overall design of NVRAM cards. 

 

8.1 All MRAM NVRAM cards 

Given the most recent advancements [3], MRAM technology seems to be a technically 

viable alternative for building simplified NVRAM cards, which would look like Fig. 8.1b. 

Because high performance is the main value proposition of NVRAM cards, it is key to 

understand how the number of read/write random IOPS and latency figures (i.e QoS, 

Quality of Service) would be impacted by replacing DRAM with MRAM. In this work we 
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present a detailed IOPS/QoS analysis based on a commercial DRAM/Flash NVRAM card 

[1] combined with a 256 Mbit perpendicular Spin-Transfer-Torque (STT) MRAM [4].  

 

 

Figure 8.1a. Block diagram of a DRAM/Flash NVRAM card 

 

 

Figure 8.1b. Block diagram of an All-MRAM card 

 

To get started, we successfully proved the interoperability between the on-board 

controller and the selected MRAM device, over the DDR3 bus. Figure 8.2 shows the 

validation board of the on-board controller that was used for this test: MRAM devices fully 

populate a UDIMM which is vertically mounted on the validation board.  
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A custom GUI, shown in Fig. 8.3, was also developed to check interoperability under 

different workload conditions (i.e. different combinations of read/write operations).  

 

 

Figure 8.2. SSD controller evaluation board used for interoperability tests. Eight 

standard SO-DIMM sockets can accommodate NAND flash memory cards, while one 

standard DDR UDIMM socket can host either DRAMs or MRAM memories. 

 

 

Figure 8.3. Custom developed Graphical User Interface (GUI) for MRAM testing. 

This GUI helps programming the SSD controller to issue single/multiple read/write 

operations to/from the MRAM DIMM. 

 

8.2 Data correlation and Simulation Framework 

Besides the experimental set up of Fig. 8.2 we wanted to develop a simulation platform 

to enable the design of the new generation NVRAM cards based on the All-MRAM 
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approach. The selected simulation framework is SSDExplorer [5] because it is a Fine-

Grained Design Space Exploration (FGDSE) tool, well suited for evaluating the impact of 

micro-architectural design choices on performances.  

Figure 8.4 sketches the architecture of the adopted simulation framework, while Table 

8.1 summarizes the main characteristics of the simulated host system and NVRAM cards.  

 

 

Figure 8.4. Architecture of the simulation framework used to test the performance and 

the latency of both the DRAM/Flash and the All-MRAM NVRAM cards. The 

parameters of the SSD simulator can be tuned to simulate a wide variety of SSD 

architectures and memories. Qemu is used as a workload generator. 

 

Table 8.1. Main characteristics of the host system and the simulated NVRAM cards 

NVRAM card 

parameter 

Configuration 

Host Interface PCI-Express Gen3 x8 

Host protocol NVMe 1.1 

DRAM/MRAM size 1 GByte 

DRAM/MRAM 

controller 

Single channel 

Host System Configuration 

Intel S2600GZ server 
Dual Xeon E5-2680 v2 

128 GBytes DRAM 

 

Figure 8.5 shows the comparison between actual performances [6] and SSDExplorer 

simulation results in terms of IOPS: there is a great matching for both Random Read and 
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Random Write workloads. It is worth highlighting how the matching is consistent across 

different queue depths. 

 

 

(a)                                                          (b) 

Figure 8.5. Performance comparison between a real (red dashed columns) and a 

simulated (blue solid columns) DRAM/Flash-based card when 100% 4 kBytes random 

write (a) and 100% 4 kBytes random read (b) are considered, respectively. Different 

host interface queue depths are considered. 

 

8.3 DRAM/Flash-based NVRAM vs. All-MRAM 

NVRAM 

Figure 8.6 shows a direct IOPS comparison between the 2 architectures described in Fig. 

8.1.  

Also in this case we considered random write and random read workloads and different 

queue depths. As a matter of fact, the All-MRAM architecture can keep up with the 

requested number of transactions without any significant performance degradation. While 

being counter-intuitive, this result can be explained by noting that the simulated NVRAM 

architecture sits beyond a PCIe interface, which turns out to be the bottleneck of the system. 

Last but not least, let’s take a look at latencies for both random read and write 

workloads. Indeed, these latencies are becoming more and more critical, especially when 

looking at applications where fast response is critical, such as financial trading and e-
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commerce. Delays introduced by host systems could mask actual card’s performance; 

therefore, latency has been evaluated as the raw latency introduced by the card only.  

 

 

Figure 8.6. Performance comparison between a real DRAM/Flash-based card (red 

dashed columns) and a simulated All-MRAM card (blue solid columns) when 100% 4 

kBytes random write (a) and 100% 4 kBytes random read (b) are considered, 

respectively. Different host queue depths are considered. 

 

Fig. 8.7 and Fig. 8.8 show the Cumulative Distribution Function (CDF) of the latencies 

for queue depths of 8 and 256, under 100% 4 kByte random write and 100% 4 kByte 

random read workloads, respectively.  

Similarly, to what we have seen for IOPS, All-MRAM NVRAM cards can respond as 

quickly as legacy cards, and this is true also when looking at the upper part of the CDF. It is 

worth highlighting that small differences in the latency profile are negligible when adding 

the overhead introduced by the application software. 

In this chapter, we have shown that MRAM is a viable alternative for replacing DRAM 

inside NVRAM cards. Number of IOPS and latency figures have been extensively analyzed 

under different workload conditions and queue depths. In all cases, we haven’t detected any 

significant performance degradation with respect to the DRAM/Flash legacy solutions. 

MRAM-based architectures can definitely simplify the card design by removing the need 

for Flash memories and the super-capacitor. Looking forward, the overall cost and power of 

the NVRAM card need to be assessed, especially considering that MRAM density is 

expected to reach 4Gbit/die in the coming years. 
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Figure 8.7. Latency cumulative distribution functions of the NVRAM cards when the 

standard DRAM/Flash architecture and the All-MRAM configurations are 

considered, respectively. A queue depth (QD) of 8 and 256 commands have been used. 

Simulated workload is 100% 4 kByte random write. 

 

 

 

Figure 8.8. Latency cumulative distribution functions of the NVRAM cards when the 

standard DRAM/Flash architecture and the All-MRAM configurations are 

considered, respectively. A queue depth (QD) of 8 and 256 commands have been used. 

Simulated workload is 100% 4 kByte random read. 
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Figure 9.4: UBER characteristics for intra-disk RAID-5 and RAID-6 as a function of

the stripe length. The mid-1X TLC NAND Flash RBER working region and the 10−16

target UBER are highlighted.

of the memory [7]. The JESD22-A117C document defines the UBER as [25]:

UBER =
CDE∑

BS (P Ecycles · RP C + RAC)
(9.5)

where CDE is the cumulative number of data errors during cycling, BS is the number of

bits in a tested sample, RP C is the number of reads per cycle, and RAC is the number of

reads after cycling, respectively. To account for these considerations the eq.(9.4) needs to

be modified as follows:

UBER(t) =
1−

∫ t

0
CSER(N, x)dt

ndata · N
·

1

PEcycles

WA
+ 1

(9.6)

where the integral calculated on CSER(N, x) represents the cumulative CSER calculated

as a function of the time and equal either to CSERR5 for RAID-5 or CSERR6 for RAID-

6, P Ecycles is the actual number of sustained program/erase cycles by the NAND Flash

memories in the SSD, and W A is the disk write amplification factor, respectively. The

basis of the time dependency in previous equations is related to the constraints applied

to guardband the SSD reliability during a defined mission time. To limit the wear of the
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NAND Flash in an SSD, especially in enterprise applications, a maximum number of Disk

Writes Per Day (DWPD), a target Over-Provisioning (OP) level for the garbage collection

operations, and finally a WA, is fixed. However, these definitions apply to the PE cycles

domain that is not of particular interest in reliability estimations. A linear transformation

of the NAND Flash PE cycles into SSD working hours can be performed to calculate the

hours spent per PE cycle by using the formerly defined parameters as follows:

hPE =
24

P Eday

=
24

DW P D/(1 + OP ) ∗ W A
(9.7)

where P Eday is the actual number of NAND Flash PE cycles per day that considers both

user writes and internal SSD data movements accounted by the write amplification. With

this approach the variable t becomes discrete, thus we can calculate UBER(t) up to the

SSD mission time using time steps equal to hPE. A calculation issue could arise when the

DWPD is large enough to achieve a number of PE cycles within the mission time higher

than what has been measured in our samples and shown in Fig. 9.2. In this case the problem

is solved by extrapolating the missing RBER values through an exponential fit of the NAND

Flash RBER characteristics following the formula RBER(t) = RBER0 ∗ expmt, where

RBER0 is the value at beginning of the memory lifetime, and m is a fitting coefficient,

respectively.

Fig. 9.5 shows the UBER(t) calculated for different DWPD values using both intra-

disk RAID-5 and RAID-6. The values considered span from 0.1 up to 5, representing typi-

cal read intensive (i.e., low DWPD) or write intensive (i.e., high DWPD) scenarios [26]. As

it can be seen, both intra-disk RAID approaches can guarantee a UBER lower than 10
−16

for DWPD values below one during a typical enterprise SSD mission time of 5 years. This

is in line with the expectations for TLC-based SSD since TLC NAND Flash are mostly

suitable for data archiving and write-once-read-many applications due to their reduced en-

durance compared either to MLC or SLC. Fig. 9.6 shows the UBER(t) dependency on the

WA. The WA parameter depends on many parameters like the workload type (e.g., sequen-

tial or random), the write transaction size, the amount of OP, and on the compressibility

of the data (i.e., the data entropy). When the sum of those effects results in a low value

both intra-disk RAID approaches are able to guarantee the target UBER, additionally prov-

ing that the RAID-6 approach allows achieving lower UBER for the entire mission time.

Once again, we have to stress that the results extracted with these analysis are heavily ideal-

ized and must be complemented with additional information on the NAND Flash and SSD
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Figure 9.5: UBER(t) characteristics calculated for intra-disk RAID-5 and RAID-6

with different DWPD constraints.

Figure 9.6: UBER(t) characteristics calculated for intra-disk RAID-5 and RAID-6

with different WA constraints.
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Table 9.1: SSD parameters considered in the simulations

Disk size 512 GB

Channels 32 (16 GB per channel)

NAND Flash technology mid-1X TLC

NAND Flash page 16 KB+parity (4 sectors 4320B)

NAND Flash rated endurance 300 PE

ECC strength up to 100 bits per 4320B

OP 30%

WA from 1 up to 6

Assumed cycling temperature 55◦C [6]

controller reliability, as shown in the next section of this work.

9.3 Modeling intra-disk RAID failures

The previous section of this paper considered the reliability of the intra-disk RAID by

studying the UBER characteristics calculated for different SSD constraints throughout a

typical SSD mission time. However, that approach did not include all the potential failure

patterns that could be experienced by an SSD yielding to possible data losses. In this

section we model the failure behaviors of the RAID-5 and RAID-6 approaches through

DTMC simulations of a 512GB enterprise SSD whose parameters are indicated in Table

9.1.

9.3.1 DTMC model

The most common metric devised to quantify the reliability of a RAID system is the Mean

Time To Data Loss. However, its interpretation can be quite difficult to forecast real world

applications, turning to be misleading most of the time [27]. A more useful metric is the

PDL, that measures the risk of losing data within a specified time. To evaluate this met-

ric we made use of the DTMC representation of the RAID-5 and RAID-6 approaches by

modifying the state transition probabilities to fit the intra-disk RAID study case. The HFRS

Markov chain solver [22] has been exploited for the simulations by modifying its code to

accommodate both discrete time events and the time-varying nature of the FCW in NAND
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Flash sectors. All the simulations consider a five years SSD mission time that is discretized

in time steps of 8.76 hours (i.e., 5000 simulation points). The choice of this value is suffi-

cient to capture the FCW variations in time according to the different workload constraints

studied in this paper, thus ensuring the DTMC convergence in one of the chain’s states.

Each time step is simulated 10
5 times with an importance sampling algorithm applied on

the exponentially distributed state transition probabilities to increase statistical consistency

while providing rare-events observability [22]. The FCW variability shown in Fig.9.2 is

considered in all the simulations and the worst-case assumptions on die-to-die variability

are the same applied for the ideal calculations in section III.

Let us consider the RAID-5 case whose model is depicted in Fig. 9.7. The simulation

of the SSD always starts in state 0 which represents the normal mode. At this point the

SSD could move into degraded mode by two failure types: i) a sector cannot be recovered

by the ECC and requires the reconstruction using the RAID approach; ii) an entire channel

connected to the NAND Flash chips fails. While the first failure pattern is modeled by

taking into account the FCW at a defined time step, the second failure pattern requires

some discussion. An SSD channel may fail due to different causes, the most common

are: defective Flash controllers integrated in the SSD controller, interconnection or solder

failures on the circuit board hosting the controller and the NAND Flash, and defective

NAND Flash dice. Each one of these causes contribute to the channel failure rate λ used in

the DTMC. When the SSD is in degraded mode it can be brought back to normal mode only

if the failure was due by an uncorrectable sector. In this case the recovery rate µ models this

transition probability. The time requested for a sector recovery via stripe reconstruction has

been evaluated in the range of tens of milliseconds through an accurate SSD performance

co-simulator [28]. If the SSD is in degraded mode due to a channel failure there is no

possibility to return in normal mode. In this case the SSD will apply some restrictions to

the workload (i.e., limits the write operations), but still allows for data reconstruction of the

failed channel. This is the case used for data backup on another device. The data loss state

(i.e., RAID failure) can be reached by these conditions:

• Two uncorrectable sector errors in the same stripe

• Any uncorrectable sector error and a channel failure

• A channel failure and any uncorrectable sector error in another channel

• Two channel failures
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Similar considerations apply for intra-disk RAID-6 modeled as in Fig. 9.7b. In this case

the model complexity increases to include the additional degraded mode state typical of

RAID-6 systems, and the additional failure patterns to reach the data loss state. Another

important consideration for DTMC simulations is related to the storage efficiency of the

two intra-disk RAID approaches that is calculated as [29]:

S = 1−
p

N




p = 1 RAID-5

p = 2 RAID-6

(9.8)

where N is the stripe length. The S parameter contributes to the channel capacity available

for SSD user operation Cch that is used in the state transition probabilities calculation as:

Cch = S · (1− OP ) · 16GB (9.9)

9.3.2 Impact of DWPD and WA on data loss

The DWPD and WA parameters play a major role in the SSD UBER determination, as seen

in the previous section of this paper. Here we apply the DTMC model of intra-disk RAID-5

and RAID-6 to evaluate the data loss probability over different SSD workload conditions.

The channel failure probability λ in the DTMC is set in all the simulations to 32.5 FIT, that

is assumed by considering the NAND Flash die failure rate (0.25 FIT) [30], and the typical

failure rate of an SSD controller manufactured with state-of-the-art Application Specific

Integrated Circuit guidelines [31]. The data loss probability is evaluated by considering a

stripe length equal to the SSD channel number, namely 32. Fig. 9.8 shows the evolution

of the PDL and of the UBER during a 5 years SSD mission time. In that figure it is pos-

sible to extract information on the dominant failure mechanism. If we consider the case

of DWPD = 3 for RAID-5, it is appreciable that in the first part of the SSD mission time

the PDL is dominated by the channel failure probability. Then, as soon the FCW starts to

increase during the mission time, the dominant failure mechanism is that of a single sector

failure plus a channel failure. In the remainder of SSD mission time, the dominant failure

mechanism is that of two sectors failures in a stripe, since FCW is very high. For DWPD

values below unity, the dominant failulre mechanism at 5 years mission time is generally

that of channel failures. The relationship between PDL and UBER has been derived by the

following equation [32]:
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Figure 9.7: DTMC for intra-disk RAID-5 (top) and RAID-6 (bottom) simulations.

The RAID degraded modes are highlighted.

UBER =
P DL

(N − x) · Cch




x = 1 RAID-5

x = 2 RAID-6

(9.10)

In Table 9.2 are reported the PDL and the correspondent UBER at 5 years by considering

a disk WA equal to 2. It can be observed that the RAID-6 approach always outperforms

RAID-5 in terms of PDL and UBER when the DWPD conditions are those representing
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Figure 9.8: PDL evolution during time for intra-disk RAID-5 and RAID-6 calculated

by DTMC simulations.

the typical usage model of TLC NAND Flash memories, namely read-most workloads with

DWPD below unity. When the workload becomes write-most there is no difference between

RAID-5 and RAID-6 since both approaches cannot keep the UBER below the 10
−16 target

in 5 years.

In Table 9.3 is reported the role of the WA on the data loss by considering a DWPD

equal to 0.3. The choice of analyzing the WA only for a read-most workload lies on the

fact that the major contributor on the disk reliability is the DWPD. Therefore, this approach

will help understanding whether or not the WA has some macroscopical effects. The PDL

and the UBER data at 5 years show that high WA values contribute to decrease the SSD

reliability. However, it must be noted that both approaches materialize into a significant

margin with respect to the SSD reliability target throughout the entire mission time.

9.3.3 Impact of the channel failure rate on data loss

Most of the investigations on intra-disk RAID for SSD evaluate the reliability by explicitly

neglecting the channel failure rate in the analysis [20, 21, 32]. In the DTMC model this

parameter (i.e., λ) is taken into account, therefore a sensitivity analysis of its impact on the
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Table 9.2: PDL and UBER retrieved at 5 years SSD mission time as a function of the

DWPD for different intra-disk RAID approaches

DWPD RAID PDL UBER

0.1
5 8.53e-11 2.95e-23

6 5.59e-16 2.07e-28

0.3
5 2.08e-10 7.20e-23

6 5.59e-16 2.07e-28

1
5 2.30e-8 7.96e-21

6 1.95e-13 7.21e-26

3
5 1 3.46e-13

6 1 3.70e-13

Table 9.3: PDL and UBER retrieved at 5 years SSD mission time as a function of the

WA for different intra-disk RAID approaches

WA RAID PDL UBER

1
5 8.53e-11 2.95e-23

6 5.59e-16 2.07e-28

2
5 2.08e-10 7.20e-23

6 5.59e-16 2.07e-28

4
5 3.08e-10 1.07e-22

6 6.24e-16 2.31e-28

6
5 5.09e-10 1.76e-22

6 3.69e-15 1.36e-27

PDL and on the UBER is mandatory. Since we previously observed that TLC NAND Flash-

based SSD works better with low DWPD constraints we have considered the following

SSD simulation scenario [33]: i) read-most workload with low WA (DWPD = 0.3, WA =

2) mimicking sequential video-on-demand traffic; ii) read-most workload with high WA

(DWPD = 0.3, WA = 6) typical of highly random applications like file servers. This will

return PDL and UBER values at 5 years mission time that are not heavily affected by write

operation degradation (i.e., PDL = 1). In the analysis we have considered three different

channel failure rates: 10 FIT, 32.5 FIT, and 90 FIT. Fig. 9.9 shows that the channel failure
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Figure 9.9: PDL (left) and UBER (right) dependency on the channel failure rate for

different workloads on intra-disk RAID-5 and RAID-6.

rate impacts the reliability of the SSD at 5 years mission time as expected. Indeed, the

PDL and the UBER will increase by increasing that value, although showing significant

reliability margin.

The dominant failure mechanism in these simulations for RAID-5 and RAID-6 is that

of channel failures due to the low DWPD value exploited, as previously explained. Such

result is confirmed by the fact that PDL and UBER scales as the square of the FIT value.

9.3.4 Impact of the stripe length on cost and reliability

The last parameter impacting the intra-disk RAID behavior is the stripe length. This factor

expose a trade-off in the SSD since it affects both reliability and performance. The larger is

the stripe the lower is the level of protection that can be achieved against channel or sector

failures [22]. However, using very short stripe lengths may lead to severe performance loss

caused by the reduced disk storage efficiency, as evidenced by eq.(9.8). A trade-off needs to

be exercised in this context. We considered in the DMTC simulations the same workload as

for the analysis on the channel failure rate PDL and UBER sensitivity by varying the stripe

length N from 4 up to 32. The channel failure rate is fixed to 32.5 FIT. Fig. 9.10 shows

that the higher is the stripe length the higher will be the PDL and the UBER as expected,

although for the simulated workload conditions every intra-disk RAID configuration is well

below the reliability limits. In this case, it is important to evaluate the economical impact of

the RAID, as shown in Fig. 9.11. Assume an SSD manufactured with an addressable NAND

Flash capacity of 512GB. The available user capacity reduces around 350GB with an OP

around 30% (i.e., typical in enterprise SSD). Shorter stripe lengths will result in a drastic

reduction of the user capacity, especially for the RAID-6 approach. While it is generally
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Figure 9.10: PDL (left) and UBER (right) dependency on the stripe length for different

workloads on intra-disk RAID-5 and RAID-6.

Figure 9.11: Stripe length impact on the overall SSD capacity when either intra-disk

RAID-5 or RAID-6 is exploited.

true that shorter stripe length will provide higher reliability against data corruption it is

not economical wasting more than 50% of the user capacity for RAID (i.e, storing the

stripes parity), considering the fact that achievable UBER is significantly below the 10
−16

reliability bound. Moreover, a shorter stripe will severely impact the DWPD constraint

due to the increased number of parity-write operations on the disk, thus requiring proper

management burdening on the overall SSD performance [15]. The minimum stripe length

that considers all the aforementioned thoughts should be in our opinion between 8 and 16

for RAID-5 and between 16 and 32 for RAID-6 if additional data protection is needed.

In this work we have investigated the reliability of two different intra-disk RAID ap-
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proaches (RAID-5 and RAID-6) for SSD when the considered storage medium is an ultra-

scaled TLC NAND Flash technology. The simulation results on the UBER indicated that

RAID-6 offers superior data protection with respect to RAID-5 as expected (up to five or-

ders of magnitude), but at the cost of an increased disk capacity utilization. Different work-

load constraints have been analyzed to prove this assumption on a broad scale of cases,

showing that intra-disk RAID becomes ineffective in applications far from the TLC NAND

Flash typical usage model. Through the development of a DTMC model that included the

channel failure rate we have been able, for the first time, to evaluate the impact of the

hardware failures on the SSD reliability, while at the same time quantifying the data loss

probability.
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